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ABSTRACT

Context. The anomalously large radii of hot Jupiters are still not fully understood, and all of the proposed explanations are based on
the idea that these close-in giant planets possess hot interiors. Most of the mechanisms proposed have been tested on a handful of
exoplanets.

Aims. We approach the radius anomaly problem by adopting a statistical approach. We want to infer the internal luminosity for the
sample of hot Jupiters, study its effect on the interior structure, and put constraints on which mechanism is the dominant one.
Methods. We develop a flexible and robust hierarchical Bayesian model that couples the interior structure of exoplanets to the observed
properties of close-in giant planets. We apply the model to 314 hot Jupiters and infer the internal luminosity distribution for each
planet and study at the population level (i) the mass—luminosity—radius distribution and as a function of equilibrium temperature the
distributions of the (i) heating efficiency, (ii7) internal temperature, and the (iv) pressure of the radiative—convective—boundary (RCB).
Results. We find that hot Jupiters tend to have high internal luminosity with 10* L; for the largest planets. As a result, we show that all
the inflated planets have hot interiors with internal temperature ranging from 200 K up to 800 K for the most irradiated ones. This has
important consequences on the cooling rate and we find that the RCB is located at low pressures between 3 and 100 bar. Assuming that
the ultimate source of the extra heating is the irradiation from the host star, we also illustrate that the heating efficiency increases with
increasing equilibrium temperature, reaches a maximum of 2.5% at ~1860 K, beyond which the efficiency decreases, in agreement
with previous results. We discuss our findings in the context of the proposed heating mechanisms and illustrate that ohmic dissipation,
advection of potential temperature, and thermal tides are in agreement with certain trends inferred from our analysis and thus all three
models can explain aspects of the observations.

Conclusions. We provide new insights on the interior structure of hot Jupiters and show that with our current knowledge it is still

challenging to firmly identify the universal mechanism driving the inflated radii.
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1. Introduction

Two decades of observational and theoretical exploration have
revealed that the anomalously large radii of close-in transiting
giant planets holds firmly (e.g. Laughlin et al. 2011; Weiss et al.
2013). The radii of hot Jupiters are larger than what is predicted
by standard interior structure models (Guillot & Showman
2002). Observations reveal that there is a strong correlation be-
tween the observed radii and the stellar incident flux (e.g. Enoch
et al. 2012), with a threshold around ~ 2 x 10%ergs™' cm™2,
corresponding to an equilibrium temperature of about 1000 K
(Demory & Seager 2011; Miller & Fortney 2011), below which
the physical mechanism becomes inefficient. Sestovic et al.
(2018) further demonstrated that the inflation extent is mass de-
pendent, where the planets with the largest anomalous radii have
masses less than ~< 1 Mj.

There has been a lot of investigations to explain the discrep-
ancy between the observations and theoretical models. The pro-
posed mechanisms can be divided into two categories: (i) slow-
ing down cooling and contraction or (ii) depositing extra heat
into the interior. Burrows et al. (2007) showed that slowing down
the cooling and thus delaying contraction can be achieved by in-
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creasing the atmospheric opacity. Another way to delay contrac-
tion is to reduce the heat transport efficiency due to composi-
tional gradients (Chabrier & Baraffe 2007).

It is well established that heating up the interior of the planet
increases its entropy and thus its radius (Arras & Bildsten 2006;
Marleau & Cumming 2014). The source of heat is still not con-
strained and possible sources could be tidal dissipation of an ec-
centric orbit (e.g. Bodenheimer et al. 2001), advection of po-
tential temperature, which is a consequence of the strong stel-
lar irradiation (Tremblin et al. 2017; Sainsbury-Martinez et al.
2019), or dissipative processes powered by the stellar irradiation
flux. The latter has received a lot of attention and the mecha-
nism to transport fraction of the stellar incident flux into the in-
terior is still an open question. One mechanism is atmospheric
circulation, which leads to thermal dissipation of kinetic energy
into the interior (Guillot & Showman 2002; Showman & Guillot
2002). Another mechanism is ohmic dissipation (Batygin &
Stevenson 2010; Batygin et al. 2011; Perna et al. 2010a; Huang
& Cumming 2012; Wu & Lithwick 2013; Ginzburg & Sari
2016), where the irradiation drives fast winds through the plan-
ets magnetic fields, giving rise to currents that dissipate ohmi-
cally in the interior. Other mechanisms are thermal tides (Arras
& Socrates 2010) and the mechanical greenhouse (Youdin &
Mitchell 2010).
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Some of these mechanisms come with a lot of approxima-
tions and uncertainties. For example, an important uncertain pa-
rameter in atmospheric circulation, ohmic dissipation, and ad-
vection of potential temperature is the wind speeds and the effect
of magnetic drag in damping the winds (Perna et al. 2010a,b).
Another uncertainty is how deep the wind zone extends, which
is important to constrain the pressures at which the extra heat
should be dissipated. Wu & Lithwick (2013) illustrate that if
the wind zone is at shallow pressures, then a significantly larger
heating efficiency is needed to achieve the same interior heating,
compared to heating at deeper pressures. Komacek & Youdin
(2017) argued that the extra heat should be deposited in the con-
vective layers or at the radiative—convective—boundary (RCB),
otherwise it will be re-radiated away. Huang & Cumming (2012)
deposited the extra heat in the radiative layers and as a conse-
quence showed that the RCB moves to deeper pressures. Fortney
et al. (2007) showed that RCB is located at pressures of 1000 bar,
where little is known about the wind speeds at such deep pres-
sures. However, the Fortney et al. (2007) models were developed
for irradiated planets and do not consider the high internal en-
tropy that hot Jupiters are believed to possess.

All the mechanisms proposed have been tested and applied
on single or a handful of planets. It is yet to be demonstrated that
these mechanisms can explain the radii of all the observed hot
Jupiters. Within this context, in this paper we approach the ra-
dius inflation problem from a statistical point of view, similar to
the approach of Thorngren & Fortney (2018) (hereafter TF18).
We do not model any of the previously mentioned mechanisms
but rely solely on the interior structure model and atmospheric
model. We develop a hierarchical Bayesian model that allows us
to couple the interior structure models to the observed physical
properties of hot Jupiters while incorporating the measurement
uncertainties. Our approach naturally accounts for non-Gaussian
likelihoods. We first apply our model on the individual planets to
infer the internal luminosity that reproduces the observed physi-
cal properties of hot Jupiters, namely radius, mass, and equilib-
rium temperature. Second, as a consequence of the high inter-
nal entropy, we find that the interior tends to be hot and show
that the RCB moves to shallow pressures. Finally, we compare
our findings to the proposed mechanisms and show that ohmic
dissipation (Batygin & Stevenson 2010), advection of potential
temperature (Tremblin et al. 2017), and thermal tides (Arras &
Socrates 2010) can explain the anomalously large radii of hot
Jupiters.

In a recent study, TF18 showed that the heating efficiency €
increases as a function of equilibrium temperature until a max-
imum of ~ 2.5% is reached at around 1500 K, beyond which
it decreases. The basic shape of e(Teq) provides evidence for
ohmic dissipation. Building on the functional form of €(T%g),
Thorngren et al. (2019) (hereafter T19) studied the effect of cen-
tral heating on the interior structure of hot Jupiters and found
that the internal temperature is much hotter than previous esti-
mates, which pushes the RCB to lower pressures. Our approach
is similar to TF18 but rather than modeling the extra heating as
a function of €, we do not assume explicitly a source for the ex-
tra heat. Instead, we consider the planet reached steady state and
compute the internal luminosity given the planet mass, radius,
and equilibrium temperature. The advantage of this approach is
twofold: first, we can compare our results to heating mechanisms
where the source of extra heat is not the stellar irradiation, and
second, we self-consistently study the effect of high internal en-
tropy on the interior structure of hot Jupiters, namely the internal
temperature and pressure of the RCB. We note, however, that
both approaches should lead to the same results. We also con-

vert the internal luminosity to a heating efficiency € and com-
pare our results to TF18 in Section 6.3. We show that our results
are qualitatively similar using a larger sample focused on FGK
main-sequence stars and using an independent interior structure
model.

The outline of this paper is as follows. Section 2 provides an
overview of the sample selection criteria. In Section 3 we present
the interior structure model used in this analysis. In Section 4 we
outline the probabilistic framework used to link observations and
theory and derive the basic equation which our method is based
on (Equation (28)). We validate the statistical model by applying
it on synthetic planetary data set generated using the Generation
IIT Bern global model in Section 5. Readers interested in the
results can safely skip to Section 6 where we present the results
of our analysis. We discuss the results and the shortcomings of
our approach in Section 7 and conclude in Section 8.

2. Sample Selection

For the purpose of our study, we required that all the planets have
measured masses and radii. Sestovic et al. (2018) showed that
the radii of planets with masses less than 0.37 Mj do not show a
clear dependence on the stellar incident flux. Photoevaporation
plays an important role in the evolution of such low-mass close-
in planets (Owen & Jackson 2012; Jin et al. 2014). Baraffe et al.
(2004) also showed that these planets are subject to undergo
Roche-lobe overflow. We therefore restrict our analysis to plan-
ets with masses 0.37 < Mp < 13 Mj with semi-major axis
a < 0.1 au. In our study, we make no attempt to correct for
selection effects where it is still challenging to detect “medium-
inflated” hot Jupiters around F stars using ground-based surveys
(see the discussion in Section 7.5).

Lopez & Fortney (2016) suggested that giant planets around
stars leaving the main-sequence experience a high level of irra-
diation that could ultimately increase their radii. However, other
studies argued that ohmic heating cannot re-inflate planets af-
ter they have already cooled (Wu & Lithwick 2013; Ginzburg &
Sari 2016). A handful of re-inflated planets have been discov-
ered around giant stars (Grunblatt et al. 2016, 2017; Hartman
et al. 2016). Since different mechanisms can be at play around
evolved stars, we exclude such planets and only consider hot
Jupiters around solar-like stars. Specifically, we consider stars
with stellar temperature 7, = 4000 — 7000 K and surface grav-
itylog g = 4 — 409.

The data was taken from the Transiting Extrasolar Planet
Catalogue (TEPCat!; Southworth 2011), last accessed on
November 2018. The aforementioned constraints on the planet
mass, semi-major axis, and stellar temperature and surface grav-
ity, lead to a final sample consisting of 314 hot Jupiters. The
equilibrium temperature (T¢q) values in the literature are often
not homogeneous, where different teams use different assump-
tions for the albedo and heat redistribution. To mitigate this, we
compute the equilibrium temperature for all the planets assum-
ing a circular orbit, zero albedo, and full heat redistribution from
the day-side to the night-side (Guillot 2010)

R,

Teq =T. E (1)
where T, and R, are the stellar temperature and radius, respec-
tively, and a is the semi-major axis. Figure 1 displays the se-
lected targets in the equilibrium temperature—radius (left panel)

! www.astro.keele.ac.uk/jkt/tepcat/
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Fig. 1. Equilibrium temperature-radius diagram (left panel) and mass—radius diagram (right panel) color-coded by entropy for the
314 hot Jupiters selected for our analysis. The solid black and the red dashed lines compare the radii computed using our model
completo21 and TF18, respectively. Both models are for a 1 Mj planet with a pure H/He composition with ¥ = 0.27 at 5 Gyr and
without accounting for inflation. The entropy was computed using the observed physical properties and an assumed heavy-element
fraction of 0.2. Planets with large radii tend to have high internal entropy, with a weak dependence on planetary mass.

and mass-radius (right panel) diagrams color coded by the en-
tropy?. The entropy was calculated for all the planets given the
observed physical properties of each system and assuming the
fraction of heavy element is 20% the planet mass. Note that this
value was chosen arbitrarily and for the rest of the results pre-
sented in this paper, we use the mass—heavy-element mass rela-
tion (Thorngren et al. 2016, see also Section 3.2). The solid black
line is the radius at 5 Gyr computed using the interior structure
model (see Section 3) for a 1 M planet with a pure H/He com-
position and the He mass fraction set to Y = 0.27. The dashed
red line is the same model computed by TF18. These models do
not account for inflation and the radii can be considered as an
upper limit for radii expected in the absence of inflation mech-
anisms. The radii of most of the planets with Tq > 1000 K are
larger than the predicted values found with standard planet evo-
lution models (e.g. Guillot & Showman 2002). It is also evident
that larger internal entropy leads to larger radii as noted by previ-

2 When comparing to other work, it is crucial to use the same en-
tropy zero-point or to correct for this. See Footnote 2 of Mordasini et al.
(2017).

ous work (e.g. Arras & Bildsten 2006; Spiegel & Burrows 2013;
Marleau & Cumming 2014), with a weaker dependence on plan-
etary mass. Planets with the largest radii have high equilibrium
temperatures, masses below 1 Mj, and high entropy in their deep
convective interior. There is thus a compelling evidence from
observations that the proximity to the star, planet mass, and the
incident stellar flux play a major role in keeping hot Jupiters at
high entropy.

