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The aim of the present study was to evaluate the use of a novel intraoperative

cone-beam computed tomography (CBCT)-based automated registration system for

frameless stereotactic brain biopsy in companion animals. An experimental cadaveric

study evaluated thalamic and piriform lobe target site needle placement error in three

dogs and three cats without a history of intracranial disease. Diagnostic accuracy and

diagnostic yield were prospectively evaluated in twenty-four client-owned dogs and four

cats with intracranial disease. Twenty-one procedures were performed post mortem

(eighteen dogs and three cats), and seven biopsy procedures were performed in alive

patients (six dogs and one cat). Procedural duration was evaluated in ten post mortem

and four living patients. Outcome was evaluated in six dogs and one cat. In dogs,

the calculated median needle placement error was 1.8mm (range 0.71–2.84mm) and

1.53mm (range 1.45–1.99mm) for piriform lobe and thalamus target sites, respectively.

In cats, the calculatedmedian needle placement error was 0.79mm (range 0.6–1.91mm)

for the piriform lobe target site and 1.29mm (range 0.47–2.69mm) for the thalamic target

site. The diagnostic yield was 96.4% (95% CI 0.81–0.99), the diagnostic accuracy was

94.4% (95% CI 0.72–0.99). Median total procedural duration for post mortem biopsies

was 57.5min (range 41–69min). Median total procedural duration for intra vitam biopsies

was 122.5min (range 103–136min). Three dogs were discharged 1 day after biopsy and

one dog after 6 days. Two dogs and one cat were euthanized 24 and 48 h after biopsy.

Intraoperative CBCT-based automated image registration for frameless stereotactic

biopsies in companion animals is capable of providing diagnostic brain biopsy specimens

independent of skull size andmorphology with diagnostic yield and accuracy comparable

to published values for diverse frameless and frame-based stereotaxy systems used

in veterinary medicine. Duration of the procedure is not negatively affected and within

the published range with other systems. Mobile intraoperative CBCT-based registration

combined with neuronavigation delivers diagnostic brain biopsies in companion animals.
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INTRODUCTION

Recent advances in imaging technology and therapeutic
modalities have led to significant improvements in the treatment
of intracranial disease in companion animals (1). However, a
histological diagnosis before treatment remains the exception,
and the majority of evidence-based studies favoring one
treatment modality over another are based on a presumptive
diagnosis (2).The ability of magnetic resonance imaging (MRI)
to differentiate vascular, inflammatory, and neoplastic disease is
deceptively low (3–5). In people, the discordance of histological
and imaging diagnosis based on MR imaging varies from 16
to 30% (6, 7) leading to treatment changes in 16–27% (8).
Therefore, an aggressive treatment with concomitant side
effects should be based on brain biopsies (9). A wide variety
of stereotactic brain biopsy systems are currently successfully
employed in veterinary clinical practice (10–21). Brain biopsy
systems with stereotactic guidance are either frame-based
or frameless, with the former considered to be the standard
of care due to its excellent targeting precision. Frame-based
stereotaxy uses a rigid skull-mounted frame that functions as a
coordinate system to which any point inside the brain can be
referenced. Frameless stereotaxy dispenses of the bulky frame
and uses anatomical landmarks or skin fiducials to register image
coordinates to patient coordinates instead. The advantages
of frameless stereotaxy include minimally invasive technique
and reduced post-operative infection risk, improved target
visualization and accessibility, flexibility to sample multiple
targets, and reduced procedure time (22). In conjunction with
adjustable rigid aiming devices, target accuracy and diagnostic
yield are nowadays equivalent to frame-based stereotaxic
systems (22, 23).

In recent times, compact mobile computed tomography (CT)
imaging units combined with navigation systems are increasingly
used for precision neurosurgical and orthopedic interventions
(22, 24). Newer units are equipped with an integrated indicator
box that allow intraoperative image acquisition with immediate
and automatic registration of the patient to the images (25,
26). In veterinary medicine utilization of a mobile cone-
beam CT (CBCT) system has been described for computer-
assisted surgery in horses (24). Adapting this system for brain
biopsies in dogs and cats has the potential to simplify brain
biopsy procedures, decreasing procedure times and registration
inaccuracies by eliminating the need for patient transport
between the imaging and operating rooms as well as user-
dependent patient registration. Data regarding needle placement
error, diagnostic yield, diagnostic accuracy, procedural time, and
outcome with this system in this setting are currently lacking.
The aim of the present study was to report our experience
adapting an intraoperative CBCT-based automated registration
system for frameless brain biopsies in companion animals.
We hypothesized that needle placement error, diagnostic yield,
and diagnostic accuracy would be comparable to previously
reported brain biopsy systems and that procedural times would
be shorter.

