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Abstract

Introduction: In wood-dwelling fungus-farming weevils, the so-called ambrosia beetles (Curculionidae: Scolytinae
and Platypodinae), wood in the excavated tunnels is used as a medium for cultivating fungi by the combined
action of digging larvae (which create more space for the fungi to grow) and of adults sowing and pruning the
fungus. The beetles are obligately dependent on the fungus that provides essential vitamins, amino acids and
sterols. However, to what extent microbial enzymes support fungus farming in ambrosia beetles is unknown. Here
we measure (i) 13 plant cell-wall degrading enzymes in the fungus garden microbial consortium of the ambrosia
beetle Xyleborinus saxesenii, including its primary fungal symbionts, in three compartments of laboratory maintained
nests, at different time points after gallery foundation and (ii) four specific enzymes that may be either insect or
microbially derived in X. saxesenii adult and larval individuals.

Results: We discovered that the activity of cellulases in ambrosia fungus gardens is relatively small compared to
the activities of other cellulolytic enzymes. Enzyme activity in all compartments of the garden was mainly directed
towards hemicellulose carbohydrates such as xylan, glucomannan and callose. Hemicellulolytic enzyme activity
within the brood chamber increased with gallery age, whereas irrespective of the age of the gallery, the highest
overall enzyme activity were detected in the gallery dump material expelled by the beetles. Interestingly endo-β-1,3
(4)-glucanase activity capable of callose degradation was identified in whole-body extracts of both larvae and adult
X. saxesenii, whereas endo-β-1,4-xylanase activity was exclusively detected in larvae.

Conclusion: Similar to closely related fungi associated with bark beetles in phloem, the microbial symbionts of
ambrosia beetles hardly degrade cellulose. Instead, their enzyme activity is directed mainly towards comparatively
more easily accessible hemicellulose components of the ray-parenchyma cells in the wood xylem. Furthermore, the
detection of xylanolytic enzymes exclusively in larvae (which feed on fungus colonized wood) and not in adults
(which feed only on fungi) indicates that only larvae (pre-) digest plant cell wall structures. This implies that in X.
saxesenii and likely also in many other ambrosia beetles, adults and larvae do not compete for the same food
within their nests - in contrast, larvae increase colony fitness by facilitating enzymatic wood degradation and
fungus cultivation.

Keywords: Symbiosis, Digestion, Enzyme, Insoluble chromogenic substrates, Xylomycetophagy, Xyleborinus saxesenii,
Insect fungus farming, Social evolution, Division of labor
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Introduction
Insects are the most abundant and diverse animal class
on earth [1]. A key factor for their enormous success are
adaptations to novel environments and food sources with
the help of symbiotic microorganisms [2]. Insect hosts
maintain prokaryotic, fungal, and bacterial associates in a
variety of ways, which help them in nutrient acquisi-
tion and recycling, environmental detoxification, and
defense against antagonists. By means of microbial
symbionts insects are able (i) to detoxify toxic metabo-
lites and (ii) to produce nutrients from plant material
low in insect-accessible molecules, despite the plant
material often being rich in structural polysaccharides
(cross-linking glycans, cellulose and lignin) [3]. In most
instances this occurs internally inside the insect host
with the aid of an abundant microbial gut flora [4-6],
however, there are several notable exceptions of insect
lineages that cultivate microbes externally on plant
material [7,8]. These ectosymbionts are either kept in
“gardens” and consumed directly by their insect hosts
(e.g. certain lineages of fungus-growing ants, termites,
and ambrosia beetles; [9]), or contribute indirectly by
increasing the nutrient content of the diet (e.g. bark
beetles that feed on fungus infested phloem; [10]), by
degradation of toxic plant compounds (e.g. terpenes by
bark beetle associated fungi; [11,12]), or by provision-
ing of extracellular enzymes that facilitate wood inges-
tion or wood burrowing (e.g. wood wasps; [5,13]).
External symbionts of insects are typically filamentous

fungi and associated yeasts and bacteria that may be
transported in concert in mycetangia (also termed
mycangia [14]), which are specialized organs primarily
for fungal spore transmission that ensure successful re-
establishment of the nutritional symbiosis after dispersal.
Mycetangia have evolved independently in many differ-
ent fungus associated insects such as wood and phloem
feeding beetles, gall midges and wood wasps [15-17].
The active care and maintenance of the fungal crops by
the insect hosts after dispersal is, however, rare. Only
three insect lineages, notably the fungus-growing ants,
termites and ambrosia beetles, are true fungus farmers.
Within task sharing societies they not only propagate,
but also actively cultivate and sustainably harvest micro-
bial gardens without exhausting their crops across one
or more offspring generations (i.e. advanced fungicul-
ture; [9]).
Ambrosia beetle is an ecological term used for all wee-

