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Epilepsy, sleep, and Alzheimer’s disease (AD) are tightly and potentially causally interconnected. The aim
of our review was to investigate current research directions on these relationships. Our hope is that they
may indicate preventive measures and new treatment options for early neurodegeneration. We included
articles that assessed all three topics and were published during the last ten years. We found that this
literature corroborates connections on various pathophysiological levels, including sleep-stage-related
epileptiform activity in AD, the negative consequences of different sleep disorders on epilepsy and cog-
nition, common biochemical pathways as well as network dysfunctions. Here we provide a detailed over-
view of these topics and we discuss promising diagnostic and therapeutic consequences.
� 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

There is growing evidence of multidirectional and potentially
causal relationships on different levels between sleep, epilepsy,
and Alzheimer’s disease (AD) (see Fig. 1). The co-occurrence of
these pathologies has been documented in several studies within
the last few years:

1.1. Epilepsy and sleep

Sleep and epilepsy are closely intertwined: Epileptic seizures
and epileptiform neuronal activity as detected by the electroen-
cephalogram (EEG) often show a circadian pattern: They tend to
occur more often during sleep than during wakefulness, and are
more likely in certain stages of sleep than in others [1–3]. The
occurrence of epileptiform activity disrupts normal sleep architec-
ture and fragments sleep, which in turn, increases the risk of sei-
zures, closing a vicious circle [1,4]. Furthermore, sleep
disturbances (for example, insomnia, hypersomnia, or circadian
rhythm disorders) are more prevalent in patients with epilepsy
than in the population without epilepsy [5].
1.2. Epilepsy and Alzheimer’s disease

Epileptic seizures are more frequent in patients with AD, with a
prevalence ranging from 9% to 21% in studies between 2016 and
2020 [6–9]. Epileptiform activity is generally found to be more
prevalent in earlier stages of AD and in early-onset AD, as well as
in patients with inherited forms of AD [10]. Importantly, epilepti-
form activity can precede the occurrence of cognitive deficits for
years [11] and is associated with more rapid and earlier cognitive
decline [3,12].

1.3. Sleep and Alzheimer’s disease

Circadian disruption and sleep disturbances are common in
patients with AD and often occur early in the disease [13]. Sleep
disruption, in turn, impairs sleep-dependent memory formation
[14] and accelerates cognitive decline [15].

1.4. Connecting epilepsy, sleep, and Alzheimer’s disease

Though the existence of potentially causal connections between
epilepsy, sleep, and AD is implied by their strong bilateral relation-
ships, they are rarely assessed concurrently. The aim of our review
was to inquire about these connections with a focus on the devel-
opments and research in the last ten years. Unraveling the mutual
relationships between sleep, epilepsy, and AD is crucial, as it may
identify modifiable risk factors, inform about and improve preven-
tive measures, and offer possible treatment options.
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Fig. 1. Multidirectional relationships.

Fig. 2. Flow diagram of the selection process.

J.M. Hanke, K.A. Schindler and A. Seiler Epilepsy & Behavior 129 (2022) 108609
2. Methods

The Medline database was searched through PubMed using
textword and subject headings (MeSH) with the following search
strategy: ‘‘Epilepsy” OR ‘‘Seizures” AND ‘‘Alzheimer’s disease”
AND ‘‘Sleep” OR ‘‘Nocturnal” (see flow diagram below for com-
plete search algorithm). We also screened the reference lists of
included articles to find additional studies. The search was lim-
ited to studies published in the last 10 years (2010 to mid-
2021). Only reviews and studies with a focus on humans were
included. For more details about the exclusion criteria, see Table 1.
In total, 19 articles and reviews responding to the research ques-
tion were identified via the Medline database (for selection crite-
ria, see Fig. 2). Four further articles and reviews were found
through the reference lists of included articles. Finally, 24 articles
were included for this review. For an overview of all included
articles, see Table 2.
3. Results

3.1. General characteristics of the selected articles

In total, 24 articles from 2010 until 01.07.2021 were included in
this review. Of the 24 included articles, 17 were reviews and 7
experimental studies in humans. We classified them into four sub-
topics, which will be discussed in the following. For an overview of
the included articles, see Table 2.
Table 1
Excluded articles classified by topics.

‘‘off-topic” Focus on a special therapy treating neurological disorders (e.g. ketog
Focus on biochemical processes, search terms are only mentioned as
Articles on a specific illness presenting neurologic symptoms (e.g., bu
neurological disorders n = 18
Other focus n = 3
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3.2. Sleep-stage-related epileptiform activity in Alzheimer’s disease

Of the nine articles on this topic, seven articles concentrated on
the occurrence of electrographic epileptiform activity in AD, while
two articles focused on methods to detect these EEG signals.

Four of the seven articles were clinical studies about subclinical
epileptiform activity in patients with AD.

In an important longitudinal study from 2016, Vossel et al. [3]
investigated the occurrence of subclinical epileptiform activity
(SEA) via overnight long-term scalp EEG and 1-h magnetoen-
cephalography (MEG) with simultaneous EEG in patients with AD
without known epilepsy compared to age-matched controls with-
out dementia. They found significantly more SEA in the AD than in
the control group (42% versus 10.5% detected by long-term EEG
and/or MEG with EEG, and 21% versus 0%, respectively, detected
by overnight EEG). In the follow-up cognitive testing over an aver-
age period of 3.3 years, a faster cognitive decline (objectified by the
scores obtained in the Mini Mental Status Examination) was found
in patients with AD with epileptiform activity than in those with-
out. Epileptiform activity occurred significantly more often during
sleep than wakefulness, especially in deeper sleep stages, and was
most frequently detected over the temporal lobes.

Horváth et al. [16] examined the prevalence of epileptiform
activity in patients with AD with 24--scalp EEG recordings in their
experimental study from 2018. Patients with known epilepsy were
enic diet, caffeine, or cannabidiol) n = 19
possible therapeutic targets (e.g. 5’-nucleotidases) n = 8
llosis pemphigoid or Down syndrome) or specific symptoms occurring in



Table 2
Included articles (in the order they are discussed in the text).

Topic Authors Title Type of
article

Topic (in reviews)/Results (in experimental studies) [Study
design]Year

Sleep-stage-related
epileptiform
activity in
Alzheimer’s
disease

Vossel et al.
2016

Incidence and impact of subclinical epileptiform
activity in Alzheimer’s disease

Experi-
mental

[Overnight EEG and 1-hour MEG of 33 patients with AD
without seizure history and 19 age-matched controls
without dementia]
- Epileptiform activity occurred more often in patients

with AD than in controls and was associated with faster
cognitive decline.