MATERIALS AND METHODS

The first part of the study consisted of a prospective experimental
cadaver study in dogs and cats to test the needle placement
error. The second part consisted of a prospective study in dogs
and cats where an intracranial lesion was diagnosed by MRI or
CT and a brain biopsy was conducted, either in alive patients
or post mortem. All interventions were performed with signed
owner consent.

Experimental Cadaver Study
Needle placement error was tested in three dogs and three cats
without a history of intracranial disease that were euthanized
for reasons unrelated to the study. A 3D T1-weighted gradient
echo sequence (TE 6.91ms, TR 25ms, FA 30◦, matrix between
320 × 320 and 576 × 576, FOV between 56.67 and 66mm, slice
thickness 1mm) was acquired using a 1.0T unit within 24 h of
euthanasia. The cadavers were transported to the operating room
and positioned in sternal recumbency on a carbon table. Memory
foam pads were used to stabilize the trunk and neck. Heads
were clipped and the maxillary dental arcades firmly secured
with dental putty (President, Coltene, Altstatten, Switzerland) to
a custom-made perforated bite plate with an attached reference
array equipped with infrared reflectors (Medtronic Schweiz AG,
Münchenbuchsee, Switzerland). A single high resolution 26
second head scan was acquired with a volume of 22 × 22 ×
17 cm 3 and a pixel size of 0.415mm 2 (O-arm, Medtronic
Schweiz AG, Münchenbuchsee, Switzerland) with both reference
array and indicator box of the scanner in the field of view
of the infrared navigation camera of the dedicated workstation
(StealthStation S7, Medtronic Schweiz AG, Münchenbuchsee,
Switzerland) (Figure 1). The volumetric acquisition was then
transferred to the workstation for automated patient registration
and automated image fusion (StealthViz, Medtronic Schweiz
AG, Münchenbuchsee, Switzerland) with the preloaded MRI
3D T1-weighted MRI series. Correct alignment of fused images
was evaluated visually on the workstation. Target points and
trajectories were planned on the merged dataset (Framelink
5.0, Medtronic Schweiz AG, Münchenbuchsee, Switzerland). In
each cadaver, one target site was set in the left piriform lobe
and one in the right thalamus. Entry sites were planned to be
perpendicular to the skull, with resultant trajectories avoiding
sulci and the ventricular system. Throughout the procedure
the navigation camera was positioned such that the reflective
spheres of the reference array and navigable instruments were
visible at all times. Registration accuracy was controlled regularly
on anatomical landmarks. An articulating instrument holder
(Vertek single-lever articulating support arm,Medtronic Schweiz
AG, Münchenbuchsee, Switzerland) attached to the surgical
table and a navigable pointer (Vertek, Medtronic Schweiz AG,
Münchenbuchsee, Switzerland) were then adjusted with real-
time visual feedback to reproduce the planned trajectory in the
navigable space. Once the position corresponded to the planned
trajectory, the articulating armwas locked in position. A standard
surgical rostrotentorial approach was used to expose the skull.
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FIGURE 1 | Set up of the mobile cone-beam computed tomography and

navigation system in the operating room showing a dog cadaver in sternal

recumbency. The head has been secured to the bite plate. For image

registration to the patient’s anatomy, a head scan is performed during which

the infrared camera must see the reference array and indicator box of the

scanner (red dotted lines).

A high-speed pneumatic drill with a 3mm burr head was used
to create a burr-hole and the dura mater was incised with a
dedicated dura perforator or a 18G hypodermic needle with bent
tip. The navigable pointer was then exchanged for a navigable,
2 × 200mm, Sedan-type brain biopsy needle (model 9733068,
Medtronic Schweiz AG, Münchenbuchsee, Switzerland). This
biopsy needle is equipped with two spherical infrared reflectors
that allow direct feedback of needle tip and biopsy window
positions by the navigation system. The biopsy needle was then
advanced under real-time visual feedback toward the planned
target site, and a second volume acquisition with the brain biopsy
needle in place was performed. After merging the images, the
mean needle tip deviation was measured in transverse, dorsal,
and sagittal planes from the superimposition of the planned
trajectories with the actual needle position on the workstation.
The Euclidean distances were then determined using the formula:

Error =√
[(1x)2 + (1y)2 + (1z)2]

Clinical Patients
Twenty-four client-owned dogs and four cats presented to
the neurology service of the Vetsuisse-Faculty Bern during
the period between July 2017 and July 2020 that underwent
brain biopsy as part of the diagnostic work-up of clinical signs
referable to intracranial disease were prospectively included in
this study. Signalment, presenting complaint, neuroanatomical
localization based on neurological exam, and outcome were
recorded. General anesthesia for dogs and cats undergoing
intra vitam biopsy was performed by the anesthesiology service
and protocols varied based on their individual assessment of
each patient. The heads of animals were clipped, aseptically
prepared, covered, and patients subsequently transported to

the operating room. The animals were then positioned and
immobilized as described for the cadaveric study. Following the
O-arm acquisition a second surgical skin preparation was done,
and sterile draping started while automated patient registration,
automated image fusion with a preloaded preoperative contrast
enhanced CT or 3D T1-weighted MRI series, and trajectory
planning were done on the workstation in the operating
room (Figure 2). Biopsy trajectory planning was performed
on the merged dataset defining both target and entry sites
depending on lesions location and MRI features (Figure 3A).
As previously described, trajectories were planned perpendicular
to the skull avoiding sulci and ventricular system, except in
animals with intraventricular lesions. Target sites were selected
to include contrast enhancing areas of the lesions when present,
avoiding cystic, necrotic, or hemorrhagic areas. The articulating
instrument holder was attached to the surgical table on the
same side of the brain lesion. Instrument holder and navigable
pointer were then adjusted with real-time visual feedback and
standard surgical rostro- or caudotentorial approaches and dura
mater incision were performed as described before. The pre-
calibrated brain biopsy needle was then advanced under real-time
visual feedback until the biopsy window was centered on the
planned target (Figure 3B). Two to six biopsies were taken at
different depths and orientations, with the number of biopsies
depending on the tissue yield (Figure 3C). The bone defect was
left uncovered,muscles and skin were adapted following standard
closing procedures. Dogs and cats undergoing post mortem
biopsy were prepared and positioned as for the cadaveric study
and biopsies were taken as for the intra vitam patients.

Procedural Duration Measurements
Minor adjustments involving optimization of the spatial
disposition of the CBCT and workstation in the operating
room and of the image-guided articulating instrument holder
on the surgical table were performed during the first three
intra vitam procedures. Thereafter, to investigate procedural
duration five time intervals were determined and recorded for
patient positioning, including CBCT image acquisition in the
operating room, trajectory planning, biopsy needle alignment,
surgical approach, and biopsy retrieval in four intra vitam and ten
post mortem biopsy procedures (Figure 4). The total procedural
duration defined as start of patient positioning to end of biopsy
specimen retrieval resulted from adding all intervals.

Histopathological Examination
Biopsy specimens were flushed into biopsy cassettes or nylon
mesh biopsy bags. Biopsies and brains were fixed by immersion
in 10% buffered formalin and routinely processed for paraffin
embedding. Four micrometer thick sections were stained with
hematoxylin and eosin. Evaluation included identification of cell
types, extent and location of the infiltration, presence of edema,
hemorrhage, and necrosis. Tumor grading was based on number
of mitotic figures, cell density, and cell anaplasia according to the
human 2007WHO classification of tumors of the central nervous
system and current veterinary literature (27–30). Diagnostic yield
was defined as the number of biopsy procedures that allowed
a histopathologic diagnosis (19, 31). Diagnostic accuracy was
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FIGURE 2 | Transverse T2-weighted (A) and T1-weighted contrast enhanced (B) image and of an 11-year-old female spayed Poodle with biopsy proven vasculitis

and meningoencephalitis of unknown origin. Corresponding intraoperative cone beam computed tomography (CBCT) image (C) for image fusion. (D) Example of

image fusion of the CBCT images with magnetic resonance images of a 9-year-old female spayed German Shepherd Dog with a biopsy proven WHO grade II

cerebellar diffuse astrocytoma.

FIGURE 3 | Intraoperative workflow for navigated frameless stereotactic brain biopsy. (A) Finding the optimal skin incision site to match the entry point using the

navigable pointer with real-time visual feedback on the system’s surgeon monitor. (B) After dura opening, the navigable biopsy needle has been advanced to the

target depth under visual guidance. (C) Example of a brain biopsy specimen taken from the periphery of a lesion.