vils that farm fungi within tunnel systems (galleries) in
the xylem (= wood) of trees. Ambrosia farming is only
found in Scolytinae and Platypodinae and evolved re-
peatedly at least nine times from the phloem feeding
habit without any known reversal to non-farming
[18,19]. Female ambrosia beetles seek out recently dead
trees where they bore into the xylem and initiate nest
building by laying eggs and inoculating tunnel walls with
mutualistic fungi. When larvae emerge they feed on the
fungus and in some species further expand the gallery
[20]. Depending on the species and environmental con-
ditions adults repeat this cycle by either dispersing im-
mediately following pupation or remain in their natal
gallery and engage in cooperative breeding for more
generations before dispersing [9,21].
The relationship between ambrosia beetles and their

fungi is often species (or genus) specific, with highly se-
lective transmission of the primary symbionts in myce-
tangia by dispersing beetles [20,22]. These so-called
ambrosia fungi (usually species of the ascomycete genera
Ambrosiella and Raffaelea) form layers of conidiophores
on the tunnel walls that produce nutrient rich conidios-
pores for larval and adult beetle nutrition. Secondary
symbionts, such as other filamentous fungi (e.g. Fusar-
ium, Graphium, Ophiostoma, Paecilomyces, Penicillium
[23,24]), yeasts (e.g. Candida [25]) and bacteria [26,27],
are also present within galleries and often passively vec-
tored in small amounts attached to the integuments of
dispersing females [15,20]. However, the primary mu-
tualistic ambrosia fungus is known for only a minority of
the 3000 species worldwide [28-30], and there has only
been a single attempt to characterize the entire micro-
biome of an ambrosia gallery [31].
Studies on the dynamics of filamentous fungi in xyle-

borine ambrosia beetle galleries [23,24], suggest that
propagates of mutualistic ambrosia fungi (Ambrosiella
and Raffaelea) are passively spread on tunnel walls from
the mycetangia or via beetle feces during the excavation
by the gallery founding female. This ensures that the
mutualistic fungi dominate the gallery microbial flora
initially while eggs are laid and larvae develop. Later,
when the first offspring mature, other saprobic fungi
(secondary symbionts like Penicillium and Paecilomyces)
start to appear and increase in frequency over time.
These opportunistic fungi dominate the microbial gallery
flora at the time when the gallery is abandoned and all
individuals disperse to found new galleries [23]. The sec-
ondary symbionts also dominate in the gallery dumps of
our study species, the ambrosia beetle Xyleborinus saxe-
senii (Fruit-tree pinhole borer); they are relatively rare in
freshly excavated parts of the brood chamber and their
presence negatively affects larval numbers [24].
Larvae of X. saxesenii do not only feed on ambrosia

fungi, like the adults and larvae of many other ambrosia
beetles, but feed xylomycetophagously (i.e. feeding on
fungus infested wood) [32]. In this way they (a) create
more space for the developing fungus to form conidio-
phores on the gallery walls, (b) lower competition be-
tween group members by enlargement of the nest space,
(c), likely reduce the growth of unidentified molds, pos-
sibly by gregariously feeding on them [21], and (d)
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fertilize the growing ambrosia fungus with the finely
fragmented woody sawdust in their feces [21,33]. This
apparently allows X. saxesenii, and probably other xylo-
mycetophagous ambrosia beetle species, to establish gal-
leries for several consecutive offspring generations.
However, nothing is known about the mechanism or the
enzymatic machinery whereby these beetles together
with the consortium of symbiotic fungi utilize the sur-
rounding wood.
In contrast to xylem dwelling ambrosia beetles, weevils

dwelling in the inner bark phloem and feeding phloeo-
phagously (phloem feeding) or phloeomycetophagously
(feeding on fungus infested phloem) are termed bark
beetles [20]. Their primary associates, the ophiostoma-
toid fungi, are close relatives of ambrosia fungi and are
known to produce a variety of hemicellulolytic enzymes
[34-38], although Ophiostoma fungi in general leave the
cellulose and cross-linking glycans mostly intact and in-
stead utilize storage products in the living ray paren-
chyma [29]. The beetles and internal gut microbes may
also contribute enzymes as larvae of a bark beetle
(Phloeosinus bicolor) showed α-amylase-, invertase-,
maltase-, lactase-, and protease-activities together with
some hydrolytic activity on a substrate of hemicellulose
but not on cellulose [39]. Similarly, in adults of the
phloem feeding Ips cembrae consistent activity against
hemicellulose together with pectinase-, α-glucosidase-,
β-glucosidase-, α-galactosidase-, β-galactosidase-, treha-
lase-, serine protease-, peptidase-, and lipase-activities
were detected in the intestinal lumen [40]. In general,
the bark beetle associated fungi (e.g. the genera Cerato-
sytiopsis, Entomocorticium, Grosmannia and Ophiostoma
[41,42]), in addition to associated yeasts [12,41,43], and
bacteria [44,45] are capable of producing a variety of
enzymes catalyzing (a) protein/peptide degradation
(endo-, exoproteases and peptidases), (b) polysaccharide/
starch/sugar degradation (glycoside-hydrolytic enzymes)
and (c) fat/fatty acid degradation (lipases) [34-36,41,
42,46-49].
Here the activity of the major groups of plant cell-wall