- SEA occurred mainly during SWS and was detected
mainly in the temporal lobes.

Horváth et al.
2018

Prevalence, Semiology, and Risk Factors of Epilepsy
in Alzheimer’s Disease: An Ambulatory EEG Study

Experi-
mental

[Ambulatory 24 hour-EEG in 42 patients with AD]
- 28% of the patients with AD showed SEA in the EEG

recordings but did not have any known seizure history.
- 24% of the patients had electroclinical seizures during

EEG recordings.
Lam et al.
2017

Silent hippocampal seizures and spikes identified
by foramen ovale electrodes in Alzheimer’s disease

Experi-
mental

[Intracranial foramen ovale electrodes adjacent to the mesial
temporal lobe in one patient with MCI and one patient with
AD]
- Intracranial electrodes detected SEA in the patient with

AD and clinically silent seizures + IEA in the patient with
MCI while scalp EEG detected less SEA and no seizures.

- SEA occurred significantly more frequent during sleep
than during wakefulness.

Brunetti et al.
2020

Subclinical epileptiform activity during sleep in
Alzheimer’s disease and mild cognitive impairment

Experi-
mental

[full-night video polysomnography in 50 patients with AD,
50 patients with MCI and 50 controls without dementia]
- The occurrence of SEA was not different in patients with

AD, MCI, or in healthy controls.
- SEA did not differ through sleep stages.

Vossel et al.
2017

Epileptic activity in Alzheimer’s disease: causes
and clinical relevance

Review - Prevalence of EA is elevated in AD.
- Patients with AD and EA are significantly younger than

patients with AD without EA.
- EA in AD appears mainly over the frontotemporal brain

region and during deeper sleep stages.
Horváth et al.
2020

Inhibiting Epileptiform Activity in Cognitive
Disorders: Possibilities for a Novel Therapeutic
Approach

Review - Cortical excitability is a shared pathological trait
between AD and epilepsy and a possible therapeutic tar-
get to slow down cognitive decline.

- EA during sleep disrupts normal sleep architecture and
thus likely impairs memory consolidation.

Brown et al.
2018

Circadian and Brain State Modulation of Network
Hyperexcitability in Alzheimer’s Disease

Experi-
mental

- Epileptiform activity is most prevalent in sleep stages 2
and 3, and least frequent in REM sleep.

- SEA during sleep is likely to interfere with memory con-
solidation processes.

Horváth et al.
2017

Sleep EEG Detects Epileptiform Activity in
Alzheimer’s Disease with High Sensitivity

Experi-
mental

[24-h EEG of 5 patients with AD with known seizures]
- Epileptiform activity occurred mainly in sleep stages 2

and 3.
- Longer EEG recordings and particularly nighttime record-

ings are more sensitive for recording epileptiform
activity.

Lam et al.
2020

Night Watch on the Titanic: Detecting Early Signs
of Epileptogenesis in Alzheimer Disease

Review - Prior to cognitive decline in AD, there are years of clini-
cally silent neurodegeneration with occurrence of net-
work hyperexcitability.

- Reinforces the need of techniques to detect network
hyperexcitability.

Sleep disorders Palma et al.
2013

Sleep loss as risk factor for neurologic disorders: a
review

Review - In AD, sleep disruption, sleep loss, and circadian rhythm
disorders are a prominent feature and further contribute
to cognitive decline.

- NREM sleep, but also sleep deprivation have facilitating
effects on the occurrence of IEA and of seizures.

Benjamin
et al. 2020

Sleep in Patients With Neurologic Disease Review - Pharmacological and behavioral interventions can help
to normalize disturbed circadian rhythms in patients
with AD.

- Prevalence of sleep apnea in patients with epilepsy is
elevated.

Ju et al. 2017 Comorbid Sleep Disturbances in Neurologic
Disorders

Review - Insomnia and obstructive sleep apnea are typical sleep
disturbances associated with epilepsy while circadian
rhythm disturbances and sleep apnea are typically asso-
ciated with AD.

- Epileptiform activity leads to sleep fragmentation and
disrupt normal sleep architecture.

- ASM medication has various effects on sleep
architecture.

Smolensky
et al. 2015

Diurnal and twenty-four hour patterning of human
diseases: acute and chronic common and
uncommon medical conditions

Review - Circadian patterns are both found in AD (for example
increased confusion and agitation at sunset) and in epi-
lepsy (for example certain types of seizures occurring
preferentially at a certain period of the day).

(continued on next page)
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Table 2 (continued)

Topic Authors Title Type of
article

Topic (in reviews)/Results (in experimental studies) [Study
design]Year

Baker et al.
2019

A Longitudinal Study of Epileptic Seizures in
Alzheimer’s Disease

Experi-
mental

[Longitudinal study with patients with AD with and without
epilepsy. Initial cognitive testing and 12-month follow-up]
- Patients with epilepsy showed significantly more accel-

erated cognitive decline.
Differences in sleep behavior between patients with AD with
and without epilepsy were also found.

Biochemical
processes

Liguori et al.
2021

Sleep disorders and late-onset epilepsy of
unknown origin: Understanding new trajectories
to brain amyloidopathy

Review - Accumulation of Aß is not only linked to AD, but also to
epilepsy and sleep disorders

- Aß accumulation can increase neuronal excitability,
which facilitates the occurrence of seizures.

- Sleep deprivation was shown to induce Aß deposition
and leads to reduced Aß clearance by the glymphatic sys-
tem. On the other side, Aß deposition further disrupts
NREM sleep.

Bishir et al.
2020

Sleep Deprivation and Neurological Disorders Review - Sleep deprivation causes deficits in memory formation
by attenuation of long-term potentiation in the
hippocampus.

- Sleep deprivation promotes Aß accumulation, leads to
elevated cortisol and adenosine levels and increases
hyperphosphorylation of tau proteins.

- A possible mechanism by which sleep deprivation causes
seizures is suspected in changes of membrane excitabil-
ity, impacted synaptic plasticity, and changes in action
potentials.

Christensen
et al. 2020

Is the glymphatic system the missing link between
sleep impairments and neurological disorders?
Examining the implications and uncertainties

Review - The glymphatic system clears the brain from toxic
metabolites such as Aß and tau. It is mainly active during
sleep.