FIGURE 4 | Color coded timeline showing the different procedural steps. The time intervals of the colored procedural steps were recorded.

defined as the number of biopsy procedures that gave the same
diagnosis as necropsy specimen examination. In the latter cases,
the brains were removed from the skull immediately after the post
mortem procedure.

Statistical Analyses
Needle placement error data is reported as median and
range. The correlation of experience with time in both intra
vitam and post mortem procedures was evaluated with the
Spearman’s rank correlation coefficient, the influence of intra

vitam vs. post mortem biopsies with the Kruskal-Wallis one-
way ANOVA on ranks. P values < 0.05 were considered
statistically significant. All analyses were performed using
commercial statistical software (NCSS version 12.0.2, Kaysville,
UT, USA).

RESULTS

Needle placement error was tested in six cadavers, three male
neutered dogs (one French Bulldog, one American Bulldog, and
one cross breed) with a median body weight of 21 kg (range:
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15–30), and three male neutered cats (two European shorthair,
and one Maine Coon) with a median body weight of 5 kg (range:
4.3–5.2) (Table 1). Median piriform and thalamic target site
depth in dogs was 54mm (range 49.5–64.9mm) and 49.4mm
(range 44–62.5mm). Median piriform and thalamic target site
depth in cats was 31.6mm (range 23.9–32.2mm) and 23.5mm
(range 20.5–25.9mm). In dogs, the calculated median needle
placement error was 1.8mm (range 0.71–2.84mm) and 1.53mm
(range 1.45–1.99mm) for piriform lobe and thalamus target sites,
respectively. In cats, the calculated median needle placement
error was 0.79mm (range 0.6–1.91mm) for the piriform lobe
target site and 1.29mm (range 0.47–2.69mm) for the thalamic
target site.

Frameless image-guided stereotactic brain biopsies were
performed in twenty-eight animals. Twenty-one procedures were
performed post mortem (eighteen dogs, three cats), and seven
biopsy procedures were performed in alive patients (six dogs,
one cat). Post mortem biopsies were performed within 8 h of
euthanasia. Biopsy procedures in alive animals were performed
between three to seven days after initial diagnosis. In all but
one animal, the intracranial lesion was diagnosed on MRI, in
one dog (Patient number 15) a CT of the head was performed.
Demographics and lesion characteristics are summarized in
Table 1. Dog breeds included Boxer (3), French Bulldog (3),
Bolonka Zwetna (2), Golden Retriever (2), Bernese Mountain
Dog (1), Border Terrier (1), Boston Terrier (1), Collie (1),
Dachshund (1), German Shepherd (1), Labrador Retriever (1),
Magyar Viszla (1), Poodle (1), Portuguese Water Dog (1), Shih
Tzu (1), and Cross Breed (3). Three dogs were intact female,
eight spayed female, eight intact male, and five neutered male.
Cat breeds included European Shorthair (2), Birman (1), and
British shorthair (1). All cats were female spayed. The median
age was 8 years (range 1–12 years) in dogs and 10 years (range
5–17 years) in cats. The median body weight was 19.5 kg (range
4–55 kg) in dogs and 4.4 kg (range 3.7–4.8 kg) in cats. Canine
brain lesions were intra-axial in fifteen cases, extra-axial in
three, and both intra- and extra-axial in six. Feline brain lesions
were intra-axial and extra-axial in two cases each. The median
maximum lesion diameter was 18.8mm in dogs (range 11–
32.6mm) and 17.25mm (range 11.7–15.3mm) in cats. In all
animals but two dogs, where MRI was performed post mortem,
the lesions showed contrast enhancement on MRI (25/28)
and CT (1/1).

The median target site depth in dogs was 38mm (range 20.1–
60mm) and 30.35mm in cats (range 17.4–46.1mm). Biopsies
were taken along a single trajectory in all cases. Surgical approach
was left rostrotentorial in thirteen cases, right rostrotentorial
in twelve cases, and caudotentorial in two cases. The median
number of biopsies was four in dogs (range 2–6 biopsies) and
four in cats (range 3–4 biopsies).

Gross pathologic specimens were available for comparison in
18/28 animals. Biopsies allowed a histopathologic diagnosis in
27/28 animals (96.4% 95% CI 0.81–0.99). The single failed biopsy
procedure was due to insufficient amount of tissue. The biopsy
diagnosis was confirmed by pathology specimen histopathology
in seventeen of eighteen cases (94.4%, 95% CI 0.72–0.99).