degrading enzymes: cellulases, hemicellulases, pectinases,
in addition to proteases and α-amylases in the ambrosia
beetle system are investigated for the first time. We take
advantage of a recently developed method to maintain
ambrosia beetle galleries of X. saxesenii for consecutive
generations in-vitro in the laboratory [50]. We show that
ambrosia beetles and their associated microbiome mainly
degrade the hemicellulose component of xylem wood in
addition to more readily degradable simple sugars. Fur-
thermore, we document that larvae and adults possess
different enzyme profiles, which adds an additional layer
of complexity to the division of behavioral tasks between
life-stages already reported within the highly social soci-
eties of X. saxesenii [21].
Results
Gallery enzyme activity
We measured enzyme activity of samples taken at three
time points after gallery foundation in all three gallery
compartments (Figure 1A): (1) gallery dump samples,
containing all the waste-material (sawdust, feces, fun-
gus) that is shuffled out of the entrance tunnel by the
adult females, (2) samples of the fungus infested sub-
strate from the walls of the entrance tunnel, which is
the oldest part of the nest and vertically penetrates the
substrate, and (3) samples of the fungus infested sub-
strate of the brood chamber, where the major part of
the mutualistic fungus is growing and the brood is
developing. Six specific enzyme activities (endo-β-1,4-
glucanase, endo-β-1,3(4)-glucanase, endo-β-1,4-xylanase
(xylan and arabinoxylan), endo-β-1,4-mannanase, and
endo-protease (casein)) were consistently detected in all
gallery samples when using 13 different enzymatic sub-
strates (Figure 1B, [Additional file 1: Figure S1]). En-
zyme activities varied significantly between the three
gallery compartments (log-likelihood ANOVA compari-
son of final mixed models with reduced null models:
likelihood-ratio3,5 = 14.1 – 50.4, p=< 0.0001 – 0.0009),
but were not significantly influenced by the number of
larvae and adults present in the gallery at the time of
wall-material sampling (log-likelihood ANOVA com-
parison of final mixed models with reduced null mod-
els: likelihood-ratio5,11 = 2.0 – 8.7, p= 0.1884 – 0.9169).
The plant cell-wall degrading cellulases, endo-xylanases
and pectinases had a consistently higher activity in the
gallery dump material compared to the entrance tunnel
and the brood chamber (Figure 1B, [Additional file 1:
Figure S1]), whereas endo-protease activity against ca-
sein showed the opposite trend with the highest en-
zyme activity in the entrance tunnel (Figure 1B,
[Additional file 1: S1]). The increased enzyme activity
of plant cell-wall degrading enzymes in the gallery
dump was also evident from the partial least square
regression analysis because these specific enzymes
correlated (i.e. clustered) more closely to the gallery
dump than both the entrance tunnel and the brood
chamber [see Additional file 1].
Cellulolytic activity was similar between the entrance

tunnel and brood chamber across gallery ages, whereas
endo-β-1,4-xylanase (xylan and arabinoxylan) and endo-
β-1,4-mannanase activity changed across age cohorts
most notably with an increase in enzyme activity in the
gallery dump over time (log-likelihood ANOVA com-
parison of final mixed models with reduced null models:
likelihood-ratio5,11 = 12.7 – 16.9, p= 0.0095 – 0.0472,
Figure 1B). For these three enzymes we also noted a
consistent but non-significant trend of higher activity in
the entrance tunnel compared to the brood chamber at
age45 (i.e., 45 days after gallery foundation), similar
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activity at age62 and the opposite pattern at age87 [see
Additional file 1].
Enzyme activity against the substrates xyloglucan,

galactan, rhamnogalacturonan, debranched arabinan and
amylose tended to be highest in the gallery dump [see
Additional file 1]. Because these enzyme activities were
only sporadically detected, we analyzed each age cohort
separately using a non-parametric Kruskal-Wallis test
[see Additional file 1]. Enzyme activities against the sub-
strates dextran and collagen were not detected in any
sample (Figure 1B).