3. Interior Structure Model

The primary way to gain insights into the interior structure of
exoplanets is typically derived from theoretical structure models
by matching the observed mass and radius. Such models are of-
ten used to constrain the planet bulk composition. Given the age
of the host star and the mass of the planet, the amount of heavy
elements is determined by matching the observed radius with the
radius predicted from structure models. This has been applied to
warm Jupiters (e.g. Thorngren et al. 2016), sub-Neptunes (e.g.
Valencia et al. 2013), and super-Earths (e.g. Dorn et al. 2019)
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but is challenging to apply for hot Jupiters because the radii are
inflated.

The aim of our study is to characterize the interior structure
of hot Jupiters within a probabilistic framework. This allows us
to gain insights into the physical properties governing the inte-
rior. We are specifically interested in inferring the internal lu-
minosity of the planets based on the observed mass, radius, and
equilibrium temperature. This is in turn will provide constraints
on the heating efficiency, internal temperature, and the pressure
at the radiative—convective-boundary (RCB). The standard in-
terior structure model is briefly outlined in Section 3.1 and we
discuss in Section 3.2 our approach to account for heat dissipa-
tion. The main model assumptions and limitations are addressed
in Section 3.3.

3.1. Standard Model

The planetary evolution model completo2l was presented in
Mordasini et al. (2012) and several modifications have been in-
troduced since such as photoevaportation (Jin et al. 2014; Jin &
Mordasini 2018) and coupling the interior to a non-gray atmo-
spheric model (Linder et al. 2019; Marleau et al. 2019). In the
following sections, we provide a brief description of the code
relevant to our work and discuss in Section 3.3 the limitations of
the model.

The internal structure of a gas giant planet is modeled using
the 1D equations below. Equation (2) defines the conservation
of mass. We assume that the planet is in hydrostatic equilib-
rium (Equation 3) and that the luminosity is constant with ra-
dius (Equation 4). Mordasini et al. (2012) showed that the lat-
ter assumption does not significantly affect the evolution of the
planet when the heating occurs deep, as we assume (see below).
Finally, Equation (5) is the energy transport equation describing
the transport of energy either via radiation or convection.

dm

a4 = 47rr2p (2
& =0 )

In the above equations, r is the planetary radius as measured
from the center, m the total mass inside r, p density, P pressure,
T temperature, [ planet internal luminosity, G the gravitational
constant, and V is the temperature gradient which depends on
the process energy is transported.

We use the classical SCVH EOS of hydrogen and helium
(Saumon et al. 1995) with a He mass fraction Y = 0.27. Our
model does not include a central core and all the heavy ele-
ments are homogeneously mixed in the gaseous envelope, see
Section 3.3.1 for a discussion on the distribution of heavy el-
ements. We model the heavy elements as water and adopt the
widely used EOS of water ANEOS (Thompson 1990; Mordasini
2020). H/He and water are mixed according to the additive vol-
ume law (Baraffe et al. 2008). The transit radius is defined at
P =20 mbar.

3.1.1. Atmospheric Model

The atmospheric boundary conditions control the cooling rate
of irradiated giant planets. The evolution of the planet and its
final structure are thus sensitive to the upper boundary condi-
tions (Guillot & Showman 2002). Jin et al. (2014) calibrated the
semi-gray model of Guillot (2010) against the fully non-gray at-
mospheric models of Fortney et al. (2008) in order to determine
the value of 7y, the ratio of the optical to the infrared opacity.
They used a nominal value of Tj,, = 200 K. For our study, hot
Jupiters are thought to be inflated due to dissipation or advection
of heat into the interior, which thus leads to Tj,, > 200 K. Hence,
using the tabulated values of Jin et al. (2014) will lead to dif-
ferent PT structures and therefore alter significantly the interior
structure of the planet. Indeed, we find that for Ty = 1500 K,
Ty = 500 K, and log g = 3, the relative change in the radius
between using the improved version of the semi-gray model and
using a non-gray model is around ~ 7%, where the semi-gray
model tend to lead to larger radii. It is essential then to have
realistic atmospheric boundary conditions by using wavelength
dependent radiative transfer atmospheric models.

Following a similar approach to Linder et al. (2019), we
compute a grid of fully non-gray atmospheric models calculated
using the petitCODE (Molliere et al. 2015, 2017). We included
the following line absorbers CH4, H,O, CO,, HCN, CO, H,,
H,S, NH3, OH, C,H,, PH3, Na, K, TiO, VO, and SiO, and the
following pseudo-continuum absorbers H,-H; Collision Induced
Absorption, Hp-He Collision Induced Absorption, H™ bound-
free, H™ free-free, H, Rayleigh scattering, and He Rayleigh scat-
tering. The reference for these opacities can be found in Molliere
et al. (2019). These grids are then used to relate the planet atmo-
spheric temperature and pressure to the planet internal structure.
The atmospheric grid was calculated assuming solar composi-
tion and covering a range of 2.5-4.5 in log g, 500-2700 K in
equilibrium temperature, and 100-1000 K in internal tempera-
ture. The equilibrium temperature and surface gravity were cho-
sen to cover the range of all the hot Jupiters selected in our sam-
ple.

The coupling between the atmosphere and the interior is
done in the interior adiabat, following the first convective layer
below the RCB. Details are given in Marleau et al. (2019). For a
given log g, equilibrium temperature, and internal temperature,
the corresponding pressure and temperature were used as bound-
ary conditions to calculate the inward interior structure. The
outward structure was calculated using the petitCODE struc-
ture and assuming hydrostatic equilibrium (Equation 3) between
the pressure at the coupling point and 20 mbar, i.e. the pressure
at which the transit radius is defined. We verify that coupling
at a high fixed pressure, P = 1000 bar, or following the RCB
layer does not significantly affect the transit radius with relative
change around ~ 0.3%.

The atmospheric PT structures assume constant log g. In
fact, log g changes slightly in the radiative layers. Assuming
that the change in log g in the radiative layers during the planet
evolution is around ~ 0.05, then the change in entropy is only
around ~ 0.05 kB/baryon for an internal temperature (7i,) of
700 K and an equilibrium temperature (7q) of 2500 K. It would
take a change of 0.5 in log g to have a significant change in en-
tropy (around 0.5 kB/baryon for Ti,=700 K and Tq=2500 K).
We confirm that the change in entropy is negligible across the en-
tire grid except for models with T¢q > 2500 K, Ty > 700 K, and
log g < 3.5. In our sample, only WASP-12b has T,; = 2580 K
and log g = 3.0 (Collins et al. 2017) where the change in entropy
is between 0.06 - 0.08 kB/baryon. The radius of only one planet
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in our sample could be slightly underestimated, and therefore a
constant log g in the PT structures is not a strong assumption.

3.2. Heat Dissipation

It is well established that, compared to cold Jupiter-like plan-
ets, the high internal entropy of a hot Jupiter increases its radius
(Spiegel & Burrows 2013; Marleau & Cumming 2014). For ex-
ample, the planet interior can gain entropy through ohmic or tidal
heating. In this work, we do not attempt to model a mechanism
to transport heat into the interior. We assume the planet is in
steady state and thus do not calculate the planetary thermal evo-
lution. We use the planet mass, radius, and equilibrium temper-
ature (technically the stellar luminosity and the semimajor axis)
from observations along with the mass—heavy-element-mass re-
lation from Thorngren et al. (2016), to quantify the present inter-
nal luminosity Ly of the planet. At steady state, Liy is identical
to the extra heating power deposited and thus

Lin = €F 7R} (6)
R.\?
F=o0T?} (;) )

where € is the fraction of stellar irradiation transported into the
interior, i.e. the heating efficiency, o is the Stefan-Boltzmann
constant, R, the planetary radius, and F is the flux the planet
receives at the substellar point as a function of the stellar tem-
perature T, stellar radius R,, and the semi-major axis a (Guillot
2010). We assume that the heat dissipated is absorbed at T = 2/3
and deposited at the center of the planet. Komacek & Youdin
(2017) showed that heating at any depths larger than 10* bar
yields nearly similar radii. However see the discussion relevant
to this assumption in Section 3.3.2. Our definition agrees well
with TF18, where they also deposit the extra heat at the center.

We note that 1D models without extra heating do not transfer
energy into the interior on their own. The main effect of irradi-
ation is that it decreases the cooling rate and thus the contrac-
tion rate of irradiated giant planets (Burrows et al. 2000). Planets
with higher T,q will have a larger radius compared to an identi-
cal planet with lower T¢q but still, not as large as the observed
radii. The black line in Figure 1 shows the radius for a 1 Mj
planet with a pure H/He envelope at 5 Gyr at different Teq. All
planets have R, < 1.25 Ry. The difference in the radius between
the highly and least irradiated planets is 0.14 R;. As such, our
definition of € is valid where all the extra energy is transported
into the interior via a physical mechanism and it is not due to the
1D irradiated models transporting energy at high Teg.

3.3. Model Assumptions/Limitations
3.3.1. Distribution of Heavy Elements

The distribution of heavy elements in the interior of exoplanets is
still an open question. Some models assume for simplicity that
all the heavy elements are in the core (Mordasini et al. 2012).
For warm Jupiters, Thorngren et al. (2016) set an upper limit
of 10 Mg of heavy elements in the core and the rest is mixed
homogeneously in the envelope. Current models developed to
explain the anomalously large radii of hot Jupiters mix all the
heavy elements in the envelope and do not include a central core
(e.g. TF18; Komacek & Youdin 2017).

From the Juno mission, we now know that Jupiter has a
diluted core (Wahl et al. 2017) based on the measurements of

Jupiter’s low-order gravitational moments (Folkner et al. 2017),
yet these findings are challenging to explain from standard for-
mation models (Muller et al. 2020). Even though the interior
structures are highly affected by the chosen equation of state,
the prediction of an enriched envelope still holds (Wahl et al.
2017). Planet formation models based on core accretion and
that include the effect of envelope enrichment, also suggest that
gas giant planets can be formed, notably at an accelerated rate
(Venturini et al. 2016). Envelope enrichment compared to the
Sun has also been observed for all of our four giant planets
(Guillot & Gautier 2014).

In this work, all the heavy elements are mixed homoge-
neously in the convective part of the interior and are made up en-
tirely of water. A central core is therefore not included. We com-
pare the effect of the distribution of the heavy elements in the
core versus in the envelope on the transit radius of the planet and
hence on the heating efficiency €. We find that for HD209458 b,
42 Mg, distributed in the core or in the envelope do not change
significantly the radius when we account for heating in the inte-
rior. The absolute relative change in the radius is less than 2% for
€ ranging between 0 — 5%. These results are also in agreement
with Thorngren et al. (2016), which reached the same conclu-
sion without accounting for heat dissipation. The median rela-
tive uncertainties on the radii measurements from observations
in our sample is 4.3%, thus the distribution of the heavy elements
has little effect on the inference of L, and therefore €. We also
show in Section 6 that the uncertainty on the heating efficiency is
mainly dominated by the amount of heavy elements in the planet
rather than their distribution within the planet.

3.3.2. Depth of Internal Heating

In our model, we assume that the heat is deposited in the interior
of the planet. However, the pressures at which heat is deposited
is still not constrained. Within the context of ohmic dissipation
(Batygin & Stevenson 2010), the depth of internal heating is
mainly dominated by the electrical conductivity profile and by
the depth of the wind zone. The layers that contribute the most
are the layers close to the RCB. At lower pressures heat is re-
radiated, whereas at higher pressures ohmic heating is not effi-
cient due to the high conductivity there (Batygin & Stevenson
2010; Batygin et al. 2011). Huang & Cumming (2012) deposit
the extra heat in the radiative layers and do not include ohmic
heating below pressures of 10 bar. Under these assumptions,
the RCB moves to higher pressures. Wu & Lithwick (2013)
showed that heat deposited at deep layers requires significantly
less heating efficiency in comparison to depositing the extra heat
at shallow pressures. For planetary parameters similar to TrEs-
4 b and using the same heating efficiency, the model of Batygin
& Stevenson (2010) yields a planetary radius of 1.9 Ry, while
under a similar model Wu & Lithwick (2013) yields 1.6 Ry.
Differences in the radial profiles of the conductivity and wind
might explain this difference. This however shows the difficulty
in comparing models under the same heating mechanism but us-
ing different assumptions.

Komacek & Youdin (2017) studied systematically the effect
of varying the depth of heating on the radius and found that
heat deposited in the convective layers can explain the radii of
hot Jupiters. Modest heating at pressures larger than 100 bar is
enough, on condition that the heating is applied at an early age
while the interior at such pressures is still convective. Heating at
any pressure deeper than 10* bar leads to similar radii.

All the results we show are based on the assumption that heat
is deposited in the deep interior. Therefore, the heating efficien-
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cies we compute could be underestimated. This potentially has
also an effect on the interior structure of hot Jupiters, where we
show that the RCB moves to lower pressures.

