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ABSTRACT

Context. State-of-the-art planet formation models are now capable of accounting for the full spectrum of known planet types. This
comes at the cost of an increasing complexity of the models, which calls into question whether established links between their initial
conditions and the calculated planetary observables are preserved.
Aims. In this paper, we take a data-driven approach to investigate the relations between clusters of synthetic planets with similar prop-
erties and their formation history.
Methods. We trained a Gaussian mixture model on typical exoplanet observables computed by a global model of planet formation
to identify clusters of similar planets. We then traced back the formation histories of the planets associated with them and pinpointed
their differences. Using the cluster affiliation as labels, we trained a random forest classifier to predict planet species from properties
of the originating protoplanetary disk.
Results. Without presupposing any planet types, we identified four distinct classes in our synthetic population. They roughly corre-
spond to the observed populations of (sub-)Neptunes, giant planets, and (super-)Earths, plus an additional unobserved class we denote
as “icy cores”. These groups emerge already within the first 0.1 Myr of the formation phase and are predicted from disk properties with
an overall accuracy of >90%. The most reliable predictors are the initial orbital distance of planetary nuclei and the total planetesimal
mass available. Giant planets form only in a particular region of this parameter space that is in agreement with purely analytical pre-
dictions. Including N-body interactions between the planets decreases the predictability, especially for sub-Neptunes that frequently
undergo giant collisions and turn into super-Earths.
Conclusions. The processes covered by current core accretion models of planet formation are largely predictable and reproduce the
known demographic features in the exoplanet population. The impact of gravitational interactions highlights the need for N-body
integrators for realistic predictions of systems of low-mass planets.

Key words. planets and satellites: formation – protoplanetary disks – planets and satellites: dynamical evolution and stability –
planet-disk interactions – methods: numerical – methods: statistical

1. Introduction

One of the most remarkable findings in recent years of exo-
planetology has been the enormous diversity of planetary sys-
tems (e.g., Ribas & Miralda-Escudé 2007; Howard et al. 2012;
Fressin et al. 2013; Petigura et al. 2013; Mulders et al. 2015;
Hobson & Gomez 2017; Brewer et al. 2018; Owen & Murray-
Clay 2018; Hsu et al. 2019; Bryan et al. 2019; He et al. 2020). The
rapidly increasing number of confirmed planets improves our
ability to explore this diversity and to understand its origins. To
this end, a variety of physical mechanisms that influence the for-
mation and evolution of planetary systems, and therefore shape
their demographics, have been investigated. Intensively stud-
ied mechanisms include the evolution of accretion disks (e.g.,
Lüst 1952; Lynden-Bell & Pringle 1974; Pringle 1981), their
interaction with embedded planets that may result in orbital

migration (e.g., Goldreich & Tremaine 1979; Tanaka et al. 2002;
D’Angelo et al. 2003; Paardekooper et al. 2011; Dittkrist et al.
2014), how these protoplanets form and grow by accreting solid
components and gas (e.g., Bodenheimer & Pollack 1986; Ida
& Makino 1993; Pollack et al. 1996; Thommes et al. 2003;
Fortier et al. 2013), their gravitational interaction among each
other (e.g., Chambers et al. 1996; Raymond et al. 2009), pho-
toevaporation of both protoplanetary disks (Hollenbach et al.
1994; Clarke et al. 2001; Alexander et al. 2014) and planetary
atmospheres (Lammer et al. 2003; Owen & Jackson 2012; Jin
et al. 2014), and the long-term evolution of planets and their
atmospheres (e.g., Bodenheimer & Pollack 1986; Guillot 2005;
Fortney & Nettelmann 2010; Mordasini et al. 2012c). While all
of these processes leave an imprint on the final planetary sys-
tems, observing them while they are in action has proven to
be very challenging and was possible only in rare cases (e.g.,
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Keppler et al. 2018). Global models of planet formation can mit-
igate this shortcoming by combining as many relevant physical
processes as possible and simulating the growth and evolution
of planets in an end-to-end fashion. Thereby, they provide a
link between properties of disks and observables of the result-
ing planets. When employed within a Monte Carlo experiment
with distributions of initial conditions, synthetic planet popu-
lations can be produced and statistically evaluated (e.g., Ida &
Lin 2004a; Mordasini et al. 2009; Ndugu et al. 2018). Such pop-
ulation synthesis frameworks are increasingly able to produce
different kinds of planets, from terrestrial-sized rocky planets to
gas giants, using the same formation model.

The core accretion scenario (Perri & Cameron 1974; Mizuno
et al. 1978; Mizuno 1980), in which a solid planetary core forms
that may subsequently accrete a gaseous envelope, has been
recognized as the most common planetary formation avenue.
Concerning the problem of how this solid core grows, two
different approaches have emerged: Commonly, the growth
of the solid component has been modeled as the accretion
of ∼kilometer-sized planetesimals (e.g., Ida & Makino 1993;
Thommes et al. 2003). Under this assumption, the thresholds
in the disk properties responsible for the emergence of different
planet types are determined by the availability of planetesimals
at the position of a growing planet and by the timescale for
accreting them (Lissauer 1987, 1993; Kokubo & Ida 2000). In
recent years, a growing body of literature includes the accretion
of millimeter- to centimeter-sized “pebbles”, whose motions are
decoupled from the gas disk (Ormel & Klahr 2010; Lambrechts
& Johansen 2012; Bitsch & Johansen 2017). Here, the resulting
radial motion of the particles causes an interrelation between the
inner and outer regions of the disk (Morbidelli & Nesvorny 2012;
Lambrechts & Johansen 2014; Ormel et al. 2017).

Both approaches have allowed the unambiguous predeter-
mination of planetary parameters from initial conditions (e.g.,
Kokubo & Ida 2002; Ida & Lin 2004b; Lin et al. 2018). However,
with ever more sophisticated models of increasing complexity, it
is uncertain whether these relationships persist. In particular, the
inclusion of an N-body treatment of protoplanets could destroy
these connections due to the chaotic component it introduces.
A number of studies have addressed this problem in different
ways, either by categorizing the outcomes of simulations with
different initial conditions (Mordasini et al. 2009, 2012a; Bitsch
et al. 2015, 2018; Miguel et al. 2020), or by relating synthetic
populations to the observed sample of exoplanets (Mordasini
et al. 2009; Chambers 2018; Fernandes et al. 2019; Mulders et al.
2020) or transitional disks (Chaparro Molano et al. 2019). A
main limitation of these advances has been their restriction to
a particular region of the planetary parameter space.

Recent advancements of our formation model (Emsenhuber
et al. 2021a) now allow for an extension of these investigations
to the full range of currently known planet types. Therefore, in
this study, we statistically assess the relations between a number
of relevant disk properties and the emerging planet types in the
context of the core accretion paradigm. To this end, we investi-
gate synthetic planet populations computed with the Generation
III Bern Model of planet formation and evolution (Emsenhuber
et al. 2021a, hereafter Paper I). Previous papers in this series
have presented populations from this model with different num-
bers of planets per system (Emsenhuber et al. 2021b, Paper
II) and varying host star masses (Burn et al. 2021, Paper IV).
Here, we focus on two populations of systems around solar-type
stars: NG73 for isolated single planets, and NG76 with 100 plan-
etary embryos growing concurrently (Paper II). We thereby
take care to follow a purely data-driven approach and do not

presuppose planet types motivated by observations or theoretical
arguments.

This paper is divided into six sections. In Sect. 2, we describe
the formation model and introduce the synthetic planet popu-
lations. We then present a cluster analysis performed on these
populations in Sect. 3. Section 4 investigates to what degree the
identified clusters of similar planets can be predicted from prop-
erties of protoplanetary disks. In Sect. 5, we interpret our results
and discuss their implications for planet formation. We conclude
by summarizing our findings in Sect. 6.

2. Planet population synthesis

This work analyzes synthetic planet populations for solar-mass
host stars from the Generation III Bern global model of planet
formation and evolution (Paper I). The formation part of the
model combines the evolution of a protoplanetary disk with both
gas and solid components, the growth and determination of the
internal structure of protoplanets, their dynamical interactions,
and gas-driven planetary migration.

The gas disk is modeled as a viscously accreting disk (Lüst
1952; Lynden-Bell & Pringle 1974; Pringle 1981) with an α-
parametrization (Shakura & Sunyaev 1973) for the turbulent vis-
cosity. The vertical structure is computed following Nakamoto &
Nakagawa (1994) and Hueso & Guillot (2005) under an evolving
luminosity of the star (Baraffe et al. 2015). The solid disk compo-
nent is modeled in a fluid-like description where the dynamical
state of planetesimals is given by the stirring due to other plan-
etesimals and protoplanets (Thommes et al. 2003; Chambers
2006; Fortier et al. 2013).