- Sleep impairment in AD interferes with the functioning
of the glymphatic system, leading to further accumula-
tion of Aß and tau.

- The strong interconnection between epilepsy and sleep
indicates a probable role of malfunctioning of the glym-
phatic system in the pathogenesis of epilepsy although
it has yet not been clearly linked.

Berhe et al.
2020

Orexins role in neurodegenerative diseases: From
pathogenesis to treatment.

Review - Orexin induces and maintains wakefulness and is thus a
potent regulator of sleep–wake cycle. It further plays an
important role in learning and memory.

- Low orexin levels have been correlated with cognitive
deficits and sleep impairment in AD.

Maciejewska
et al. 2021

A review of the mechanisms underlying selected
comorbidities in Alzheimer’s disease

Review - There is conflicting evidence as to the role of orexins in
seizures, with more recent evidence pointing toward a
pro-epileptogenic effect.

- Melatonin is an important timer for the circadian
rhythm. Reduced melatonin levels are associated with
AD and lead to circadian rhythm disorders.

Boison et al.
2015

Comorbidities in Neurology: Is adenosine the
common link?

Review - Adenosine pathways play an important role in facilitat-
ing sleep.

Liu et al. 2019 Research progress on adenosine in central nervous
system diseases

Review - Imbalance of adenosine homeostasis by dominance of
excitatory pathways disturbs memory consolidation,
decreases cholinergic activity and can lead to epileptic
seizures.

Bak et al.
2018

Astrocytic glycogen metabolism in the healthy and
diseased brain

Review - Astrocytic glycogen metabolism has been connected
with memory and learning.

- Preponderance of excitatory transmitter glutamate (a
product of glycolysis) has been linked to seizures.

Network dysfunction Karageorgiou
et al. 2017

Brain rhythm attractor breakdown in Alzheimer’s
disease: Functional and pathologic implications

Review - Sleep and wake are promoted by mutually inhibitory,
opposite states, the ‘‘brain rhythm attractors”.

- Breakdown of the brain rhythm attractor systems in AD
?‘‘twilight zone” in which neither sleep nor wake is fully
reached and the cortex is always active? network
hyperexcitability and seizures.

Jargirdar et al.
2019

Corticothalamic network dysfunction and
Alzheimer’s disease

Review - The corticothalamic network regulates sleep functions,
attentional and cognitive processes? a dysfunction of
this network in AD explains the joint occurrence of sleep
impairment, cognitive deficits and seizures.

Abbreviations (in alphabetical order): Aß Amyloid-beta AD Alzheimer’s Disease ASM antiseizure medication EA epileptiform activity EEG electroencephalogram IEA interictal
eptileptiform activity MCI mild cognitive impairment MEG magnetoencephalography NREM non-rapid eye movement REM rapid eye movement SEA subclinical epileptiform
activity SWS slow-wave sleep.
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included in this cohort, which is an important difference from
other studies. Epileptiform activity was detected in 48% of the
patients, with more than half of them not having any seizure his-
tory. Twenty-four percent of all patients even had electroclinical
seizures. The authors explained the high percentage of detection
of epileptiform activity, compared to other studies, by the fact that
they also conducted overnight recordings including deeper sleep
stages, which are well known to promote epileptiform activity
[17].

However, the results of the study of Brunetti et al. [18] did not
corroborate the above findings. In their study with patients with
AD, Mild cognitive impairment (MCI) and healthy controls, no sig-
nificant differences in the occurrence of SEA on scalp EEG between
the three groups were found – neither for the whole sleep period
nor separately for the different sleep stages. SEA was found in
approximately 7.5%, while none of it occurred in slow-wave sleep
(SWS). The authors thoroughly discussed possible explanations
for this discrepancy compared with the other studies mentioned
above. For example, they named the use of magneto-
encephalography (MEG) that detects epileptiform activity also in
deeper parts of the brain. Furthermore they underlined the inclu-
sion of patients taking potentially seizure-threshold-lowering
medications such as certain antidepressants, which is another
explanation for the increased detection of epileptiform activity in
the other studies. Additionally, Brunetti et al. used different, nar-
rower definition criteria for epileptiform activity. Finally, their
study participants were significantly older, which decreases the
risk of seizures, as epileptiform activity has been shown to occur
more often in younger patients with AD or early-onset AD [10].

In order to detect epileptiform activity in deeper parts of the
brain, Lam et al. [19] went further and assessed brain activity of
one patient with MCI and one patient with AD by intracranial
‘‘semi-invasive” foramen ovale electrodes that are surgically posi-
tioned close to mesial temporal lobe structures [20]. Both patients
had no seizure history but recurrent episodes of accentuated and
transient symptom aggravation (confusion in one, anxiety in the
other case), highly suspicious of non-convulsive seizures. Non-
convulsive seizures, notably short episodes of confusion, have a
higher prevalence in older adults than in younger patients [21].

In both patients, the foramen ovale electrodes showed signifi-
cantly more epileptic spiking than the scalp EEG, with a frequency
increase during sleep. Importantly, over 95% of the spiking was not
apparent on scalp EEG. In the patient with MCI, the intracranial
electrodes detected three ‘‘scalp EEG-silent” subclinical seizures,
all of them occurring during sleep. The latter finding stresses once
more the increased diagnostic yield of recording EEG not only dur-
ing wakefulness, but also during sleep.

The reviews of Vossel et al. and Horváth et al. [22,23] further
discussed epileptiform activity in AD, its impact on cognition and
possible therapeutic approaches.

Both reviews underlined the concept and role of cortical hyper-
excitability, a common feature of epilepsy and AD. They invoked
glutamate as an example for an excitatory neurotransmitter sys-
tem that is likely to be overactivated in AD [24,25], and may be
detrimental to cognitive functions [26] (also see 3.4.6). Increased
glutamate release was also associated with SEA and interictal
epileptiform activity (IEA) [27], and an increase in excitation plays
an important role in ictogenesis [28].

Both research groups further promote the idea that epileptiform
activity during sleep impairs memory consolidation during sleep.
This is supported by the findings of reduced physiological hip-
pocampal spindles [29], induction of spindles and delta waves dur-
ing rapid eye movement (REM) sleep and wakefulness [30],
reduced SWS, and increased time to REM sleep onset [31], as well
as reduced REM sleep [32] in patients with epileptiform activity
during sleep.
5

The review of Brown et al. [33] targeted circadian variations in
network hyperexcitability in AD. Besides further analyzing the data
acquired through intracranial electrodes in the two patients (see
above) of the study of Lam et al. with regard to sleep-stage-
dependent occurrence of interictal activity, the authors conducted
a study with two mouse models of AD to investigate circadian
effects of network hyperexcitability. Both, the data of Lam et al.,
and the mouse models, impressively demonstrated that epilepti-
form activity occurred mostly during sleep and thus had a strong
circadian modulation.

