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ABSTRACT

Context. State-of-the-art planet formation models are now capable of accounting for the full spectrum of known planet types. This
comes at the cost of increasing complexity of the models, which calls into question whether established links between their initial
conditions and the calculated planetary observables are preserved.
Aims. In this paper, we take a data-driven approach to investigate the relations between clusters of synthetic planets with similar
properties and their formation history.
Methods. We trained a Gaussian Mixture Model on typical exoplanet observables computed by a global model of planet formation
to identify clusters of similar planets. We then traced back the formation histories of the planets associated with them and pinpointed
their differences. Using cluster affiliation as labels, we trained a Random Forest classifier to predict planet species from properties of
the originating protoplanetary disk.
Results. Without presupposing any planet types, we identified four distinct classes in our synthetic population. They roughly corre-
spond to the observed populations of (sub-)Neptunes, giant planets, and (super-)Earths, plus an additional unobserved class we denote
as “icy cores”. These groups emerge already within the first 0.1 Myr of the formation phase and are predicted from disk properties
with an overall accuracy of > 90 %. The most reliable predictors are the initial orbital distance of planetary nuclei and the total
planetesimal mass available. Giant planets form only in a particular region of this parameter space that is in agreement with purely
analytical predictions. Including N-body interactions between the planets decreases the predictability, especially for sub-Neptunes
that frequently undergo giant collisions and turn into super-Earths.
Conclusions. The processes covered by current core accretion models of planet formation are largely predictable and reproduce the
known demographic features in the exoplanet population. The impact of gravitational interactions highlights the need for N-body
integrators for realistic predictions of systems of low-mass planets.

Key words. Planets and satellites: formation – protoplanetary disks – Planets and satellites: dynamical evolution and stability –
Planet-disk interactions – Methods: numerical – Methods: statistical

1. Introduction

One of the most remarkable findings in recent years of exo-
planetology has been the enormous diversity of planetary sys-
tems (e.g., Ribas & Miralda-Escudé 2007; Howard et al. 2012;
Fressin et al. 2013; Petigura et al. 2013; Mulders et al. 2015;
Hobson & Gomez 2017; Brewer et al. 2018; Owen & Murray-
Clay 2018; Hsu et al. 2019; Bryan et al. 2019; He et al. 2020).
The rapidly increasing number of confirmed planets improves
our ability to explore this diversity and to understand its ori-
gins. To this end, a variety of physical mechanisms that in-
fluence the formation and evolution of planetary systems, and
therefore shape their demographics, have been investigated. In-
tensively studied mechanisms include the evolution of accre-
tion disks (e.g., Lüst 1952; Lynden-Bell & Pringle 1974; Pringle
1981), their interaction with embedded planets that may result
in orbital migration (e.g., Goldreich & Tremaine 1979; Tanaka

et al. 2002; D’Angelo et al. 2003; Paardekooper et al. 2011; Dit-
tkrist et al. 2014), how these protoplanets form and grow by
accreting solid components and gas (e.g., Bodenheimer & Pol-
lack 1986; Ida & Makino 1993; Pollack et al. 1996; Thommes
et al. 2003; Fortier et al. 2013), their gravitational interaction
among each other (e.g., Chambers et al. 1996; Raymond et al.
2009), photoevaporation of both protoplanetary disks (Hollen-
bach et al. 1994; Clarke et al. 2001; Alexander et al. 2014) and
planetary atmospheres (Lammer et al. 2003; Owen & Jackson
2012; Jin et al. 2014), and the long-term evolution of planets
and their atmospheres (e.g., Bodenheimer & Pollack 1986; Guil-
lot 2005; Fortney & Nettelmann 2010; Mordasini et al. 2012c).
While all these processes leave an imprint on the final planetary
systems, observing them while they are in action has proven to
be very challenging and was possible only in rare cases (e.g.,
Keppler et al. 2018). Global models of planet formation can mit-
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igate this shortcoming by combining as many relevant physical
processes as possible and simulating the growth and evolution
of planets in an end-to-end fashion. Thereby, they provide a
link between properties of disks and observables of the result-
ing planets. When employed within a Monte Carlo experiment
with distributions of initial conditions, synthetic planet popula-
tions can be produced and statistically evaluated (e.g., Ida & Lin
2004a; Mordasini et al. 2009a; Ndugu et al. 2017). Such pop-
ulation synthesis frameworks are increasingly able to produce
different kinds of planets, from terrestrial-sized rocky planets to
gas giants, using the same formation model.

The core accretion scenario (Perri & Cameron 1974; Mizuno
et al. 1978; Mizuno 1980), in which a solid planetary core forms
that may subsequently accrete a gaseous envelope, has been rec-
ognized as the most common planetary formation avenue. Con-
cerning the problem of how this solid core grows, two different
approaches have emerged: commonly, the growth of the solid
component has been modeled as the accretion of ∼km-sized
planetesimals (e.g., Ida & Makino 1993; Thommes et al. 2003).
Under this assumption, the thresholds in the disk properties re-
sponsible for the emergence of different planet types are deter-
mined by the availability of planetesimals at the position of a
growing planet and by the timescale for accreting them (Lissauer
1987, 1993; Kokubo & Ida 2000). In recent years, a growing
body of literature includes the accretion of mm to cm-sized “peb-
bles”, whose motions are decoupled from the gas disk (Ormel
& Klahr 2010; Lambrechts & Johansen 2012; Bitsch & Jo-
hansen 2017). Here, the resulting radial motion of the particles
causes an interrelation between the inner and outer regions of
the disk (Morbidelli & Nesvorny 2012; Lambrechts & Johansen
2014; Ormel et al. 2017).

Both approaches have allowed the unambiguous predeter-
mination of planetary parameters from initial conditions (e.g.,
Kokubo & Ida 2002; Ida & Lin 2004b; Lin et al. 2018). However,
with ever more sophisticated models of increasing complexity,
it is uncertain whether these relationships persist. In particular,
the inclusion of N-body treatment of protoplanets could destroy
these connections due to the chaotic component it introduces. A
number of studies have addressed this problem in different ways,
either by categorizing the outcomes of simulations with different
initial conditions (Mordasini et al. 2009a, 2012a; Bitsch et al.
2015, 2018; Miguel et al. 2019), or by relating synthetic pop-
ulations to the observed sample of exoplanets (Mordasini et al.
2009b; Chambers 2018; Fernandes et al. 2019; Mulders et al.
2020) or transitional disks (Chaparro Molano et al. 2019). A
main limitation of these advances has been their restriction to
a particular region of the planetary parameter space.

Recent advancements of our formation model (Emsenhuber
et al. 2020a) now allow for an extension of these investigations
to the full range of currently known planet types. Therefore, in
this study, we statistically assess the relations between a number
of relevant disk properties and the emerging planet types in the
context of the core accretion paradigm. To this end, we investi-
gate synthetic planet populations computed with the Generation
III Bern Model of planet formation and evolution (Emsenhuber
et al. 2020a, hereafter Paper I). Previous papers in this series
have presented populations from this model with different num-
bers of planets per system (Emsenhuber et al. 2020b, Paper II)
and varying host star masses (Burn et al., subm., Paper IV).Here,
we focus on two populations of systems around solar-type stars:
NG73 for isolated single planets, and NG76 with 100 planetary
embryos growing concurrently (Paper II). We thereby take care
to follow a purely data-driven approach and do not presuppose
planet types motivated by observations or theoretical arguments.

This paper is divided into six sections. In Sect. 2, we describe
the formation model and introduce the synthetic planet popu-
lations. We then present a cluster analysis performed on these
populations in Sect. 3. Section 4 investigates to what degree the
identified clusters of similar planets can be predicted from prop-
erties of protoplanetary disks. In Sect. 5, we interpret our results
and discuss their implications for planet formation. We conclude
by summarizing our findings in Sect. 6.

2. Planet population synthesis

This work analyzes synthetic planet populations for solar-mass
host stars from the Generation III Bern global model of planet
formation and evolution (Paper I). The formation part of the
model combines the evolution of a protoplanetary disk with both
gas and solids components, the growth and determination of the
internal structure of protoplanets, their dynamical interactions
and gas-driven planetary migration.

The gas disk is modeled as a viscously accreting disk (Lüst
1952; Lynden-Bell & Pringle 1974; Pringle 1981) with an α-
parametrization (Shakura & Sunyaev 1973) for the turbulent vis-
cosity. The vertical structure is computed following Nakamoto &
Nakagawa (1994) and Hueso & Guillot (2005) under an evolv-
ing luminosity of the star (Baraffe et al. 2015). The solid disk
component is modeled in a fluid-like description where the dy-
namical state of planetesimals is given by the stirring due to other
planetesimals and protoplanets (Thommes et al. 2003; Chambers
2006; Fortier et al. 2013).