Procedural Duration
Time intervals were recorded for four procedures in living
animals and ten post mortem biopsy procedures (Figure 5)
Median total procedural duration for intra vitam biopsies
was 122.5min (range 103–136min). Median total procedural
duration for post mortem biopsies was 57.5min (range 41–
69min). The Spearman’s rank correlation test showed that
with experience there was a significant shortening of the total
procedural duration (p = 0.03), O-arm acquisition, merge and
automated registration (p = 0.02), and biopsy planning for
the post mortem biopsies (p = 0.04). Kruskal-Wallis one-way
ANOVA on ranks showed total procedure duration (p = 0.005),
patient positioning (p = 0.009), needle alignment (p = 0.03),
and surgical approach (p = 0.02) for post mortem biopsies to be
significantly shorter than for intra vitam biopsies (Figure 5).

Outcome of Intra Vitam Biopsy Procedures
Seven biopsy procedures were performed in living patients.
Two dogs were euthanized within 24 h after the biopsy
procedure because of failure to regain spontaneous respiration.
Both dogs were comatose and showed signs of increased
intracranial pressure on MRI prior to the biopsy procedure.
Despite associated high surgical risk, biopsies had been taken
at the owner’s request. One cat developed decompensation of
subclinical hypertrophic cardiomyopathy that did not respond
to medical treatment and was euthanized 48 h after biopsy
procedure. Three dogs were discharged 1 day after the biopsy,
one dog after 6 days (Table 1).

DISCUSSION

Diagnosis and specific treatment planning for intracranial disease
requires tissue sampling and histopathologic examination (6).
Inaccurate diagnosis may lead to inappropriate therapy and
incorrect prognosis. Likewise, meaningful evaluation of new
treatment protocols should ideally be based on histologic
diagnosis in order to avoid erroneous conclusions (31). Tissue
sampling is not routinely performed in companion animals
due to lack of equipment and expertise, technical difficulties
associated with the variable skull morphology, size and thick
masticatory muscle cover, as well as owner perception of the risks
and high costs associated with the procedure. To overcome part
of these hurdles and in an attempt to simplify the brain biopsy
procedure in dogs and cats, we tested an intraoperative CBCT-
based automated registration system for frameless brain biopsies
that obviates user-dependent patient registration and transport
between the imaging and operating suites, two intermediate steps
that have the potential to decrease target accuracy and prolong
procedural time.

Frameless stereotaxy patient registration based on anatomical
or skin fiducials has been shown to produce comparable results
in people but are considered to be highly operator dependent.
Modern mobile intraoperative computed tomography systems
allow user-independent immediate and automatic patient
registration with high accuracy. Navigated surgery using the
O-arm in combination with the Stealth Station has been
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TABLE 1 | Signalment, biopsy characteristics, lesion localization, histopathological diagnosis, and outcome.

Pat.

Nr.

Species Breed Age

(y)

Sex Body
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IV/PM Lesion

size

(mm)

Biopsy

plan

depth
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Nr. of

biopsies

Diagnostic

biopsy

Gross

pathology

Lesion

localization

Diagnosis Outcome

1 Dog Boston

Terrier

10 F 11 PM 19.7 38.2 2 Yes Yes Intra-

axial,

multifocal

parietal,

temporal,

occipital

and left

thalamus

Anaplastic

astrocytoma

(WHO

Grade III)

2 Dog Portuguese

Water

Dog

5 FS 26 PM 16.2 46.5 3 Yes No Intra-

axial,

bilateral

multifocal

forebrain

and

brainstem

Necrotising

encephalitis

3 Dog Boxer 6 M 35 IV 20.6 49.6 5 Yes No Intra-

and

extra-

axial, left

temporal

lobe and

left

ventricle

Oligodendroglioma Discharged

4 Dog Bolonka

Zwetna

5 FS 4 PM 26.2 31 2 Yes Yes Intra-

axial,

right

frontal

lobe

Anaplastic

oligodendroglioma

(WHO

Grade III)

5 Dog French

Bulldog

7 FS 10.1 IV 13.5 47.9 5 Yes No Intra-

and

extra-

axial,

right

temporal

lobe and

right

lateral

ventricle

Anaplastic

oligodendroglioma

(WHO

Grade III)

Discharged

(Continued)

F
ro
n
tie
rs

in
V
e
te
rin

a
ry

S
c
ie
n
c
e
|w

w
w
.fro

n
tie
rsin

.o
rg

6
F
e
b
ru
a
ry

2
0
2
2
|
V
o
lu
m
e
8
|A

rtic
le
7
7
9
8
4
5

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


M
e
n
e
se

s
e
t
a
l.