The formation of protoplanets follows the core accretion
paradigm (Perri & Cameron 1974; Mizuno et al. 1978; Mizuno
1980) with planetesimal accretion in the oligarchic regime (Ida
& Makino 1993). We calculated the structure of the planetary
envelopes by directly solving one-dimensional internal struc-
ture equations (Bodenheimer & Pollack 1986). Initially, gas
accretion is limited by the ability of the planet to radiate away
the gravitational energy release by accretion of solids and gas
(Pollack et al. 1996; Lee & Chiang 2015). At this stage, the inter-
nal structure is used to compute the gas accretion rate. Once
a planet exhausts the supply from the gas disk (either because
cooling becomes efficient or because the disk disperses), the
envelope is no longer in equilibrium with the disk and contracts
(Bodenheimer et al. 2000). In this detached phase, the internal
structure equations are used to determine the planet’s radius. The
formation stage also includes gas-driven planetary migration in
the Type I (Paardekooper et al. 2011) and Type II (Dittkrist et al.
2014) regimes.

The planetary seeds start with a mass of 0.01 M⊕ and are
inserted with random initial orbital distances astart drawn from a
log-uniform distribution between the inner disk edge and 40 au.
When multiple embryos are present in the same disk, their grav-
itational interactions are modeled during the first 20 Myr using
the Mercury N-body integrator (Chambers 1999). After this
time, the model switches to the evolutionary stage. Here, the
thermodynamical evolution is calculated for each planet indi-
vidually up to a simulation time of 10 Gyr. This stage includes
atmospheric loss via photoevaporation (Jin et al. 2014) and tidal
migration. As a result, the model is able to compute the plan-
ets’ masses, radii, and luminosities as a function of time. For a
thorough description of the Generation III Bern Model and an
outline of recent advancements of the framework (Alibert et al.
2005, 2013; Mordasini et al. 2009, 2012c,b), we refer to Paper I.
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Table 1. Choice of model parameters.

Parameter Symbol Distribution Range or median+84%−16%

Fixed parameters
Stellar mass – 1 M�

Disk viscosity α – 2 × 10−3

Power law index (gas) βg – 0.9
Power law index (solids) βs – 1.5
Radius of planetesimals – 300 m
Number of planet seeds – 1 (NG73)/100 (NG76)

Mass of planet seeds – 0.01 M⊕
Monte Carlo parameters

Initial gas surface density at 5.2 au Σ0 Log-normal 132+37−27 g cm−2

Dust-to-gas ratio ζd,g Log-normal 0.02+0.01−0.01

Inner disk radius Rin Log-normal 4.74+4.94−2.42 day
Gas disk cutoff radius Rcut,g Log-normal 56+36−21 au

Solid disk cutoff radius Rcut,s Log-normal Rcut,g/2
Photoevaporation efficiency Ṁwind Log-normal (1.0+2.2−0.7)× 10−6 M� yr−1

Starting position of planet seeds astart Uniform in log a Rin to 40 au

Derived parameters
Host star metallicity [Fe/H] Normal −0.03± 0.20
Initial gas disk mass Mgas Log-normal 0.03+0.04−0.02 M�

Initial solid disk mass Msolid ∼log-normal 95+147−55 M⊕
Disk dispersal time tdisk – (3.2+1.9−1.0)× 106 yr

Notes. Upper panel: parameters that are fixed for each simulation. Middle panel: distributions of Monte Carlo parameters that are drawn randomly.
Lower panel: quantities that are derived from or controlled by other parameters. The upper and lower limits denote 84th and 16th percentiles,
respectively.

Synthetic planet populations are produced by running the
model in a Monte Carlo scheme, where initial conditions are
drawn randomly from distributions motivated by observational
(Santos et al. 2003; Lodders 2003; Andrews et al. 2010; Venuti
et al. 2017; Ansdell et al. 2018; Tychoniec et al. 2018) or theoret-
ical constraints (Dra̧zkowska et al. 2016; Lenz et al. 2019). The
distributed variables include the initial gas disk mass Mgas, the
inner edge of the disk rin, its dust-to-gas ratio ζd,g, the mass loss
rate due to photoevaporative winds Ṁwind, and the starting loca-
tions of the planetary seeds astart. The values or distributions of
all model parameters are listed in Table 1 and are motivated in
detail in Paper I and Paper II.

Our goal is to uncover characteristic links between these
properties and the emerging planet types, which requires to
robustly define the latter first. This step may be impaired by the
stochasticity of an N-body treatment that smears the boundaries
between clusters of similar planets. We thus examine both a pop-
ulation with a single planet per system and a population with
multiple planets per system. For the single-planet population,
called NG73, 30 000 systems were simulated. In 29 455 systems,
the planet was not accreted onto the star and is still present after
5 Gyr, which we consider as time of observation.

To consider the impact of gravitational interactions among
planets, we investigate the multi-planet population NG76 and
compare it to the single-planet case. In each of its systems, an
initial set of 100 protoplanets competed for material and inter-
acted gravitationally. All other boundary conditions were left
the same, and the Monte Carlo parameters were drawn from the
same distributions. The N-body module integrated for 20 Myr
to cover the entire formation phase with planets still embedded
in the disk, as well as an appropriate subsequent evolution-
ary era without disk interactions (Paper I). Out of the 1000

simulated systems, 32 030 planets survived until t = 5 Gyr. For
detailed descriptions of both planet populations, see Paper II and
Schlecker et al. (2021), Paper III.

3. Cluster analysis

A cluster analysis aims at identifying groups of entities that share
similar properties in a specific set of parameters. In our case,
we aim to explore which distinct planet species emerge from
our planet formation model and how they compare to observed
(exo-)planet types. Accordingly, we chose as training features
three parameters typically obtained from exoplanet observations:
the orbital semi-major axis a, the planet mass MP, and the planet
radius RP. Our clustering was done in a purely data-driven fash-
ion and without any prior knowledge on existing or expected
planet types. The only information our clustering model received
was a snapshot of our synthetic planet population at a simulation
time of 5 Gyr.

3.1. Data preparation

In general, clustering methods are not scale-invariant (Jain &
Dubes 1988). The application of cluster algorithms to unevenly
scaled data sets can thus lead to compromised results. Based on
the distribution of the parameters of interest in our data set, we
rescaled the features a, MP, and RP by applying a log10.

3.2. Model selection and hyperparameters

We performed the clustering using Gaussian mixture mod-
els (GMMs, McLachlan 1988), a class of hierarchical, prob-
abilistic clustering algorithms. A GMM consists of multiple
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NG73: single-planet NG76: multi-planet

Score: 

Fig. 1. Validation scores for GMMs with different numbers of components N. For AIC, BIC, and DB (top panels), lower values are preferred; and
for Silhouette score and CH (bottom panels), higher values are preferred. AIC and BIC generally show indistinguishable values. Based on these
scores, sensible choices are N = 4 and N = 6 for NG73, and N = 3 and N = 5 for NG76 (highlighted in gray). We note the different y-axis scales.

components i = 1 · · ·N of multivariate normal distributions, each
characterized by its weight φi, its mean µi, and its covariance
matrix Σi. The model then takes the form

N∑
i = 1

φiN(µi,Σi). (1)

During training on a data set, the parameters φi, µi, and Σi
are updated using the expectation-maximization (EM) algo-
rithm (Hartley 1958). A free hyperparameter is the number of
Gaussian components N, that is, the number of Gaussian distri-
butions the data points are assumed to be generated from. The
trained GMM gives each data point a set of N probabilities, cor-
responding to the probability that the data point belongs to a
specific component i. When we classified our data, we assigned
each planet the component (that is, the planet cluster) with the
highest probability.

Since GMM, and clustering algorithms in general, are unsu-
pervised methods, the selection of a “best” model has to be seen
in the context of the goal we want to achieve. We aimed at iden-
tifying groups of planets based on overdensities in the planetary
parameter space, regardless of their shape. With this goal in
mind, we have explored several other algorithms in addition to
GMM and found that they consistently performed worse on our
data set (see Appendix A). Using the scikit-learn (Pedregosa
et al. 2011) implementation of GMM with default arguments, the
only free hyperparameter was the number of clusters in the data
N. In finding the optimal choice of N, we were aided by several
validation metrics. We considered the Akaike Information Crite-
rion (AIC, Akaike 1973; Cavanaugh & Neath 2019), the Bayesian
Information Criterion (BIC, Schwarz 1978), the Davies-Bouldin
score (DB, Davies & Bouldin 1979), the CaliÅski-Harabasz
score (CH, Caliñski & Harabasz 1974), and the Silhouette
score (Rousseeuw 1987). These metrics assess clustering per-
formance with different approaches, and due to the complex
structures in our data they can contradict each other. We provide
a detailed description of the different metrics in Appendix A.2.
For now, it is important to note that AIC, BIC, and DB should
be minimized, and CH and the Silhouette score should be max-
imized. In Fig. 1, we show the different scores for GMMs with

N ∈ [3...10] upon applying them to our single-planet (NG73) and
multi-planet (NG76) population, respectively. For NG73, two
potential choices stick out, N = 4 and N = 6. To decide between
these options, we produced diagnostic scatter plots where all
possible 2D projections of the planetary parameter space are
shown with planets color-coded by cluster affiliation. The plots
for the candidate models are shown in Fig. A.2. While human
bias might be an issue at this step, we took care to judge the clus-
tering only based on over- and underdensities of planets and not
based on where we expected different planet types. We found that
the GMM with N = 4 performed best. For NG76, both N = 3 and
N = 5 yielded promising scores. By judging the corresponding
diagnostic plots, we concluded that N = 5 clusters is the preferred
mode. With all hyperparameters fixed, we performed the unsu-
pervised training of our nominal GMMs on the full data sets and
considering full covariance matrices.