The formation of protoplanets follows the core accretion
paradigm (Perri & Cameron 1974; Mizuno et al. 1978; Mizuno
1980) with planetesimal accretion in the oligarchic regime (Ida
& Makino 1993). We calculate the structure of the planetary en-
velopes by directly solving one-dimensional internal structure
equations (Bodenheimer & Pollack 1986). Initially, gas accre-
tion is limited by the ability of the planet to radiate away the
gravitational energy release by accretion of solids and gas (Pol-
lack et al. 1996; Lee & Chiang 2015). At this stage, the internal
structure is used to compute the gas accretion rate. Once a planet
exhausts the supply from the gas disk (either because cooling be-
comes efficient or because the disk disperses), the envelope is no
longer in equilibrium with the disk and contracts (Bodenheimer
et al. 2000). In this detached phase, the internal structure equa-
tions are used to determine the planet’s radius. The formation
stage also includes gas-driven planetary migration in the Type I
(Paardekooper et al. 2011) and Type II (Dittkrist et al. 2014)
regimes.

The planetary seeds start with a mass of 0.01 M⊕ and are in-
serted with random initial orbital distances astart drawn from a
log-uniform distribution between the inner disk edge and 40 au.
When multiple embryos are present in the same disk, their grav-
itational interactions are modeled during the first 20 Myr us-
ing the Mercury N-body integrator (Chambers 1999). After this
time, the model switches to the evolutionary stage. Here, the
thermodynamical evolution is calculated for each planet individ-
ually up to a simulation time of 10 Gyr. This stage includes at-
mospheric loss via photoevaporation (Jin et al. 2014) and tidal
migration. As a result, the model is able to compute the planets’
masses, radii, and luminosities as a function of time.

For a thorough description of the Generation III Bern Model
and an outline of recent advancements of the framework (Alibert
et al. 2005; Mordasini et al. 2009a, 2012b,c; Alibert et al. 2013),
we refer to Paper I.

Synthetic planet populations are produced by running the
model in a Monte Carlo scheme, where initial conditions are
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drawn randomly from distributions motivated by observational
(Santos et al. 2003; Lodders 2003; Andrews et al. 2010; Venuti
et al. 2017; Ansdell et al. 2018; Tychoniec et al. 2018) or the-
oretical constraints (Dra̧zkowska et al. 2016; Lenz et al. 2019).
The distributed variables include the initial gas disk mass Mgas,
the inner edge of the disk rin, its dust-to-gas ratio ζd,g, the mass
loss rate due to photoevaporative winds Ṁwind, and the starting
locations of the planetary seeds astart. The values or distributions
of all model parameters are listed in Tab. 1 and are motivated in
detail in Paper I and Paper II.

Our goal is to uncover characteristic links between these
properties and the emerging planet types, which requires to ro-
bustly define the latter first. This step may be impaired by the
stochasticity of an N-body treatment that smears the boundaries
between clusters of similar planets. We thus examine both a pop-
ulation with a single planet per system and a population with
multiple planets per system. For the single-planet population,
called NG73, 30,000 systems were simulated. In 29,455 systems
the planet was not accreted onto the star and is still present after
5 Gyr, which we consider as time of observation.

To consider the impact of gravitational interactions among
planets, we investigate the multi-planet population NG76 and
compare it to the single-planet case. In each of its systems, an
initial set of 100 protoplanets competed for material and inter-
acted gravitationally. All other boundary conditions were left
the same, and the Monte Carlo parameters were drawn from the
same distributions. The N-body module integrated for 20 Myr to
cover the entire formation phase with planets still embedded in
the disk, as well as an appropriate subsequent evolutionary era
without disk interactions (Paper I). Out of the 1000 simulated
systems, 32,030 planets survived until t = 5 Gyr. For detailed de-
scriptions of both planet populations, see Paper II and Schlecker
et al. (2020).

3. Cluster analysis

A cluster analysis aims at identifying groups of entities that share
similar properties in a specific set of parameters. In our case,
we aim to explore which distinct planet species emerge from
our planet formation model and how they compare to observed
(exo-)planet types. Accordingly, we chose as training features
three parameters typically obtained from exoplanet observations:
the orbital semi-major axis a, the planet mass MP, and the planet
radius RP. Our clustering was done in a purely data-driven fash-
ion and without any prior knowledge on existing or expected
planet types. The only information our clustering model received
was a snapshot of our synthetic planet population at a simulation
time of 5 Gyr.

3.1. Data preparation

In general, clustering methods are not scale-invariant (Jain &
Dubes 1988). The application of cluster algorithms to unevenly
scaled data sets can thus lead to compromised results. Based on
the distribution of the parameters of interest in our data set, we
rescaled the features a, MP, and RP by applying a log10.

3.2. Model selection and hyperparameters

We performed the clustering using Gaussian Mixture Mod-
els (GMM, McLachlan 1988), a class of hierarchical, probabilis-
tic clustering algorithms. A GMM consists of multiple compo-
nents i = 1 · · ·N of multivariate normal distributions, each char-

acterized by its weight φi, its mean µi, and its covariance matrix
Σi. The model then takes the form

N∑
i=1

φiN(µi,Σi). (1)

During training on a data set, the parameters φi, µi, and Σi
are updated using the expectation-maximization (EM) algo-
rithm (Hartley 1958). A free hyperparameter is the number of
Gaussian components N, that is, the number of Gaussian distri-
butions the data points are assumed to be generated from. The
trained GMM gives each data point a set of N probabilities, cor-
responding to the probability that the data point belongs to a
specific component i. When we classified our data, we assigned
each planet the component (i.e., the planet cluster) with the high-
est probability.

Since GMM, and clustering algorithms in general, are un-
supervised methods, the selection of a “best” model has to be
seen in the context of the goal we want to achieve. We aimed at
identifying groups of planets based on overdensities in the plan-
etary parameter space, regardless of their shape. With this goal
in mind, we have explored several other algorithms in addition
to GMM and found that they consistently performed worse on
our data set (see Appendix A). Using the scikit-learn (Pe-
dregosa et al. 2011) implementation of GMM with default ar-
guments, the only free hyperparameter was the number of clus-
ters in the data N. In finding the optimal choice of N, we were
aided by several validation metrics. We considered the Akaike
Information Criterion (AIC, Akaike 1973; Cavanaugh & Neath
2019), the Bayesian Information Criterion (BIC, Schwarz 1978),
the Davies-Bouldin score (DB, Davies & Bouldin 1979), the
Caliński-Harabasz score (CH, Caliński & Harabasz 1974), and
the Silhouette score (Rousseeuw 1987). These metrics assess
clustering performance with different approaches, and due to the
complex structures in our data they can contradict each other.
We provide a detailed description of the different metrics in
Appendix A.2. For now, it is important to note that AIC, BIC,
and DB should be minimized, and CH and the Silhouette score
should be maximized. In Fig. 1, we show the different scores
for GMMs with N ∈ [3...10] upon applying them to our single-
planet (NG73) and multi-planet (NG76) population, respectively.
For NG73, two potential choices stick out, N = 4 and N = 6.
To decide between these options, we produced diagnostic scatter
plots where all possible 2D projections of the planetary param-
eter space are shown with planets color-coded by cluster affilia-
tion. The plots for the candidate models are shown in Fig. A.2.
While human bias might be an issue at this step, we took care
to judge the clustering only based on over- and underdensities
of planets and not based on where we expected different planet
types. We found that the GMM with N = 4 performed best. For
NG76, both N = 3 and N = 5 yielded promising scores. By judg-
ing the corresponding diagnostic plots, we concluded that N = 5
clusters is the preferred mode. With all hyperparameters fixed,
we performed the unsupervised training of our nominal GMMs
on the full data sets and considering full covariance matrices.

3.3. Detected planet clusters

In the single-planet case, the clustering algorithm identified four
separate planet species in our population. Figure 2 shows these
clusters in the various projections in {a,MP,RP} space. In gen-
eral, we notice clear separations between the clusters in all pro-
jections, albeit with visible contaminations. Ordered by ascend-
ing planetary mass, the clusters are as follows: clusters 2 and 4
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Table 1. Choice of model parameters

Parameter Symbol Distribution Range or Median+84%
−16%

Fixed Parameters
Stellar Mass – 1 M�

Disk Viscosity α – 2 × 10−3

Power Law Index (Gas) βg – 0.9
Power Law Index (Solids) βs – 1.5

Radius of Planetesimals – 300 m
Number of Planet Seeds – 1 (NG73)/100 (NG76)

Mass of Planet Seeds – 0.01 M⊕
Monte Carlo Parameters

Initial Gas Surface Density at 5.2 au Σ0 log-normal 132+37
−27 g cm−2

Dust-to-gas Ratio ζd,g log-normal 0.02+0.01
−0.01

Inner Disk Radius Rin log-normal 4.74+4.94
−2.42 d

Gas Disk Cutoff Radius Rcut,g log-normal 56+36
−21 au

Solid Disk Cutoff Radius Rcut,s log-normal Rcut,g/2
Photoevaporation Efficiency Ṁwind log-normal (1.0+2.2

−0.7) × 10−6 M�/yr
Starting Position of Planet Seeds astart uniform in log a Rin to 40 au

Derived Parameters
Host Star Metallicity [Fe/H] normal −0.03 ± 0.20

Initial Gas Disk Mass Mgas log-normal 0.03+0.04
−0.02 M�

Initial Solid Disk Mass Msolid ∼ log-normal 95+147
−55 M⊕

Disk Dispersal Time tdisk – (3.2+1.9
−1.0) × 106 yr

Notes. Upper panel: parameters that are fixed for each simulation. Middle panel: distributions of Monte Carlo parameters that are drawn randomly.
Lower panel: Quantities that are derived from or controlled by other parameters. The upper and lower limits denote 84th and 16th percentiles,
respectively.