Two of the nine articles centered further on detection methods
of the often clinically silent epileptiform activity in patients with
AD.

In their study from 2017, Horváth et al. [2] analyzed 24-h scalp
EEG recordings of patients with AD and epilepsy that had mani-
fested around the time of the onset of cognitive decline. Their
aim was to determine the optimal setting for EEG recordings as
to reliably detect epileptiform activity. They corroborated a strong
association between epileptiform activity and sleep, with the
majority (70%) occurring in NREM sleep, particularly in sleep stage
3, while only 18% of epileptiform activity was recorded during
wakefulness. In summary, the sensitivity of detection of epilepti-
form activity was highest between 0:00 and 08:00 AM (where
already 1-h long recordings reached a sensitivity of 0.8) and further
improved with the duration of EEG recordings.

The review of Lam et al. [9] assessed methods – both already
existing as well as still in development – that allow to detect as
early as possible the often clinically ‘‘silent”, or difficult to detect,
epileptic activity in patients with AD. The authors motivated their
study by the fact that prior to cognitive decline in AD there are
years of ‘‘silent” neurodegeneration, possibly associated with the
occurrence of aberrant activity in hyperexcitable neuronal net-
works. Once cognitive deficits become apparent, significant and
probably already irreversible neurodegeneration has set in.
‘‘Hyperexcitability biomarkers” like subclinical epileptiform activ-
ity, could allow to detect AD in earlier and clinically silent stages.
Modifying network hyperexcitability hence offers a therapeutic
target in earlier stages of AD. Alternative electrophysiological tech-
nologies to detect epileptic activity that possibly evades scalp elec-
trodes mentioned by the authors are magnetoencephalogram
(MEG), intracranial electrodes (as used in their study from 2017
with two patients, see 3.2.1) and the application of machine learn-
ing to extract additional information from (non-)invasive EEG
signals.

3.3. The role of sleep disorders in patients with Alzheimer’s disease and
epilepsy

Five articles discussed sleep disorders and their clinical conse-
quences, including a focus on epilepsy and AD.

Palma et al. [34] and Benjamin et al. [35] assessed sleep loss
(defined as an average sleep duration of less than 7–h) as a risk fac-
tor for different neurologic disorders. Ju et al. [36] and Smolensky
et al. [37] underlined the occurrence of diurnal and circadian pat-
terns in AD. Alzheimer’s disease is, for example, associated with
circadian phase delay that leads to sundowning (i.e., an increase
of confusion and agitation at sunset) and (nighttime) insomnia as
well as daytime sleepiness. As sleep plays an important role in
memory consolidation, learning, and attention, its disturbance is
known to have deleterious effects [15,38]. In AD, imaging studies
revealed pathological changes in brain regions that regulate sleep
[39], suggesting a common pathological pathway. Benjamin et al.
further proposed the ‘‘normalization” of circadian rhythms (with
pharmacological as well as with non-drug treatments such as
exposure to bright light and physical exercise) as an important
aspect of AD management.
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As to the connection between epilepsy and sleep loss, Ju et al.
and Palma et al. pointed out the pro-epilepto-/ictogenic effects of
certain sleep stages and the rather protective effect of others.
Palma et al. reported that sleep disruption has been found to
increase the occurrence of IEA in patients with epilepsy, but not
in controls without epilepsy [40,41]. Ju et al. pointed out that up
to 2/3 of patients with epilepsy [42] have sleep disturbances that
lead to sleep fragmentation and disruption of normal sleep archi-
tecture. Additionally, antiseizure medication (ASM) can further
induce changes in sleep architecture or have a soporific effect, like,
for example barbiturates and phenytoin [43]. Smolensky et al. fur-
ther focused on circadian rhythms in epilepsy with a tendency of
different epilepsy types to occur during a specific time of the
day, for example temporal lobe seizures in the morning, parietal
lobe seizures in the early evening, and frontal lobe seizures in
the second part of the night [44].

Baker et al. [45] conducted a longitudinal study with patients
with AD including initial cognitive testing and a 12-month
follow-up. They clinically identified 28% of the included patients
as probably or possibly having epilepsy (referred to as ‘‘patients
with epilepsy” here). Via behavioral questionnaires, patients with
AD and epilepsy indicated a significantly poorer sleep quality and
sleep duration than controls without epilepsy. At follow-up cogni-
tive testing, while cognitive performance had decreased in all pa-
tients with AD, the cognitive decline in patients with epilepsy
was significantly more accelerated. Mostly affected were attention,
fluency, and several memory domains.

Benjamin et al. discussed the elevated prevalence of sleep apnea
in patients with epilepsy. Some ASMs – such as gabapentin or pre-
gabaline – are associated with weight gain or with reduced tone of
upper airway muscles, which increases the risk of sleep apnea [46].
The authors further described changes in sleep architecture with
increased lighter and reduced deeper sleep stages caused by sleep
apnea, which again, increase the risk of seizures [47].

3.4. Biochemical processes affecting sleep in Alzheimer’s disease and
epilepsy

Eight articles focused on different biochemical processes under-
lying normal brain function, with their dysfunction being the cause
or consequence of sleep disturbances, epilepsy, or AD.

3.4.1. Accumulation of ß-Amyloid
Liguori et al. [48] linked epilepsy, sleep disorders, and AD in their

review from2021with a commonpathological feature: the accumu-
lation of ß-amyloid. Importantly, deposition of Amyloid ß (Aß) pla-
ques and hyperphosphorylated tau are the two major pathological
features of AD [49]. Amyloid ß accumulation leads to dysfunction
of synaptic circuits andneuronal transmission. This not only impairs
synaptic plasticity and, consequently, learning and memory pro-
cesses [10], but these aberrant neuronal patterns can also lead to
network hyperexcitability [24,50]. Network hyperexcitability fur-
ther impairs memory encoding [50–52] and can induce changes in
network synchrony [53]. Changes in synchronization of neuronal
activity occur during seizures, with desynchronization often occur-
ring during early stages of the seizure and even preceding it, fol-
lowed by synchronization at a larger scale, which increases until
the end of the seizure andmight even facilitate its termination [54].