C
B
C
T-B

a
se

d
A
u
to
m
a
te
d
R
e
g
istra

tio
n

TABLE 1 | Continued

Pat.

Nr.

Species Breed Age

(y)

Sex Body

weight

(kg)

IV/PM Lesion

size

(mm)

Biopsy

plan

depth

(mm)

Nr. of

biopsies

Diagnostic

biopsy

Gross

pathology

Lesion

localization

Diagnosis Outcome

6 Cat British

Shorthair

17 FS 4.8 IV 13.9 17.4 3 Yes No Intra-

axial, left

temporal

lobe

Diffuse

astrocytoma

(WHO

Grade II)

Euthanasia

7 Dog Mixed

breed

8 MN 19 PM 18.2 47.6 3 Yes Yes Intra-

axial and

extra-

axial, left

cerebellar

hemisphere,

left lateral

and

fourth

ventricles

Choroid

plexus

carcinoma

8 Dog Mixed

breed

10 MN 6.9 PM 16.3 30.2 4 Yes Yes Intra-

axial,

right

thalamus

and

mesencephalon

Anaplastic

oligodendroglioma

(WHO

Grade III)

9 Cat Birman 5 FS 3.7 PM 15.3 32.5 4 Yes Yes Intra-

axial,

mesencephalon

and

metencephalon

Anaplastic

oligodendroglioma

(WHO

Grade III)

10 Dog Labrador

Retriever

11 MN 29.4 PM 14.8 57.1 4 Yes Yes Extra-

axial, left

lateral

ventricle

Choroid

plexus

carcinoma

11 Dog Golden

Retriever

6 M 40.1 PM 20.2 28.5 4 Yes Yes Intra-

axial, left

thalamus

Hystiocytic

sarcoma

12 Dog Shih

Tzu

10 FS 8.9 PM 18.8 23.4 3 Yes Yes Intra-

axial, left

temporal

lobe

Cystic

metastatic

carcinoma

13 Dog Poodle 11 FS 9.5 PM 13.8 37.2 3 Yes Yes Intra-

axial,

bilateral

multifocal

forebrain

Vasculitis

and

meningoencephalitis

of unknown

origin

(Continued)
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TABLE 1 | Continued

Pat.

Nr.

Species Breed Age

(y)

Sex Body

weight

(kg)

IV/PM Lesion

size

(mm)

Biopsy

plan

depth

(mm)

Nr. of

biopsies

Diagnostic

biopsy

Gross

pathology

Lesion

localization

Diagnosis Outcome

14 Dog Magyar

Viszla

1 M 26.2 IV 21.7 37.2 4 Yes Yes Intra-

and

extra-

axial,

right

thalamus

and right

lateral

ventricle

Meningioma

and

Meningoangiomatosis

Euthanasia

15 Dog Collie 10 M 20 IV 20.9 20.1 6 Yes No Extra-

axial,

right

rostral

cranial

fossa,

extracranial

extension

Transitional

meningioma

(WHO

Grade I)

Euthanasia

16 Dog Border

Terrier

8 F 10.8 PM 12.7 35.9 4 Yes Yes Intra-

axial, left

frontal

lobe

Anaplastic

oligodendroglioma

(WHO

Grade III)

17 Dog French

Bulldog

4 F 10.8 PM 19.5 37.8 4 Yes Yes Intra-

axial,

right

frontal

lobe

Anaplastic

oligodendroglioma

(WHO

Grade III)

18 Dog Bolonka

Zwetna

8 MN 7.9 PM 23.6 34.3 6 Yes No Intra-

and

extra-

axial, left

frontal

lobe

Atypical

meningioma

(WHO

Grade II)

19 Dog French

Bulldog

5 M 15.5 PM 25.9 27.8 4 Yes Yes Intra-

and

extra-

axial, left

frontal

lobe and

left lateral

ventricle

Oligodendroglioma

(WHO

Grade III)

(Continued)
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TABLE 1 | Continued

Pat.

Nr.