NG73: single-planet NG76: multi-planet

Score: 

Fig. 1. Validation scores for Gaussian Mixture Models with different numbers of components N. For AIC, BIC, and DB (top panels), lower values
are preferred; and for Silhouette score and CH (bottom panels), higher values are preferred. AIC and BIC generally show indistinguishable values.
Based on these scores, sensible choices are N = 4 and N = 6 for NG73, and N = 3 and N = 5 for NG76 (highlighted in gray). Note the different
y-axis scales.

are populations of bare planet cores without atmospheres, and
they are cleanly separated in semi-major axis. Both clusters are
separate from cluster 1, which are close-in planets enhanced in
gas and with masses of mostly tens of M⊕. A forth distinct group
of very massive planets (MP & 100 M⊕) is formed by cluster 3
with a clear separation from the other species.

Since the GMM is not aware of the underlying physics these
clusters result from, it is of interest to interpret the identified
clusters and relate them to known planet types. Cluster 2 corre-
sponds to an unobserved population of distant, low-mass plan-
ets. As they formed beyond the water ice line and are rich in

volatile species, we refer to this group as “icy cores”. Cluster 4
planets are atmosphere-less and rocky, and thus comparable to
the observed population of close-in terrestrial planets and super-
Earths (e.g., Hsu et al. 2019). By simultaneously taking into ac-
count all dimensions of the parameter space, the GMM spatially
separated icy cores and (super-)Earths in the region of the water
ice line (without any information about its existence). This lead
to the clean separation of rocky and icy planets in the MP − RP
diagram (diagonal lines in the plot). Cluster 1 roughly corre-
sponds to the observed population of (sub-)Neptunes. In planet
radius space, these planets are mostly located above the radius
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Fig. 2. Planet clusters in a 5 Gyr old synthetic planet population with a single planet per system. For all combinations of planet observables a, MP,
and RP, the different colors denote clusters identified by a four-component Gaussian Mixture Model (GMM). On the diagonal, we show Kernel
Density Estimates of the distributions. Without any information about the physics in our formation model, the GMM identified four planet species
roughly corresponding to (sub-)Neptunes (blue), icy cores (red), giant planets (yellow), and (super-)Earths (purple).
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Fig. 3. Same as Fig. 2, but for a multi-planet population. The Gaussian Mixture Model (GMM) prefers solutions including a fifth component of
distant, icy planets shown in green. In general, the clusters are less clearly separated than in the single-planet population.
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valley (e.g., Fulton et al. 2017; Mordasini 2020, see discussion
in Sect. 4.4). There is some contamination by cluster 1 planets
in the region of the largest and closest super-Earths, which we
attribute to the inability of a GMM to fit a deviation from the
otherwise extremely straight line of cluster 4 planets in MP − RP
space. Finally, cluster 3 can be identified as gas giant planets.
This becomes especially clear in the MP − RP plane, where they
occupy the region where in the physical model electron degener-
acy occurs. This effect flattens off the mass-radius relation at the
high-mass end (e.g., Chabrier et al. 2009).

Figure 3 illustrates the clustering in the multi-planet case,
during which we ignored the system affiliation of the planets
and treated them as independent entities. Based on the scoring
scheme described above, the clearest clustering can be achieved
with five components. The overall partitioning appears similar to
before, and the fifth component not present in the single-planet
population covers planets on distant orbits that have intermedi-
ate densities and masses of roughly 0.05 M⊕ to 3 M⊕. We refer to
these planets as “icy Earths”. These planets are distributed in a
sharp line in mass-radius space, which makes the GMM consider
them detached from the more dispersed “icy cores”. Notably, the
bulk of the “Neptunes” moved to more distant orbits compared to
the single-planet case. This is in line with the observed existence
of Neptune-sized planets at orbital distances of several au Suzuki
et al. (2016); Kawahara & Masuda (2019). For a comparison of
Bern model planets and gravitational microlensing events, we
refer to (Suzuki et al. 2018).

3.4. Model validation

Unlike supervised machine learning algorithms, unsupervised
techniques cannot be tested by applying the trained model to a
test set due to the lack of "labeled" data. For validation of the
clustering itself, we used the aforementioned performance met-
rics. To evaluate how robust the detected clustering is, we let the
model predict the cluster affiliation of a data set of similar struc-
ture and compared these predictions to the original clustering.
To produce these test data, we employed Gaussian Mixtures of
80 components and full covariance matrices as generative prob-
abilistic models. We trained them on the {a,MP,RP} subspace of
the original population synthesis data. The samples drawn from
these models show a very similar structure in the whole domain
(compare Fig. 4). Note that these “planets” are entirely the prod-
uct of the generative models and have never been in contact with
a physical formation model.

For comparison, we also fed our nominal clustering mod-
els with samples drawn from log-uniform distributions with
boundaries roughly corresponding to the suprema of the pop-
ulation synthesis data, i.e. a ∼ 10U(−1,2), MP ∼ 10U(−2,4), and
RP ∼ 10U(−2,0). With these pseudo-random data, the models pre-
dict clusters that do not resemble the original structures and they
appear in most projections almost random. These two tests show
that our trained models neither overfit the data set, nor do they
produce any clear clusters where none are expected. The gener-
ative models can also be used to draw a virtually unlimited num-
ber of synthetic planets when the computational costs of employ-
ing the full formation model are prohibitive (similar to Mulders
et al. 2018).

3.5. Planet clustering as a function of simulation time

The cluster analysis took place at a simulation time of t = 5 Gyr.
We now trace the identified clusters back in time to investigate

their past evolution. Figure 5 shows their position in semi-major
axis-mass space at simulation times 0.1 Myr, 0.3 Myr, 0.6 Myr,
1 Myr, 2 Myr, and 10 Myr. In particular in the single-planet pop-
ulation, the clusters occupy distinct domains already at early
times and follow characteristic paths in this parameter space.
These paths are set by concurrent accretion and planet migration
and their respective timescales.

In the following, we focus on the single-planet case where
the evolutionary paths can be traced most clearly. At the begin-
ning, all planets are still of such low mass that migration has lit-
tle effect. Planet growth is determined by the local planetesimal
density, feeding zone size, and orbit timescale, and it is most effi-
cient at intermediate orbital distances (Paper II). At a few 105 yr,
an outward migration zone located at a few au divides the plane-
tary tracks into two branches. On the outer branch, giant planets
evolve similarly as the outer wing of Neptunes. They branch off
when runaway gas accretion sets in, while Neptunes continue
migrating inward with moderate growth. At later times, another
outward migration zone leads to the underdensity in the cluster
of close-in (super-)Earths. Icy cores do not exhibit significant
growth and largely remain in their initial domain.

Most of the processes that define the different planet types in
this parameter space are finished after a few Myr or, at the latest,
when the gas disk disperses. Exceptions are atmospheric photo-
evaporation, which happens on 100 Myr to Gyr timescales (e.g.,
Lopez et al. 2012; King & Wheatley 2020) and still turns some
close-in (sub-)Neptunes into super-Earths, and tidal interaction
with the host star affecting some ultra-short period planets. In
the case of multiple planets per system, N-body interactions can
have an additional long-term impact. A striking result of planet-
planet interactions are the significantly lower migration rates
compared to the single-planet case, in particular in the Neptunes
cluster.

In general, it appears that planet populations form distinct
groups very early in the formation process. This begs the ques-
tion whether the cluster affiliation of a planet can already be pre-
dicted from the initial conditions of the simulation.

4. Prediction of planet clusters

Our planet formation model provides a deterministic link be-
tween properties of protoplanetary disks and properties of plan-
ets. This link could be blurred by N-body interactions between
the planets, hence in the following experiment we consider first
the single-planet population. Our approach was to employ a Ran-
dom Forest classifier (Ho 1998; Breiman 2001) to predict the
cluster of a planet from its corresponding set of disk properties.
Random Forests are ensembles of uncorrelated, binary classi-
fiers known as decision trees. Such ensembles achieve strongly
improved generalization accuracies compared to single-tree clas-
sifiers by constructing trees in pseudorandomly selected feature
subspaces (Tin Kam Ho 1995). The individual trees are further
decorrelated by drawing, with replacement, random subsets of
the input data during training (“bagging”, Breiman 1996).