Adult and larvae enzyme activity
Endo-β-1,3(4)-glucanase (beta-glucan) activity was
detected in 1st, 2nd/3rd instar larvae and adults (Figure 2),
whereas endo-β-1,4-xylanase activity was detected in 1st

to 3rd instar larvae with highest activity during 2nd and
3rd instars, but not in adult beetles (Figure 2). No statis-
tical analysis was performed on enzyme activities
extracted from larvae or beetles because although sam-
ples were approximately standardized to the same total
biomass the inherent physiological difference between
larvae and adult would render the result ambiguous. No
endo-β-1,4-glucanase or endo-protease (casein) activity
were detected in adults or larvae (Figure 2).
Discussion
Gallery enzyme activity
Plant cell-wall degrading cellulases, endo-xylanases and
the pectinolytic endo-β-1,4-mannanase dominate the en-
zymatic profile but also consistent endo-protease activity
against casein were detected at all measured time-points
in all three gallery compartments (Figure 1B). Taken to-
gether the enzymatic profile of the microbial consortium
of X. saxesenii ambrosia galleries resembles that of com-
mon saprotrophic ascomycete and basidiomycete fungi
[51-53], highlighting the universal similarity of enzymes
required in the initial degradation of recently dead wood
material. The production of extracellular enzymes by
filamentous fungi is highly dependent on the growth
medium and external conditions such as temperature
and moisture etc. [51]. Hence it is extremely difficult if
not impossible to obtain natural enzyme activity profiles
under in-vitro laboratory conditions, as the actual
micro-habitat experienced by microbes in nature cannot
be fully replicated. The relatively high endo-protease and
possibly also α-amylase activity detected in our samples
(Figure 1B), for example, is most likely because of casein
and starch used in the artificial breeding medium and
does not reflect the natural situation. Despite this caveat,
the detailed enzymatic measurements of laboratory
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maintained and age-controlled beetle galleries contain-
ing all the naturally vectored symbiotic microbes provide
an informative substitute for natural measurements of
the highly inaccessible ambrosia beetle galleries deep in-
side wood.
Endo-xylanase activity increased in the brood chamber,

but decreased in the entrance tunnel with gallery age
([Additional file 1: Figure S1]). In addition, when compar-
ing the endo-β-1,4-glucanase and endo-β-1,4-mannanase
activity between compartments within galleries, samples
from the entrance tunnel and brood chamber showed re-
markably similar enzymatic profiles, whereas gallery
dump samples had much higher activities (Figure 1B).
These changes in enzymatic activity most likely reflected
progression in the degradation of the wood substrate sur-
rounding the galleries. Only cellulase activity was remark-
ably similar and low in all gallery compartments at all age
stages (Figure 1B). Unfortunately, we are unable to distin-
guish whether these shifts in enzyme activity are due to
changes (i) in beetle activities, (ii) in endo-xylanase pro-
duction by the resident microbes, or (iii) in the succession
of microbes in the galleries. Ambrosia beetle galleries are
not static environments and conditions (e.g. humidity,
degradation) and the composition of the associated mi-
crobial consortium changes both between gallery com-
partments and as tunnel parts age. Ambrosia fungi, as the
primary food source for the beetles, only dominate the
microbiome in freshly excavated gallery parts where the
brood develop and are later replaced by secondary sapro-
bic symbionts that continue degradation [23,24]. There-
fore, the observed enzyme activity in the expelled saw-
dust material in the gallery dump is likely produced by
opportunistic bacteria and fungi not necessarily involved
in the nutrition of the insects, as found in certain fungus-
growing ant dumps [54]. The expelled saw-dust is prob-
ably of little nutritional value and instead represents a
source of potential contamination that needs removal [9].
However, this begs the question how the relatively lower
enzyme activity of the microbial consortium in the freshly
excavated gallery parts is able to sustain ambrosia beetle
nutrition? The high hemicellulolytic activity against xylan,
glucomannan and callose, but only little activity against
cellulose (Figure 1B), show that the gallery microbiome
preferentially degrades hemicellulose components of the
ray-parenchyma cells in the xylem. This is in contrast to
bark beetle microbiomes in the phloem, which apparently
leaves almost all of the structural plant cell wall compo-
nents (cellulose, hemicellulose and pectin) intact [29].
Degradation of hemicellulose components is energetically
less costly than complete cellulose degradation [51], how-
ever, the reliance on hemicellulases emphasizes that the
xylem niche within recently dead wood is transient before
the microbiome has to be provisioned with new material
either by excavation of tunnel systems or dispersal to new
hosts. Indeed, ambrosia beetles leave their galleries with
their mutualists stored in mycetangia when opportunistic
saprobes invade [23], which may coincide with depletion
of the more easily accessible plant cell wall components.