4. Statistical Model

Our goal is to estimate the internal luminosity and heating ef-
ficiency for the individual planets and for the population of hot
Jupiters, while accounting for the uncertainties on the observed
parameters. In this section, we describe the method used to infer
the distribution of the internal luminosity and thus the heating
efficiency for each planet, by establishing a probabilistic frame-
work to link the observed planetary radius to the predicted one
from the theoretical model described in Section 3. We start by
describing how the internal luminosity for each individual planet
is computed in Section 4.1. We will refer to this step as the lower
level of the hierarchical model. In Section 4.2, we then combine
the individual posterior samplings to study the global distribu-
tion of the full population. This will be referred to as the upper
level of the hierarchical model.

4.1. Lower Level of the Hierarchical Model: Inferring Ly, for
Each Planet

For each planet n (n = 1,2,...,N), the planetary radius Rp,
depends in our model on the planetary mass M, ,, the fraction
of heavy elements Z, ,, the planet internal luminosity Liy,, and
the stellar incident flux F ,, which further depends on the stellar
luminosity L., and on the semi-major axis a,. In what follows,
all the quantities refer to the individual hot Jupiter’s physical
parameters. In this framework, we define w,,, the parameters that
determine the planetary radius for each individual hot Jupiter

Wy = (Mp,m Zp,na Lint,na L*,n, an) (8)

and thus the predicted radius from the theoretical models Ry, is
a deterministic function of w,, where R, = f(wy). R, is deter-
mined using the internal structure model described in Section 3.
Given the observed planetary mass, semi-major axis, and stel-
lar luminosity, and using the mass—heavy-element mass relation
from Thorngren et al. (2016), we aim to infer the distribution
of Lin, that reproduces the observed radius. We thus intend
to answer the question: What is the internal luminosity of the
planet given the observable parameters and our assumption on
the fraction of heavy elements? Therefore, we define the likeli-
hood function, the probability to observe the data given a specific
set of model parameters, as

P(D,lwy) = P(Rp,n|Mp,n, Zp,ns Lingns Ly, ap). )

Finally, the posterior probability function, the probability of the
parameters w,, given the data D,,, is

P(wy|Dy) < P(Dylwy)P(wy) (10)
o P(Rp,nlMp,n, Zp,m Lim,n, L*,n, an)

X P(Mp,n’ Zp,nv Lint,n, L*,n, an) (1 1)
< P(Rp,nlMp,n: Zp,n’ Lintns Lins @)

X P(Zpn|Mp ) P(Mp 2) P(Lingn) P(Lin) P(ay).  (12)

In the last line in Equation (12) we assume that Liyp, L. », and a,
are independent of each other and that Z, , depends on M,,, fol-
lowing the mass—heavy-element mass relation (Thorngren et al.
2016). This inference allows us to account for data uncertainties.
The semi-major axis is known precisely from observations and
hence we fix the value to the observed one. We then marginalize
over My, Zyn, and L., to infer the distribution of the internal
luminosity. We assume that the distribution of each of the ob-
served parameter is a Gaussian distribution centered on the true
quantity with a scatter given by the measurement uncertainties.
Following the standard statistical notation, we can write

M, | Mo, O Mpn ™~ N(Mpt,na O—Mp,n) (13)
Zon | Mpn, @, B, 02 ~ N(aMy,',077) (14)
L*,n | L*t,n’ O-L*,,, ~ N(L*t,n’ O-L*_n) (15)
Rp,n | Rt,na O-va,, ~ N(Rt,n’ O-Rp_n) (16)

€~ UW0%,5%) a7

where a, 3, and o, are the values taken from the mass—heavy-
element mass relation established by Thorngren et al. (2016).
We use a = 57.9/317.828, 8 = 0.61, and o = 10'%2/317.828
where 1M; = 317.828 Mg and M, is in Jovian mass M;. Here,
ylp, o0 ~ N(u,o0) implies that y is drawn from a normal dis-
tribution N with mean u and standard deviation o. U denotes
that € is sampled from a uniform distribution. We perform the
inference twice each time using a different prior for the internal
luminosity

Lil’lt,n |a’ b ~ Lq/[(a, b)
Lint,n |Cl, b ~ (LI(IO“, 10h)

(18a)
(18b)

where we set 7y = (a, b) = (0, 5). LU and U implies that Li, is
drawn from a log-uniform and uniform distribution, respectively,
and L, is in Jovian luminosity Ly. Note that in our analysis, we
do not sample €, we sample L;,; and at each step in the Markov
Chain Monte Carlo (MCMC) compute € using

ALiyn a2
€ = Lzaﬂ, (19)
Lin Rp,

which was obtained by combining Equations (6) and (7) and the
relation between the stellar luminosity and flux. We further set a
uniform prior on € over the range 0 — 5% (Equation (17)).

In Equation (18a), Liy 5 is sampled from a log-uniform distri-
bution LU. We choose this prior because the internal luminosity
covers a wide range of values and little is known about the true
underlying distribution. This prior however does not lead to a
uniform distribution in € (see Section 4.1.1 and the right panel of
Figure 3 for details), we therefore also consider a prior distribu-
tion uniform in linear space (Equations (18b)). The distribution
of € is uniform under this prior. In Section 4.1.1 we show in de-
tail how the choice of prior on the internal luminosity affects the
prior on € and we discuss its effect on the inference. Finally, we
can use the structure models to compute the internal temperature
Ty As discussed in Section 3.1.1, the atmospheric models were
computed for T, between 100 and 1000 K. We therefore set an
upper limit of Tj, < 1000 K in order to avoid extrapolation.

The statistical model described in Equations (13)—(18b) and
setting Ti, < 1000 K contain all the relevant distributions to
evaluate Equation (12). All the results shown in Section 6, were
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Fig. 2. The posterior distributions inferred for HD209458 b using our model (Equation (12)). The gray dashed lines show the
observed value for the relevant parameters. The effect of using different prior distribution leads to different posterior distributions
for Liy, €, and Z,. The inferred posterior distributions for the other parameters (L., M), and R;,) are almost identical for both priors

since they are constrained well from observations.

produced by running MCMC using emcee (Foreman-Mackey
et al. 2013). For each planet, we ran MCMC with 50 walk-
ers each with 1000 steps and discard the first half as burn-in.
At each iteration we compute the heating efficiency € using
Equation (19). Using 25,000 samples we then marginalize over
the nuisance parameters and infer the posterior distribution of
Linn and of €. The average acceptance ratio was around ~ 0.5
for almost all the planets in the sample.

As a by-product of this analysis, we also keep track of the PT
profiles and thus infer the distribution of the pressure at the RCB
and the planet internal temperature Tj,. This is useful to gain

insights on the interior structure of hot Jupiters and we present
the analysis in Section 6.4.

4.1.1. Choice of Prior on the Internal Luminosity

In the lower level of the hierarchical model (Section 4.1), we use
non-informative uniform distributions in log and linear space as
prior for the internal luminosity. It is worth studying the effect
of the prior distribution on the final results. Figure 2 shows the
marginalized distributions for HD209458 b using the two differ-
ent priors. The luminosity distribution is shown in log-scale for
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Fig.3. (Left): PDF of the prior on the internal luminosity distributions for WASP-48 b and EPIC-211418728 b under the linear-U/
prior. The systems were chosen arbitrarily for illustrative purposes. Even if we initially set a uniform prior between 104 and 10° Lj,
with a = 0 and b = 5, the actual prior distributions for each planet are not similar and have different a and b values. Notice the log
scale for better visualization. (Right): The heating efficiency prior distribution for EPIC-211418728 b. Assuming log-uniform prior

distribution on L, leads to biases towards smaller values on €.

both distributions for illustrative purposes. Red shows the sam-
ples using a log-uniform distribution while blue using a uniform
distribution in linear space. Note the strong correlation between
the fraction of heavy elements Z, and the internal luminosity
with a Pearson correlation coefficient p > 0.9. The observed pa-
rameters (R, M,, and L,) are reproduced in both cases and the
distributions look almost identical. But the distributions of Ly,
the main parameter of interest, are different leading thus to dif-
ferent distributions in heating efficiency €. We are in a regime
where the data size is small and the choice of the prior distribu-
tion is important and dominates the inference. Note that Figure 2
shows the radius distribution even though we do not sample this
parameter. This is useful to validate the model and to check that
it predicts the observed data. Such plots are referred to as pos-
terior predictive plots and we will apply them in Section 6.1 to
validate the model for each planet.

Ideally, we would want to learn about the internal luminos-
ity of the planet by relying entirely on the observed parame-
ters while the choice of the prior should have minor effects on
the posterior inference. Even though both distributions are non-
informative, the data is not enough that the prior dominates.
To put it in another way, more data is needed to be able to in-
fer the distribution of L, independently of the choice of prior.
Unfortunately, the physical parameters that can be observed for
exoplanets in general and transiting planets specifically are very
limited. One promising avenue might be inferring precisely the
internal temperature, which was for the first time recently esti-
mated for WASP-121 b (Sing et al. 2019) with Tj, = 500 K.
In our results for WASP-121 b, the T, distributions look sim-
ilar using both priors and therefore it is not possible to put

tighter constraints on L;,,. Another promising approach is to put
tighter constraints on the planet mass—heavy-element mass re-
lation, which translates to tighter constraints on Li,, due to the
large degeneracy between Liy and Z,. This can be achieved by
increasing the number of confirmed transiting warm Jupiters, i.e.
giant planets with T¢q < 1000 K. Such relatively cool planets are
not inflated (Demory & Seager 2011). This allows to infer the
fraction of heavy elements for such planets and re-calibrate the
relation between the planet mass and fraction of heavy elements,
similar to what was done by Thorngren et al. (2016) but with a
larger sample.

It is important to explicitly mention that given the setup of
the statistical model, the prior distributions for the individual
planets are not the same because of the imposed upper limit
of € = 5%, which further depends on the observed parame-
ters (Equation (19)). This can be understood by looking at the
bottom line in Equation (12)°, where it is clear that each planet
has different L., My, a, and Z, distributions due to differences
in the observed physical properties. We confirm this by sam-
pling the prior probability density function (PDF), i.e. by run-
ning the model on an empty data set D,, for two different plan-
ets EPIC-211418729 b and WASP-48 b. By not sampling D,
in Equation (12), we effectively sample the prior PDF. The left
panel of Figure 3 illustrates this concept where we show that
the internal luminosity prior distributions are different under
the linear-uniform prior for both planets. Note though the log
scale for better visualization. Even though we imposed a uni-
form distribution between 10° — 105 L;, Ly larger than 1025 Ly

3 The top line in Equation (12) is the likelihood probability density
function (PDF) and the bottom line is the prior PDF.
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for EPIC-211418729 b are not sampled and thus are ruled out.
This cutoff in the distribution at high L, values is a consequence
of the upper limit imposed on € and the low stellar luminosity
which translates to low Teq. With an equilibrium temperature
roughly of Teq = 700 K, a heating efficiency of 5% for EPIC-
211418729 b is equivalent to a maximum L, = 10> L;. On the
other hand, WASP-48 b with Ty = 2000 K (i.e. high L,), an up-
per limit of 5% on the heating efficiency is equivalent to a max-
imum of Liy ~ 10° L;. Note that for WASP-48 b low Li, values
are not ruled out but are less probable. To summarize, even if the
initial prior imposed on Ljy, is T(10%, 10°) witha =0and b = 5,
the actual prior distributions for the individual planets are differ-
ent with different @ and b values. This is a consequence of the
additional prior on € (e < 5%). Planets with low T, their distri-
butions are truncated at high L, values (with b < 5). While this
is not the case for planets with high Teq (with b = 5). The im-
portance of a and b is relevant for the discussion in Section 4.2.

It is also worth studying the consequence of using differ-
ent Ly priors (U and LU) on the heating efficiency e prior
PDF since the relationship between the two parameters is de-
terministic following Equation (19). We follow the same proce-
dure described in the previous paragraph, i.e. we run the model
on an empty data set for EPIC-211418729 b. The right panel
of Figure 3 shows samples from the prior distribution on € for
EPIC-211418729 b using the linear-uniform and log-uniform
cases. It is evident that a log-uniform prior distribution on Lip
does not lead to a uniform prior on € and the inference is biased
towards small € values. Whereas this is not the case when as-
suming a linear-uniform prior on Li,.. We want to stress that this
holds for almost all of the planets in our sample and not only for
EPIC-211418729 b, which was chosen arbitrarily.

From a statistical point of view, a log-uniform prior distri-
bution is favored because of the large range of values and it
is therefore easier to explore the entire parameter space in log
space. However, this prior leads to biases in the € distribution. To
mitigate this, in the following section (Section 4.2) we develop a
flexible hierarchical Bayesian model that accounts for the choice
of prior. We study the population distributions under both priors
in Section 6 and show that the inference at the population level
is independent on the choice of prior.

4.2. Upper Level of the Hierarchical Model: Population Level
Posterior Samplings

4.2.1. General Framework

In Section 4.1, we inferred the distributions of Ly, €, Tiy, and
pressure at the RCB (Prcp) for each planet individually. In this
Section, we derive the equations needed to study the general dis-
tribution of the (i) internal luminosity as a function of planet
radius, (i7) heating efficiency, (iii) internal temperature, and (iv)
pressure at the RCB as a function of T,q. The distributions (7),
(iif), and (iv) provide insights into the interior structure of hot
Jupiters while (i) gives insights into the efficiency of transport-
ing energy into the interior, similar to the work of TF18.