Species Breed Age

(y)

Sex Body

weight

(kg)

IV/PM Lesion

size

(mm)

Biopsy

plan

depth

(mm)

Nr. of

biopsies

Diagnostic

biopsy

Gross

pathology

Lesion

localization

Diagnosis Outcome

20 Cat European

shorthair

7 FS 6 PM 12.1 28.2 3 Yes Yes Extra-

axial, left

rostral

cranial

fossa,

extracranial

extension

Sarcoma

21 Dog Bernese

Mountain

Dog

6 M 55 PM 15 58.2 3 Yes Yes Intra-

axial,

bilateral

multifocal

forebrain

Granulomatous

and

necrotizing

meningoencephalitis

22 Dog Mixed

breed

12 MN 40 PM 11 55.4 3 Yes No Extra-

axial, left

lateral

ventricle

Choroid

plexus-tumor

(unclassified

grade)

23 Dog Boxer 7 FS 26 PM 32.6 47.5 4 Yes Yes Intra-

axial,

right

temporal

lobe

Oligodendroglioma

(WHO

Grade II)

24 Dog Boxer 1 M 24 PM 22.7 60 3 No No Intra-

axial, left

temporal

lobe

Anaplastic

oligodendroglioma

(WHO

Grade III)

25 Dog German

shepherd

9 FS 32 IV 18.8 20.8 2 Yes No Intra-

axial, left

cerebellar

hemisphere

Diffuse

astrocytoma

(WHO

Grade II)

Discharged

26 Dog Dachshund 6 M 6.5 PM 14 53 4 Yes Yes Intra-

axial,

right

thalamus

Granulomatous

encephalitis

and

vasculitis

27 Cat European

Shorthair

13 FS 4 PM 11.7 46.1 4 Yes No Extra-

axial,

sella

Chromophobe

hypophyseal

adenoma

28 Dog Golden

Retriever

8 FS 27 IV 18.4 43.1 3 Yes No Intra-

axial,

right

occipital

lobe

Unspecific

lymphoplasmacytic

encephalitis

Discharged

Pat., patient; Nr., number; F, female; FS, female spayed; M, male; MN, male neutered; y, years; kg, kilogram; IV, intra vitam; PM, post mortem; MRI, magnetic resonance imaging; CT, computed tomography; mm, millimeters; WHO,

World Health Organization.
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FIGURE 5 | Procedural time intervals with color coding (dark blue = patient positioning, orange = CBCT scan, automated fusion and image fusion, gray = biopsy

planning, yellow needle alignment, light blue = surgical approach, green = biopsy) for post mortem (above the interrupted red line) and intra vitam patients (below the

interrupted red line).

successfully implemented in cranial and spinal interventions
in people and recently for orthopedic interventions in equines
(24). Cranial interventions are reported for endonasal surgeries
of the skull base, hypophysectomy, and electrode placement
for deep brain stimulation (32, 33). The reported Euclidean
vector error between 1.59 and 2.16 for electrode placement
is similar to the median needle placement error obtained
in the present study (25). Considering the maximum needle
placement error of 2.84mm we obtained in one dog, diagnostic
biopsies can be obtained from lesions with diameters as small
as 5.7mm. Such target accuracies are usually acceptable for
brain biopsy samples in veterinary medicine with reported values
ranging from 0.9 to 4.3mm using a variety of frame-based and
frameless systems (17, 20, 21, 34). The intraoperative CBCT-
based automated registration system for frameless brain biopsies
used in the present study can therefore be considered a valid
alternative approach.

Apart from target accuracy, diagnostic yield and diagnostic
accuracy are the most important criteria to evaluate success
of brain biopsies. In the present study, the diagnostic yield
was 96.4% and the diagnostic accuracy was 94.4%. These
results compare favorably with the limited data available in
veterinary medicine (35) where the diagnostic yield varies
between 82 to 100% for free-hand and frame-based biopsies in
dogs with encephalitis (10, 36), and from 81 to 94.6% in dogs
with neoplastic disease and frame-based systems (10, 17, 19).
Diagnostic accuracy has been reported to range from 13% using
a free-hand biopsy technique (37), to 81% (19) and 91% (10), and
therefore we consider the reported system to be adequate. The
single non-diagnostic sample consisted of mucinous fluid and the
sample was insufficient for diagnosis. This dog was subsequently
diagnosed as a grade III oligodendroglioma on necropsy. The
failure to deliver adequate amounts of tissue was attributed to
the inability to preserve the integrity of the gelatinous tumor

matrix despite use of a nylon mesh biopsy bag and a biopsy
cassette rather than needle placement error. Similarly, in another
dog (patient number three) a diagnosis of oligodendroglioma
could be made, but sample quality was insufficient for grading.
In the remaining cases diagnostic biopsies could be retrieved
even in poorly accessible locations such as deep-seated mid-line,
brainstem, and cerebellar sites. Lesion size, depth, location, and
number of biopsies did not have an effect on diagnostic yield or
diagnostic accuracy.