3.3. Detected planet clusters

In the single-planet case, the clustering algorithm identified
four separate planet species in our population. Figure 2 shows
these clusters in the various projections in {a,MP,RP} space.
In general, we notice clear separations between the clusters in
all projections, albeit with visible contaminations. Ordered by
ascending planetary mass, the clusters are as follows: Clusters 2
and 4 are populations of bare planet cores without atmospheres,
and they are cleanly separated in semi-major axis. Both clusters
are separate from cluster 1, which are close-in planets enhanced
in gas and with masses of mostly tens of M⊕. A forth distinct
group of very massive planets (MP & 100 M⊕) is formed by
cluster 3 with a clear separation from the other species.

Since the GMM is not aware of the underlying physics these
clusters result from, it is of interest to interpret the identified
clusters and relate them to known planet types. Cluster 2 corre-
sponds to an unobserved population of distant, low-mass planets.
As they formed beyond the water ice line and are rich in volatile
species, we refer to this group as “icy cores”. Cluster 4 plan-
ets are atmosphere-less and rocky, and thus comparable to the
observed population of close-in terrestrial planets and super-
Earths (e.g., Hsu et al. 2019). By simultaneously taking into
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Fig. 2. Planet clusters in a 5 Gyr old synthetic planet population with a single planet per system. For all combinations of planet observables a, MP,
and RP, the different colors denote clusters identified by a four-component Gaussian mixture model (GMM). On the diagonal, we show Kernel
Density Estimates of the distributions. Without any information about the physics in our formation model, the GMM identified four planet species
roughly corresponding to (sub-)Neptunes (blue), icy cores (red), giant planets (yellow), and (super-)Earths (purple).

account all dimensions of the parameter space, the GMM spa-
tially separated icy cores and (super-)Earths in the region of
the water ice line (without any information about its existence).
This lead to the clean separation of rocky and icy planets in the
MP − RP diagram (diagonal lines in the plot). Cluster 1 roughly
corresponds to the observed population of (sub-)Neptunes. In
planet radius space, these planets are mostly located above the
radius valley (e.g., Fulton et al. 2017; Mordasini 2020, see dis-
cussion in Sect. 4.4). There is some contamination by cluster 1
planets in the region of the largest and closest super-Earths,
which we attribute to the inability of a GMM to fit a deviation
from the otherwise extremely straight line of cluster 4 planets in
MP − RP space. Finally, cluster 3 can be identified as gas giant
planets. This becomes especially clear in the MP − RP plane,
where they occupy the region where in the physical model elec-
tron degeneracy occurs. This effect flattens off the mass-radius
relation at the high-mass end (e.g., Chabrier et al. 2009).

Figure 3 illustrates the clustering in the multi-planet case,
during which we ignored the system affiliation of the planets
and treated them as independent entities. Based on the scoring
scheme described above, the clearest clustering can be achieved
with five components. The overall partitioning appears similar to
before, and the fifth component not present in the single-planet
population covers planets on distant orbits that have intermedi-
ate densities and masses of roughly 0.05 M⊕ to 3 M⊕. We refer to
these planets as “icy Earths”. These planets are distributed in a
sharp line in mass-radius space, which makes the GMM consider
them detached from the more dispersed “icy cores”. Notably, the
bulk of the “Neptunes” moved to more distant orbits compared to
the single-planet case. This is in line with the observed existence
of Neptune-sized planets at orbital distances of several au Suzuki

et al. (2016); Kawahara & Masuda (2019). For a comparison of
Bern model planets and gravitational microlensing events, we
refer to Suzuki et al. (2018).

3.4. Model validation

Unlike supervised machine learning algorithms, unsupervised
techniques cannot be tested by applying the trained model to a
test set due to the lack of “labeled” data. For validation of the
clustering itself, we used the aforementioned performance met-
rics. To evaluate how robust the detected clustering is, we let the
model predict the cluster affiliation of a data set of similar struc-
ture and compared these predictions to the original clustering.
To produce these test data, we employed Gaussian Mixtures of
80 components and full covariance matrices as generative prob-
abilistic models. We trained them on the {a,MP,RP} subspace of
the original population synthesis data. The samples drawn from
these models show a very similar structure in the whole domain
(compare Fig. 4). We note that these “planets” are entirely the
product of the generative models and have never been in contact
with a physical formation model.

For comparison, we also fed our nominal clustering mod-
els with samples drawn from log-uniform distributions with
boundaries roughly corresponding to the suprema of the pop-
ulation synthesis data, that is, a ∼ 10U(−1,2), MP ∼ 10U(−2,4), and
RP ∼ 10U(−2,0). With these pseudo-random data, the models pre-
dict clusters that do not resemble the original structures and they
appear in most projections almost random. These two tests show
that our trained models neither overfit the data set, nor do they
produce any clear clusters where none are expected. The gen-
erative models can also be used to draw a virtually unlimited
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Fig. 3. Same as Fig. 2, but for a multi-planet population. The Gaussian mixture model (GMM) prefers solutions including a fifth component of
distant, icy planets shown in green. In general, the clusters are less clearly separated than in the single-planet population.

NG73: single-planet NG76: multi-planet

Fig. 4. Model validation via generative models. For each of the two planet populations, we show the clustering result of our Gaussian mixture
model on population synthesis data (left), random noise (center), and data from a generative model (right). We note that the latter do not stem from
a physical formation model but were generated from a high-order GMM that was trained on the original data. The clusters detected in these new
data show largely the same structure as the original ones, whereas in the random noise no reliable clusters are found.

number of synthetic planets when the computational costs of
employing the full formation model are prohibitive (similar to
Mulders et al. 2018).

3.5. Planet clustering as a function of simulation time

The cluster analysis took place at a simulation time of t = 5 Gyr.
We now trace the identified clusters back in time to investigate
their past evolution. Figure 5 shows their position in semi-major

axis-mass space at simulation times 0.1 Myr, 0.3 Myr, 0.6 Myr,
1 Myr, 2 Myr, and 10 Myr. In particular in the single-planet pop-
ulation, the clusters occupy distinct domains already at early
times and follow characteristic paths in this parameter space.
These paths are set by concurrent accretion and planet migration
and their respective timescales.

In the following, we focus on the single-planet case where the
evolutionary paths can be traced most clearly. At the beginning,
all planets are still of such low mass that migration has little
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NG73: single-planet

NG76: multi-planet

time

Fig. 5. Early time evolution of the clusters identified by the Gaussian mixture model. Each subplot shows a sample of 5000 planets at their
current position in semi-major axis-mass space and color-coded by their future cluster affiliation, which is only determined at t = 5 Gyr. Concurrent
accretion and migration leads to characteristic evolutionary paths. Distinct groups of planets form already at early simulation times.

effect. Planet growth is determined by the local planetesimal
density, feeding zone size, and orbit timescale, and it is most effi-
cient at intermediate orbital distances (Paper II). At a few 105 yr,
an outward migration zone located at a few au divides the plane-
tary tracks into two branches. On the outer branch, giant planets
evolve similarly as the outer wing of Neptunes. They branch off
when runaway gas accretion sets in, while Neptunes continue
migrating inward with moderate growth. At later times, another
outward migration zone leads to the underdensity in the cluster
of close-in (super-)Earths. Icy cores do not exhibit significant
growth and largely remain in their initial domain.

Most of the processes that define the different planet types in
this parameter space are finished after a few Myr or, at the latest,
when the gas disk disperses. Exceptions are atmospheric photo-
evaporation, which happens on 100 Myr to Gyr timescales (e.g.,
Lopez et al. 2012; King & Wheatley 2021) and still turns some
close-in (sub-)Neptunes into super-Earths, and tidal interaction
with the host star affecting some ultra-short period planets. In
the case of multiple planets per system, N-body interactions can
have an additional long-term impact. A striking result of planet-
planet interactions are the significantly lower migration rates
compared to the single-planet case, in particular in the Neptunes
cluster.