Adult and larvae enzyme activity
Endosymbionts play a crucial role in nutrient acquisition
in many wood-feeding arthropods, like termites or
wood-boring beetles [2,4,49]. In bark and ambrosia bee-
tles they seem of minor importance because these
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beetles feed either on (fungus infested) phloem (i.e. bark
beetles) or fungi/fungus infested xylem (i.e. ambrosia
beetles). The gut flora of ambrosia beetles has not been
studied, but for bark beetles the species richness in larval
and adult guts is relatively low [45,55]. The endosymbi-
otic yeasts and bacteria in bark beetles have been shown
to detoxify poisonous wood compounds (e.g. tannins
[11]) and fix nitrogen [56]. However, their role for deg-
radation appears rather small compared to the primary
fungal ectosymbionts that are growing within the galler-
ies of Ips and Dendroctonus beetles [45,55]. As most am-
brosia beetle species feed solely on fungus tissue, an
endogenous production of plant cell wall degrading
enzymes either by the beetles or associated endosym-
bionts in these species is not expected, but this may be
different in larvae of X. saxesenii and other ambrosia
beetles in the genus Xyleborinus that ingest both fungal
tissue and particles of wood while feeding [21,32]. In-
deed, the different nutrition of larvae and adults in X.
saxesenii was also reflected by endo-β-1,4-xylanase activ-
ity observed in whole-body extracts of larvae, but not of
adults (Figure 2). Endo-β-1,4-xylanase enzymes might be
produced by gut endosymbionts that are either specific
to the larvae (larval specific bacteria are known from
Ips and Dendroctonus bark beetles [55,57]), or endo-
symbionts are present in both larvae and adults but
facultatively produce and secrete endo-β-1,4-xylanases
depending on context. A microbial origin of these
enzymes is possible because insects are rarely capable of
producing plant cell-wall degrading enzymes themselves,
although an increasing number of putative genes coding
for cellulases, hemicellulases and pectinases are being
discovered in the genomes of wood dwelling beetles
[58], which in certain cases appear to be horizontally
acquired from bacteria [59,60]. A few beetle species have
been shown to synthesize xylanase endogenously, for
example larvae and adults of the wood-boring beetle
Phaedon cochleariae [61] and the coffee-berry borer
Hypothenemus hampei [UniProt:E2J6M9]. The latter is
a scolytine beetle, and it therefore is possible that
the endo-β-1,3(4)-glucanases and endo-β-1,4-xylanases
found in our study may be endogenously produced by
X. saxesenii.
A third possibility is that larval and adult plant cell-

wall degrading enzymes are of ectosymbiotic origin, i.e.,
they are fungus derived. Enzyme acquisition by feeding
on fungi is well known from several fungal-insect mutu-
alisms (c.f. the acquired enzyme hypothesis [13,62],
Table 1). Related bark beetles carry yeasts and bacteria
in their intestines [43,55,57] and feed on phloem that is
often infested by ophiostomatoid fungi [16], which is
likely to provide ample opportunity for the acquisition
of microbial enzymes. If the endo-β-1,4-xylanase found
in larvae of X. saxesenii is fungus derived, that would
either imply that the fungus exclusively produces endo-
β-1,4-xylanase in the structures eaten by the larvae and
not by the adults (e.g. it is known that enzyme activity of
Ophiostoma species vary between mycelium and asexual
fruiting structures [35]) or that the larvae but not the
adults avoid internal proteolysis of this enzyme. Irre-
spective of enzymatic origin, the breakdown of cross-
linking glycans within the larval intestinal tract may (i)
have a positive influence on larval nutrition and (ii)
could be enhanced by active mixing of small woody par-
ticles with fungus derived plant cell-wall degrading
enzymes.

Conclusions
Despite differences in the type of substrate used to culti-
vate symbiotic fungi, a striking, but perhaps not surpris-
ing commonality between the major insect fungus-
growing systems is the direct or indirect use of a similar
set of fungal carbohydrate active enzymes to utilize re-
calcitrant plant material as a stable food source (Table 1).
Plant cell-wall degrading xylanases, pectinases and to a
lesser degree cellulases dominate the enzymatic profiles
in all cases, although inherent variation between fungus-
growing systems are certainly present at the level of spe-
cific enzymes. Endogenously produced cellulase enzymes
are not common among arthropods [63] (for a contrast-
ing view see [58]), which indicate that the provision of
essential carbohydrate active enzymes by microbes facili-
tates fungus farming.
Feeding activity of X. saxesenii larvae not only benefits

other group members by creating more space for the
ambrosia fungus to form ambrosial layers on the gallery
walls, but here we show that it also enhances wood deg-
radation and nutrient cycling. Predigested larval feces,
which contains small woody particles and probably also
enzymes, is smeared on gallery walls after defecation
[21,33]. The wood particles in this fecal inoculum may
be further degraded and nitrogenous excretions recycled
by the ambrosia fungi [64]. This may in turn explain the
positive effect of larval numbers on group productivity
in X. saxesenii [21], and demonstrates a synergism be-
tween age groups that prevents competition for fungal
food, because adults and larvae feed differently and ap-
parently use a complementary set of enzymes. The dif-
ferences in enzyme profiles of X. saxesenii larvae and
adults are interesting for understanding the social sys-
tem of this species. X. saxesenii is the only primitively
eusocial ambrosia beetle described (characterized by
overlapping offspring generations, cooperative brood
care and reproductive division of labor) and similarly to
the obligatorily eusocial ants, bees and termites exhibit
division of labor not only between the sexes, but most
importantly also between larval and adult offspring [21].
Differential enzyme activity therefore adds an additional