Still considered the standard of care due to its excellent
accuracy, the use of frame-based systems in veterinary patients
has disadvantages resulting from the bulky frame that needs
to be firmly attached to the skull. Large differences in skull
size, morphology, and thickness of the masticatory musculature
among different canine breeds and small skull size among
felines poses a challenge and there is a need for simpler, less
time consuming, and safe alternatives. A recently developed
method utilizing 3D printed brain personalized biopsy devices
ingenuously addresses variable skull morphology and size but
still requires an additional anesthesia for surgical implantation
of superficial bone anchors before the actual biopsy procedure
(20, 38). The intraoperative imaging capability of the mobile
CBCT unit has the advantage that after the initial diagnostic
MRI scan, further imaging and biopsy procedures are performed
during the same anesthesia. Target planning can be performed
as soon as the MRI sequence is loaded onto the workstation
and modified at any time during the procedure as needed. The
automatic image fusion of the CBCT volume with the MRI
sequence worked reliably, and since the patient reference array
and reflecting markers on the CBCT unit are recognized by the
workstation’s infrared camera, no manual patient registration
is necessary after volume acquisition. These features eliminate
two possible sources of error and potentially reduce procedural
time. In the present study median total procedural time in
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alive patients was 122.5min and therefore within the range of
previously reported duration times of 60–240min (10, 11, 17).
Because time savings associated with frameless stereotaxy have
been supported by numerous studies (39, 40), we expected even
shorter procedural times. The surgeon’s lack of experience and
training, both crucial factors to short procedural times, might
explain some of the delay (10). Indeed, we noticed a shortening
of procedural time with increasing experience for postmortem
biopsies from 69 to 41min.We expect analysis of a larger number
of both intra vitam and post mortem procedures with the present
system to reveal time savings more clearly. Comparison of brain
biopsy procedural times in companion animals is problematic as
published data generally do not clearly define start and endpoints
(10, 11, 17, 21), or consider time spent on preparatory imaging,
which is often done on separate days. For example, if defined
as incision-to-end of biopsy retrieval median procedural times
for intra vitam and post mortem procedures would be as low as
78.5 and 30min, respectively, in this study. We opted to report
individual time intervals and computed total procedural time
by adding individual time intervals to provide a better overview
knowing that comparison with previous studies would be difficult
at best.

The low case numbers of alive dogs and cats precluded
evaluation of experience on intra vitam procedural times. The
difference between post mortem compared to intra vitam biopsy
procedure times is thought to be due to easier instrument and
animal handling.

Limitations
The present study has several limitations. Target accuracy was
based on repeatedly merged images with the biopsy needle in
place as described before. The inevitable metal artifacts due
to beam hardening on post-operative images were considered
acceptable to determine the needle tip location but may have
introduced minor inaccuracies. Differences in registration and
fusion accuracy when, respectively, merging MRI, CBCT, or
CT with intraoperative CBCT cannot be excluded. Additionally,
the influence of system inherent, registration, and fusion errors
could not be assessed since the details of the image registration
and fusion algorithms are not publicly known for commercial
proprietary software packages. Needle placement error might
therefore ultimately be considered as the summation of these
factors in addition to mechanical alignment error. However,
the needle placement error determined in the present study is

in keeping with previously reported target accuracies in both
phantom and clinical studies in people undergoing deep brain
stimulation using this system ranging between 0.75 and 1.68mm
(41). Procedural times were not measured in all patients because
spatial constraints imposed by operating room size and geometry
as well as the need to accommodate anesthetic equipment and
additional personnel required adjustments in the disposition
of the CBCT, the workstation, as well as of the articulating
instrument holder on the surgical table during the first three
intra vitam brain biopsy procedures. Besides uneven sample sizes,
meaningful statistical comparison between intra vitam and post
mortem groups was further hampered by variable skull size,
morphology, and lesion location.

CONCLUSION

In conclusion, the use of mobile intraoperative CBCT-based
registration combined with neuronavigation for frameless brain
biopsies in companion animals showed to be an efficient method
to sample brain tissue with a good target accuracy, diagnostic
yield and diagnostic accuracy independent on skull size and
morphology. Studies including a larger number of patients
are needed to investigate potential time savings compared to
previously published brain biopsy systems.
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