Distributions (i) and (iv) are modeled using a 4™ degree poly-
nomial

gp(X) =ap+aix+ arx* + az x> + agx*. (20)
The set of parameters describing the population is referred to as
hyperparameter and defined as T = {ao, aj, az, as, as}. x is the
planet radius R, for (i) and equilibrium temperature Teq for (iv).

There are many benefits of using polynomial regression com-
pared to other parametric and non-parametric approaches. One
important factor is that these models are flexible and can take a
variety of shapes and curvatures to fit the data, making the re-
sults thus less model dependent compared to parametric models.
Another important factor is that polynomial regression is sim-
ilar to fitting a linear model and thus is computationally inex-
pensive and very fast to compute, unlike non-parametric models
such as Gaussian process. A disadvantage to this approach is the
curse of dimensionality, where the number of model parameters
grows much faster than linearly with the growth of degree of the
polynomial. In our case, we use univariate polynomial regression
with degree 4 and thus the total number of model parameters is
5.

Distribution (ii) is modeled using both a 4" degree polyno-
mial and a Gaussian function

_ 2
1 (Teq Teq()) (21)

8g (Teq) = €max €XP [_5 s

where the hyperparameters 7 = {emax, Teqo, s} are the amplitude,
the temperature at €yax, and the width of the Gaussian function,
respectively.

Finally, distribution (iii) is modeled using a Gaussian func-

tion with the hyperparameter 7 = { Tint,max> Teqo> s}.

4.2.2. Derivation

In what follows, we derive the key equation which the inference
is based on (Equation (28)) but first provide the motivation and
simple description of the method.

We aim to use the single distributions we inferred in the
lower level of the hierarchical model to infer the set of popu-
lation parameters 7, which we will refer to as hyperparameters.
The general form of the full posterior distribution in the hierar-
chical framework is

N
p(T, 0y | {Dy}) o p(7) ﬂ p(@n) p(Dy | ). (22)

In this equation N is the total number of planets, p(r) is the
prior probability distribution on the hyperparameters, p(w,) and
p(D, |w,) are the prior and likelihood distributions for the in-
dividual planets, respectively. The population posterior distribu-
tion is a strong function of the prior imposed at the lower level
of the hierarchical model. This can be understood if we assume
that p(w,) is the same for all planets. Using this assumption,
(T, Wy | {Dy)) scales with p(w,)N.

It is crucial therefore to make sure that the distribution we
infer for the population has physical origins rather than is an out-
put of the choice of prior. Hence, in order to account for the prior
distribution imposed at the lower level of the hierarchical model,
we apply the importance sampling algorithm. We follow closely
the pioneering work established by Hogg et al. (2010) (see also
the Appendix of Price-Whelan et al. 2018). This method has
been used by Foreman-Mackey et al. (2014) to infer the oc-
currence rate of planets as a function of period and radius and
by Rogers (2015) to infer the radius at which the composition
transition from rocky super-Earth to volatile-rich sub-Neptunes.
Briefly, we re-weight the individual posterior samples by the ra-
tio of the value of the hyperparameters 7 evaluated given the new
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hyperprior distribution to the old prior on which the individual
sampling is based on evaluated at the old default 7y values. We
derive below the marginal likelihood distribution.

For each n of N planets, we obtain K posterior samples
of the parameters that determine the planetary radius 6, =
(Mpn,Zpn, Lin,ay) and Liy,. Following similar notation to
Section 4.1 and for brevity, we define the full set of parameters
as

Wy, = (0, Lint,n) = (O, yn)-

We use the individual posterior samplings to compute the like-
lihood of the hierarchical model. For a single planet, the likeli-
hood given the hyperparamters 7 is

(23)

pD,|1) = fp(Dnlwn)p(wn|T)dwn (24)
— p(wn | DnsTO)
= fp(Dn | wy) p(w, | T) P(@n | Dy 70) dw, (25)
o f POnID Dy 7o) de. (26)
p(wn|70)

where in the last equation we applied Bayes’ theorem on the
posterior distribution p(wy, | D,, o), which is the posterior dis-
tribution for a single planet computed using Equation (12). The
set of parameters from which the previous inference was gener-
ated is denoted by 7. For example, as described in the previous
section, the parameters describing the distribution of Ly are 7
= (a, b) = (0, 5). We can then apply the Monte Carlo integral ap-
proximation to estimate the marginalized likelihood distribution
over 6

P (Ynk | T)

D, ~ .
PDnl) POk [ 70)

1 &
%2 27)
k

Essentially, we are assuming that all the probability integrals
can be approximated as sums over samples. In case of infi-
nite samples, this approximation becomes exact. Having de-
rived the marginalized likelihood distribution for a single planet
(Equation 27), the full marginal likelihood is then the product of
the individual likelihoods

14 (y nk | T)
p(Dy} |7) = (28)
" 1_[ Z PO 170)
We can then choose a prior probability distributions for the
hyperparameter T and the posterior probability distribution is

N
D,)) < p(r) ﬂ p(D, 1)

~ p(1) 1—[ Z POnic | T)

PO | 70)

Inside the sum, the numerator is the new probability distribution

that we want to infer given a new set of hyperparameters 7, while

the denominator is the value of the default prior on which the sin-

gle posterior samples is based at the previously assumed values

of 79. We then re-weight the y,; posterior samples by the ra-
tio. This approach of using the posterior samples from the lower

p(Tl{ (29)

(30)

10

level of the hierarchical model like data in the upper level has
been first addressed by Hogg et al. (2010) (see also Foreman-
Mackey et al. 2014, and TF18). Ideally, the inference of T and w,
for all the planets should be done simultaneously, however this
is computationally very expensive as it involves solving 4N + m
integrals, where N is the number of planets and m is the number
of hyperparameters in our model.

Equation (28) is the main equation we use to infer the
general distributions of (i), (if), (iii), and (iv) defined at the
beginning of this Section. We use Kernel Density Estimation
(KDE) to estimate the probability density function (PDF) of each
of the previously inferred distributions to compute p(y.|71),
where we discuss below the functional forms. Note that even
though we define a flat distribution for the internal luminosity,
Equations (18a) and (18b), and set 79 = (a, b) = (0, 5), this is
not strictly the case because additionally we truncate the heating
efficiency 0 < € < 5 % and require 100 < T, < 1000 K. Also,
as noted in Section 4.1.1, each planet has a different prior proba-
bility distribution, leading thus to different values of 7y for each
planet (for an example see left panel of Figure 3). Therefore to
evaluate p(yq« | 70), we sample Equation (12) for each planet on
an empty data set similar to what was done in Section 4.1.1 and
then estimate the PDF using KDE.

For each of the four distributions, we define the general form
Ynk = 8(xur), specifically yu, =

Lint, ik = §(Ryp, nic) (31
€k = 8(Teq,nk) (32)
Tint, nk = g(Teq, nk) (33)
PreB,nk = 8(Teq,nk) (34)

where Ry, n and Teq, i« are the samples of the individual posterior
distributions for the planetary radius and equilibrium tempera-
ture, respectively. The latter was computed at each iteration in
the MCMC at the lower level of the hierarchical model and the
values were stored.

4.2.3. Computational Details

We summarize below the computational procedure. First, at
each iteration in the MCMC we sample the hyperparameters 7
and evaluate the function y,x = g(x,x) using the sampled val-
ues of 7. Second, we compute p(y|7) and p(yu | 7o) using
the pre-computed KDE functions. Finally, we evaluate the log-
likelihood of Equation (28)

Inp({D (35)

N

Z [Z p(ynle)] nE

T POk 1 T0)

N

Z [m [Z exp (Inp(yc | 7) = Inp(ye |To))] an]
k (36)

Q

where in the last equation we compute the log of the sum of
exponentials (log-sum-exp). In practice, this is numerically more
stable compared to evaluating Equation (35).

For all the results presented below, we use emcee to sample
from the posterior probability distribution (Equation (30)). The
functional forms of g(x,) are either a 4™ degree polynomial or
a Gaussian function or both. These are specified in Section 6.
In what follows, we draw K = 2000 random samples from the
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single posterior samples when evaluating the mass—luminosity—
radius relation. For the other relations we set K = 1 and use the
observed Teq values. This is possible since the equilibrium tem-
perature is often well constrained from observations. We ver-
ified that accounting for the uncertainties does not effect the
results. We adopt 44 walkers and run the sampler for 4000 it-
erations where the first half are discarded as burn-in and re-
tain only every 20" sample in the chain to produce independent
samples. We monitored convergence by computing the accep-
tance ratio and by visually inspecting the trace plots and cor-
ner plots. Note that for each relation, we execute this procedure
twice, each time using the samples drawn under the different
prior, log-uniform LU and uniform 2. By running this pro-
cess twice, in Section 5 and Section 6 we show that the results
are not biased by the choice of prior, unlike the lower level of
the hierarchical model. All the data and results are available at
https://tinyurl.com/bloated-hjs-results and the source code can
be found at https://github.com/psarkis/bloatedHJs.

5. Model Validation using Planet Population
Synthesis

To validate the statistical method, we applied the hierarchical
model to a synthetic catalog based on planet population synthe-
sis. The true distribution under which the synthetic dataset was
generated is known. Applying thus our hierarchical model on
this dataset allows us to evaluate the quality of the fit and to
check whether the statistical model gives an accurate represen-
tation of the real distribution based on the observed data.

5.1. Generating Synthetic Catalog

The data set was generated using the Generation III Bern model
of planetary formation and evolution (Emsenhuber et al. 2020).
Inflation was accounted for by including a parameterized bloat-
ing model with a small addition during the formation phase com-
pared to Equation (6) defined as

Ling = €F 7IR) exp(—Timp) (37)
where T, is the optical depth in the disk midplane from the star
to the planet. This relation takes into account that at early times
the disk is optically thick and the planet is at large semimajor
axis, therefore bloating is inefficient. At later times, the planet
migrates inwards, the disk dissipates, and the heating becomes
relevant. Mol Lous & Miguel (2020) showed that migration can
affect the inflation and radius of the planet only when high frac-
tion of energy is deposited into the interior (¢ > 5%) but has no
effect for smaller € values.

For the heating efficiency €, we use the Gaussian relation
(Equation 21). Specifically, we use the values we infer using
the log-U and presented in Table 1. For more details check
Section 6.3. Our model also assumes the heating efficiency is
constant in time and the stellar mass was fixed to 1 M. Using the
same assumptions discussed in Section 3, the heavy elements are
distributed homogeneously in the envelope and we use the fully
non-gray atmospheric models of the petitCODE.

We perform the same cut on the synthetic data, i.e. we select
only planets with 0.37 < Mp < 13 M; and semi-major
axis a < 0.1 au. Since the population synthesis did not produce
hot Jupiters with Tq > 2250 K, we manually moved the planets
inwards by 0.04 au after the formation epoch. This however does
not have an effect on the inference. The population synthesis

consists of 30000 single embryo per disk systems (population
NG?73) out of which 174 hot Jupiters made it into the synthetic
sample.

One of the main advantages of the statistical model is the
ability to account for uncertainties on the parameters. We gener-
ate synthetic uncertainties by calculating the relative uncertainty
for M, Rp, T, and R. based on the observed data and then taking
the median of the computed values. The median of the relative
uncertainty for M, and R, is 7% and 4%, respectively. Whereas
the median of the relative uncertainty based on the observed data
for T, and R, is 1% and 4%, respectively. These parameters were
then used to calculate the uncertainty on L..

5.2. Performing Statistical Inference on the Synthetic Catalog

The Bern planet population synthesis model is based on the core-
accretion model. As such, the model self-consistently computes
the accretion of gas and solids onto the protoplanets, which we
keep track of. We find that the mass of heavy elements is lower
in the synthetic planets than inferred by Thorngren et al. (2016).
We therefore refrain from using this relation in the lower level
of the hierarchical model and replace Equation (14) by

Zpn ~ N(Zpsp,0.05) (38)

where Z, is the value from the population synthesis with a
standard deviation of 0.05, which is equivalent to a relative un-
certainty of 5%.

With this only modification to the original lower level of
the hierarchical model described in Section 4.1, we apply the
method to infer the distribution of L;,, and € for each of the syn-
thetic planets. We compare the marginalized posterior distribu-
tions of the parameters to the simulated values and confirm that
we were able to reproduce Mp, Ry, L., and thus T¢q for all the
synthetic planets. We repeated this procedure twice each time
assuming Ly, follows a log-uniform LU distribution or a linear-
uniform U distribution. The individual posterior distribution for
most of the synthetic planets are flat, which highlights the need
for a hierarchical model that combines the individual distribu-
tions to extract useful information at the population level. This is
one of the main advantages of using hierarchical Bayesian model
(Loredo & Hendry 2019).