Amyloid ß was found to be pro-epileptogenic even prior to its
plaque deposition, which goes in line with the observation that sei-
zures often precede cognitive decline. In patients with late-onset
epilepsy of unknown origin (LOEU), reduced levels of Aß42 in CSF
were found suggesting increased Aß deposition in the brain [55].
These patients show faster cognitive decline and generally a higher
risk of progression to AD [12]. These findings further suggest a
common pathogenesis of AD and epilepsy.
6

Sleep disruption is linked to Aß accumulation in a vicious circle:
as the mainly sleep-dependent glymphatic clearance system is
impaired due to sleep disruptions, (see 3.4.3), clearance of Aß is
reduced. This reduction leads to its accumulation, thus promoting
progression of AD and further sleep disruption. Insomnia and sleep
deprivation induce Aß deposition [55,56] and impair sleep-
dependent memory formation [13,57]. Cerebral Aß disrupts NREM
sleep and Aß burden correlates positively with reduced SWA. As
slow-wave oscillations in NREM sleep are essential for long-term
memory consolidation, this is likely to have a negative impact on
memory consolidation [58].

3.4.2. Biomolecular effects of sleep deprivation
Bishir et al. [59] focused on the biochemicalmechanisms of sleep

deprivation in neurological disorders. Sleep deprivation is known to
cause deficits in attention, working memory, emotions, and hip-
pocampal learning already in healthy subjects [60]. Hippocampal-
dependent memory consolidation has been shown to be critically
affected in sleep deprivation by attenuating long-term potentiation
[61]. In AD, sleep deprivation impairs the clearance of Aß and tau via
the glymphatic pathways (see 3.4.3), which leads to faster disease
progression. In acute sleep deprivation, elevated tau levels in the
interstitial fluid in rodents and elevated Aß levels in human CSF
were found, while in chronic sleep deprivation, spreading of tau
aggregates was accelerated [62]. Sleep deprivation has furthermore
been shown to upregulate the expression of an enzyme that plays an
important role in proteolysis (and thus, ‘‘production”) of amyloid
precursor protein (ß-site amyloid precursor protein-cleaving
enzyme, BACE1) [63]. An impaired sleep–wake cycle has also been
shown to increase tau hyperphosphorylation [64].

The authors formulated a possible explanation for the facilita-
tion of epileptiform activity by sleep deprivation: McDermott
et al. were able to link changes in ion channels and synaptic alter-
ations leading to reduced membrane excitability in hippocampal
neurons to sleep deprivation [61]. These changes in membrane
excitability are further thought to have negative effects on long-
term potentiation and consequently on memory formation [65,66].

3.4.3. Glymphatic clearance system
Christensen et al. [57] linked sleep impairment and the occur-

rence of different neurological disorders via the glymphatic sys-
tem, which was first described in 2012 by Iliff et al. [67]. Because
the brain does not have a lymphatic system, the clearance of
metabolites, including Aß and tau, is realized by an intracellular
trans-astrocytic, glial pathway (‘‘glymphatic” = glial + lymphatic).
The glymphatic system seems to be mainly active during sleep,
above all in SWS, and suppressed during wakefulness [56,68,69].
The association between AD and sleep impairments such as
reduced SWS, sleep fragmentation, and disruption of the sleep/
wake cycle further points toward an important role of the glym-
phatic system in disease progression with accumulation of Aß
and tau due to a reduced function caused by sleep loss [56,70].

Epilepsy has not yet been proven to be directly linked to the
glymphatic system, but its strong interconnection with sleep indi-
cates a probable role of malfunctioning of the glymphatic system in
its pathogenesis, too. Abnormal neuronal activity and excitability
in epilepsy is furthermore suspected to modify the flow of intersti-
tial fluid [71], and, consequently, of the glymphatic system. Excito-
toxic damage, caused both by impairment of interstitial fluid flow
and by abnormal neuronal activity, may lead to further accumula-
tion of potentially neurotoxic metabolites [72].
3.4.4. Pathways involved in sleep–wake-regulation
Two reviews described the dysfunction of biomolecular mecha-

nism involved in sleep–wake regulation in AD.
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Berhe et al. [73] and Maciejewska et al. [74] described the role
of orexin in neurodegenerative diseases. Orexin, a neurotransmit-
ter secreted from the lateral hypothalamus, is a potent regulator
of the sleep–wake cycle as it initiates and maintains wakefulness
[75]. Consequently, increased activity of orexin leading to sleep
deprivation is thought to impair the sleep-dependent activity of
the glymphatic clearance system (see 3.4.3), which can result in
the accumulation of Aß, tau, and other waste metabolites. Orexin
furthermore directly reduces clearance of Aß by suppressing
phagocytosis [76]. Besides Aß, it also enhances the accumulation
of tau [77].

Administration of orexin both increased wakefulness and Aß
levels, while administration of an orexin antagonist decreased Aß
levels [78].

In contrast, orexin plays an important role in memory processes
by modulating long-term synaptic plasticity in the hippocampus
[79]. Deletion of orexin neurons in mouse models resulted in
impairment of learning and memory, while replacement of orexin
led to an improvement in memory tasks [80].

Besides orexin, Maciejewska et al. [74], describe melatonin as
an important timer for the circadian rhythm. The secretion of
melatonin from the pineal gland occurs solely during the dark
phase and is regulated by the Nucleus suprachiasmaticus, the
‘‘master clock” of the circadian rhythm [81,82]. Reduced CSF mela-
tonin levels are already found in preclinical AD stages and further
decrease with the progression of AD [83,84]. Decreased melatonin
levels are associated with circadian rhythm disorders like night
time insomnia and daytime sleepiness [85].

Regarding epilepsy, Berhe et al. reported conflicting evidence
about whether orexin acts to suppress seizures, or, on the contrary,
to enhance epilepto-/ictogenesis, with more recent evidence point-
ing toward the latter [86,87]. As orexin levels are highest during
wakefulness and sleep–wake transitions, when the risk of seizures
is also elevated [87,88], the authors propose a possible connection
between orexin levels and the occurrence of seizures.