With varying sizes of the individual clusters (for instance,
only ∼ 5 % of the planets in NG73 are giant planets), our data
set is strongly imbalanced. This is problematic for classifica-
tion algorithms such as Random Forests, which aim to mini-
mize the overall error rate and thereby tend to neglect minority
classes (Chen et al. 2004). To account for this imbalance, we
employed a balanced Random Forest classifier as implemented
in the imbalanced-learn1 python package. This variant of Ran-

1 https://imbalanced-learn.org
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NG73: single-planet NG76: multi-planet

Fig. 4. Model validation via generative models. For each of the two planet populations, we show the clustering result of our Gaussian Mixture
Model on Population Synthesis data (left), random noise (center), and data from a generative model (right). Note that the latter do not stem from
a physical formation model but were generated from a high-order GMM that was trained on the original data. The clusters detected in these new
data show largely the same structure as the original ones, whereas in the random noise no reliable clusters are found.

NG73: single-planet

NG76: multi-planet

time

Fig. 5. Early time evolution of the clusters identified by the Gaussian Mixture Model. Each subplot shows a sample of 5000 planets at their current
position in semi-major axis-mass space and color-coded by their future cluster affiliation, which is only determined at t = 5 Gyr. Concurrent
accretion and migration leads to characteristic evolutionary paths. Distinct groups of planets form already at early simulation times.

dom Forest randomly under-samples each bootstrap sample on
the individual tree level during training (Lemaître et al. 2017).

4.1. Data preparation, hyperparameters, and training

Our classifier learned rules based on four features: the initial gas
disk mass Mgas,0, the initial solid disk mass Msolid,0, the initial or-
bital distance of the planetary embryo astart, and the disk lifetime
tdisk. The solid disk mass is a derived quantity that we computed
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from the gas disk mass and host star metallicity. We rescaled
these features to account for their large differences in scale: tdisk
and astart were transformed by a log10 function, and Mgas,0 and
Msolid,0 were modified to roughly Gaussian distributions by the
Box-Cox transform (Box & Cox 1964). The clustering above
assigned each synthetic planet a probability to belong to each of
the clusters. For the subsequent analysis, we avoided planets that
cannot be mapped clearly to a cluster and kept only those with a
probability of affiliation > 0.99. This decreased our sample from
29455 to 23278 planets. Finally, we divided the data into a ran-
dom subset containing 80% of the initial data for training and a
test set with the remaining 20% to determine the performance of
the classifier. The resulting training set contains between 1059
(giant planets) and 8486 ((super-)Earths) planets per cluster. We
trained an ensemble of 500 fully grown estimators, that is, with-
out reducing the depth of the trees by pruning them, on this set.

4.2. Error and performance analysis

To measure the generalization performance of the trained model
already during its development, we predicted clusters from the
out-of-bag samples, which were never seen by the respective es-
timator during training. The average of the resulting out-of-bag
score produces an estimate for the accuracy of the entire ensem-
ble, and we obtained a score of 98% here. However, classifica-
tion accuracy is not a sufficient performance measure since we
are dealing with a strongly skewed data set. In the following, we
investigate the types of errors our model makes and measure its
performance.

We computed a confusion matrix using five-fold cross-
validation. For this purpose, the data set was randomly split
into five evenly sized folds; the model was trained five times
on 5 − 1 = 4 folds, and then evaluated on the fold it was not
trained on. The left panel of Fig. 6 shows the confusion ma-
trix produced from the labeled training set and the predictions
from cross-validation. Rows correspond to the actual clusters,
and columns are the predictions of our model. Each field xi, j in
the matrix shows the fraction of times a planet of cluster i was
classified as a planet of cluster j. Most planets fall into the diag-
onal, meaning a correct classification. All clusters are predicted
with more than 95% accuracy and the largest errors occur for
clusters 2 and 3. The right panel of the figure shows the same ma-
trix with the correct classifications removed and the color map
rescaled. It is obvious that the errors are largely symmetric. The
highest rate of misclassification occurred between clusters 2 and
3 (3% of icy cores were confused with giant planets and vice-
versa). The reason is that the former are frequently progenitors
of the latter, and prediction of those planets that just (do not)
reach the conditions for runaway gas accretion is difficult (com-
pare Fig. 2).

To estimate the generalization error the model makes when
applied to data not part of the training set, we measured its per-
formance on the test set of 4656 systems we held out before.
Based on five-fold cross-validation, it achieves an overall accu-
racy of 97 % and misclassifications occur between the same clus-
ters as seen in the training set. This shows that the model is not
significantly overfitted.

4.3. Results of planet predictions

4.3.1. Correlations with disk properties

For each of the clusters identified in Sect. 3.3, we show the dis-
tributions and pairwise relationships of their corresponding disk

Table 2. Feature importances of disk properties

Input Parameter Msolid,0 Mgas,0 astart tdisk
MDI 0.21 0.07 0.68 0.04

properties in Fig. 7. Underdensities in the scatter plots are due to
removed planets of ambiguous cluster affiliation. Unsurprisingly,
giant planets (yellow) grow in disks with large reservoirs of solid
material Msolid and high gas mass Mgas. It is evident that most of
these clusters, which are labeled at “observation time” t = 5 Gyr,
form groups already in this parameter space, that is, before the
simulations started. However, they differentiate distinctly only
in the projections involving the start position of planetary em-
bryos astart. The separation is especially clear in astart − Msolid,0
space, which shows the least overlap of different clusters. With
increasing initial orbital distance, the dominant planet species
are (super-)Earths, Neptunes, giant planets, and icy cores.

4.3.2. Feature importance

Our classification model reaches high accuracies for all planet
clusters, but it is interesting to see which disk features are most
important for a successful classification. This is possible by mea-
suring the feature importance of the data set given to the model
using the Mean Decrease Impurity MDI (Breiman et al. 1984).
MDI quantifies to what extent a feature reduces the impurity of
the trees in the Random Forest. Put simply, it is a measure of
how well the nodes can use the feature to split the data set into
“pure” child nodes, each containing only data of a single label. A
higher score means that the feature is more important for correct
classification. We list the MDI for each input parameter in Ta-
ble 2. With a score of 0.68, the starting position of the planetary
core astart is clearly the parameter most sensitive for predicting a
planet’s cluster. The gaseous mass of the disk and its lifetime are
the least important features.

However, the degree of dependency on certain disk features
varies from cluster to cluster. To get a cluster-specific insight,
we multiply for each cluster the mean of each feature with the
feature importance. This mean decision boundary

Dc, f = MDI f ·
〈
Xy=c

〉
(2)

denotes for each cluster c the sensitivity of the classifier on fea-
ture f . Here, Xy=c are the scaled training data with labels y corre-
sponding to cluster c. Fig. 8 illustrates all cluster-specific mean
decision boundaries. Dc, f quantifies the sensitivity on a param-
eter by its magnitude, as well as the orientation of the decision
boundary by its sign. For example, the large negative value of
cluster 4 in astart means that these planets prefer small initial or-
bital distances and their correct classification is very sensitive on
this feature.

In the lower panels of Fig. 8, we plot all input features against
the resulting planet mass at 5 Gyr, which is a proxy for cluster
affiliation. Most planet clusters are especially sensitive on the
initial orbital distance of the planetary embryo astart. Planets with
masses higher than ∼ 10 M⊕ are also very sensitive on the solid
mass Msolid,0 and slightly sensitive on Mgas,0. The disk lifetime
tdisk shows a weak correlation with planet mass and plays only a
subordinate role.