In general, it appears that planet populations form distinct
groups very early in the formation process. This begs the ques-
tion whether the cluster affiliation of a planet can already be
predicted from the initial conditions of the simulation.

4. Prediction of planet clusters

Our planet formation model provides a deterministic link
between properties of protoplanetary disks and properties of
planets. This link could be blurred by N-body interactions
between the planets, hence in the following experiment we con-
sider first the single-planet population. Our approach was to
employ a random forest classifier (Ho 1998; Breiman 2001)
to predict the cluster of a planet from its corresponding set
of disk properties. Random forests are ensembles of uncorre-
lated, binary classifiers known as decision trees. Such ensembles
achieve strongly improved generalization accuracies compared
to single-tree classifiers by constructing trees in pseudoran-
domly selected feature subspaces (Ho 1995). The individual trees
are further decorrelated by drawing, with replacement, random
subsets of the input data during training (“bagging”, Breiman
1996).

With varying sizes of the individual clusters (for instance,
only ∼5% of the planets in NG73 are giant planets), our data
set is strongly imbalanced. This is problematic for classifica-
tion algorithms such as random forests, which aim to minimize
the overall error rate and thereby tend to neglect minority
classes (Chen et al. 2004). To account for this imbalance,
we employed a balanced random forest classifier as imple-
mented in the imbalanced-learn1 python package. This variant of

1 https://imbalanced-learn.org
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random forest randomly under-samples each bootstrap sample on
the individual tree level during training (Lemaître et al. 2017).

4.1. Data preparation, hyperparameters, and training

Our classifier learned rules based on four features: the initial
gas disk mass Mgas,0, the initial solid disk mass Msolid,0, the
initial orbital distance of the planetary embryo astart, and the
disk lifetime tdisk. The solid disk mass is a derived quantity that
we computed from the gas disk mass and host star metallicity.
We rescaled these features to account for their large differences
in scale: tdisk and astart were transformed by a log10 function,
and Mgas,0 and Msolid,0 were modified to roughly Gaussian dis-
tributions by the Box-Cox transform (Box & Cox 1964). The
clustering above assigned each synthetic planet a probability
to belong to each of the clusters. For the subsequent analysis,
we avoided planets that cannot be mapped clearly to a cluster
and kept only those with a probability of affiliation >0.99. This
decreased our sample from 29 455 to 23 278 planets. Finally,
we divided the data into a random subset containing 80% of
the initial data for training and a test set with the remaining
20% to determine the performance of the classifier. The result-
ing training set contains between 1059 (giant planets) and 8486
((super-)Earths) planets per cluster. We trained an ensemble of
500 fully grown estimators, that is, without reducing the depth
of the trees by pruning them, on this set.

4.2. Error and performance analysis

To measure the generalization performance of the trained model
already during its development, we predicted clusters from the
out-of-bag samples, which were never seen by the respective
estimator during training. The average of the resulting out-of-
bag score produces an estimate for the accuracy of the entire
ensemble, and we obtained a score of 98% here. However, clas-
sification accuracy is not a sufficient performance measure since
we are dealing with a strongly skewed data set. In the following,
we investigate the types of errors our model makes and measure
its performance.

We computed a confusion matrix using five-fold cross-
validation. For this purpose, the data set was randomly split
into five evenly sized folds; the model was trained five times on
5 − 1 = 4 folds, and then evaluated on the fold it was not trained
on. The left panel of Fig. 6 shows the confusion matrix produced
from the labeled training set and the predictions from cross-
validation. Rows correspond to the actual clusters, and columns
are the predictions of our model. Each field xi, j in the matrix
shows the fraction of times a planet of cluster i was classified as
a planet of cluster j. Most planets fall into the diagonal, mean-
ing a correct classification. All clusters are predicted with more
than 95% accuracy and the largest errors occur for clusters 2 and
3. The right panel of the figure shows the same matrix with the
correct classifications removed and the color map rescaled. It is
obvious that the errors are largely symmetric. The highest rate of
misclassification occurred between clusters 2 and 3 (3% of icy
cores were confused with giant planets and vice-versa). The rea-
son is that the former are frequently progenitors of the latter, and
prediction of those planets that just (do not) reach the conditions
for runaway gas accretion is difficult (compare Fig. 2).

To estimate the generalization error the model makes when
applied to data not part of the training set, we measured its per-
formance on the test set of 4656 systems we held out before.
Based on five-fold cross-validation, it achieves an overall accu-
racy of 97% and misclassifications occur between the same

Table 2. Feature importances of disk properties.

Input parameter Msolid,0 Mgas,0 astart tdisk

MDI 0.21 0.07 0.68 0.04

clusters as seen in the training set. This shows that the model
is not significantly overfitted.

4.3. Results of planet predictions

4.3.1. Correlations with disk properties

For each of the clusters identified in Sect. 3.3, we show the dis-
tributions and pairwise relationships of their corresponding disk
properties in Fig. 7. Underdensities in the scatter plots are due
to removed planets of ambiguous cluster affiliation. Unsurpris-
ingly, giant planets (yellow) grow in disks with large reservoirs
of solid material Msolid and high gas mass Mgas. It is evident
that most of these clusters, which are labeled at “observation
time” t = 5 Gyr, form groups already in this parameter space,
that is, before the simulations started. However, they differen-
tiate distinctly only in the projections involving the start position
of planetary embryos astart. The separation is especially clear in
astart − Msolid,0 space, which shows the least overlap of different
clusters. With increasing initial orbital distance, the dominant
planet species are (super-)Earths, Neptunes, giant planets, and
icy cores.

4.3.2. Feature importance

Our classification model reaches high accuracies for all planet
clusters, but it is interesting to see which disk features are most
important for a successful classification. This is possible by mea-
suring the feature importance of the data set given to the model
using the Mean Decrease Impurity (MDI, Breiman et al. 1984).
MDI quantifies to what extent a feature reduces the impurity
of the trees in the random forest. Put simply, it is a measure
of how well the nodes can use the feature to split the data set
into “pure” child nodes, each containing only data of a single
label. A higher score means that the feature is more important
for correct classification. We list the MDI for each input param-
eter in Table 2. With a score of 0.68, the starting position of the
planetary core astart is clearly the parameter most sensitive for
predicting a planet’s cluster. The gaseous mass of the disk and
its lifetime are the least important features.

However, the degree of dependency on certain disk features
varies from cluster to cluster. To get a cluster-specific insight,
we multiply for each cluster the mean of each feature with the
feature importance. This mean decision boundary

Dc,f = MDIf ·
〈
Xy=c

〉
(2)

denotes for each cluster c the sensitivity of the classifier on fea-
ture f . Here, Xy=c are the scaled training data with labels y
corresponding to cluster c. Figure 8 illustrates all cluster-specific
mean decision boundaries. Dc,f quantifies the sensitivity on a
parameter by its magnitude, as well as the orientation of the deci-
sion boundary by its sign. For example, the large negative value
of cluster 4 in astart means that these planets prefer small initial
orbital distances and their correct classification is very sensitive
on this feature.
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Fig. 6. Confusion of planet classifications. Left: confusion matrix from five-fold cross-validation. Rows are the actual clusters and columns are the
predicted clusters. All clusters are classified with more than 95% accuracy. Right: same, but correct classifications removed to emphasize errors.
Most misclassifications occur between clusters 2 and 3, which correspond to icy cores and giant planets.
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Fig. 7. Pairwise relationships between all disk parameters, sorted by cluster affiliation. For 5000 randomly sampled planets in the population, each
parameter is plotted against every other parameter while the color defines the planet’s cluster. The diagonal panels show the univariate distributions
of the respective parameters, again colored by cluster assignment. Planet species most clearly separate in astart −Msolid,0 space, and the formation of
giant planets (yellow) requires large solid reservoirs and a narrow range of initial orbital distance.

In the lower panels of Fig. 8, we plot all input features against
the resulting planet mass at 5 Gyr, which is a proxy for cluster
affiliation. Most planet clusters are especially sensitive on the
initial orbital distance of the planetary embryo astart. Planets with
masses higher than ∼10 M⊕ are also very sensitive on the solid
mass Msolid,0 and slightly sensitive on Mgas,0. The disk lifetime
tdisk shows a weak correlation with planet mass and plays only a
subordinate role.

4.4. Differences between single and multi-planet systems

Mutual interactions between planets in the same system intro-
duce a fair amount of stochasticity, and some features that
stood out in the single-planet population are smeared out in the
multi-planet case. One example is the bimodal distribution of
planet radii in the observed exoplanet sample (Fulton et al. 2017;
Fulton & Petigura 2018; Hsu et al. 2018; Van Eylen et al. 2018;
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Fig. 8. Relation between disk features and planet species. Upper panel: mean decision boundaries of the classifier, indicating the importance of
each feature and its preferred magnitude for the different clusters. The starting location of the planet embryo astart shows the largest variance in
decision boundary. Giant planets (yellow) are also very sensitive on Msolid,0 and somewhat sensitive on Mgas,0. Lower panels: relationship of the
input features with planet mass. The starting location of the planet embryo astart shows the strongest correlation with cluster affiliation and planet
mass.