We therefore use the marginalized e distribution for each
planet to infer the heating efficiency — equilibrium temperature
(HEET) for the synthetic population following the method de-
scribed in Section 4.2. We model the HEET distribution with
both a Gaussian function and a 4™ degree polynomial. The for-
mer function is used to test the ability of our hierarchical model
to retrieve the input parameters of the Gaussian function and the
latter function to test whether our model can indeed predict a
Gaussian-like pattern.

5.3. Results Using Synthetic Data

With this procedure, we end up with four posterior distributions,
which are shown in Figure 4. The left and middle panel show
the inference done assuming Li, follows a linear-uniform and
log-uniform distributions, respectively, for the Gaussian func-
tion and 4" degree polynomial. The right panel compares the
Gaussian functions shown in the left and middle panel under
both prior distributions. The black dashed line is the true distri-
bution as implemented in the Bern population synthesis model.
The dark and light shaded region shows the 68% and 90% credi-
ble interval. The Gaussian-like pattern is retrieved when using a
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Fig. 4. Model validation on planet population synthesis data. Heating efficiency — equilibrium temperature (HEET) posterior distri-
bution using the linearuniform (left) and the loguniform (middle) priors for a Gaussian and 4" degree polynomial. The thick lines
denotes the posterior median for the relevant functions and the dashed black line denotes the true distribution implemented in the
Bern population synthesis model, which was used to generate the synthetic data. The dark and light shaded region contains the 68%
and 90% credible interval. To better compare the same model using different priors, the right panel shows the Gaussian models
using log (red) and linear (blue) uniform priors. The light gray model in the right panel is the inferred posterior distribution in case
we do not correct for the choice of prior. Our model is able to retrieve the Gaussian-like function when modeled using a 4™ degree
polynomial. The posterior median provides a good fit to the true distribution although the linear model predicts a lower heating
efficiency. The credible intervals derived are able to accurately constrain the true values of the model parameters.

4™ degree polynomial and also in agreement with the inferred
Gaussian distribution. The median posterior using the linear-
uniform prior underestimates slightly the heating efficiency at
the 68% (10°) level but the true model is contained within the
90% (20) credible interval. This test shows that the statistical
framework is able to retrieve the true distribution.

The light gray distribution in the right panel is the inference
done assuming log-uniform distribution without correcting for
the choice of prior at the lower level. This shows the importance
of understanding the prior at the lower level and highlights the
need to re-weight the distributions.

6. Results Using Real Data

We now apply the model described in Section 4.1, i.e. the lower
level of the hierarchical model, to infer the distribution of L;, €,
Tint, and Pgrcp for each of the detected planets. In Section 6.1, we
present diagnostic tools to validate the lower level of the hierar-
chical model. We then use the inferred posterior distributions to
study the mass—luminosity—radius (MLR), Ty — Teq, PreB — Teq,
and heating efficiency — equilibrium temperature (HEET) distri-
butions for the population of hot Jupiters following the model
introduced in Section 4.2. In Section 6.2, we show that by prop-
erly correcting for the choice of prior, the MLR distribution at
the population level is prior independent. We hence present the
rest of the results under the uniform in linear space prior in
Sections 6.3 — 6.4. For completeness, we show the results using
both priors in Appendix A.

6.1. Posterior Predictive Checks

For each system, we infer the distribution of the internal lu-
minosity that reproduces the observed radius, mass, and stel-
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lar luminosity while fixing the semi-major axis to the observed
value. We visually inspect each system to double check that the
marginalized posterior distributions of the observed parameters,
M,, Ry, L., and thus T, are reproduced. Such plots are impor-
tant to check that the model is a good fit and is thus capable of
generating data that resemble the observed data. There are in to-
tal 17 systems where the observed mass and/or radius was not
reproduced and thus we exclude these systems from the data set
and do not include them in the analysis presented below. For
most of the planets the radii are not possible from theoretical
models as they are at the edge of the computed grid for a given
planet mass, stellar luminosity, and semi-major axis. The ob-
served radii tend to be larger than what is possible from the theo-
retical grid and most of these planets have masses M, > 2.5 Mj.
Note that for three systems the stellar luminosity and there-
fore the equilibrium temperature was not reproduced (HAT-P-
20, Qatar-2, and WASP-43). We decide however to keep these
systems since the difference in the equilibrium temperature is on
the order of ~ 30 K and hence the change in the internal lumi-
nosity is almost insignificant.

6.2. Mass—Luminosity—Radius (MLR) distribution

We divide the samples into four mass ranges, similar to the mass
bins estimated by Sestovic et al. (2018) but further divide their
second mass bin into two: the sub-Jupiter planets (0.37 — 0.7 Mj
and 0.7 -0.98 Mj) and the massive-Jupiter planets (0.98 —2.5 M;
and > 2.5 Mjy). The number of planets in each group is 86, 59,
119, and 33 planets, respectively. To infer the MLR distribution,
we run the model (Equation (28) or equivalently Equation (36))
for each mass bin by specifying the functional form of g,(x)
as a 4" degree polynomial using Equation (20). As such, x is
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Fig. 5. Mass—luminosity—radius (MLR) posterior distribution for four different mass bins showing the median (thick line) and 68%
credible interval (shaded area) assuming a uniform prior in log (blue) and linear (red) space. Using either prior leads to almost
identical results. The internal luminosity is high with the largest planets having a luminosity ~ four orders of magnitude larger than

Jupiter.

the planet radius R, in Equation (20) and the hyperparameter
7 ={ao, a1, a2, as, as}.

At each iteration in the MCMC, we compute € following
Equation (19), where the semi-major axis is fixed to the observed
value and L. and R, are drawn from the individual marginal-
ized posterior distributions. We further impose an additional
log-normal prior on € ~ LN(-1,1) for the planets with an
equilibrium temperature less than 1000 K. This reflects our be-

liefs that planets with low equilibrium temperatures are not in-
flated (Demory & Seager 2011), and thus € should be small.
We tested several prior probability distributions on € and ver-
ify that our results are not affected by the choice prior. We repeat
the full procedure twice each time drawing samples from the
lower level of the hierarchical model under the different priors
at the lower level (LU and U) and assign uniform uninforma-
tive priors on the hyperparameters. In Table A.1 and Table A.2
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in Appendix A we give the 68% credible interval values assum-
ing linear-uniform and log-uniform priors and provide the chains
online®.

Figure 5 shows the posterior distribution inferred for all mass
bins under the two priors, uniform in log (red) and linear (blue)
space. Notice that the lower right panel has a different scale to
better visualize the results. Each data point is represented by a
small line at the bottom of the plot at the corresponding radius.
Such plots are called rug plots and are used to visualize the distri-
bution of the data. The posterior distributions under both priors
are almost identical and indistinguishable inline with the conclu-
sion reached in Section 5 by validating the hierarchical model on
synthetic data. There are few differences between both models,
such as at small radii for the least massive planets and at large
radii for the most massive ones. These differences are mainly
dominated by the small number of planets in these regions. This
highlights the importance of re-weighting the samples by divid-
ing by the prior used to do the sampling at the lower level of
the hierarchical model. For the rest of the paper, we show the
results under the prior uniform in linear space, but confirm that
the choice of prior at the lower level of the hierarchical model
does not affect the main results and conclusions.

The basic shape of the MLR relation is similar across all
mass bins, where as expected larger planets have higher internal
luminosity with a plateau around 1.6 R; beyond which the lu-
minosity is almost constant. The small drop towards high radii
has little statistical significance and likely reflects the choice of
a fourth-order polynomial. The inferred internal luminosity for
most of the planets is several orders of magnitude larger than
Jupiter, reaching even up to four orders of magnitude. We also
find that the internal luminosity is mass dependent, with the most
massive planets having the highest internal luminosity.

A noticeable feature is that the sub-Jupiter planets with
masses 0.37 — 0.98 My and radii less than 1 R; have an inter-
nal luminosity larger than Jupiter. At first glance, one might ex-
pect such planets to have an internal luminosity smaller than
Jupiter’s. We note however that the planets that have an equilib-
rium temperature less than 1000 K, indeed tend to have Li, ~
3 Ly and not more. A higher luminosity is expected because,
even with Ty < 1000 K, these planets are still much closer than
Jupiter, which reduces the cooling rate and thus leads to higher
internal luminosity. As for the planets that have equilibrium tem-
perature larger than 1000 K, they tend to have higher fraction of
heavy elements distributed in the envelope. There are only two
sub-Jupiter planets in our sample that have radii less than 0.7
Ry, K2-60 and WASP-86, both of which require large fraction of
heavy elements, 0.64 and 0.8, respectively, ruling out values less
than 0.5. The high fraction of heavy elements explains the high
luminosity values and the small number of planets with radii less
than 1 Ry is why the distribution is poorly constrained in this
regime.

6.3. Heating Efficiency Equilibrium Temperature (HEET)
distribution

Similar to the previous section, we also apply the model de-
fined in Section 4.2 to study the HEET relation using both func-
tion forms: g, a 4™ degree polynomial (Equation (20)) and 8¢
a Gaussian function (Equation (21)) with T = {emax, Teqo, s}.
The former is a flexible function that allows us to constrain the
general shape of the relation by relying entirely on the data
as motivated in the previous section, while the latter allows us

4 https://tinyurl.com/bloated-hjs-results
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Table 1. Comparison of the Gaussian function using the log and
linear uniform prior along with comparison to TF18 results.

T log-U  linear-U TF18
ena[%] 2467037 249705 237550
Teqo [K] 1982j§§ 1862fg¥ 1566j§~?

sIK] 532530 508 32773

to compare our results to TF18 and to theoretical predictions.
Following the same methodology applied to the MLR relation,
we further impose for the g, model the LN(-1, 1) prior on the
heating efficiency for planets with equilibrium temperatures less
than 1000 K. Note that the individual distributions are flat, sim-
ilar to the distributions of the synthetic planets and useful infor-
mation can only be extracted by combining the individual distri-
butions.

In Table A.3 in Appendix A we give the 68% credible in-
terval values assuming LU and U priors using the polyno-
mial model. The Gaussian models are shown in Table 1 and the
MCMC chains are available online>. The true distribution that
was used to generate the synthetic data in Section 5 are the val-
ues we obtained using the log-U prior and shown in Table 1.

The left panel of Figure 6 shows that the posterior distribu-
tions are similar under both functional forms, with the polyno-
mial function leading slightly to higher efficiencies. Using an in-
dependent interior structure model and a larger sample focused
on FGK main-sequence stars, our results are qualitatively consis-
tent with TF18. We confirm the Gaussian pattern holds indepen-
dent of the choice of prior (see Figure A.1 in Appendix A). This
pattern was predicted by ohmic dissipation first based on simu-
lations (e.g. Menou 2012) and then later supported by TF18. Our
analysis provides further evidence of the Gaussian-like distribu-
tion.

6.3.1. Comparison to TF18

To compare our results to TF18, we report the median and the
68% credible interval of TF18 in Table 1. We also show the pos-
terior distributions in the right panel of Figure 6. The heating
efficiency increases until a maximum is reached at 749, beyond
which the efficiency decreases. Our result regarding the maxi-
mum heating efficiency agrees well within 10~ with TF18, where
we determine €p,x ~ 2.50 %, compared to ~ 2.37 %. In our
model, the peak occurs at ~ 1860 K, while TF18 estimate the
transition at ~ 1566 K. This discrepancy can be attributed ei-
ther to differences in the statistical framework or in the interior
structure model. We will address both next.

While TF18 used a non-parametric Gaussian Process (GP)
approach to model the HEET distribution, they found consistent
results with the Gaussian function. In our study, instead of mod-
eling the HEET distribution with a non-parametric GP model,
we use a flexible 4" degree polynomial that we stress is very
fast to compute® and find consistent results with the Gaussian
function. To test whether this discrepancy could be due to the

5 https://tinyurl.com/bloated-hjs-results

® Tt takes around 5 minutes on a modern laptop to evaluate the upper
model for K = 1, i.e. without accounting for uncertainties on the x-axis.
For K = 2000, it takes around 2 CPU hours on a server using 20 cores.
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Fig. 6. (Left): Heating efficiency — equilibrium temperature (HEET) posterior distribution under the linear-uniform prior using a
Gaussian function and a 4™ degree polynomial. (Right): the Gaussian function shown on the left side in comparison to the HEET
posterior distribution inferred by TF18. The shaded region show the 68% credible interval. There is a good agreement between the
Gaussian and poly models, which shows that indeed the HEET distribution follows a Gaussian function. Our results are in agreement
with the findings of TF18 although the peak in our models is shifted to higher equilibrium temperatures.

statistical framework, we ran our statistical model using the in-
dividual distributions inferred by the analysis of TF18, which
were shared with us. Note that using their data, there is no need
to re-weight the distributions. See Section 6.3.2 for a detailed
explanation. We confirm we were able to recover their poste-
rior distribution using both a Gaussian function and a 4" degree
polynomial. There is a very good agreement at the 1o level, ex-
cept for Teq < 1000 K where the results are slightly different.
The amplitudes are in agreement at the 1o level even though
we find tighter credible intervals at the 1o level but very good
agreement at 20-. With this we conclude that the differences are
not due to the statistical framework.