4.4. Differences between single and multi-planet systems

Mutual interactions between planets in the same system intro-
duce a fair amount of stochasticity, and some features that stood
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Fig. 6. Confusion of planet classifications. Left: confusion matrix from five-fold cross-validation. Rows are the actual clusters and columns are the
predicted clusters. All clusters are classified with more than 95% accuracy. Right: same, but correct classifications removed to emphasize errors.
Most misclassifications occur between clusters 2 and 3, which correspond to icy cores and giant planets.
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Fig. 7. Pairwise relationships between all disk parameters, sorted by cluster affiliation. For 5000 randomly sampled planets in the population, each
parameter is plotted against every other parameter while the color defines the planet’s cluster. The diagonal panels show the univariate distributions
of the respective parameters, again colored by cluster assignment. Planet species most clearly separate in astart − Msolid,0 space, and the formation
of giant planets (yellow) requires large solid reservoirs and a narrow range of initial orbital distance.

out in the single-planet population are smeared out in the multi-
planet case. One example is the bimodal distribution of planet
radii in the observed exoplanet sample (Fulton et al. 2017; Ful-
ton & Petigura 2018; Hsu et al. 2018; Van Eylen et al. 2018;
Mordasini 2020), which was theoretically predicted to be caused
by photoevaporation of planetary envelopes by high-energy ra-
diation from their host star (Jin et al. 2014; Owen & Wu 2013;

Lopez & Fortney 2013). Other mechanisms have been proposed
to produce this “radius valley” at roughly 2 R⊕ as well, includ-
ing atmospheric loss due to internal heat from cooling planetary
cores (Ginzburg et al. 2017, 2018; Gupta & Schlichting 2019),
impacts of planetesimals (Wyatt et al. 2019) or other protoplan-
ets (Liu et al. 2015), different internal compositions of planets
residing above or below the valley (Zeng et al. 2019; Venturini
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Fig. 8. Relation between disk features and planet species. Upper panel: Mean decision boundaries of the classifier, indicating the importance of
each feature and its preferred magnitude for the different clusters. The starting location of the planet embryo astart shows the largest variance in
decision boundary. Giant planets (yellow) are also very sensitive on Msolid,0 and somewhat sensitive on Mgas,0. Lower panels: relationship of the
input features with planet mass. The starting location of the planet embryo astart shows the strongest correlation with cluster affiliation and planet
mass.

et al. 2020), and atmospheric stripping by external radiation
sources in stellar cluster environments (Kruijssen et al. 2020).
In the Generation III Bern Model, photoevaporation by the host
star and collisional stripping are taken into account.

The upper panels of Fig. 9 show the radius distributions of
planets on close orbits (P < 80 d) in the single and multi-planet
populations, respectively. Overplotted are occurrence rates de-
rived from the Kepler mission in Hsu et al. (2019), which we
marginalized over the period range 0 d to 80 d. The propagated
uncertainties are indicated by vertical bars, and arrows mark up-
per limits. In our single-planet population, the evaporation val-
ley is much less pronounced in this marginalized radius distri-
bution than in radius-orbital distance space, where it shows a
steep negative slope (compare Fig. 2). This highlights the im-
portance of characterizing such demographic features in multi-
ple dimensions. Compared to the observed valley at ∼ 2 R⊕ (e.g.,
Fulton et al. 2017; Hsu et al. 2019), the synthetic one is shifted to
larger radii. As has been shown in Jin & Mordasini (2018), this
is due to atmosphere-less, icy cores that migrated inwards from
regions beyond the water ice line. This population is included in
the planet cluster representing Neptunes, since the clustering al-
gorithm mainly discriminated between (super-)Earths and Nep-
tunes as rocky and icy planets, respectively.

In the multi-planet population, this is not the case. Here, the
different clusters divide close-in planets into bare cores and plan-
ets with H/He envelopes, and the emerging radius valley sepa-
rates the (super-)Earths and Neptunes clusters. Again, the valley
is shifted to around 3 R⊕. Compared to the single-planet case, the
slope of the valley in radius-orbital distance is less pronounced,
which makes it appear deeper in the one-dimensional radius his-

togram. Future work within this series will address the synthetic
radius valley in a more thorough manner (Mishra et al., in prep.).

Other differences between the single and multi-planet pop-
ulations can be seen in their period distributions (lower pan-
els of Fig. 9). In the single-planet case, the combined contri-
butions from (super-)Earths and Neptunes lead to a multi-modal
period distribution. On the other hand, the multi-planet popu-
lation shows a continuous slope. In the range where Hsu et al.
(2019) provide reliable occurrence estimates, this slope matches
the observed one well. Causes for the difference between the
single- and multi-planet case are the displacement of planets in
semi-major axis due to gravitational encounters, a lack of close-
in “failed cores” due to the high likelihood of such encounters
on short orbits, and trapping of planets in resonant chains. In ad-
dition, mixed planetary compositions occur as a consequence of
merger events. This places the planets into a continuum of bulk
densities.

Regardless of this “stochastic processing” of the planets, we
attempted to predict their clusters from initial conditions us-
ing the same features as in the single-planet case and follow-
ing the procedure described in Sects. 4.1 to 4.2. Similar to be-
fore, keeping only planets that the GMM assigned to a specific
cluster with a probability > 0.99 reduces the set to 21,761 plan-
ets. The randomly drawn training set comprising 80 % of the
data contains between 252 (giant planets) and 10367 (icy cores)
planets per cluster. A balanced Random Forest we trained on
this set achieved an accuracy of 89 % based on five-fold cross-
validation. The other 4353 systems, which we left out as a test
set, are predicted with 86 % accuracy.
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Fig. 9. Radius and period distributions of Neptunes and (super-)Earths. The contributions by Neptunes and (super-)Earths are shown in blue and
purple, respectively. Upper panels: planet radius distribution for planets with periods P < 80 d. In the single-planet case (left), a population of
migrated, icy cores in the Neptunes cluster shifts the synthetic radius valley to larger radii. In the case of multiple planets per system (right), the
minimum in the distribution separates (super-)Earths and Neptunes. Compared to observed occurrence rates from Kepler (Hsu et al. 2019, gray),
this minimum is shifted towards larger radii.
Lower panels: period distributions of planets ≥ 1 R⊕. While the single-planet population (left) shows a multi-modal distribution, the multi-planet
population has a continuous slope similar to observed occurrence rates. Note the different normalizations of synthetic and observed planets.
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Fig. 10. Confusion of cluster classifications for a multi-planet population with N-body interactions. Same as Fig. 6, but computed for a population
with 100 planets per disk that interact gravitationally. Clusters 2 (icy cores) and 3 (giant planets) are predicted most reliably. Due to giant collisions
the classifier cannot predict, the super-Earths in cluster 4 are often mistaken for (sub-)Neptunes (cluster 1).

Similar to Fig. 6, Fig. 10 shows the confusion matrix of a
Random Forest predicting the planet clusters in the multi-planet
population. The ability to predict planet clusters from initial con-
ditions varies across different planet types, with icy cores and gi-
ant planets being the most robust species. It can be seen that clus-
ters 1 (Neptunes) and 4 ((super-)Earths), which occupy similar
mass ranges, are affected by confusion the most. This is mainly
due to the lack of (super-)Earths . 0.1 M⊕ in the multi-planet
case, where they typically fall victim to giant collisions with
other planets. Neptunes are frequently mistaken as icy Earths and

(super-)Earths are frequently confused to be Neptunes. These
three groups of intermediate-mass planets share a similar domain
in parameter space.

Figure 11 shows the positions of the planets in the multi-
planet population in disk property space. Again, the different
clusters differentiate the most in solid disk mass and initial or-
bital separation. Compared to the single-planet case, the separa-
tion of the clusters is less clean. The additional cluster identified
in NG76, “icy Earths”, share a lot of parameter space with other
planet types.
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Fig. 11. Pairwise relationships between all disk parameters, sorted by cluster affiliation. Same as Fig. 7, but for a multi-planet population with
N-body interactions. The separation of clusters is less pronounced than in the single-planet case.
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Using the mean decision boundary defined above (Eqn 2),
the dependence of different planet clusters on specific initial con-
ditions can be visualized also for the multi-planet population
(Fig. 12). The relationships largely copy those of the single-
planet case: the starting location of the planet embryo shows
the largest decision boundary amplitudes and differences among
the clusters, and giant planets retain their distinct dependence on
high solid and gas reservoirs.

5. Discussion

5.1. What determines the type of a planet?

By predicting a planet’s cluster from a set of initial conditions of
our planet formation model, we were able to establish links be-
tween properties of the protoplanetary disk and the correspond-
ing planets (see Sect. 4.3.2). These links can be elucidated by
using the planet mass MP as a proxy for the planet cluster and
relating it to disk features (see Fig. 8). The feature with by far
the highest predictive power is the starting location of the emerg-
ing protoplanetary embryo astart, which is expected in a core ac-
cretion scenario: an embryo at small orbital distance has only
a small feeding zone from which it can accrete and thus it will
remain small. At very large orbital distance, the dynamical and
growth timescales are very large and the disk will have disap-
peared before a protoplanet can gain significant mass (Lissauer
1987, 1993; Kokubo & Ida 2002; Mordasini et al. 2009a). Ex-
actly at what orbital separations efficient planet growth is pos-
sible further depends on the amount, size, mass, and aerody-
namic properties of planetesimals available there, and thus on the
solid disk mass Msolid,0 (see below for a more detailed discussion
on the interplay between orbital distance and local planetesimal
density). As can be seen in the lower left panel of Fig. 8, interme-
diate orbits provide the best conditions for rapid growth. These
trends are responsible for the clear separation of planet clusters
in the astart-MP plane. Very small or very large initial orbital sepa-
rations always lead to “failed cores" (low-mass instances of clus-
ters 2 and 4). Short-period terrestrial planets and super-Earths
(cluster 4) start on small orbits less than 1 au. (sub-)Neptunes
(cluster 1) require intermediate orbits of roughly 0.5 au to 10 au.
Finally, giant planets (cluster 3) start on distant orbits (& 3 au).