Mordasini 2020), which was theoretically predicted to be caused
by photoevaporation of planetary envelopes by high-energy radi-
ation from their host star (Jin et al. 2014; Owen & Wu 2013;
Lopez & Fortney 2013). Other mechanisms have been proposed
to produce this “radius valley” at roughly 2 R⊕ as well, includ-
ing atmospheric loss due to internal heat from cooling planetary
cores (Ginzburg et al. 2016, 2018; Gupta & Schlichting 2019),
impacts of planetesimals (Wyatt et al. 2019) or other protoplan-
ets (Liu et al. 2015), different internal compositions of planets
residing above or below the valley (Zeng et al. 2019; Venturini
et al. 2020), and atmospheric stripping by external radiation
sources in stellar cluster environments (Kruijssen et al. 2020).
In the Generation III Bern Model, photoevaporation by the host
star and collisional stripping are taken into account.

The upper panels of Fig. 9 show the radius distributions
of planets on close orbits (P < 80 d) in the single and multi-
planet populations, respectively. Overplotted are occurrence
rates derived from the Kepler mission in Hsu et al. (2019), which
we marginalized over the period range 0 d to 80 d. The prop-
agated uncertainties are indicated by vertical bars, and arrows
mark upper limits. In our single-planet population, the evapora-
tion valley is much less pronounced in this marginalized radius
distribution than in radius-orbital distance space, where it shows
a steep negative slope (compare Fig. 2). This highlights the
importance of characterizing such demographic features in mul-
tiple dimensions. Compared to the observed valley at ∼2 R⊕ (e.g.,
Fulton et al. 2017; Hsu et al. 2019), the synthetic one is shifted to
larger radii. As has been shown in Jin & Mordasini (2018), this
is due to atmosphere-less, icy cores that migrated inward from
regions beyond the water ice line. This population is included

in the planet cluster representing Neptunes, since the cluster-
ing algorithm mainly discriminated between (super-)Earths and
Neptunes as rocky and icy planets, respectively.

In the multi-planet population, this is not the case. Here,
the different clusters divide close-in planets into bare cores and
planets with H/He envelopes, and the emerging radius valley sep-
arates the (super-)Earths and Neptunes clusters. Again, the valley
is shifted to around 3 R⊕. Compared to the single-planet case, the
slope of the valley in radius-orbital distance is less pronounced,
which makes it appear deeper in the one-dimensional radius his-
togram. Future work within this series will address the synthetic
radius valley in a more thorough manner (Mishra et al. 2021).

Other differences between the single and multi-planet pop-
ulations can be seen in their period distributions (lower panels
of Fig. 9). In the single-planet case, the combined contribu-
tions from (super-)Earths and Neptunes lead to a multimodal
period distribution. On the other hand, the multi-planet popu-
lation shows a continuous slope. In the range where Hsu et al.
(2019) provide reliable occurrence estimates, this slope matches
the observed one well. Causes for the difference between the
single- and multi-planet case are the displacement of planets in
semi-major axis due to gravitational encounters, a lack of close-
in “failed cores” due to the high likelihood of such encounters on
short orbits, and trapping of planets in resonant chains. In addi-
tion, mixed planetary compositions occur as a consequence of
merger events. This places the planets into a continuum of bulk
densities.

Regardless of this “stochastic processing” of the planets, we
attempted to predict their clusters from initial conditions using
the same features as in the single-planet case and following the
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Fig. 9. Radius and period distributions of Neptunes and (super-)Earths. The contributions by Neptunes and (super-)Earths are shown in blue and
purple, respectively. Upper panels: planet radius distribution for planets with periods P < 80 d. In the single-planet case (left), a population of
migrated, icy cores in the Neptunes cluster shifts the synthetic radius valley to larger radii. In the case of multiple planets per system (right),
the minimum in the distribution separates (super-)Earths and Neptunes. Compared to observed occurrence rates from Kepler (Hsu et al. 2019,
gray), this minimum is shifted toward larger radii. Lower panels: period distributions of planets ≥1 R⊕. While the single-planet population (left)
shows a multi-modal distribution, the multi-planet population has a continuous slope similar to observed occurrence rates. We note the different
normalizations of synthetic and observed planets.
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Fig. 10. Confusion of cluster classifications for a multi-planet population with N-body interactions. Same as Fig. 6, but computed for a population
with 100 planets per disk that interact gravitationally. Clusters 2 (icy cores) and 3 (giant planets) are predicted most reliably. Due to giant collisions
the classifier cannot predict, the super-Earths in cluster 4 are often mistaken for (sub-)Neptunes (cluster 1).

procedure described in Sects. 4.1 to 4.2. Similar to before, keep-
ing only planets that the GMM assigned to a specific cluster with
a probability >0.99 reduces the set to 21,761 planets. The ran-
domly drawn training set comprising 80% of the data contains
between 252 (giant planets) and 10 367 (icy cores) planets per
cluster. A balanced random forest we trained on this set achieved
an accuracy of 89% based on five-fold cross-validation. The
other 4353 systems, which we left out as a test set, are predicted
with 86% accuracy.

Similar to Fig. 6, Fig. 10 shows the confusion matrix of a
random forest predicting the planet clusters in the multi-planet

population. The ability to predict planet clusters from initial
conditions varies across different planet types, with icy cores
and giant planets being the most robust species. It can be seen
that clusters 1 (Neptunes) and 4 ((super-)Earths), which occupy
similar mass ranges, are affected by confusion the most. This
is mainly due to the lack of (super-)Earths . 0.1 M⊕ in the
multi-planet case, where they typically fall victim to giant col-
lisions with other planets. Neptunes are frequently mistaken
as icy Earths and (super-)Earths are frequently confused to be
Neptunes. These three groups of intermediate-mass planets share
a similar domain in parameter space.
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Fig. 11. Pairwise relationships between all disk parameters, sorted by cluster affiliation. Same as Fig. 7, but for a multi-planet population with
N-body interactions. The separation of clusters is less pronounced than in the single-planet case.

Figure 11 shows the positions of the planets in the multi-
planet population in disk property space. Again, the different
clusters differentiate the most in solid disk mass and initial
orbital separation. Compared to the single-planet case, the sep-
aration of the clusters is less clean. The additional cluster
identified in NG76, “icy Earths”, share a lot of parameter space
with other planet types.

Using the mean decision boundary defined above (Eq. (2)),
the dependence of different planet clusters on specific initial con-
ditions can be visualized also for the multi-planet population
(Fig. 12). The relationships largely copy those of the single-
planet case: the starting location of the planet embryo shows
the largest decision boundary amplitudes and differences among
the clusters, and giant planets retain their distinct dependence on
high solid and gas reservoirs.

5. Discussion

5.1. Determining factors for the planet type

By predicting a planet’s cluster from a set of initial conditions
of our planet formation model, we were able to establish
links between properties of the protoplanetary disk and the
corresponding planets (see Sect. 4.3.2). These links can be
elucidated by using the planet mass MP as a proxy for the planet
cluster and relating it to disk features (see Fig. 8). The feature
with by far the highest predictive power is the starting location
of the emerging protoplanetary embryo astart, which is expected
in a core accretion scenario: an embryo at small orbital distance
has only a small feeding zone from which it can accrete and
thus it will remain small. At very large orbital distance, the
dynamical and growth timescales are very large and the disk will

have disappeared before a protoplanet can gain significant mass
(Lissauer 1987, 1993; Kokubo & Ida 2002; Mordasini et al.
2009). Exactly at what orbital separations efficient planet
growth is possible further depends on the amount, size, mass,
and aerodynamic properties of planetesimals available there,
and thus on the solid disk mass Msolid,0 (see below for a more
detailed discussion on the interplay between orbital distance
and local planetesimal density). As can be seen in the lower left
panel of Fig. 8, intermediate orbits provide the best conditions
for rapid growth. These trends are responsible for the clear
separation of planet clusters in the astart-MP plane. Very small or
very large initial orbital separations always lead to “failed cores"
(low-mass instances of clusters 2 and 4). Short-period terrestrial
planets and super-Earths (cluster 4) start on small orbits less
than 1 au. (sub-)Neptunes (cluster 1) require intermediate orbits
of roughly 0.5 au to 10 au. Finally, giant planets (cluster 3) start
on distant orbits (&3 au).