Table 1 Overview of highly derived, obligate nutritional symbioses between insects and fungi

Coleoptera Diptera Hymenoptera Isoptera

Ambrosia beetles Bark beetles1 Ship-timber beetles Gall midges Wood wasps Fungus-growing ants Fungus-growing termites

Insect family Curculionidae Curculionidae Lymexylidae Cecidomyiidae Xiphydriidae, Orussidae,
Anaxyelidae, Siricidae

Formicidae Termitidae

Mutualistic fungi Ascomycota (Ambrosiella,
Raffaelea, Fusarium)

Ascomycota (Ophiostoma,
Ceratocystiopsis, Grosmannia)
Basidiomycota (Entomocorticium)

Ascomycota
(Endomyces)

Ascomycota
(Lasioptera,
Ramichloridium)

Basidiomycota (Cerrena,
Stereum, Amylostereum);
Ascomycota (Daldinia
decipiens, Entonaema
cinnabarina)

Basidiomycota
(Leucocoprinus,
Leucoagaricus and
the family Pterulaceae)

Basidiomycota
(Termitomyces)

Age of symbiosis(Mya) 21–60 ? ? ? ? 45–65 24–34

Agriculture

Mode of nesting Xylem tunnels & chambers Phloem tunnels & chambers Xylem tunnels Plant galls Xylem tunnels Subterranean nests
(occ. mounds)

Subterranean nests
and mounds

Substrate for fungi Surrounding wood Surrounding phloem
(and wood)

Surrounding wood Surrounding
plant tissue

Surrounding wood Collected plant material
(twigs, caterpillar feces,
leaf litter, flowers, fruits,
fresh leaves)

Collected plant material
(dry leaf litter,
twigs, wood)

Mode of agriculture2 Advanced Primitive (possibly advanced
in Dendroctonus)

Primitive ? Primitive Advanced Advanced

Enzymatic profile

Fungus garden (incl.
microbial community)

xylem degrading
saprotrophism and
bionecrotrophism5

bionecrotrophism of phloem ? ? xylem degrading
saprotrophism

Saprotrophism (saprobic
and biotrophic in
leaf-cutting ants)

Saprotrophism
(plant cell-wall
degrading)

Fungus acquired
enzymes3

Possible5 ? ? ? Present Present Present

Mode of feeding4

Adults Mycetophagy Phloeomycetophagy No food Plant sap No food Mycetophagy,
(plant material)

Mycetophagy,
(plant material)

Larvae Mycetophagy
(Xylomycetophagy6)

Phloeomycetophagy Xylomycetophagy Mycetophagy Xylomycetophagy Mycetophagy Mycetophagy

1 Here we only refer to bark beetles in nutritional symbioses with fungi and omit species only feeding on phloem.
2 Primitive fungiculture is defined by only dispersal and seeding of fungi; advanced fungiculture additionally involves the active care of fungal crops (cf. [9]).
3 Evidence for fungus acquired enzymes that are active in the insect gut or fecal exudates [13,62].
4 Distinctions originating from the scolytine beetle literature e.g. [20]: Mycetophagy = eating fungal mycelium, fruiting bodies or specific fungal structures, Phloeomycethophagy = eating phloem and fungal biomass,
Xylomycetophagy = eating xylem and fungal biomass.

5 Reference: this study.
6 Only in larvae of the genus Xyleborinus and probably Xylosandrus [21,32].
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layer of complexity to the behavioural division of labour
between adults and larvae. Production of extra enzymes
and nutrients by larvae (and their trophallaxis to adults)
has been reported from other social insects, such as ants
and wasps [65-67], and larvae of the leaf-cutting ant
Acromyrmex subterraneous have even been denoted the
“digestive caste” of the colony based on the extensive en-
zymatic machinery detected in their gut lumen [68].
Holometabolous insects dramatically restructure morph-
ology and physiology during metamorphosis and pheno-
types of larval and adult stages thus represent distinct
developmental and evolvable modules compared with
the highly correlated life stages of insects with “incom-
plete” metamorphosis (Hemimetabola) [69]. Because of
this predisposition we propose that larvae in holometa-
bolous insect societies may play a much more important
role in resource utilization than is currently recognized.