We now study the differences in the interior structure model
by comparing the solid black and dashed red models in the left
panel of Figure 1 computed using our model completo21l and
by TF18’, respectively. Both of these models are for a 1 M;
planet with a pure H/He envelope without accounting for in-
flation. In our case the planets are 5 Gyr old. Using our struc-
ture model, R, ranges between 1.12 — 1.22 R; for T, between
800—2500 K. In comparison, R}, is between 1.11 —1.31 Ry using
the TF18 models for the same T, interval. While the the radii at
low Tq are almost identical, the differences at high T are up to
~ 0.1 R;. We notice that both models lead to different radii start-
ing at Teq > 1500 K. This difference could explain the higher
heating efficiency we infer at Toq > 2000 K. Since the planets
in our model have smaller radii starting at 1500 K, then more
energy needs to be transported into the interior to reproduce the

7 This is the same red dashed model shown in Figure 1 in the TF18
paper.

observed radius, leading to higher € values compared to TF18.
Note that this is a simple case scenario where the models are for
planets made entirely of pure H/He. While this scenario explains
the trend, more tests are needed to compare the radii at different
T4 for different fraction of heavy elements since the details of
the EOS for the heavy element could in principle also be a source
of discrepancy between the models.

The discrepancy in the radii could be caused by differences
in the atmospheric modelling. We next compare the atmospheric
models of petitCODE and Fortney et al. (2007), which was
used by TF18 and did not include TiO and VO. The previously
computed atmospheric grid using petitCODE include TiO and
VO (see Section 3.1.1). We therefore calculate the PT struc-
ture for a typical hot Jupiter at solar compostion, Ti, = 100 K,
Teq = 2000 K, and log g = 3.27 without accounting for these ab-
sorbers. We find that in the absence of TiO and VO no inversion
was formed with similar profiles using both atmospheric mod-
els. We then calculate the entropy of both structures using our
EOS. We find that the entropy in the convective layers at pres-
sure of 10* bar is 7.55 kB/baryon using petitCODE compared
to an entropy of < 7.65 kB/baryon at pressure of 1000 bar using
the models of Fortney et al. (2007). Note that at this pressure the
structure is still not convective and thus the entropy is smaller
than 7.65 kB/baryon in the convective layers and most likely
the difference is < 0.1 kB/baryon between both models. Note
that when including TiO/VO the entropy is ~ 7.5 kB/baryon.
A higher entropy leads to larger radii (e.g. Spiegel & Burrows
2013; Marleau & Cumming 2014) and as such we conclude that
the difference between both models presented in Figure 1 could
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be due to differences in the opacities high up in the atmosphere,
namely TiO/VO, which then have a larger effect on the deep at-
mosphere due to the (anti) greenhouse effect.

A more systematic comparison between both atmospheric
models for different Tq and log g is required to further quantify
the discrepancies, which is beyond the scope of this paper. We
note that both studies do not account for systematic differences
in the structure models. Such comparisons will therefore allow
similar future studies to account for the systematic differences
and thus infer more reliable credible intervals.

6.3.2. Are the Results of TF18 Prior Dependent?

In short, no.

In our study, we sample Li and then compute € using
Equation (19). We imposed two different prior distributions on
Ly, because we do not have a priori knowledge which distri-
bution best represent the population. Within a statistical frame-
work, a log-uniform distribution is preferred in order to explore
the entire parameter space. However, as we showed in the right
panel of Figure 3, this leads to biases giving more weight to
lower heating efficiency. Whereas, a linear-uniform prior distri-
bution on Li,; leads to approximately a uniform prior distribution
on €.

As discussed in Section 4.2.2, the choice of prior distribu-
tion is important as the posterior distribution scales to the num-
ber of planets N. Thus the need to re-weight the distributions at
the upper level. Another way to approach this study is to per-
form a full hierarchical Bayesian modeling where the inference
on both the individual planets and population is made simulta-
neously (Wolfgang & Lopez 2015; Wolfgang et al. 2016).

In the study of TF18, the setup is different. They sample €
and impose a uniform prior between 0 — 5%. There are no ad-
ditional conditions that truncate the e distribution, which itself
is flat non-informative prior. Therefore, there is no need to re-
weight the distributions.

In general, it is always a good practice to sample the prior
PDF distribution (Hogg & Foreman-Mackey 2018). This step is
important to check whether MCMC samples correctly the spec-
ified prior distributions.

6.3.3. Is the Decrease in Efficiency at High T, Real?

In order to check whether the decrease in the heating efficiency
at high Tq is real or not, we re-ran the lower-level model for all
the planets with Teq > 2000 K. We assumed a linear-uniform
prior for L, to ensure the results are not biased towards small €
values. Additionally, we did not put constraints on Tjy. This is
important for the highly irradiated planets where T, ~ 1000 K
translates to € < 5%.

The main goal of this exercise is to check whether the interior
structure model allows for high e values for all the planets with
Teq > 2000 K. The cutoff was chosen to be close to the peak of
the Gaussian function as inferred previously in Section 6.3 (see
also Table 1). This allows us to compare the e distribution for
planets with T4 close to 2000 K to the highly irradiated ones.
If the structure model allows for high € values for the mostly ir-
radiated planets, then we do not have enough evidence that the
decrease in the heating efficiency is real. Otherwise, there is ev-
idence that the decrease is real.

Figure 7 shows the posterior distributions of the heating effi-
ciency e. Planets with T,q < 2250 K are in blue and planets with
Teq > 2250 K are shown in red. As can be seen, all but one of the
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Fig. 7. Posterior distributions of the heating efficiency e for all
the planets with T.q > 2000 K. The colors indicate planets with
Teq < 2250 K and Teq > 2250 K in blue and red, respectively.
Six out of the seven planets shown in red favor small heating
efficiency values with the most probable value close to € ~ 1%.
This provides evidence that the interior structure model disfavor
high € values and thus the decrease seen in the HEET distribution
is real given our structure model.

planets with T,q > 2250 K disfavor high e values with the most
probable value around ~ 1%. The only planet where high € val-
ues are likely is the massive hot Jupiter WASP-18b (10.52 Mj;
Maxted et al. 2013). At this mass, the radius is a weak function
of Ly and € as it is difficult to inflate massive planets (Sestovic
et al. 2018). We therefore consider WASP-18b an exceptional
case, especially that all the planets with Ty > 2000 K have
Mp <24 M, J.

This analysis illustrates that hot Jupiters with Teq > 2250 K
require low heating efficiencies to reproduce their radii using
our interior structure model, which supports the Gaussian-like
pattern and the decrease at 2000 K. With 20 planets having
Teq > 2000 K out of which only 7 planets have Teq > 2250 K,
future ultra-short hot Jupiters discoveries are essential to further
confirm or refute this trend.

6.4. Distributions of Internal Temperature and Pressure at
the RCB

Having inferred the population level distributions of the internal
luminosity distribution and the heating efficiency, it is interesting
to study the effect of energy dissipation on the interior structure
of the planet. In particular, we show that as a consequence of
transporting energy into the interior, hot Jupiters have very hot
interiors which in turn pushes the RCB to low pressures. Our
findings are in agreement with Thorngren et al. (2019) (here-
after T19), where they used the HEET relation presented in TF18
to compute Tj,, and then generate PT atmospheric models for a
range of Teq and surface gravities to locate the Prcg.
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Fig. 8. Tiy—Teq and Preg—Teq diagrams in the upper and lower panel, respectively. The dark and light shaded regions present the 68%
and 95% credible intervals. Although the analytical approach overestimates the internal temperature at T, between 1000 — 1800 K,
there is a good agreement at Toq < 1000 K and T4 > 1800 K. Due to the increase in the internal temperature with equilibrium
temperature, the Prcg moves to lower pressures with increasing Teq, reaching up to ~ 3 bar for the most irradiated planets.

As mentioned in Section 4.1, we keep track of the PT pro-
files, and thus we can infer the distribution of the internal tem-
perature and the pressure of the RCB for each planet. We again
apply the model defined in Section 4.2 to study the distributions
of Ty and Pgcp as a function of Teq. We model the distributions,
Ting — Teq and Prep — Teg, as a Gaussian function and 4™ degree
polynomial, respectively. At steady state,

4
T = €' Teq

=8 (Teq)l/4 Teq

(39)
(40)

where the last equation was obtained by replacing Ly, =
4nR5o Tyt in Equation (6) and combining Equations (1) and
(7). We use the samples from our previous analysis using
the Gaussian model (see Section 6.3) to compute Tj, us-
ing Equation (40) and compare the results to the hierarchical

Bayesian approach. We refer to the former method as the analyti-

cal approach. For all the models, we assign uniform distributions
on all the hyperparameters.

Figure 8 shows the inferred posterior distribution for the in-
ternal temperature (upper panel) and pressure at the RCB (lower
panel) as a function of the equilibrium temperature. The ana-
lytical approach leads similar results to the Bayesian approach
at the lowest and highest equilibrium temperatures. However,
Ty is overestimated at the 20 level for Teq between 1000 and
1800 K. This difference could be because we did not account for
intrinsic scatter in the model, which we leave for future work.

For both models, almost all hot Jupiters have T, larger than
200 K, while, for comparison, the internal temperature of Jupiter
is 100 K (Li et al. 2012; Guillot & Gautier 2014). This is ex-
pected given the observed inflated radii. WASP-121b is the only
exoplanet to date whose internal temperature was constrained
from observations of Mg and Fe in the transmission spectrum,
with a reported value of 500 K (Sing et al. 2019). With an equi-
librium temperature of Toq = 2358 + 52 K (Delrez et al. 2016),
we infer Ti, ~ 800 K and by inspecting the individual posterior
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distribution of WASP-121b, we rule out values below 500 K.
This is the first hint from observations that hot Jupiters possess
hot interiors, which is associated with a high internal entropy.

Another notable parameter to study is the pressure of the
RCB as this partly controls the planetary cooling rate (Arras
& Bildsten 2006; Spiegel & Burrows 2013). It is known that
high equilibrium temperature pushes the RCB deeper into the
planet (e.g. Fortney et al. 2007), however high internal tempera-
ture pushes the RCB to lower pressures. Therefore, the location
of the RCB is not known beforehand for planets with high equi-
librium and internal temperatures. The lower panel of Figure 8
shows that the RCB is situated at low pressures or at shallow
depths for high T,. The effect of the high internal temperature is
thus dominant. The planets receiving high stellar irradiation tend
to have hot interiors, typically around ~ 800 K, which pushes
the RCB to low pressures, reaching ~ 3 bar for the most extreme
cases.

Our results agree well with T19. While we report a maxi-
mum Tj, of 800 K at Teq ~ 2500 K, T19 finds the maximum
Tin of 700 K at Teq ~ 1800 K. The difference is mainly due to
the differences in the e(T,q) distribution (see Section 6.3). We
estimate the RCB to be at 100 bar and 4 bar for T, = 1000 K
and 2000 K, respectively, in agreement with the findings of T19.
Qualitatively, both models show the same pattern where the hot
interior of hot Jupiters drive the RCB to lower pressures.

We provide the 68% credible interval values for the
Gaussian model under both priors for the Tiy—Teq distribution in
Table A.4. The values for the Prcg—Teq distribution are shown
in Table A.5, also under both priors. For both distributions the
chains are available online®.

7. Discussion

Building on the assumption that hot Jupiters are inflated because
of a process leading to high internal luminosity, we infer for
each planet the internal luminosity distribution that reproduces
the radius given the planet mass and equilibrium temperature
from observations and using the mass—heavy-element relation
(Thorngren et al. 2016) as a prior for the fraction of heavy el-
ements. We then combine the individual distributions to con-
strain the population mass—luminosity—radius (MLR) distribu-
tion. Assuming that the source of extra heat in the interior is the
irradiation by the host star (e.g. tides or magnetic fields), we then
compute the fraction of the incident flux € deposited in the in-
terior and study the heating-efficiency—equilibrium-temperature
(HEET) distribution for the full population. Finally, as a by-
product of our structure model, we can also gain insights into
the interior structure of the planets by inferring the distributions
of the internal temperature and the pressure at the RCB.

In what follows, in Section 7.1 we discuss the conse-
quences of the hot interior hot Jupiters possess on the inter-
nal structure. Then we discuss our results within the context
of the competing heating mechanisms, mainly ohmic dissipa-
tion in Section 7.2 and advection of potential temperature in
Section 7.3. In Section 7.4, we give a general comparison with
analytical relations and discuss the limitations and caveats of our
results in Section 7.5.