Other initial parameters show rather diverse importances
that depend on the planet type. The mean decision boundaries
(Eq. (2)) of Msolid,0 and Mgas,0 are close to zero for all clus-
ters except giant planets, implying a small feature importance
of these parameters for most planet types. While these two
parameters are correlated in our model, which could in princi-
ple spuriously decrease their MDI, their relation to MP (lower
panels of Fig. 8) reveals indeed only a weak relation to planet
type. The picture differs for giant planets, which only form in
disks that are rich both in gas (Mgas,0 & 0.04 M�) and solids
(Msolid,0 & 200 M⊕). Given a specific starting location of its core,
the efficiency of giant planet formation is strongly governed by
Msolid,0. The reason is this parameter’s direct relation to the local
planetesimal density in the disk and thus a protoplanet’s ability to
reach a core mass sufficient for runaway gas accretion. Lastly, the
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Fig. 12. Relation between disk features and planet species. Same as Fig. 8, but for a multi-planet population with N-body interactions. As in the
single-planet case, the starting location of the planet embryo astart shows the largest variance in decision boundary. Giant planets (yellow) form only
at high Msolid,0 and sufficient Mgas,0.

disk lifetime stipulates the time within which planet formation
has to conclude. Surprisingly, this parameter shows close to no
correlation with the resulting planet type. This shows that most
disks provide material long enough (median ≈ 3.4 Myr) to com-
plete planet formation. Within the scope of our model, early disk
dispersal is not the preferred pathway to halt planet formation at
low and intermediate masses.

We conclude that the occurrence of a certain type of planet
is fundamentally related to disk properties, and it depends in
particular on the orbital distance where the planetary embryo
forms. Currently, we treat this important parameter as a Monte
Carlo variable that is distributed based on simple theoretical
arguments (Kokubo & Ida 2000). This is a major shortcom-
ing of our formation model and our findings highlight the
importance of a consistent treatment of planetary embryo for-
mation (Voelkel et al. 2021a,b). Another effect we neglected thus
far are the gravitational interactions between planets. We address
this aspect below by discussing simulations done with the same
model but multiple forming planets per disk (see Sect. 5.4).
Future studies should also take into account the effects of peb-
ble accretion (Ormel & Klahr 2010; Lambrechts & Johansen
2012), which influence the efficiency of solid accretion and may
lead to a global redistribution of solid material in protoplanetary
disks (e.g., Lambrechts & Johansen 2014; Morbidelli et al. 2015;
Ormel et al. 2017; Bitsch et al. 2019).

5.2. Disk mass and embryo distance as predictors for planet
type

Now that we have identified the solid disk mass and the initial
orbital separation of a planetary embryo as the most impor-
tant features, we investigate the regions that different planet
types occupy in the space that these parameters span. Figure 7
shows distinct borders between the different clusters that can be

explained by the combination of processes our planet formation
model covers. The diagonal border between cluster 1 planets,
which correspond to icy and atmosphere-bearing “Neptunes” on
close and intermediate orbits, and cluster 4 planets, which are
dry (super-)Earths, is shaped by photoevaporation of planetary
envelopes: We recall that the clustering algorithm made the sep-
aration between these clusters mainly in RP, which leads to a
completely atmosphere-less (super-)Earth cluster and a cluster
of Neptunes that predominantly bear H/He envelopes. However,
close to all (super-)Earths initially held an envelope that they
subsequently lost due to photoevaporation, a fate that the more
massive Neptunes were spared. Thus, the more solid material is
available at a specific orbital distance, the more likely planets
will grow massive enough to retain their atmospheres in the long
term. The efficiency of photoevaporation is further a function
of orbital distance, leading to the negative slope of the border
between clusters 1 and 4 in astart − Msolid,0 (Jin & Mordasini
2018). Cluster 2 (“icy cores”) contains only terrestrial planets
and failed cores with high amounts of volatile species and no
atmospheres. They formed on distant orbits where the growth
timescale is large, preventing them from growing beyond terres-
trial size within the lifetime of the protoplanetary disk (Kokubo
& Ida 2000).

5.3. Oligarchic growth of giant planets

The giant planets (cluster 3) in our planet population occupy
a distinct region at large starting positions and high solid disk
masses (see Fig. 7). It abruptly cuts off around 4 au, which corre-
sponds to typical water ice line positions at accretion time (Burn
et al. 2019). Here, the solid surface density jumps by a factor of
four (Mordasini et al. 2012a), and significantly higher total solid
disk masses are required to reach runaway gas accretion interior
of this orbit. We therefore only considered planets beyond 4 au
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Table 3. Best-fit parameters for the broken power-law in Eq. (3).

x0 y0 k1 k2

1.04+0.01
−0.01 2.22+0.01

−0.01 −0.42+0.04
−0.05 1.20+0.03

−0.04

Notes. Uncertainties are 16th and 84th percentiles obtained via boot-
strap sampling.
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Fig. 13. Clusters of planets in astart − Msolid,0 space of their nascent pro-
toplanetary disk. The green line is the hyperplane that best separates
the giant planet cluster (yellow markers) from the other planets and was
obtained by training a Support Vector Machine (SVM). Closeby gray
lines show random draws from bootstrap sampling and illustrate the
uncertainties. We overplot isolines of planetesimal masses needed to
reach specific core masses (blue dashed lines), as well as isolines cor-
responding to specific growth timescales for reaching a core mass of
10 M⊕ (green dashed lines). Their slopes are similar to the SVM fit that
encloses the giant planets, indicating that the onset of runaway growth
is limited by the locally available planetesimal mass and by the disk
lifetime.

when we characterized the shape of the giant planet cluster. We
did so by determining the hyperplanes in astart − Msolid,0 space
that best separate these planets from other species. A Support
Vector Machine (SVM, Cortes & Vapnik 1995) maximizes the
distance of this plane to planets that belong to the “giant planets”
cluster and all those that do not. We used the implementation in
scikit-learn (Pedregosa et al. 2011) with a linear kernel and
otherwise default hyperparameters, and trained the SVM on the
full population. As in logarithmic representation the giant planet
cluster has a triangular shape, we can approximate its border by a
broken power law. Setting y= log10(Msolid) and x = log10(astart),
we fit the piecewise linear function

y=

{
k1x + y0 − k1x0 x ≤ x0

k2x + y0 − k2x0 x > x0
(3)

to separation functions found by the SVM. The best-fit val-
ues for these parameters are listed in Table 3. We calculated
their uncertainties by the bootstrapping method: We repeat-
edly drew N random planets with replacement, where N is the
total number of planets in our synthetic planet population, and
trained the SVM on each of 1000 samples generated this way.
In Fig. 13, we overlay the so found giant planet boundary onto
the planets in astart −Msolid,0 space. Generally, giant planets form
when log10

(
Msolid
1 M⊕

)
& 2.7 − 0.4 log10

(
astart
1 au

)
for cores emerging

within ∼10 au and when log10

(
Msolid
1 M⊕

)
& 1.0 + 1.2 log10

(
astart
1 au

)
for

cores emerging beyond. We point out that this result is only
valid in the context of the assumptions of our model. Plausi-
ble limitations that might have influenced this outcome are the
assumptions of a single population of planetesimals of the same
size and efficient embryo formation throughout the disk, the non-
consideration of pebble accretion (Ormel & Klahr 2010), and the
largely featureless numerical disk that does not allow for “planet
traps” (Chambers 2009). Another probable source of error is
the omission of gravitational interactions between planets in the
same system – the giant planet domain shifts moderately and
is more diffuse when multiple concurrently forming planets are
assumed (see Sect. 5.4). Nevertheless, we focus here on typ-
ical outcomes of isolated protoplanets since it allows a more
quantitative assessment.

We also compared this boundary to characteristic parame-
ters for planetesimal accretion in the oligarchic growth regime:
the planetesimal isolation mass Miso and the growth timescale
τgrow (e.g., Kokubo & Ida 2000; Raymond et al. 2014). On inter-
mediate orbits of a few au, planetary growth is limited by the
amount of material that can be accreted. Miso is a useful concept
to quantify the maximum attainable core mass given this limit.
On the other hand, τgrow gives an estimate for the time needed to
reach a certain core mass, and sets the limit for wider orbits. For
comparison with the giant planet cluster, we computed the local
planetesimal densities corresponding to specific values of Miso
and τgrow and translated them into total planetesimal disk masses
Msolid,0. See Appendix B for derivations of these quantities.

Since our model includes planet migration, planets can
accrete solid material beyond their planetesimal isolation mass
by moving through the disk. Nevertheless, Miso is a proxy for
how much can be accreted at a specific orbital distance and it is
instructive to compare the shape of the giant planet population
in astart − Msolid,0 space with the borders between planet clusters.
In Fig. 13, we overplot isolines of disk solid masses necessary
to reach different planetesimal isolation masses as a function of
orbital separation (dashed blue lines). The lower border of the
giant planet cluster matches well the slope of these lines. This
indicates that in intermediate-mass disks with a few hundreds of
M⊕ in solids, giant planet formation is limited by the protoplan-
ets reaching Miso, that is, by clearing their feeding zone from
solid material. We caution that the proximity of this border to
the Miso = 5 M⊕ isoline does not imply that runaway gas accre-
tion has set in at this mass, as planet migration results in a larger
effective feeding zone (Alibert et al. 2005).

