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ABSTRACT

Context. The anomalously large radii of hot Jupiters are still not fully understood, and all of the proposed explanations are based on
the idea that these close-in giant planets possess hot interiors. Most of the mechanisms proposed have been tested on a handful of
exoplanets.
Aims. We approach the radius anomaly problem by adopting a statistical approach. We want to infer the internal luminosity for the
sample of hot Jupiters, study its effect on the interior structure, and put constraints on which mechanism is the dominant one.
Methods. We developed a flexible and robust hierarchical Bayesian model that couples the interior structure of exoplanets to the
observed properties of close-in giant planets. We applied the model to 314 hot Jupiters and inferred the internal luminosity distribution
for each planet and studied at the population level (i) the mass–luminosity–radius distribution and as a function of equilibrium tempera-
ture the distributions of the (ii) heating efficiency, (iii) internal temperature, and the (iv) pressure of the radiative–convective–boundary
(RCB).
Results. We find that hot Jupiters tend to have high internal luminosity with 104 LJ for the largest planets. As a result, we show that all
the inflated planets have hot interiors with an internal temperature ranging from 200 up to 800 K for the most irradiated ones. This has
important consequences on the cooling rate and we find that the RCB is located at low pressures between 3 and 100 bar. Assuming that
the ultimate source of the extra heating is the irradiation from the host star, we also illustrate that the heating efficiency increases with
increasing equilibrium temperature and reaches a maximum of 2.5% at ∼1860 K, beyond which the efficiency decreases, which is in
agreement with previous results. We discuss our findings in the context of the proposed heating mechanisms and illustrate that ohmic
dissipation, the advection of potential temperature, and thermal tides are in agreement with certain trends inferred from our analysis
and thus all three models can explain various aspects of the observations.
Conclusions. We provide new insights on the interior structure of hot Jupiters and show that with our current knowledge, it is still
challenging to firmly identify the universal mechanism driving the inflated radii.
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1. Introduction

Two decades of observational and theoretical exploration have
revealed that the anomalously large radii of close-in transiting
giant planets holds firmly (e.g., Laughlin et al. 2011; Weiss
et al. 2013). The radii of hot Jupiters are larger than what
is predicted by standard interior structure models (Guillot &
Showman 2002). Observations reveal that there is a strong
correlation between the observed radii and the stellar inci-
dent flux (e.g., Enoch et al. 2012), with a threshold around
∼2× 108 erg s−1 cm−2, corresponding to an equilibrium tempera-
ture of about 1000 K (Demory & Seager 2011; Miller & Fortney
2011), below which the physical mechanism becomes inefficient.
Sestovic et al. (2018) further demonstrate that the inflation extent
is mass dependent, where the planets with the largest anomalous
radii have masses less than ∼<1 MJ.

Many investigations have been carried out in order to explain
the discrepancy between the observations and theoretical mod-
els. The proposed mechanisms can be divided into two cate-
gories: (i) slowing down cooling and contraction or (ii) deposit-
ing extra heat into the interior. Burrows et al. (2007) showed
that slowing down the cooling and thus delaying contraction

can be achieved by increasing the atmospheric opacity. Another
way to delay contraction is to reduce the heat transport effi-
ciency due to compositional gradients (Chabrier & Baraffe
2007).

It is well established that heating up the interior of the planet
increases its entropy and thus its radius (Arras & Bildsten 2006;
Marleau & Cumming 2014). The source of heat is still not con-
strained and possible sources could be tidal dissipation of an
eccentric orbit (e.g., Bodenheimer et al. 2001), advection of
potential temperature, which is a consequence of the strong stel-
lar irradiation (Tremblin et al. 2017; Sainsbury-Martinez et al.
2019), or dissipative processes powered by the stellar irradiation
flux. The latter has received a lot of attention and the mecha-
nism to transport a fraction of the stellar incident flux into the
interior is still an open question. One mechanism is atmospheric
circulation, which leads to the thermal dissipation of kinetic
energy into the interior (Guillot & Showman 2002; Showman &
Guillot 2002). Another mechanism is ohmic dissipation (Batygin
& Stevenson 2010; Batygin et al. 2011; Perna et al. 2010a; Huang
& Cumming 2012; Wu & Lithwick 2013; Ginzburg & Sari 2016),
where the irradiation drives fast winds through the planet’s mag-
netic fields, giving rise to currents that dissipate ohmically in the
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interior. Other mechanisms are thermal tides (Arras & Socrates
2010) and the mechanical greenhouse (Youdin & Mitchell 2010).