3.4.5. Astrocytic glycogen metabolism
Bak et al. [89] linked cerebral glycogen metabolism and the

occurrence of neurological diseases. In the brain, glycogenolysis
is mainly localized in astrocytes and has been connected with
learning and memory consolidation processes [90,91]. In animal
models, glycogen deficiency impaired memory performance. Fur-
thermore, intracerebral injection of Aß caused memory loss, which
could not be overcome by stimulating glycogenolysis, because Aß
impairs glycogen synthesis. [92]. Glycogen metabolism has further
been linked to epilepsy: The excitatory neurotransmitter gluta-
mate is a product of glycogenolysis. A dysbalance between gluta-
mate and the inhibitory neurotransmitter GABA with dominance
of glutamate has been linked to seizures [93]. Concerning sleep, a
connection between glycogen metabolism and sleep has been
made for a long time as glycogen is used up during wakefulness
and replenished during sleep – however, there is increasing evi-
dence that glycogen levels might be related to reduced locomotion
during sleep rather than to sleep itself [94].

3.5. Network dysfunction in Alzheimer’s disease linking to sleep
disorders and epilepsy

Two research groups presented network models to understand
AD and its comorbidities.

3.5.1. Brain rhythms attractor breakdown in Alzheimer’s disease
In their excellent review from 2017, Karageorgiou and Vossel

[95] presented the brain rhythms attractor model as a possible
explanation for the strong bidirectional relationship between AD
and sleep disorders. This model describes two mutually inhibitory
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attractor systems, each of them consisting of specific neuronal net-
works in the hypothalamus and brainstem. Each attractor sets the
brain to a specific state – sleep or wake. By activation of one sys-
tem, the other system is inhibited.

The cause of the rhythm attractor breakdown in AD is supposed
to be the deposition of hyperphosphorylated tau in the brainstem
and basal forebrain, where nuclei involved in sleep/wake regula-
tion are located. The consequence of a breakdown in AD is a state
the authors refer to as ‘‘the twilight zone”, in which none of the
two opposite states of consciousness is any longer fully reached.
According to the authors, this model presents an explanation for
the elevated number of patients with AD with circadian rhythm
disorders such as daytime sleeping and nighttime awakenings as
well as disturbances of their sleep architecture.

The authors as well associated the sleep–wake attractor break-
down with the increased occurrence of seizures in AD with Aß
deposition leading to neuronal hyperexcitability that then pro-
motes epileptiform activity. Permanent neuronal activation in turn
promotes Aß aggregation, closing a vicious circle.
3.5.2. Corticothalamic network dysfunction
Jagirdar and Chin proposed a connection between the corti-

cothalamic network and AD in their review from 2019 [96]. As
the corticothalamic network regulates, among others, sleep and
arousal as well as attentional and cognitive processes, its dysfunc-
tion could explain the joint occurrence of symptoms from these
domains in AD. The corticothalamic network consists of reciprocal
connections between the cerebral cortex and thalamus. It is regu-
lated by the GABAergic thalamic reticular nucleus (TRN) [97]. Dur-
ing sleep, TRN is active and inhibits the transmitting of sensory
information from the thalamus to the cortex [98], which is impor-
tant for sleep maintenance. TRN activity furthermore induces
slow-wave activity (SWA), which is thought to be essential for
regeneration and homeostatic maintenance of neurons after wake-
fulness and thus for memory consolidation [99].

Furthermore, abnormal synchronization in the corticothalamic
circuitry is associated with certain non-convulsive seizures with
cessation of movement and a temporary loss of consciousness in
patients without AD. Based on the similar semiology of seizures
in patients with AD, the authors hypothesized a similar patholog-
ical pathway, involving a dysfunction of the corticothalamic net-
work, for certain nonconvulsive seizures in AD. As Aß deposition
in patients with AD has been found in subcortical areas such as
the thalamus [100], the authors postulated that this might be a
pathological correlate of thalamocortical circuit disruption in AD.
4. Discussion

The number of results found in the PubMed database for any
combination of two of our three search terms since 2010 until
mid of July 2021 (nearly 2000 for AD AND epilepsy, largely over
2000 for sleep AND AD, and even over 4000 for sleep AND epilepsy)
reflects the broad interest in these topics (for the exact numbers,
see Fig. 3). The comparison with the only 99 results for a combina-
tion of all three terms however underlines the urgent need for lib-
eration from silos of academic departments and from the
constraints of established paradigms to strive for a more integra-
tive perspective of neurodegeneration [101].

Sleep, AD, and epilepsy were linked in different ways through-
out the articles we have selected for this review (see Fig. 1). We
found a ‘‘tridirectional” connection linking epilepsy, AD, and sleep.
Remarkably, the articles that dealt with this were no older than
from 2016, which indicates that this is an emerging topic. The main
link between epilepsy, AD, and sleep concerns epileptiform activ-
ity, which is more common in patients with AD than in patients



Fig. 3. Pubmed search result numbers (last search: 01.07.2021). It is striking, how
relatively few studies assessed the trilateral interactions between epilepsy, sleep,
and Alzheimer’s disease.

Fig. 4. Consequences of SWS enhancement. A crucial point is that when slow-wave
sleep is therapeutically enhanced, the potential increase in epileptiform activity
should be monitored and probably also treated, for example by long-acting and
sleep stabilizing anti-seizure medication such as perampanel or a combination of
levetiracetam and trazodone or gabapentin.
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without AD, and occurs preferentially during sleep. This leads to
the following questions that should be addressed in future studies:

4.1. Epileptiform activity and sleep disruption – consequences or
causes of neurodegeneration?

Throughout our collected articles, the ‘‘chicken or egg problem”
has repeatedly been put forward: Palma et al. [34] inquired
whether sleep pathologies occurred as results of neurodegenera-
tion or if they could also increase the risk of the occurrence of
AD. Similarly, Vossel et al. [22] raised the question whether epi-
lepsy increased the risk of the occurrence of AD or whether it
was the consequence of the pathological changes occurring in
AD. Generalizing, one may ask: Are sleep disturbances and epilepsy
mainly symptoms of progressing neurodegeneration – or are they
also contributing to the progression of AD, maybe even to its very
development? Palma et al. raised this question already in 2012, but
a comprehensive answer is still lacking. Though recent research
suggests that both questions have to be affirmed and thus implies
several vicious loops, important aspects remain unclear.