Other initial parameters show rather diverse importances that
depend on the planet type. The mean decision boundaries (Eqn
2) of Msolid,0 and Mgas,0 are close to zero for all clusters except
giant planets, implying a small feature importance of these pa-
rameters for most planet types. While these two parameters are
correlated in our model, which could in principle spuriously de-
crease their MDI, their relation to MP (lower panels of Fig. 8)
reveals indeed only a weak relation to planet type. The picture
differs for giant planets, which only form in disks that are rich
both in gas (Mgas,0 & 0.04 M�) and solids (Msolid,0 & 200 M⊕).
Given a specific starting location of its core, the efficiency of gi-
ant planet formation is strongly governed by Msolid,0. The reason
is this parameter’s direct relation to the local planetesimal den-
sity in the disk and thus a protoplanet’s ability to reach a core
mass sufficient for runaway gas accretion. Lastly, the disk life-
time stipulates the time within which planet formation has to
conclude. Surprisingly, this parameter shows close to no corre-
lation with the resulting planet type. This shows that most disks
provide material long enough (median ≈ 3.4 Myr) to complete
planet formation. Within the scope of our model, early disk dis-
persal is not the preferred pathway to halt planet formation at
low and intermediate masses.

We conclude that the occurrence of a certain type of planet
is fundamentally related to disk properties, and it depends in
particular on the orbital distance where the planetary embryo
forms. Currently, we treat this important parameter as a Monte
Carlo variable that is distributed based on simple theoretical
arguments (Kokubo & Ida 2000). This is a major shortcom-
ing of our formation model and our findings highlight the im-
portance of a consistent treatment of planetary embryo forma-
tion (Voelkel et al. 2021a,b). Another effect we neglected thus
far are the gravitational interactions between planets. We ad-
dress this aspect below by discussing simulations done with the
same model but multiple forming planets per disk (see Sect. 5.4).
Future studies should also take into account the effects of peb-
ble accretion (Ormel & Klahr 2010; Lambrechts & Johansen
2012), which influence the efficiency of solid accretion and may
lead to a global redistribution of solid material in protoplanetary
disks (e.g., Lambrechts & Johansen 2014; Morbidelli et al. 2015;
Ormel et al. 2017; Bitsch et al. 2019).

5.2. Disk mass and embryo distance as predictors for planet
type

Now that we have identified the solid disk mass and the initial
orbital separation of a planetary embryo as the most important
features, we investigate the regions different planet types occupy
in the space that these parameters span. Figure 7 shows distinct
borders between the different clusters that can be explained by
the combination of processes our planet formation model cov-
ers. The diagonal border between cluster 1 planets, which cor-
respond to icy and atmosphere-bearing “Neptunes” on close and
intermediate orbits, and cluster 4 planets, which are dry (super-
)Earths, is shaped by photoevaporation of planetary envelopes:
we recall that the clustering algorithm made the separation be-
tween these clusters mainly in RP, which leads to a completely
atmosphere-less (super-)Earth cluster and a cluster of Neptunes
that predominantly bear H/He envelopes. However, close to all
(super-)Earths initially held an envelope that they subsequently
lost due to photoevaporation, a fate that the more massive Nep-
tunes were spared. Thus, the more solid material is available at a
specific orbital distance, the more likely planets will grow mas-
sive enough to retain their atmospheres in the long term. The
efficiency of photoevaporation is further a function of orbital dis-
tance, leading to the negative slope of the border between clus-
ters 1 and 4 in astart − Msolid,0 (Jin & Mordasini 2018). Cluster 2
(“icy cores”) contains only terrestrial planets and failed cores
with high amounts of volatile species and no atmospheres. They
formed on distant orbits where the growth timescale is large,
preventing them from growing beyond terrestrial size within the
lifetime of the protoplanetary disk (Kokubo & Ida 2000).

5.3. Oligarchic growth of giant planets

The giant planets (cluster 3) in our planet population occupy
a distinct region at large starting positions and high solid disk
masses (see Fig. 7). It abruptly cuts off around 4 au, which corre-
sponds to typical water ice line positions at accretion time (Burn
et al. 2019). Here, the solid surface density jumps by a factor of
four (Mordasini et al. 2012a), and significantly higher total solid
disk masses are required to reach runaway gas accretion interior
of this orbit. We therefore only considered planets beyond 4 au
when we characterized the shape of the giant planet cluster. We
did so by determining the hyperplanes in astart − Msolid,0 space
that best separate these planets from other species. A Support
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x0 y0 k1 k2
1.04+0.01

−0.01 2.22+0.01
−0.01 −0.42+0.04

−0.05 1.20+0.03
−0.04

Table 3. Best-fit parameters for the broken power-law in Equation 3.
Uncertainties are 16th and 84th percentiles obtained via bootstrap sam-
pling.

Vector Machine (SVM, Cortes & Vapnik 1995) maximizes the
distance of this plane to planets that belong to the “giant planets”
cluster and all those that do not. We used the implementation in
scikit-learn (Pedregosa et al. 2011) with a linear kernel and
otherwise default hyperparameters, and trained the SVM on the
full population. As in logarithmic representation the giant planet
cluster has a triangular shape, we can approximate its border by a
broken power law. Setting y = log10(Msolid) and x = log10(astart),
we fitted the piecewise linear function

y =

{
k1x + y0 − k1x0 x ≤ x0

k2x + y0 − k2x0 x > x0
(3)

to separation functions found by the SVM. The best-fit values
for these parameters are listed in Tab. 3. We calculated their
uncertainties by the bootstrapping method: we repeatedly drew
N random planets with replacement, where N is the total num-
ber of planets in our synthetic planet population, and trained the
SVM on each of 1000 samples generated this way. In Fig. 13,
we overlay the so found giant planet boundary onto the plan-
ets in astart − Msolid,0 space. Generally, giant planets form when
log10

(
Msolid
1 M⊕

)
& 2.7 − 0.4 log10

(
astart
1 au

)
for cores emerging within

∼ 10 au and when log10

(
Msolid
1 M⊕

)
& 1.0 + 1.2 log10

(
astart
1 au

)
for cores

emerging beyond. We point out that this result is only valid in the
context of the assumptions of our model. Plausible limitations
that might have influenced this outcome are the assumptions of a
single population of planetesimals of the same size and efficient
embryo formation throughout the disk, the non-consideration of
pebble accretion (Ormel & Klahr 2010), and the largely feature-
less numerical disk that does not allow for “planet traps” (Cham-
bers 2009). Another probable source of error is the omission of
gravitational interactions between planets in the same system –
the giant planet domain shifts moderately and is more diffuse
when multiple concurrently forming planets are assumed (see
Sect. 5.4). Nevertheless, we focus here on typical outcomes of
isolated protoplanets since it allows a more quantitative assess-
ment.

We also compared this boundary to characteristic parame-
ters for planetesimal accretion in the oligarchic growth regime:
the planetesimal isolation mass Miso and the growth timescale
τgrow (e.g., Kokubo & Ida 2000; Raymond et al. 2014). On in-
termediate orbits of a few au, planetary growth is limited by the
amount of material that can be accreted. Miso is a useful concept
to quantify the maximum attainable core mass given this limit.
On the other hand, τgrow gives an estimate for the time needed to
reach a certain core mass, and sets the limit for wider orbits. For
comparison with the giant planet cluster, we computed the local
planetesimal densities corresponding to specific values of Miso
and τgrow and translated them into total planetesimal disk masses
Msolid,0. See Appendix B for derivations of these quantities.

Since our model includes planet migration, planets can ac-
crete solid material beyond their planetesimal isolation mass by
moving through the disk. Nevertheless, Miso is a proxy for how
much can be accreted at a specific orbital distance and it is in-
structive to compare the shape of the giant planet population in
astart − Msolid,0 space with the borders between planet clusters.
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Fig. 13. The four clusters of planets in astart − Msolid,0 space of their
nascent protoplanetary disk. The green line is the hyperplane that best
separates the giant planet cluster (yellow markers) from the other plan-
ets and was obtained by training a Support Vector Machine (SVM).
Closeby gray lines show random draws from bootstrap sampling and
illustrate the uncertainties. We overplot isolines of planetesimal masses
needed to reach specific core masses (blue dashed lines), as well as
isolines corresponding to specific growth timescales for reaching a core
mass of 10 M⊕ (green dashed lines). Their slopes are similar to the SVM
fit that encloses the giant planets, indicating that the onset of runaway
growth is limited by the locally available planetesimal mass and by the
disk lifetime.