Materials and methods
Laboratory breeding
X. saxesenii adult females were collected in the Spilwald
forest (560 m asl; 46°95’, 7°31’) close to Bern, Switzerland
in January 2010, by dissection of galleries from stumps
of beech trees (Fagus sylvatica) that had been cut about
a year earlier. From these galleries adult X. saxesenii
females were brought to the laboratory and placed indi-
vidually in ~15 mL plastic tubes filled with a sterile nu-
trient-enriched beech saw-dust media solidified with
agar as previously described [50]. X. saxesenii galleries
typically consist of a straight entrance tunnel dug per-
pendicular into the media for about 2–5 cm where it
reaches a flat brood chamber of 2–3 cm2 and a height of
1 mm (Figure 1A, [Additional file 1: Figure S3]). Three
distinct gallery compartments - entrance tunnel, brood
chamber and gallery dump material – may be discerned
both in laboratory galleries in artificial media and field
galleries constructed in wood. X. saxesenii is obligately
sib-mating (inbreeding) within the natal nest and disper-
sing females vertical transmit the associated mutualistic
symbionts in mycetangia [21]. Dispersing adults can be
collected from the surface of the media and thus enables
breeding of consecutive generations in the laboratory.
Galleries used in this study were from the 5th labora-

tory generation. Sampling from laboratory ambrosia bee-
tle galleries is preferable to sampling from field galleries,
because this allows (i) to control the age of the galleries
(and thereby changes in the fungal composition) and (ii)
to monitor fungal diversity and the number of beetles
and their behavior. Laboratory breeding of ambrosia
beetles also has disadvantages, because symbiont com-
position may differ between laboratory and field galler-
ies. Although it is unlikely that new microbes have
invaded the system, because of the highly specialized
vertical transmission of the primary mutualists in beetle
mycetangia and relatively few other secondary microbes
on the integument [14], it is possible that relative com-
position of symbionts has changed in response to the
different conditions within the laboratory. Changes are
probably negligible, however, because ambrosia beetles
have up to now (March 2012) been reared for ten suc-
cessive generations within the laboratory and major
changes in gallery productivity across generations are
absent, which indicates that the abundance of the pri-
mary symbionts in the microbiome is unaffected by
long-term laboratory rearing [unpublished data (Bieder-
mann PHW)].

Sampling and protein extraction
In this study we collected samples from laboratory main-
tained galleries at three particular time points during gal-
lery development: (A) At day 45 after gallery foundation
(= age45) when few adults, but many 1st and 2nd/3rd in-
star larvae are present in the gallery and the microbiome
is dominated by the Raffaelea sulfurea symbiont [24]. (B)
At day 62 after gallery foundation (= age62) when few
immature brood, but many more adults that are just
starting to disperse are present in the gallery. The micro-
biome has changed and is no longer completely domi-
nated by R. sulfurea, but contains also a mixture of
several saprobes (e.g. Paecilomyces and Penicillium spe-
cies; [24]. (C) At day 87 after gallery foundation (= age87)
when production of new brood has ceased and almost all
adult offspring has left the gallery. The microbiome is
dominated by a few saprobic species, which are probably
of little nutritional value to the beetles [24].
When sampling, we removed the solid agar-sawdust

based medium containing the beetle galleries from the
plastic tube in a single large piece and subsequently dis-
sected it using a scalpel and forceps. Thirty mg (wet
weight) of gallery material from the three distinct gallery
compartments: (I) entrance tunnel, (II) brood chamber,
and (III) expelled material from the gallery dump were
collected and weighed on an electronic scale (0.0001 g
precision). Total proteins were extracted from each sam-
ple, put in an Eppendorf tube filled with 260 μl ddH20
and 0.1% Tween20, and ground with a small plastic pes-
tle. Tween20 was added to the extraction water to keep
enzymes in suspension [70]. Samples were vortexed,
centrifuged at 15.000 g for 15 min at 4 °C and enzy-
me activity of the supernatant fraction was immediately
measured to minimize internal proteolysis. In total 11,
15 and 8 galleries from age45, age62 and age87,
respectively, were used giving a total sample size of 34
galleries times three compartments (11 gallery dump
samples had to be discarded as there was not enough
material). In addition, we counted all individuals (1st

instar, 2nd/3rd instar larvae, and adults) present within a
gallery at that time.
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In addition to sampling gallery material we also mea-
sured individuals for enzyme activity. First instar larvae,
2nd/3rd instar larvae and adult beetles were collected at
age45, when all developmental stages of X. saxesenii were
present within galleries. All individuals were surface ster-
ilized once in bleach and once in 96% alcohol. Three
adults, four 2nd/3rd instar larvae and twelve 1st instar lar-
vae were combined per sample to standardize the
amount of biological material to approximately 30 mg
biomass. Thereafter, samples were grinded in 60 μl
ddH20 containing 0.1% Tween20, vortexed, centrifuged
(see above) and immediately used for enzyme activity
measurements.