As to sleep disturbance and epilepsy being a consequence of AD,
a common pathological denominator can be found in Aß and tau
aggregation. Seizures in AD are often originating from the temporal
lobes, a brain region strongly affected by early Aß and tau deposi-
tion [11]. Seizures could in this case be the consequence of the pro-
epileptogenic effect of Aß deposition [7,22], and sleep loss the con-
sequence of Aß deposition in brain areas that are involved in sleep
regulation, such as the nucleus basalis of Meynert in the basal fore-
brain, the thalamus, and several nuclei in the brainstem [81]. As to
why the appearance of sleep disturbances and seizures can precede
cognitive decline [11,13], Aß and tau have been found to be accu-
mulating years before cognitive symptoms appear, already leading
to cell damage, disruption of neuronal circuits, and appearance of
aberrant networks before the occurrence of the first cognitive
symptoms [102].

Furthermore, there is accumulating evidence that sleep and epi-
lepsy play a pathophysiological role in disease progression. Neu-
ronal hyperactivity has been associated with increased release of
tau and amyloid, leading to their accumulation, which suggests a
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facilitating role of epileptiform activity in AD progression [9,103].
Remarkably, not every patient with epilepsy develops AD. The risk
of developing AD for individuals with long-term epilepsy was only
found to be significantly elevated for seizures beginning 10 years
prior to the diagnosis of AD, suggesting an already existing com-
mon pathological pathway for those patients [104]. As to sleep dis-
turbance: SWS restriction has been found to lead to Aß
aggregation, while its enhancement reduces it [105]. Insomnia
and sleep apnea have been found to increase the risk of developing
AD [106] and sleep deprivation has been found to increase Aß
levels.

4.2. Are there further reasons to treat epileptiform activity and sleep
disturbances?

There is strong evidence pointing toward sleep’s essential role
for memory consolidation. A hallmark rodent study in 1994 found
a reactivation of the same visuo-spatial patterns during sleep that
had occurred in wakefulness while exploring new environments.
Furthermore, the patterns appeared in the same order as they
did during wakefulness [107]. In human studies, significant mem-
ory improvement can be observed already after short periods of
sleep [108]. Slow oscillations are generated in the prefrontal cortex
during SWS and are especially associated with hippocampus-
dependent memory consolidation. The underlying process of
long-termmemory-consolidation is thought to be the synchroniza-
tion of neuronal activity by the reactivation of newly acquired, still
labile, memory patterns (like the ones observed in the rodents) in
the hippocampus in order to consolidate them and enable cortical
long-term storage [109–111]. Reduction of SWS has therefore been
shown to lead to further cognitive decline [112,113], which speaks
in favor of a treatment of sleep disturbances in AD.

Furthermore, as epileptiform activity has been shown to occur
more frequently in SWS compared to other sleep stages or wake-
fulness [3,4,16,111] they are likely to interfere with the then occur-
ring memory consolidation processes (see Fig. 4).
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An argument that SWS is disturbed by epileptiform activity is
also found in patients with accelerated long-term forgetting
(ALF). Accelerated long-term forgetting is a common symptom of
patients with transient epileptic amnesia (TEA), a form of temporal
lobe epilepsy manifestating as episodes of transient amnesia.
Patients with ALF forget new memory contents at an accelerated
rate, while learning and short-term memory retrieval are intact
[114]. Atherton et al. found that patients with ALF did not profit
from SWS regarding memory consolidation, as did healthy con-
trols. Crucially, the negative correlation between SWS duration
and memory retention after sleep for the ALF patients even points
toward a detrimental effect of SWS due to a possible increase of
epileptiform activity during SWS and a consecutive disruption of
memory consolidation processes [111].

Besides this possible disruption of sleep and SWS, epileptiform
activity itself is furthermore suspected to cause worsening of cog-
nitive functions. While the deteriorating effect of epileptic seizures
on cognitive functions has been a subject of extensive research
[115,116] and has also been found for patients with AD
[11,117,118], less is known about a potentially harmful effect of
SEA on cognition, and further research is therefore urgently
needed. Recent findings however point toward a similarly detri-
mental effect for SEA [3,23,119]. For example, interictal epilepti-
form activity in wakefulness has been found to disrupt short-
memory retrieval and impede neuronal plasticity [120,121].

The symptoms that are most noticeable and often have the
most impact on everyday life for patients with AD are memory loss
and other cognitive deficits. Consequently, if SEA presents a fur-
ther, but treatable ‘‘threat” to cognitive functions by itself and by
impairing sleep, this clearly favors to suppress epileptic activity.
4.3. How can subclinical epileptiform activity and sleep disturbances
reliably be detected?

As SEA and overt seizures often precede other recognizable fea-
tures of AD [13], detecting them could allow for an early diagnosis
of AD and – hopefully in the future – for the prevention or at least a
slowing of further neurodegeneration. Accordingly, mesial tempo-
ral epileptiform activity, hyper- and also hypoactivity of hip-
pocampal neurons, as well as disruptions of SWA, have been
discussed as diagnostic ‘‘biomarkers” of AD [9,58,103,122].

In AD, epileptic seizures can be very challenging to detect clin-
ically (as they are mostly non-convulsive) or to be recognized as
epileptic (as fluctuations in behavior, temporary worsening of
memory, or short episodes of absence are also common non-
epileptic features of AD) [7,11]. In addition, subclinical epilepti-
form activity can by definition not be directly observed [123].
The classical, almost a century old, method of detecting epilepti-
form activity is EEG. However, ‘‘standard” scalp EEG is mostly per-
formed for a duration of under an hour during wakefulness, with
limited capability to register epileptiform activity in deeper brain
regions. Sensitivity for the detection of SEA in the first 30 min of
EEG recordings has been shown to be around only 15% [16]. Conse-
quently, detection sensitivity can be increased by extending EEG
duration, and, importantly, with recordings during sleep [2].
Besides standard EEG, there are various other detection methods,
some already established and others still being developed: For
example, the combination of EEG and MEG allowed Vossel et al.
2016 to detect SEA in deeper brain regions [3]. Another method
was used by Lam et al.: They detected significantly more SEA and
even seizures with intracranial foramen ovale electrodes in pa-
tients with AD without epilepsy, while scalp EEG conducted at
the same time showed significantly less SEA and did not detect
any seizures [19]. Of course, foramen ovale electrodes are an inva-
sive method, and thus their use is likely to remain restricted.
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The use of computerized methods to detect epileptiform activ-
ity is a subject of ongoing research: Through pattern recognition
and machine learning, artificial intelligence becomes able to detect
epileptiform activity that the human expert is not able to see. Arti-
ficial neural networks have been trained to identify scalp-EEG-
negative seizures by associating the scalp EEGs with corresponding
recordings obtained by intracranial electrodes and have identified
correctly 40% of scalp-EEG negative seizures, while clinicians could
not detect any of them [124].