In Fig. 13, we overplot isolines of disk solid masses necessary
to reach different planetesimal isolation masses as a function of
orbital separation (dashed blue lines). The lower border of the
giant planet cluster matches well the slope of these lines. This
indicates that in intermediate-mass disks with a few hundreds of
M⊕ in solids, giant planet formation is limited by the protoplan-
ets reaching Miso, that is, by clearing their feeding zone from
solid material. We caution that the proximity of this border to
the Miso = 5 M⊕ isoline does not imply that runaway gas accre-
tion has set in at this mass, as planet migration results in a larger
effective feeding zone (Alibert et al. 2005).

Beyond ∼ 10 au, the border of the cluster matches the slope
of isolines for different growth timescales. At these larger orbital
distances, τgrow can reach the order of Myr for low planetesimal
surface densities and thus becomes comparable to the lifetime of
the protoplanetary disk. In this regime, the growth of a planetary
core is limited by the time available to accrete the planetesimals
in the domain of a planet’s orbit. As can be seen in the plot,
the Msolid,0(a) isoline where the growth timescale corresponds
to the median of the disk lifetime, τgrow ≈ 3.4 Myr, is a good
fit to the border between giant planets (yellow) and icy cores
(red). Indeed, most of the giant planets close to this threshold
formed in long-lived disks (see Fig. B.1). This indicates that for
planetesimal densities just sufficient for the formation of massive
cores, entering runaway gas accretion depends on the longevity
of the host disk.

5.4. The influence of N-body interactions

Our cluster analysis and prediction from initial conditions has
shown that even in the case of multi-planet systems with gravi-
tational interactions, most of the links between disk and planet
properties remain intact (see Sect. 4.4). Still, the demographic
structures in the multi-planet population are somewhat smeared
out compared to the single-planet case, and the strength of this
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effect is different for individual clusters. We have seen that
(super-)Earths and Neptunes are affected the most by this sort
of mixing. These planet types cannot be reliably predicted from
disk properties if N-body interactions are taken into account.
Interestingly, the confusion is asymmetric: planets predicted as
Neptunes often become (super-)Earths, while those predicted as
(super-)Earths rarely become Neptunes. The reason is something
the classifier cannot predict: the misclassified (super-)Earths are
typically planets that got stripped of their atmospheres in giant
collisions with other planets. From this follows that our model
would produce too many Neptunes if such collisions are not
taken into account (as is the case in single-planet simulations).
This highlights the need for global planet formation models to
include a consistent treatment of N-body interactions and giant
impacts, as has already been suggested by Alibert et al. (2013)
and in Paper I.

Another difference compared to the single-planet case is
that close-in planets with small radii and masses are strongly
depleted. This is because they often undergo giant collisions
and merge into more massive bodies. The resulting lack of
“sub-Earths” provides an interesting prediction for future planet
searches that will push beyond the current mass/radius limits.
Whether a multitude or a desert of such planets will be found
could give valuable clues to the prevalence of planetary colli-
sions.

6. Conclusions

We have investigated how different properties of protoplane-
tary disks relate to the emergence of different planet types in
a planetesimal-based core accretion context. By performing a
cluster analysis on synthetic planet populations from a global
model of planet formation and evolution, we identified clusters
of planets in a parameter space of typical exoplanet observables.
We examined how well these clusters can be predicted from disk
properties and studied the dependencies of different planet types.
Our main conclusions are:

1. Planets form distinct groups in {a,MP,RP} space, espe-
cially when dynamical interactions within multi-planet sys-
tems are neglected. Without presupposing planet types or
their number, we identified four clusters corresponding to
(sub-)Neptunes, icy cores, giant planets, and (super-)Earths.

2. These groups differentiate within the first 0.1 Myr of the for-
mation process and show correlations with properties of their
host disks. Such associations between disk and planet prop-
erties enable the prediction of planet species to high accuracy
(98 % in the single-planet case and 89 % in the multi-planet
case).

3. The most important predictor for planet clusters is the or-
bital position of the emerging planetary core, followed by
the solid mass available in the disk. The disk lifetime plays
a subordinate role, but can be a limiting factor for threshold
values of the above mentioned parameters.

4. The position of giant planets in disk parameter space can be
associated with known characteristics of oligarchic planetes-
imal accretion: for limited available amounts of solid mate-
rial and within ∼10 au, core growth is limited by planetes-
imal isolation and giant planets form when log10

(
Msolid
1 M⊕

)
&

2.7 − 0.4 log10

(
astart
1 au

)
. On more distant orbits, core accretion

is limited by the growth timescale and giants emerge when
log10

(
Msolid
1 M⊕

)
& 1.0 + 1.2 log10

(
astart
1 au

)
.

5. When multiple planets form and interact in the same system,
for most planet types the associations between disk proper-
ties and planet properties remain. However, planets on track
to become sub-Neptunes often lose their atmospheres in gi-
ant collisions and turn into super-Earths, which impedes pre-
dictions for this planet type.

Overall, we have shown that synthetic planet populations from
state-of-the-art core accretion models largely mirror the planet
types recognized by exoplanet demographics. Our results high-
light the importance of N-body integrations in global planet for-
mation models that aim for reliable predictions in the domain of
low-mass planets. Beyond that, constraining the orbital distances
at which planetary cores form is of major relevance for the full
range of planet types. Population syntheses of the next genera-
tion should recognize this by including self-consistent treatments
of planetary embryo formation.
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Appendix A: The choice of a clustering algorithm

Appendix A.1: Clustering algorithms

For the cluster analysis in Sect. 3, we examined several other
clustering algorithms in addition to GMM2 and explored their
behavior on our data set. For each method, we used its imple-
mentation in scikit-learn (Pedregosa et al. 2011) and, where
applicable, chose the default Euclidean distance metric. The al-
gorithms considered are centroid, density, or hierarchical-based.
A centroid-based method we explored was K-means (MacQueen
1967; Lloyd 1982). In the density-based group, we tested DB-
SCAN and OPTICS (Ester et al. 1996; Ankerst et al. 1999).
For hierarchical clustering, we examined Agglomerative cluster-
ing (Ward 1963) besides GMM (McLachlan 1988).

K-Means3(MacQueen 1967; Lloyd 1982) is a centroid-based
clustering algorithm: it randomly initializes k centroids and as-
sociates each data point to the centroid that is closest to it, then
shifts the centroids to the mean of their cluster. These steps are
repeated until no changes occur. The algorithm requires only a
single hyperparameter k, which is the number of clusters.

Agglomerative clustering4 (Ward 1963) is a bottom-up hier-
archical clustering algorithm: each data point begins as its own
cluster and incrementally merges similar pairs of clusters into a
new cluster. This process is repeated until there are k clusters
left, where k is the hyperparameter for the number of clusters.
When testing this algorithm, we used a hyperparameter called
linkage to quantify ‘similarity’ between pairs of clusters (e.g.,
Ward 1963; Szekely & Rizzo 2005). Empirically, we found that
the “Ward” linkage is optimal.

DBSCAN5 (Ester et al. 1996) is a density-based clustering
algorithm classifying each data point as either a core point (with
at least minPts neighboring points within a distance ε), a reach-
able point (that is within distance ε of the core point), or an out-
lier (that is not reachable by any core point). All core points and
their reachable points form a cluster, but outliers do not. The
method we tested is an advancement of DBSCAN with improved
performance on data sets of varying density. This method called
OPTICS6 (Ankerst et al. 1999) has one hyperparameter: minPts
– the minimum number of points nearby to make a core point.

Appendix A.2: Validation metrics and choice of method

Each of these methods has hyperparameters, that is, parameters
that are not derived during model training but that control the
learning process itself. We used a number of validation metrics to
quantify the clustering performance for each method and specific
choice of hyperparameters. Some of these metrics are method-
specific and can only be used with a specific algorithm. These
are the elbow method (e.g., Thorndike 1953; Ketchen & Shook
1996), the Bayesian and Aikake Information Criterions (BIC
and AIC, e.g., Akaike 1973; Schwarz 1978; Cavanaugh & Neath
2019), and the dendrogram method (e.g., Nielsen 2016). The el-
bow method is used to evaluate the performance of the K-Means
algorithm. By plotting the within-cluster sum-of-squares against
k, an ‘elbow’-shaped curve emerges. The ideal k will be one
close to the ‘elbow’. The reasoning for this is that we aim to
find the first k that minimizes the within-cluster sum-of-squares.
BIC and AIC are used for GMM. Both are based on informa-

2 sklearn.mixture.GaussianMixture
3 sklearn.cluster.KMeans
4 sklearn.clustering.AgglomerativeClustering
5 sklearn.cluster.DBSCAN
6 sklearn.cluster.OPTICS

tion theory and are used to prevent overfitting and underfitting
to choose the most optimized model. The dendrogram method is
used to judge the bottom-up process of Agglomerative cluster-
ing. It shows the clustering at each hierarchy, where the y-axis is
the distance between clusters and the x-axis shows the clusters.
Therefore, the goal is to perform a horizontal cut such that the
vertical distance is maximized. As one traverses up the hierar-
chy, the vertical distance naturally increases.