Enzyme activity measurements
Enzyme activity was assayed with Azurine-Crosslinked
(AZCL) polysaccharides that are purified polysaccharides
cross-linked with a blue dye to form a water insoluble
substrate, which is commercially available from Mega-
zyme© (Bray, Ireland) in the form of a powder (Table 2).
Assay plates were prepared as previously described
[71,72] with a medium consisting of 1% agarose, 23 mM
phosphoric acid, 23 mM acetic acid and 23 mM boric
acid, mixed and adjusted to pH= 6. The medium was
heated using a microwave to melt the agarose. When the
medium had cooled to 65 °C, 0.1% weight/volume AZCL
substrate wetted in 96% ethanol was added. The medium
was then poured into Petri dishes and allowed to
Table 2 Insoluble chromogenic substrates used to test for
enzyme activity and the specific type of enzymes
measured

Substrate Enzyme

Cellulose

AZCL-HE-Cellulose cellulase (endo-β-1,4-glucanase)

AZCL-Barley β-Glucan cellulase (endo-β-1,3(4)-glucanase)

AZCL-Xyloglucan endo-β-1,4-xyloglucanase

Hemicellulose

AZCL-Xylan endo-β-1,4-xylanase

AZCL-Arabinoxylan endo-β-1,4-xylanase

AZCL-Dextran endo-α-1,6-dextranase

Pectin

AZCL-Debranched Arabinan endo-α-1,5-arabinase

AZCL-Rhamnogalacturonan rhamnogalacturonanase

AZCL-Galactomannan endo-β-1,4-mannanase

AZCL-Galactan endo-β-1,4-galactanase

Protein

AZCL-Casein endo-protease

AZCL-Collagen endo-protease

Starch

AZCL-Amylose α-amylase

AZCL=Azurine cross-linked polysaccharides (Megazyme©, Bray, Ireland).
solidify. Thereafter, we made five wells (~4 mm2) per
plate using a cut-off pipette tip, applied 15 μl super-
natant of each protein enzyme extract per well, and
incubated the plates at room temperature (ca. 21 °C) in
the dark. After 24 h all plates were photographed for
quantifying the area of the blue halo surrounding each
well with image analysis software (ImageJ ver. 1.37v, W.
Rasband, http://rsb.info.nih.gov/ij/). A positive enzyme
reaction lead to the release of dyed water soluble frag-
ments into the agarose medium and the area of blue col-
oration is thus a quantitative measure for enzyme
activity that can be compared between samples [71-73],
although it does not provide absolute values of enzyme
activity [74]. 13 AZCL substrates were tested for enzyme
activity (Table 2), except for the larval and adult beetle
samples that were only tested for endo-β-1,4-glucanase,
endo-β-1,3(4)-glucanase, endo-β-1,4-xylanase, and endo-
protease activity because of insufficient extracts to test
for all 13 substrates. A pilot study showed no activity of
either gallery, beetle or larval extracts against the sub-
strates AZCL-pullulan, AZCL-chitosan, AZCL-curdlan,
and AZCL-pachyman and therefore results for these
substrates were not shown here.
Data analysis
Enzyme activity of the gallery data were ‘log + 1’ trans-
formed to normalize the data. Enzyme activity were ana-
lyzed for each substrate in separate mixed linear models
with (A) the three factorial variables (i) gallery compart-
ment (three levels: ‘entrance’, ‘brood chamber’ and ‘gallery
dump’), (ii) the interaction between gallery compartment
and age of the gallery (three levels: age45, age62 and
age87), (iii) the interaction between gallery compartment
and beetle composition (three levels: ‘adult beetles and
immatures present’, ‘only immatures present’ and ‘no bee-
tles or larvae present’) and (B) the continuous variables
(i) total number of adults and (ii) total number of larvae.
All variables were included as fixed effects. Each gallery
was assigned a code that was included as a random factor
in all models because entrance, brood chamber and
gallery dump samples from the same gallery are not
independent measurements. Model estimation was per-
formed with Maximum Likelihood using the lme func-
tion implemented in R [75] and each variable was
evaluated by ANOVA analysis of log-likelihood scores
using a step-wise model reduction scheme. Specific
means were compared with Tukey’s multiple compari-
sons of the final model. The correlation between a par-
ticular enzyme activity and the three sample gallery
compartments were analyzed using partial least square
regression of a matrix consisting of three x-variables
(sample location: entrance tunnel, brood chamber and
gallery dump) and 13 y-variables (enzyme activity for

http://rsb.info.nih.gov/ij/
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each substrate screened) using the R package pls [76]
[see Additional file 1].

Additional file

Additional file 1 Supplementary Online Material. Additional figures
supporting the data analysis.
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