7.1. Insights into the Interior Structure of Hot Jupiters

We have shown that hot Jupiters have hot interiors, with an in-
ternal temperature as high as 800 K. This has important conse-

8 https://tinyurl.com/bloated-hjs-results
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quences on the location of the RCB, which in turn is important
for the heating mechanism. Komacek & Youdin (2017) showed
that heat dissipated in the convective layers suppresses cooling
and thus enables the planet to maintain a large radius. Heat de-
posited in the radiative layer, however, does not significantly in-
hibit cooling. Most it is re-radiated away leading therefore to
small radii. The location of the RCB is hence important to con-
strain the minimum depth at which the heat should be deposited
and thus the efficiency of the heating mechanism. We find that
the RCB is around 100 bar for planets with equilibrium tem-
peratures of about 1000 K, and can reach 3 bar for the highly
irradiated planets, which is significantly lower than previous es-
timates of 1000 bar without accounting for a bloating mecha-
nism (Fortney et al. 2007). Our results are in agreement with
T19 based on coupling the heating efficiency relation (TF18) to
a planetary interior structure model.

Mechanisms based on transporting heat into the deep inte-
rior, such as atmospheric circulation (Showman & Guillot 2002),
ohmic dissipation (Batygin & Stevenson 2010), or advection of
potential temperature (Tremblin et al. 2017) rely on the existence
of winds in the interior. While the extra heat must be deposited
in the convective layer in order to inflate the planet (Komacek &
Youdin 2017), the actual wind speeds are not constrained from
Global Circulation Models (GCMs) due to inaccurate coupling
between the atmosphere and deep interior. Recently, Carone
et al. (2019) showed that through a better treatment of the lower
boundary condition, i.e. by accounting for a hot interior, shallow
zonal winds are present at 100 bar. With new estimates and bet-
ter understanding of the internal temperature and pressure at the
RCB, the depth of the wind zone and wind speeds can be con-
strained from GCM models, which in turn will be key inputs to
further study the efficiency of the proposed mechanisms.

7.2. Comparison to Ohmic Dissipation

The general idea of ohmic dissipation is that equilibrium temper-
atures larger than 1000 K lead to thermally ionized atmospheres
that couples to the magnetic field and in the presence of strong
winds produces currents, which then dissipate thermally in the
deep interior (Batygin & Stevenson 2010; Batygin et al. 2011).
However, in the high equilibrium temperature regime and there-
fore high atmospheric ionization fraction, ions slow down the
winds due to Lorentz force, which in turn decrease the efficiency
of ohmic dissipation (Perna et al. 2010a,b). Scaling law relations
based on ohmic dissipation showed that indeed the heating effi-
ciency increases with equilibrium temperature until a maximum
is reached beyond which the efficiency decreases (Menou 2012),
which was also confirmed by TF18 and now in our study. The
scaling laws also suggest that the location of the peak depends on
the strength of the magnetic field. Therefore, studying the func-
tional form of the HEET distribution provides insights within the
context of ohmic dissipation.

Based on our analysis, we find that the HEET distribution
can be modeled by a Gaussian function, in agreement with TF18
and with the theoretical predictions. We find however that the
location of the peak is at 1860 K, which is higher compared to
the work of TF18 that reported the peak around 1566 K (see
Table 1). Menou (2012) showed that the transition is a func-
tion of the strength of the magnetic field (see his Figure 4)
where stronger magnetic fields push the peak to higher equilib-
rium temperatures (the peak is at ~ 1800 K for a 30 G field).
Ginzburg & Sari (2016) estimate the transition around ~ 1500 K
based on analytical models and Rogers & Komacek (2014) at
~ 1500 — 1600 K based on magnetohydrodynamic simulations.
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Fig.9. Temperature at 100 bar derived from our PT structures
compared to the values from the average PT profiles using 2D
circulation models presented by Tremblin et al. (2017) result-
ing from the advection of potential temperature. All the models
correspond to a planet with log g = 2.97 + 0.15 and increasing
stellar incident flux. The gray dashed line shows the 1:1 relation
while the red dashed line shows the fit to the data.

Yadav & Thorngren (2017) estimate the surface magnetic field
strength of hot Jupiters using the energy flux scaling law from
Christensen et al. (2009) and account for the extra heat injected
using the heating efficiency relation presented by TF18. They
found magnetic field strengths around 50 — 100 G for the most
inflated hot Jupiters. There are no theoretical atmospheric cir-
culation models with such strong magnetic fields, which might
hence change the location of the peak. The transition is still not
well constrained and might depend on the field strength but the
Gaussian distribution is robust and most importantly is prior in-
dependent. Future observations of magnetic field strengths could
potentially provide a better overview but for now they remain
unconstrained from an observational point of view (for a current
review see Griessmeier 2017; Lazio 2018).

7.3. Comparison to Advection of Potential Temperature

Another source of heat could be the movement of high-entropy
fluid parcels deeper into the atmosphere, a process known as ad-
vection of potential temperature. Within this context, Tremblin
et al. (2017) suggested, using two-dimensional (2D) circulation
model, that this process leads to a hot interior that can naturally
explain the radius anomaly of hot Jupiters. This was further sup-
ported recently by 3D GCM simulations (Sainsbury-Martinez
et al. 2019). The 2D models show that a stronger stellar inci-
dent flux leads to hotter interior adiabat (see their Figure 5).
We compare our results based on the 1D model to the 2D mod-
els by selecting four planets from our sample that matches their
simulation parameters, i.e. log g = 2.97 + 0.15 with the corre-
sponding equilibrium temperatures. We do not include the model
with the lowest equilibrium temperature (~ 500 K) as it does not
match any of the selected systems in our sample. The planets
we selected as a function of increasing stellar incident flux are

HAT-P-17b, Corot-4 b, HD209458 b, and HATS-35b. We then
compare the temperatures at 100 bar (T}qo) using the PT pro-
files based on the 2D models to the ones based on our 1D model
presented in Section 3. The results are illustrated in Figure 9,
where the derived temperatures at 100 bar are shown in blue cir-
cles and the red dashed line shows the fit to the data. The gray
dashed line shows the 1:1 relation on which the points would
lie if their model and our data derived from observations would
predict identical temperatures. We find that roughly the results
agree well with a slope of 1.25, deviating from the 1:1 relation.
We note however that these values are model dependent and any
change in the treatment of the atmospheric model, e.g. includ-
ing clouds and new opacity sources, will change these values.
The temperatures estimated from the average PT profiles using
the 2D circulation models are larger than the values predicted by
our model, varying from 6% up to 15% for the most irradiated
planets. This is expected since the 2D models tend to overesti-
mate the radii compared to the observed ones (Tremblin et al.
2017). Our results concerning the adiabatic profile are also in
agreement, where the 2D and 3D atmospheric circulation mod-
els suggest a hot adiabat starting at ~10 bar, significantly at lower
pressures compared to standard irradiated models (e.g. Fortney
et al. 2007). This is in agreement with our findings and conclu-
sions that future GCM models should account for the extra heat
in the interior of inflated hot Jupiters and in-line with the work
of Carone et al. (2019). We note however that convection is not
included in the models of Tremblin et al. (2017). In this context,
the RCB should not be interpreted as a Radiative-Convective-
Boundary but rather as a proxy for the Radiative-Circulation-
Boundary. As such, the energy flux is downwards and not up-
wards, which in turn leads to a hotter adiabat.

7.4. General Compatrison to Previous Studies

It is useful and informative to compare the results of our model
with analytical relations. We consider the analytical approxi-
mations of the internal luminosity based on ohmic dissipation
(LHuang: Equation (14) of Huang & Cumming 2012) and thermal
tides (Lsocrates; Equation (8) of Socrates 2013):

) 10651 —1

Ltuang = 3 X 102 ergs™ (
Ry

T M, @
1500K J\R; | \ M,
Lsocrates = 1.5 % 10%8 ergs” (4 days)
Ty V[ R\
: 42
% (20001() (1010 cm “2)

In the above equations, By is the toroidal component of the mag-
netic field at a reference pressure of 10 bar, o is the electrical
conductivity in the dissipation region, and P is the orbital period.
To compute Lijyang, We fix o to the nominal value 10°s~! and
consider two different cases for By. In the first case, we fix By
to 10 G and in the second case, we compute the mean magnetic
field strength at the surface of the dynamo based on the scaling
law of Christensen et al. (2009) in the form given by Reiners &
Christensen (2010):
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Fig. 10. Comparison of the internal luminosity derived in this work from observations and other (theoretical) studies. The solid
dashed lines are from top to botton the 1:10, 1:1, and 1:0.1 relations. The different panels show the results in comparison with
analytical relations (Huang & Cumming 2012; Socrates 2013), numerical modeling (Tremblin et al. 2017), and based on a statistical
approach similar to ours (TF18). See text for explanations on the different versions of Liuang and Lryemplin.- Notice the different
scales in each panel. The results based on the analytical approximations of Huang & Cumming (2012) underestimate L;,,. There is
an agreement with TF18, Tremblin et al. (2017), and Socrates (2013) giving thus evidence for advection of potential temperature
and thermal tides as possible mechanisms to explain the radius inflation conundrum.

and 480 G for our sample, in agreement with the previous es-
1/6 timates of Yadav & Thorngren (2017). We refer to these cases
ML? ; o
By = 4.8 X 10° G x (43) Liuang, Bfixed and Lijyang, Bvar, Tespectively. It is straightforward
Y 7 then to calculate Lsocrates» LHuang, Bfixed aNd LHuang, Bvar fOr each

hot Jupiter in our sample using the relevant physical properties.
where M, L, and R are the mass, luminosity, and radius of P P & Py prop

the planet normalized to solar units. We assume Bso = Bgyn. We also examine our results within the context of advec-
Note that using this relation, By, ranges roughly between 30  tion of high-entropy material based on models of Tremblin et al.
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(2017). Our aim is to compare the internal luminosity of the
planets that this mechanism predicts to the internal luminosities
derived in Section 4.1. Tremblin et al. (2017) computed 2D PT
profiles only for four planets with different T,qvalues. We thus
need to estimate the internal luminosity of all the planets based
on the model of advection of potential temperature, for which
we follow the procedure described next. We first compute the
entropy using the SCvH EOS (Saumon et al. 1995) and T,
which was derived from the 2D PT profiles based on four fidu-
cial planets with different Ty (see Section 7.3 for more details).
Second, we fit a relation between the equilibrium temperatures
of the four planets and their estimated entropy. Finally, to con-
vert the entropy into an internal luminosity, we use the entropy—
mass—luminosity relation from an updated version of the popula-
tion synthesis of Mordasini (2018). The second step allows us to
compute the entropy for all the selected hot Jupiters in our sam-
ple using the observed Tq. Having calculated the entropy and
knowing M, from observations, the last step allows us to com-
pute the internal luminosity of the planets. With this procedure,
we therefore calculate the internal luminosity of the planets pre-
dicted by this mechanism based on these fits and based on Teq
and M, from observations. We consider three cases for compar-
ison by assuming the planets are composed of H/He and setting
the fraction of heavy elements to 0%, 10%, and 20%. We refer
to these models as Lrrembling> LTrembling» aNd Ltrembliny,» T€SPEC-
tively. We point out that the values should be taken with caution
as there are strong approximations involved in this approach.

Finally, to compare our results to TF18, we use the analyti-
cal €(Teq) (Equation (34) in their paper) to compute € and then
estimate Lrtg;g using Equation (6).

Figure 10 compares our results to the various studies where
the dashed lines are the 1:10, 1:1, and 1:0.1 relations. The pre-
dicted luminosities based on the analytical solution of thermal
tides as suggested by Socrates (2013) and the advection of po-
tential temperature (Tremblin et al. 2017) are on the same or-
der of magnitude as the ones we derive in this work based on
observations. The advection of potential temperature (Tremblin
et al. 2017) predicts high luminosity values for the least lumi-
nous planets in our sample. This is expected since their model
tend to overestimate the radii compared to observations, even for
planets with incident flux below the threshold of inflation (stellar
incident flux of ~ 2 x 10% ergs™ cm™ or Toq ~ 1000 K).

The relation of Huang & Cumming (2012) based on ohmic
dissipation leads to small internal luminosity values. Note that
this relation is an order-of-magnitude estimation of the total
ohmic power. We therefore caution that these results do not pro-
vide evidence against ohmic dissipation, but rather that this re-
lation underestimates the ohmic power. Based on our results
and the work of TF18, there is compelling evidence from the
HEET relation that ohmic dissipation can explain the radii of
hot Jupiters. The ohmic power values estimated by Batygin
& Stevenson (2010) and Menou (2012) are up to three orders
of magnitude higher than the values predicted by Huang &
Cumming (2012) and thus on the same order of magnitude esti-
mated in this work. Moreover, the small internal luminosity val-
ues using the relation of Huang & Cumming (2012) could also
explain the findings of Lopez & Fortney (2016), where it was
shown that the relation did not lead to re-inflation of hot Jupiters.

For our models with Ly, < 10% L, the model of TF18 pre-
dicts smaller values of L;,. This difference is a direct conse-
quence of the discrepancy in € as shown in the right panel of
Figure 6, where as discussed in Section 6.3 we predict higher
heating efficiencies for the least and the most irradiated planets.