In addition to these scores, we used the following scalar-
valued metrics that can be used for any method: the Silhou-
ette score (Rousseeuw 1987), the Caliński-Harabasz score (CH,
Caliński & Harabasz 1974), and the Davies-Bouldin score (DB,
Davies & Bouldin 1979). The Silhouette score is computed from
the mean intra-cluster distance and the mean nearest-cluster dis-
tance. Silhouette scores range between -1 and 1 with 1 being
the best and -1 being the worst, and values near 0 implying
overlapping clusters. We aimed to maximize this score. The
Caliński-Harabasz score is the ratio of the within-cluster disper-
sion and the between-cluster dispersion, where dispersion is the
sum of the squared distances. Again, we aimed to maximize this
score. The Davies-Bouldin score determines the clustering per-
formance by using the ratio of the within-cluster distances to the
between-cluster distances. As a result, compact clusters that are
far apart give better scores. The minimum score is 0, and we
aimed to minimize this score.

Appendix A.3: Model selection

Our approach in selecting the best clustering method was as fol-
lows: first, we applied each method to the {a,MP,RP} subspace
of the NG73 planet population for a wide range of hyperparam-
eters. We then compared the validation metrics computed for
the resulting clusterings. The scores did not always agree unani-
mously, which is expected, as the structures in our multidimen-
sional data set are rather complex and the scores consider dif-
ferent goals regarding an optimal clustering. The next step was
thus to produce, for each combination of method and hyperpa-
rameters, scatter plots that showed the clustering results in differ-
ent projections of {a,MP,RP} space. Using these plots, we could
compare the different partitionings and determine the most sensi-
ble model. Figure A.1 shows these diagnostic plots for k-means,
OPTICS, and Agglomerative clustering, using the choice of hy-
perparameters considered most appropriate. The diagnostic plots
for GMM are shown in Fig. A.2. Based on this selection proce-
dure, GMM showed the best performance and we considered it
our nominal method for clustering.

A free parameter of GMMs is the number of components
N, which we chose using the same two-step approach as in
the method selection. After the validation metrics suggested
N = 4,N = 6 for NG73 and N = 3,N = 5 for NG76 (see Fig. 1),
we assessed the diagnostic plots shown in Fig. A.2. For NG73,
we found that the GMM with N = 6 reaches similar scores than
N = 4 but traces less reliably the underdensities in the domain
and partly draws cluster borders through rather arbitrary regions.
We thus chose the GMM with N = 4 as our nominal model for
the single-planet case. For NG76, the model with more compo-
nents reliably detects visible overdensities and outperforms the
less complex model. Hence, we adopted the GMM with N = 5
as the nominal model for the multi-planet case.
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a) k-means, N=5 b) OPTICS, N=3

c) Agglomerative clustering, N=5
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Fig. A.1. Diagnostic plots for clustering method selection. For each alternative clustering algorithm we explored, we show the validation metrics
we used to choose hyperparameters. Based on these metrics, we show the resulting clustering for the most promising choices in the corner plots.
a) Even in the best case (N = 5), k-means’ approach to draw cluster borders is too simplistic to account for the structure in our data. b) For the
numerically best choice of minPts, OPTICS finds three clusters of extremely different sizes. Most of the data belong to a single cluster that covers
the whole domain, and no sensible relation to the data point density is apparent. c) Agglomerative clustering suggests the existence of five clusters.
Again, no reasonable partitioning is visible. The lower right panel shows the dendrogram corresponding to this clustering.

Appendix B: Boundary conditions for giant planet
formation

Appendix B.1: Derivation of isolation mass and growth
timescale

In Sect. 5.3, we characterize the cluster of giant planets in
astart − Msolid,0 space, where it occupies a distinct triangular re-
gion. In the following, we derive two quantities that shape this
region: the total solid disk mass as a function of orbital dis-
tance for different planetesimal isolation masses and for different
growth timescales.

Miso gives the mass in planetesimals a protoplanet can ac-
crete given a feeding zone of width b ' 10rH , where rH =

a
(

MP
3M?

)1/3
. Then,

Miso = 2πabΣsolid ' 2πa10a
(

MP

3M?

)1/3

Σsolid, (B.1)

where Σsolid is the planetesimal surface density. Setting the plan-
etary mass to the planetesimal isolation mass, MP ≡ Miso, yields

Miso =

(
20π
31/3

)3/2

a3Σ
3/2
solidM−1/2

? . (B.2)

To get an estimate on which initial solid mass content is required
to reach a certain isolation mass, we express this as

Σsolid =

(
31/3

20π

)
M1/3
? M2/3

iso

a2 . (B.3)
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b) GMM, N=6a) GMM, N=4
NG73: single-planet

NG76: multi-planet
c) GMM, N=3 d) GMM, N=5

Fig. A.2. Diagnostic plots for GMM clustering model selection. According to our validation metrics, the best candidate number of clusters are
N = 4,N = 6 for NG73 and N = 3,N = 5 for NG76 (compare Fig. 1). The panels a)–d) show the clustering results of these choices. The models
in a) (N = 4) and d) (N = 5) trace the over- and underdensities in the domain best and we consider them our nominal models.

For the power law disk profile used in our model (Andrews et al.
2009),

Σ(r) = Σ0

(
r
r0

)−β
exp

− (
r

rcut,g

)(2−β) , (B.4)

we consider the outer disk radii rcut,g and rcut,s for the gas and
solid disk, respectively. The radial slope of Σsolid is characterized

by the power law index β, and Σ0 is the surface density at a ref-
erence orbital distance r0 = 5.2 au. Then, the total mass of the
planetesimal disk is

Msolid =
2πΣ0

r−β0

r2−β
cut,s

2 − β
, (B.5)

where rcut,s = 0.5rcut,g (following findings from dust disk obser-
vations, Ansdell et al. 2018) and β = 1.5 (motivated by planetes-
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imal formation models, Lenz et al. 2019). Substituting Equa-
tion B.3 into Equation B.5, the total solid mass required to reach
Miso is given by

Msolid(MP = Miso) =
31/3

10

r2−β
cut,s

2 − β
M1/3
? M2/3

iso

a2−β exp

− (
a

rcut,s

)2−β−1

(B.6)

Similarly, we can derive the solid disk mass needed to reach
a specific mass in the outer disk regions, where growth is mainly
limited by the growth timescale τgrow. For the oligarchic growth
regime (Ida & Makino 1993), this timescale can be approximated
by

τgrow ≈ 1.2 × 105yr
(

Σp

10 g cm−2

)−1 ( a
1au

)1/2
(

Mc

M⊕

)1/3 (
M?

M�

)−1/6

×

( Σg

2400 g cm−2

)−1/5 ( a
1au

)1/20
(

Mpla

1018 g

)1/152

(B.7)

(Mordasini 2018). Solving for Σp and substituting into Equa-
tion B.5 gives

Msolid(a, τgrow) = 7.54 g cm−2 rβ0r2−β
cut,s

2 − β

(
Mc

M⊕

)1/3 (
M?

M�

)−1/6

×

( Σg(a)
2400 g cm−2

)−1/5 (
Mpla

1018 g

)1/152 (
τgrow

1 Myr

)−1 ( a
1au

)3/5
,

(B.8)

where Σg was computed using the population-wide median of
the reference surface density Σ0,gas. For the cutoff radii of the
gas and solid disk, we proceeded in the same way and assumed
the population median, respectively. For the planetesimal mass
Mpla, we assumed a density of 1 g cm−3, which results in Mpla =

1.13 × 1011 kg for the planetesimals in our model (Emsenhuber
et al. 2020a). We adopted a core mass Mc of 10 M⊕.

Appendix B.2: Disk lifetime limits giant planet growth

Figure B.1 shows the cluster of giant planets in the space
spanned by two important initial disk properties, astart and
Msolid,0. The colors correspond to different lifetimes of the pro-
toplanetary disk in which they formed. Most giants grow (and
survive) in disks with lifetimes 3 Myr to 6 Myr. Only long-living
disks enable formation of giant planets at low solid disk masses
and large orbital distances. In short-lived disks, there is only a
narrow region of embryo starting positions where giant planets
grow at low planetesimal surface densities.
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Fig. B.1. Planetesimal disk mass and initial planet core position of
giant planets forming in disks of different lifetimes. Markers show
the distribution of all planets classified as “cluster 3: giant planet” in
astart − Msolid,0 space, color-coded by the lifetime of their nascent disk.
We overplot isolines of planetesimal masses corresponding to specific
growth timescales τgrow for reaching a core mass of 10 M⊕. Giant planet
growth is limited by the disk lifetime, and the formation of giant planets
far out requires high planetesimal masses and long lifetimes.
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