To allow EEG monitoring over longer periods of time and
thereby significantly improve detection of SEA and sleep disorders,
detection devices will have to be as small and unobtrusive as pos-
sible, which requires novel ultra-low energy algorithms and hard-
ware as, for example enabled by hyperdimensional computing
[125,126]. Long-term monitoring would permit to detect intermit-
tent epileptiform activity as well as changes in sleep architecture
over longer periods of time. This would allow to also monitor the
effects of treatment on both epileptiform activity and sleep distur-
bances. Additionally, more comprehensive scientific information
about the effect of subclinical epileptiform activity and sleep
changes, for example on cognition or the progression of neurode-
generation, could be obtained in a more objective way. As a supple-
ment to sleep diagnostics by means of EEG, polysomnography
should be mentioned above all, which ideally should also be used
at home and can be supplemented by video recording [101].

4.4. What are therapeutic options to reduce epileptiform activity and
treat sleep disturbances in AD?

Only a few studies have so far investigated the effect of ASM in
IEA [127–129] and even fewer in SEA. Both positive and neutral
effects concerning the improvement of cognitive functions in AD
have been reported. The finding that an improvement of cognition
only appeared in patients with AD who also had a reduction of
epileptiform activity strongly suggests a contribution of the epilep-
tiform activity to cognitive decline [130,131]. Levetiracetam and
lamotrigine have been shown to be effective regarding seizure
reduction in AD [132]. Additionally, studies indicate a neutral to
even possibly positive effect of levetiracetam on cognition
[133,134]. It further seems to have little effect on sleep or might
even increase sleep efficiency and SWS [42,132,135]. However, rel-
evant side effects of levetiracetam are tiredness as well as worsen-
ing of depression, irritability, and anxiety, which in turn can lead to
insomnia [136,137]. Lamotrigine showed stabilizing effects on
sleep and may as well have positive effects on cognition [1,138].

Regarding the goal of improving sleep, it is important to note
that the objective to increase the amount of SWS might collide
with the objective to reduce the occurrence of epileptiform activ-
ity, as the latter is elevated during SWS [4] (see Fig. 4). This
dilemma of improving SWS but at the same time preventing the
occurrence of epileptiform activity has not been solved using a sin-
gle drug yet, though recent studies imply that perampanel might
be a good candidate to evaluate [139]. Alternatively, a combination
of two drugs could be conceivable [125]. Studies have, for example,
shown a positive effect of trazodone, an antidepressant, in patients
with AD with significant SWS enhancement [140,141]. La et al. fur-
ther found a significant increase in cognitive performance in pa-
tients with AD treated with trazodone for sleep impairment in a
longitudinal study over 3–4 years [141]. To prevent the potentially
increased occurrence of epileptiform activity and its associated
negative effects, trazodone could then be combined with an ASM,
for example levetiracetam (see above). Furthermore, gabapentin
has been shown to increase SWS as well as sleep efficiency, and
to decrease arousals [4,142]. Seizure frequency in patients with
epilepsy has also been reduced [143], but not interictal epilepti-
form activity [144]. In addition, gabapentin often induces weight
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gain, which may promote or enhance obstructive sleep apnea [43].
Again, a careful combination with another ASM could be appropri-
ate. When considering polytherapy, the monitoring of side effects
is key, as the majority of ASMs may have – dose- or non-dose-
dependent – cognitive and neuropsychiatric adverse effects, and
this can be compounded by polytherapy. Consequently, polyther-
apy should only be continued when there is an increase of effi-
ciency outweighing side effects. In doing so, it is important to
avoid some ASMs: Phenytoin and valproate for example have been
shown to worsen cognitive functions and to impair sleep by dis-
turbing sleep architecture [74,145], and they furthermore affect
liver enzymes, which increases the risk of drug–drug interactions.

A non-pharmacological treatment option could be neuromodu-
lation. It is already being used in different modalities for patients
with drug-resistant epilepsies, and several studies have applied
transcranial current stimulation in elderlies during sleep to
enhance memory, though with mixed results. There is also a study
applying transcranial current stimulation during a nap in patients
with mild cognitive impairment, which showed an increase in
sleep oscillations as well as a memory improvement [146].
5. Conclusions

In this review, we presented relationships between sleep, epi-
lepsy, and AD on different pathophysiological levels, many of them
still being a subject of extensive ongoing research. Due to their tight
connections, their mutual influence has to be taken into considera-
tion in the therapy regimen: For example, enhancing NREM sleep
might improve cognitive functions, however, it might also increase
epileptiform activity, thereby negatively affecting cognition.

These connections further open up to different promising
research directions:

First, to be able to treat, one has to improve diagnostics. Research
has come a long way in understanding the advantages but also the
limits of classical electrophysiological detection methods, and in
developing new ones. Not only do novel devices allow long-term
monitoring of epileptiform activity and sleep, but they also unravel
the (side) effects of different personalized treatments, their interac-
tions, and their influence on other clinical aspects [125].

In addition, as new AD biomarkers emerge, there is a large
potential for new treatment targets. A timely example is cortical
hyperexcitability [9]: While it might allow to detect neurodegener-
ation at a relatively early stage and therefore presents a potential
screening target, its treatment might additionally slow the occur-
rence of cognitive deficits. Additionally, the search for new treat-
ments for AD still presents a vast field for research. A few
examples are the inhibition of proteins involved in the process of
tau hyperphosphorylation (GSK3-inhibitors) [74,147] or of Aß
aggregation (BACE-1-inhibitors) [147,148] or monoclonal antibod-
ies targeting Aß aggregates [148,149].

Concerning the ‘‘chicken or the egg” problem: Epileptiform
activity and sleep disorders are increasingly understood not only
as consequences of neurodegeneration, but also as contributing,
potentially modifiable factors. This allows deeper insights into a
biomolecular level into the underlying – and potentially shared –
pathogenesis, which could open up to potential new treatments.
For example, besides network hyperexcitability, neuroinflamma-
tion is more and more revealed as playing an important role in
the pathogenesis of AD [150] and also of epilepsy [151].

To conclude, detecting neurodegeneration at an earlier stage
could not only allow the implementation of personalized preven-
tive measures, but also – bearing in mind possible interactions
and side effects – to begin treatment as early as possible, thus
slowing disease progression and maintaining cognitive functions
and independence for a longer time.
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