Beyond ∼10 au, the border of the cluster matches the slope
of isolines for different growth timescales. At these larger orbital
distances, τgrow can reach the order of Myr for low planetesimal
surface densities and thus becomes comparable to the lifetime of
the protoplanetary disk. In this regime, the growth of a planetary
core is limited by the time available to accrete the planetesimals
in the domain of a planet’s orbit. As can be seen in the plot,
the Msolid,0(a) isoline where the growth timescale corresponds
to the median of the disk lifetime, τgrow ≈ 3.4 Myr, is a good
fit to the border between giant planets (yellow) and icy cores
(red). Indeed, most of the giant planets close to this threshold
formed in long-lived disks (see Fig. B.1). This indicates that for
planetesimal densities just sufficient for the formation of massive
cores, entering runaway gas accretion depends on the longevity
of the host disk.

5.4. The influence of N-body interactions

Our cluster analysis and prediction from initial conditions has
shown that even in the case of multi-planet systems with
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gravitational interactions, most of the links between disk and
planet properties remain intact (see Sect. 4.4). Still, the demo-
graphic structures in the multi-planet population are somewhat
smeared out compared to the single-planet case, and the strength
of this effect is different for individual clusters. We have seen that
(super-)Earths and Neptunes are affected the most by this sort
of mixing. These planet types cannot be reliably predicted from
disk properties if N-body interactions are taken into account.
Interestingly, the confusion is asymmetric: Planets predicted as
Neptunes often become (super-)Earths, while those predicted as
(super-)Earths rarely become Neptunes. The reason is something
the classifier cannot predict: The misclassified (super-)Earths are
typically planets that got stripped of their atmospheres in giant
collisions with other planets. From this follows that our model
would produce too many Neptunes if such collisions are not
taken into account (as is the case in single-planet simulations).
This highlights the need for global planet formation models to
include a consistent treatment of N-body interactions and giant
impacts, as has already been suggested by Alibert et al. (2013)
and in Paper I.

Another difference compared to the single-planet case is
that close-in planets with small radii and masses are strongly
depleted. This is because they often undergo giant collisions
and merge into more massive bodies. The resulting lack of
“sub-Earths” provides an interesting prediction for future planet
searches that will push beyond the current mass and radius lim-
its. Whether a multitude or a desert of such planets will be
found could give valuable clues to the prevalence of planetary
collisions.

6. Conclusions

We have investigated how different properties of protoplane-
tary disks relate to the emergence of different planet types in
a planetesimal-based core accretion context. By performing a
cluster analysis on synthetic planet populations from a global
model of planet formation and evolution, we identified clusters
of planets in a parameter space of typical exoplanet observables.
We examined how well these clusters can be predicted from disk
properties and studied the dependencies of different planet types.
Our main conclusions are:
1. Planets form distinct groups in {a,MP,RP} space, espe-

cially when dynamical interactions within multi-planet sys-
tems are neglected. Without presupposing planet types or
their number, we identified four clusters corresponding to
(sub-)Neptunes, icy cores, giant planets, and (super-)Earths.

2. These groups differentiate within the first 0.1 Myr of the
formation process and show correlations with properties of
their host disks. Such associations between disk and planet
properties enable the prediction of planet species to high
accuracy (98% in the single-planet case and 89% in the
multi-planet case).

3. The most important predictor for planet clusters is the orbital
position of the emerging planetary core, followed by the
solid mass available in the disk. The disk lifetime plays a
subordinate role, but can be a limiting factor for threshold
values of the above mentioned parameters.

4. The position of giant planets in disk parameter space can be
associated with known characteristics of oligarchic planetes-
imal accretion: For limited available amounts of solid mate-
rial and within ∼10 au, core growth is limited by planetes-
imal isolation and giant planets form when log10

(
Msolid
1 M⊕

)
&

2.7−0.4 log10

(
astart
1 au

)
. On more distant orbits, core accretion

is limited by the growth timescale and giants emerge when
log10

(
Msolid
1 M⊕

)
& 1.0 + 1.2 log10

(
astart
1 au

)
.

5. When multiple planets form and interact in the same sys-
tem, for most planet types the associations between disk
properties and planet properties remain. However, planets on
track to become sub-Neptunes often lose their atmospheres
in giant collisions and turn into super-Earths, which impedes
predictions for this planet type.

Overall, we have shown that synthetic planet populations from
state-of-the-art core accretion models largely mirror the planet
types recognized by exoplanet demographics. Our results high-
light the importance of N-body integrations in global planet
formation models that aim for reliable predictions in the domain
of low-mass planets. Beyond that, constraining the orbital dis-
tances at which planetary cores form is of major relevance for
the full range of planet types. Population syntheses of the next
generation should recognize this by including self-consistent
treatments of planetary embryo formation.
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Appendix A: The choice of a clustering algorithm

A.1. Clustering algorithms

For the cluster analysis in Sect. 3, we examined several
other clustering algorithms in addition to GMM2 and explored
their behavior on our data set. For each method, we used
its implementation in scikit-learn (Pedregosa et al. 2011)
and, where applicable, chose the default Euclidean distance
metric. The algorithms considered are centroid, density, or
hierarchical-based. A centroid-based method we explored was
K-means (MacQueen 1967; Lloyd 1982). In the density-based
group, we tested DBSCAN and OPTICS (Ester et al. 1996;
Ankerst et al. 1999). For hierarchical clustering, we exam-
ined Agglomerative clustering (Ward 1963) besides GMM
(McLachlan 1988).

K-Means3 (MacQueen 1967; Lloyd 1982) is a centroid-based
clustering algorithm: It randomly initializes k centroids and asso-
ciates each data point to the centroid that is closest to it, then
shifts the centroids to the mean of their cluster. These steps are
repeated until no changes occur. The algorithm requires only a
single hyperparameter k, which is the number of clusters.

Agglomerative clustering4 (Ward 1963) is a bottom-up hier-
archical clustering algorithm: Each data point begins as its own
cluster and incrementally merges similar pairs of clusters into a
new cluster. This process is repeated until there are k clusters left,
where k is the hyperparameter for the number of clusters. When
testing this algorithm, we used a hyperparameter called linkage
to quantify similarity between pairs of clusters (e.g., Ward 1963;
Szekely & Rizzo 2005). Empirically, we found that the “Ward”
linkage is optimal.

DBSCAN5 (Ester et al. 1996) is a density-based clustering
algorithm classifying each data point as either a core point (with
at least minPts neighboring points within a distance ε), a reach-
able point (that is within distance ε of the core point), or an
outlier (that is not reachable by any core point). All core points
and their reachable points form a cluster, but outliers do not. The
method we tested is an advancement of DBSCAN with improved
performance on data sets of varying density. This method called
OPTICS6 (Ankerst et al. 1999) has one hyperparameter: minPts
– the minimum number of points nearby to make a core point.

A.2. Validation metrics and choice of method

Each of these methods has hyperparameters, that is, parameters
that are not derived during model training but that control the
learning process itself. We used a number of validation met-
rics to quantify the clustering performance for each method and
specific choice of hyperparameters. Some of these metrics are
method-specific and can only be used with a specific algorithm.
These are the elbow method (e.g., Thorndike 1953; Ketchen
& Shook 1996), the Bayesian and Aikake Information Criteri-
ons (BIC and AIC, e.g., Akaike 1973; Schwarz 1978; Cavanaugh
& Neath 2019), and the dendrogram method (e.g., Nielsen 2016).
The elbow method is used to evaluate the performance of the K-
Means algorithm. By plotting the within-cluster sum-of-squares
against k, an “elbow”-shaped curve emerges. The ideal k will be

2 sklearn.mixture.GaussianMixture
3 sklearn.cluster.KMeans
4 sklearn.clustering.AgglomerativeClustering
5 sklearn.cluster.DBSCAN
6 sklearn.cluster.OPTICS

one close to the elbow. The reasoning for this is that we aim to
find the first k that minimizes the within-cluster sum-of-squares.
BIC and AIC are used for GMM. Both are based on informa-
tion theory and are used to prevent overfitting and underfitting
to choose the most optimized model. The dendrogram method is
used to judge the bottom-up process of Agglomerative cluster-
ing. It shows the clustering at each hierarchy, where the y-axis is
the distance between clusters and the x-axis shows the clusters.
Therefore, the goal is to perform a horizontal cut such that the
vertical distance is maximized. As one traverses up the hierarchy,
the vertical distance naturally increases.