Converting the luminosity values to a heating efficiency us-
ing Equation (6), the models of Socrates (2013) and Tremblin
etal. (2017) do not lead to a decrease in the heating efficiency at
the highest equilibrium temperatures. The former predicts a con-
tinuous increase as was shown by TF18 with values as high as
20-25% and the latter seems to increase moderately up to 30%,
10%, and 2% for Z,= 0, 0.1, and 0.2, respectively. This is ex-
pected given the steeper increase in the luminosity values above
10* Ly for both models. These are the highly inflated and highly
irradiated hot Jupiters (R, > 1.4 Ry and Tq > 1900 K). Note that
the peak in the HEET distribution in our model occurs close to
1900 K (see Section 6.3 and Table 1), beyond which € decreases
for higher Tq. This explains why the models of Socrates (2013)
and Tremblin et al. (2017) do not predict a Gaussian function,
i.e. why € does not decrease at high T.,. We stress that these
models can nevertheless explain the observed radii of most of
the hot Jupiters and can be the dominant mechanisms responsi-
ble for inflation even in the absence of the Gaussian function.
It could be thus that these mechanisms are too efficient in in-
flating hot Jupiters at temperatures above than 1900 K. Thermal
tides have received less attention within the context of the radius
anomaly problem and thus more work is needed to understand
the physical regime where this mechanism is efficient.

In summary, we provide evidence that thermal tides and ad-
vection of potential temperature can reproduce the large ob-
served radii of most of the hot Jupiters based on the internal
luminosity predicted using these models. Moreover, the HEET
distribution suggests that ohmic dissipation can also explain the
radii of the close-in giant planets (see Section 7.2). We therefore
conclude that all of these three mechanisms can explain the in-
flation of hot Jupiters. This is in line with our main goals where
we stress that these mechanisms were tested on only a handful
of exoplanets and a statistical approach is necessary to confirm
or refute these mechanisms for the entire population.

7.5. Limitations and Caveats

There are important caveats and limitations related to this work
that should be explicitly mentioned.

Our results and conclusions are based on a simple 1D interior
structure model. Hot Jupiters however are tidally locked, which
gives rise to a temperature gradient between the day-side and
the night-side. The RCB at the night-side might thus be at lower
pressures compared to the day-side leading to uneven cooling.
As a consequence of that, Spiegel & Burrows (2013) showed us-
ing a 1+1D model that the net effect of incorporating night-side
cooling leads to higher cooling rates compared to the default 1D
models. 2D circulation models also showed that the location of
the RCB differs from the day-side to the night-side, which fur-
ther enhances the cooling rate (Rauscher & Showman 2014) and
thus requires even higher efficiency to explain the radii of hot
Jupiters. This is especially important for the highly irradiated
planets as it was shown that the day-side-night-side tempera-
ture differences increases with stellar irradiation (Komacek &
Showman 2016; Komacek et al. 2017).

In addition, we assume that the heat is deposited in the in-
terior of the planet and we do not account for dissipation in the
intermediate layers. A better treatment would be to deposit the
heat over a range of depths similar to Ginzburg & Sari (2016) or
Komacek & Youdin (2017). Moreover, even though we showed
that the Gaussian profile of the HEET distribution is in agree-
ment with ohmic dissipation there are few shortcomings to this.
A key component for ohmic dissipation is the electrical conduc-
tivity o, where the ohmic power is proportional to 1/ (Batygin
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& Stevenson 2010). The electrical conductivity increases dra-
matically in the interior leading to efficient heating only at lower
densities and thus at lower pressures. However, the layers that
contribute to the inflation are not at the surface where the con-
ductivity is maximum but rather at deeper layers (between 100
and 1000 bar; Batygin et al. 2011). Wu & Lithwick (2013) con-
firmed these results by showing that heat deposited at 100 bar
requires significantly less heating efficiency in comparison to 10
or 3 bar (0.3% compared to 3% and 200%, respectively, see their
Figure 3). It is therefore unclear whether the Gaussian functional
form holds for energy dissipated at lower pressures.

The depth of the heating has also direct consequences on
the interior structure. For example, Huang & Cumming (2012)
included ohmic heating only in the radiative layers deeper than
10 bar and showed that as a consequence of that the RCB moves
to deeper pressures. However, their model cannot reproduce the
radii of massive planets. Understanding the location of the RCB
is crucial as it regulates the planetary cooling rate and thus the
contraction rate (Arras & Bildsten 2006; Marleau & Cumming
2014). Future developments of state-of-the-art GCM models that
solve the complete equations without approximations and that
couple the upper atmosphere with the deep convective layers will
provide a complete picture of the underlying physical processes.

Finally, in this work we did not account for observational
biases. A large number of the hot Jupiters discovered to date
are discovered using ground based telescopes, such as WASP
(Pollacco et al. 2006) and the HATNet and HATSouth (Bakos
2018) exoplanet surveys. There is a lack of hot Jupiters with radii
smaller than ~ 1.4 Ry around early- and mid-F stars. This is be-
cause detecting such planets is still challenging from the ground
as the transit depths are shallow and less than 0.5%. Heng (2012)
showed that if ohmic dissipation can explain the anomalously
large radii of hot Jupiters, then this naturally leads to scatter in
the radii at a given stellar incident flux due to variations in the
opacity, albedo, cloud/hazes properties, and the magnetic fields
strength. It is therefore still not quite clear whether the lack of
“medium-inflated” hot Jupiters around F stars is due to observa-
tional biases or variations in the efficiency of the heating mecha-
nism. The NASA Transiting Exoplanet Survey Satellite mission
(TESS; Ricker et al. 2015) will discover such planets if they ex-
ist and will help to better constrain the efficiency of the heat-
ing mechanisms either by the lack or existence of such plan-
ets. Subsequently high precision follow-up observations with
the CHaracterising ExOPlanet Satellite (CHEOPS; Broeg et al.
2013) will help to get very accurate radii.

8. Conclusion

In this work, we developed a flexible and robust hierarchical
Bayesian model to couple the observed physical parameters of
hot Jupiters to an interior structure model. The model accounts
for observational uncertainties and for the scatter in the relation
between planet mass and heavy-element fraction. We validated
the statistical method by applying it to synthetic planets based
on planet population synthesis and showed that we are able to
retrieve the true distribution. We then applied this method to
quantify the internal luminosity needed to explain the radii of
a sample of 314 hot Jupiters. We tested this model under two
different priors (assuming a log-uniform and a linear-uniform
distributions for Lj,;) and showed that the population level dis-
tributions are prior independent (Figure 5). This provides useful
and robust constraints on the interior structure of hot Jupiters.
We find that such planets tend to have hotter interiors compared
to previous assumptions, and as a result, the RCB is located at
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low pressures, in agreement with recent work by Thorngren et al.
(2019) (Figure 8).

Assuming the planet has reached steady state and assum-
ing that the additional source of heat is the stellar irradiation,
we compute the heating efficiency e, defined as the fraction of
stellar irradiation deposited into the interior of the planet that
is needed to explain the observed inflated radii. We find that the
heating-efficiency—equilibrium-temperature relation is described
by a Gaussian function (Figure 6), in agreement with previous
work by TF18, however, the peak is not consistent in both stud-
ies. We found that the models of TF18 predict larger radii than
our models for Teq > 1500 K, which we attribute due to differ-
ences in the atmospheric modelling. The Gaussian-like pattern
is more importantly in agreement with theoretical predictions
based on the ohmic dissipation model (Menou 2012). We also
show that thermal tides (Arras & Socrates 2010; Socrates 2013)
and advection of potential temperature (Tremblin et al. 2017) can
explain the observations of most of the planets in our sample and
thus are possible mechanisms responsible for the anomalously
large radii of hot Jupiters (Figure 10).

To conclude, we provide new insights into the interior of hot
Jupiters by coupling observations to theoretical models within a
powerful statistical framework. With a better understanding of
the interior, we highlight the importance of accounting for the
extra heat flux in the interior in 3D GCM models, which will
further improve our understanding of wind speeds and hence on
the efficiency of the heating mechanisms.

The future of hot Jupiters is exciting and bright. Simulations
of the exptected TESS yield (Barclay et al. 2018) predict that
TESS will discover more than 250 hot Jupiters suitable for RV
follow-up (R, > 1R;) with orbital periods < 10 days orbit-
ing bright stars (V < 14 mag), almost doubling the number of
hot Jupiters discovered. The mission already detected few hot
Jupiters (e.g. Kossakowski et al. 2019; Wang et al. 2019) with
many yet to be discovered. Furthermore, CHEOPS (Broeg et al.
2013) is capable of detecting the phase curves of hot Jupiters,
which provide information on the day-night temperature con-
trast. CHEOPS will therefore play a major role in providing
clues into the efficiency of energy transport in hot Jupiter atmo-
spheres (e.g. HD189733 b; Knutson et al. 2007). With a better
understanding of the interior structure of hot Jupiters thanks to
the development of flexible and computationally efficient statis-
tical tools, we will be able to provide further constraints on the
radius inflation conundrum.

The source code for the hierarchical model is open source
and available at https://github.com/psarkis/bloatedHJs under the
MIT open source software license. Part of the code is still being
added and available upon request.

The posterior samples at the population level are also avail-
able online at https://tinyurl.com/bloated-hjs-results.

Software: corner (Foreman-Mackey 2016), emcee
(Foreman-Mackey et al. 2013), Jupyter https://jupyter.org/,
matplotlib (Hunter 2007), numpy (van der Walt et al.
2011), petitCODE (Molliere et al. 2015, 2017), pandas (Wes
McKinney 2010), scikit-learn (Pedregosa et al. 2011),
scipy (Virtanen et al. 2020).
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Appendix A: Supplemental Information

In Section 6.2, we showed that the mass—luminosity-radius
(MLR) posterior distribution is similar when assuming Ly, fol-
lows either a linear-uniform or a log-uniform prior distribu-
tion. In this Appendix we show that the heating-efficiency—
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equilibrium temperature (HEET), Ty — Teq, and Prep — Teq
distributions are also similar using both priors. Figure A.1 and
Figure A.2 show the HEET and both the Ty — Teq and Prca
— Teq distributions, respectively. Tables A.1 and A.2 present the
68% credible interval values for the model parameters for the
MLR distribution assuming linear-uniform and log-uniform pri-
ors. Similarly, Table A.3 for the HEET distribution using a 4"
degree polynomial, Table A.4 for the Ty — Teq distribution us-
ing a Gaussian function, and finally Table A.5 for the Prcp — Teq
distribution using a polynomial function.
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Fig. A.1. HEET posterior distribution under the linear—uniform (left) and the log—uniform (middle) priors using a Gaussian and 4
degree polynomial. The shaded region shows the 68% credible interval. There is a good agreement between both models using the

same prior. To better compare the same model using different priors, the right panel shows the Gaussian models using log (red) and
linear (blue) uniform priors.

Table A.1. 68% credible interval values of the parameters for the mass—luminosity—radius (MLR) distribution for the linear-%/ case
modelled as a 4™ degree polynomial g, (x) = ap + ajx + axx> + azx® + asx* where x = R,,.

T ao a a as ay
037-07M; 28%}) -85+3% 92+ -39+ 6*)
0.7-098M; 274 -91+3% 10645 -48*%9 8*3
098 -25M; 4812 -160*3 186+ -88+2) 153

>2.5M, 72732 224100 2447776 102716 14438

Table A.2. 68% credible interval values of the parameters for the mass—luminosity—radius (MLR) distribution for the log—U case
modelled as a 4" degree polynomial gp(X) =ap+aix+ arx* + a3x> + asx* where x = Rp.

T ao a; a as ay
037-07M; 20*8 -66"1 7332 -32%, 54
0.7-098M; 23*}2 -79*3 94+ —44*19 75
098-25M; 50t -166'% 195454 -94+22 16

>2.5M, 8670 _077+263  306*370  _35%219  [g+49

=70 -269
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Fig. A.2. Tiy—Teq and Prep—Teq diagrams in the upper and lower panel, respectively. The shaded regions show the 95% credible
interval. Both distributions are similar at the 95% level using the linear—uniform (red) and the log-uniform (blue) priors.

Table A.3. 68% credible interval values of the parameters for the heating-efficiency—equilibrium temperature (HEET) distribution
for the linear—7/ and log—U cases using the 4™ degree polynomial model g, (x) = ap+a; x+ax> + a3 x> +asx*, where x = Teq/1000.

T [0 a ay as ay

log-U 117 -33*15 35419 148 0!

linear-?t/ 7+ 21713 1916 67 1t
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Table A.4. 68% credible interval values of the parameters for the
Tin—Teq distribution for the linear—Z/ and log—{ cases using the
Gaussian function Equation (21), where x = Teq and Ty is in K.

T Tint,max Tint() s

log-U 8357 2270722 709+I*

linear-1  786%8  2333t14 723+

-109 —46

Table A.5. 95% credible interval values of the parameters for the
Prc—Teq distribution for the linear—% and log—U cases under
the polynomial function Equation (20), where x = Tq/1000 and
gp/100 in bar.

T ap a a as ay

log U 167, -297%% 1972 5% 059707

linear-U 6 8%, 4710 172 0.03*)%
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