In addition to these scores, we used the following scalar-
valued metrics that can be used for any method: the Silhou-
ette score (Rousseeuw 1987), the CaliÅski–arabasz score (CH,
Caliñski & Harabasz 1974), and the Davies–Bouldin score (DB,
Davies & Bouldin 1979). The Silhouette score is computed from
the mean intra-cluster distance and the mean nearest-cluster dis-
tance. Silhouette scores range between −1 and 1 with 1 being
the best and −1 being the worst, and values near 0 implying
overlapping clusters. We aimed to maximize this score. The
Caliński–Harabasz score is the ratio of the within-cluster dis-
persion and the between-cluster dispersion, where dispersion is
the sum of the squared distances. Again, we aimed to maximize
this score. The Davies-Bouldin score determines the clustering
performance by using the ratio of the within-cluster distances to
the between-cluster distances. As a result, compact clusters that
are far apart give better scores. The minimum score is 0, and we
aimed to minimize this score.

A.3. Model selection

Our approach in selecting the best clustering method was as fol-
lows: First, we applied each method to the {a,MP,RP} subspace
of the NG73 planet population for a wide range of hyperpa-
rameters. We then compared the validation metrics computed
for the resulting clusterings. The scores did not always agree
unanimously, which is expected, as the structures in our multidi-
mensional data set are rather complex and the scores consider
different goals regarding an optimal clustering. The next step
was thus to produce, for each combination of method and hyper-
parameters, scatter plots that showed the clustering results in
different projections of {a,MP,RP} space. Using these plots, we
could compare the different partitionings and determine the most
sensible model. Figure A.1 shows these diagnostic plots for k-
means, OPTICS, and Agglomerative clustering, using the choice
of hyperparameters considered most appropriate. The diagnostic
plots for GMM are shown in Fig. A.2. Based on this selec-
tion procedure, GMM showed the best performance and we
considered it our nominal method for clustering.

A free parameter of GMMs is the number of components
N, which we chose using the same two-step approach as in
the method selection. After the validation metrics suggested
N = 4,N = 6 for NG73 and N = 3,N = 5 for NG76 (see Fig. 1),
we assessed the diagnostic plots shown in Fig. A.2. For NG73,
we found that the GMM with N = 6 reaches similar scores than
N = 4 but traces less reliably the underdensities in the domain
and partly draws cluster borders through rather arbitrary regions.
We thus chose the GMM with N = 4 as our nominal model for
the single-planet case. For NG76, the model with more compo-
nents reliably detects visible overdensities and outperforms the
less complex model. Hence, we adopted the GMM with N = 5 as
the nominal model for the multi-planet case.
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a) k-means, N=5 b) OPTICS, N=3

c) Agglomerative clustering, N=5

Sc
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e 
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NG73: single-planet

Fig. A.1. Diagnostic plots for clustering method selection. For each alternative clustering algorithm we explored, we show the validation metrics
we used to choose hyperparameters. Based on these metrics, we show the resulting clustering for the most promising choices in the corner plots.
(a) Even in the best case (N = 5), k-means’ approach to draw cluster borders is too simplistic to account for the structure in our data. (b) For the
numerically best choice of minPts, OPTICS finds three clusters of extremely different sizes. Most of the data belong to a single cluster that covers
the whole domain, and no sensible relation to the data point density is apparent. (c) Agglomerative clustering suggests the existence of five clusters.
Again, no reasonable partitioning is visible. The lower right panel shows the dendrogram corresponding to this clustering.
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b) GMM, N=6a) GMM, N=4
NG73: single-planet

NG76: multi-planet
c) GMM, N=3 d) GMM, N=5

Fig. A.2. Diagnostic plots for GMM clustering model selection. According to our validation metrics, the best candidate number of clusters are
N = 4,N = 6 for NG73 and N = 3,N = 5 for NG76 (compare Fig. 1). Panels a–d: show the clustering results of these choices. The models in
a) (N = 4) and d) (N = 5) trace the over- and underdensities in the domain best and we consider them our nominal models.
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Appendix B: Boundary conditions for giant planet
formation

B.1. Derivation of isolation mass and growth timescale

In Sect. 5.3, we characterize the cluster of giant planets in astart −
Msolid,0 space, where it occupies a distinct triangular region. In
the following, we derive two quantities that shape this region:
the total solid disk mass as a function of orbital distance for
different planetesimal isolation masses and for different growth
timescales.

Miso gives the mass in planetesimals a protoplanet can
accrete given a feeding zone of width b ' 10rH , where
rH = a

(
MP

3M?

)1/3
. Then,

Miso = 2πabΣsolid ' 2πa10a
(

MP

3M?

)1/3

Σsolid, (B.1)

where Σsolid is the planetesimal surface density. Setting the
planetary mass to the planetesimal isolation mass, MP ≡ Miso,
yields

Miso =

(
20π
31/3

)3/2

a3Σ
3/2
solidM−1/2

? . (B.2)

To get an estimate on which initial solid mass content is required
to reach a certain isolation mass, we express this as

Σsolid =

(
31/3

20π

)
M1/3
? M2/3

iso

a2 . (B.3)

For the power law disk profile used in our model (Andrews et al.
2009),

Σ(r) = Σ0

(
r
r0

)−β
exp

− (
r

rcut,g

)(2−β) , (B.4)

we consider the outer disk radii rcut,g and rcut,s for the gas and
solid disk, respectively. The radial slope of Σsolid is characterized
by the power law index β, and Σ0 is the surface density at a ref-
erence orbital distance r0 = 5.2 au. Then, the total mass of the
planetesimal disk is

Msolid =
2πΣ0

r−β0

r2−β
cut,s

2 − β , (B.5)

where rcut,s = 0.5rcut,g (following findings from dust disk obser-
vations, Ansdell et al. 2018) and β= 1.5 (motivated by planetes-
imal formation models, Lenz et al. 2019). Substituting Eq. (B.3)
into Eq. (B.5), the total solid mass required to reach Miso is given
by

Msolid(MP = Miso) =
31/3

10

r2−β
cut,s

2 − β
M1/3
? M2/3

iso

a2−β exp

− (
a

rcut,s

)2−β−1

.

(B.6)

Similarly, we can derive the solid disk mass needed to reach
a specific mass in the outer disk regions, where growth is mainly
limited by the growth timescale τgrow. For the oligarchic growth

0.6 0.8 1.0 1.2 1.4 1.6
log10(astart) [au]
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Fig. B.1. Planetesimal disk mass and initial planet core position of
giant planets forming in disks of different lifetimes. Markers show
the distribution of all planets classified as “cluster 3: giant planet” in
astart − Msolid,0 space, color-coded by the lifetime of their nascent disk.
We overplot isolines of planetesimal masses corresponding to specific
growth timescales τgrow for reaching a core mass of 10 M⊕. Giant planet
growth is limited by the disk lifetime, and the formation of giant planets
far out requires high planetesimal masses and long lifetimes.

regime (Ida & Makino 1993), this timescale can be approximated
by

τgrow ≈1.2× 105yr
(

Σp

10 g cm−2

)−1 ( a
1au

)1/2
(

Mc

M⊕

)1/3 (
M?

M�

)−1/6

×
( Σg

2400 g cm−2

)−1/5 ( a
1au

)1/20
(

Mpla

1018 g

)1/152

(B.7)

(Mordasini 2018). Solving for Σp and substituting into Eq. (B.5)
gives

Msolid(a, τgrow) = 7.54 g cm−2 rβ0r2−β
cut,s

2 − β
(

Mc

M⊕

)1/3 (
M?

M�

)−1/6

×
( Σg(a)

2400 g cm−2

)−1/5 (
Mpla

1018 g

)1/152 (
τgrow

1 Myr

)−1 ( a
1au

)3/5
,

(B.8)

where Σg was computed using the population-wide median
of the reference surface density Σ0,gas. For the cutoff radii of
the gas and solid disk, we proceeded in the same way and
assumed the population median, respectively. For the plan-
etesimal mass Mpla, we assumed a density of 1 g cm−2, which
results in Mpla = 1.13 × 1011 kg for the planetesimals in our
model (Emsenhuber et al. 2021a). We adopted a core mass Mc
of 10 M⊕.

B.2. Disk lifetime limits giant planet growth

Figure B.1 shows the cluster of giant planets in the space spanned
by two important initial disk properties, astart and Msolid,0. The
colors correspond to different lifetimes of the protoplanetary
disk in which they formed. Most giants grow (and survive)
in disks with lifetimes 3 Myr to 6 Myr. Only long-living disks
enable formation of giant planets at low solid disk masses and
large orbital distances. In short-lived disks, there is only a nar-
row region of embryo starting positions where giant planets grow
at low planetesimal surface densities.
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