Some of these mechanisms come with a lot of approxi-
mations and uncertainties. For example, an important uncer-
tain parameter in atmospheric circulation, ohmic dissipation,
and the advection of potential temperature is the wind speeds
and the effect of magnetic drag in damping the winds (Perna
et al. 2010a,b). Another uncertainty is how deep the wind zone
extends, which is important to constrain the pressures at which
the extra heat should be dissipated. Wu & Lithwick (2013)
illustrate that if the wind zone is at shallow pressures, then a
significantly larger heating efficiency is needed to achieve the
same interior heating, compared to heating at deeper pressures.
Komacek & Youdin (2017) argue that the extra heat should be
deposited in the convective layers or at the radiative–convective–
boundary (RCB), otherwise it is reradiated away. Huang &
Cumming (2012) deposited the extra heat in the radiative lay-
ers and as a consequence show that the RCB moves to deeper
pressures. Fortney et al. (2007) showed that the RCB is located
at pressures of 1000 bar, where little is known about the wind
speeds at such deep pressures. However, the Fortney et al. (2007)
models were developed for irradiated planets and do not consider
the high internal entropy that hot Jupiters are believed to possess.

All the mechanisms proposed have been tested and applied
on single or a handful of planets. It is yet to be demonstrated
that these mechanisms can explain the radii of all the observed
hot Jupiters. Within this context, in this paper we approach the
radius inflation problem from a statistical point of view, similar
to the approach of Thorngren & Fortney (2018, hereafter TF18).
We do not model any of the previously mentioned mechanisms
but rely solely on the interior structure model and atmospheric
model. We develop a hierarchical Bayesian model that allows us
to couple the interior structure models to the observed physical
properties of hot Jupiters while incorporating the measurement
uncertainties. Our approach naturally accounts for non-Gaussian
likelihoods. We first apply our model on the individual plan-
ets to infer the internal luminosity that reproduces the observed
physical properties of hot Jupiters, namely radius, mass, and
equilibrium temperature. Second, as a consequence of the high
internal entropy, we find that the interior tends to be hot and show
that the RCB moves to shallow pressures. Finally, we compare
our findings to the proposed mechanisms and show that ohmic
dissipation (Batygin & Stevenson 2010), advection of potential
temperature (Tremblin et al. 2017), and thermal tides (Arras &
Socrates 2010) can explain the anomalously large radii of hot
Jupiters.

In a recent study, TF18 showed that the heating efficiency ε
increases as a function of equilibrium temperature until a max-
imum of ∼2.5% is reached at around 1500 K, beyond which
it decreases. The basic shape of ε(Teq) provides evidence for
ohmic dissipation. Building on the functional form of ε(Teq),
(Thorngren et al. 2019, hereafter T19) studied the effect of cen-
tral heating on the interior structure of hot Jupiters and found
that the internal temperature is much hotter than previous esti-
mates, which pushes the RCB to lower pressures. Our approach
is similar to TF18 but rather than modeling the extra heating as a
function of ε, we do not assume explicitly a source for the extra
heat. Instead, we consider the planet reached steady state and
compute the internal luminosity given the planet mass, radius,
and equilibrium temperature. The advantage of this approach
is twofold: first, we can compare our results to heating mecha-
nisms where the source of extra heat is not the stellar irradiation,
and second, we self-consistently study the effect of high inter-
nal entropy on the interior structure of hot Jupiters, namely the

internal temperature and pressure of the RCB. We note, how-
ever, that both approaches should lead to the same results. We
also convert the internal luminosity to a heating efficiency ε and
compare our results to TF18 in Sect. 6.3. We show that our results
are qualitatively similar using a larger sample focused on FGK
main-sequence stars and using an independent interior structure
model.

The outline of this paper is as follows. Section 2 provides an
overview of the sample selection criteria. In Sect. 3 we present
the interior structure model used in this analysis. In Sect. 4 we
outline the probabilistic framework used to link observations and
theory and derive the basic equation which our method is based
on (Eq. (28)). We validate the statistical model by applying it on
synthetic planetary data set generated using the Generation III
Bern global model in Sect. 5. Readers interested in the results
can safely skip to Sect. 6 where we present the results of our
analysis. We discuss the results and the shortcomings of our
approach in Sect. 7 and conclude in Sect. 8.

2. Sample selection

For the purpose of our study, we required that all the planets
have measured masses and radii. Sestovic et al. (2018) showed
that the radii of planets with masses less than 0.37 MJ do not
show a clear dependence on the stellar incident flux. Photoevap-
oration plays an important role in the evolution of such low-mass
close-in planets (Owen & Jackson 2012; Jin et al. 2014). Baraffe
et al. (2004) also showed that these planets are subject to undergo
Roche-lobe overflow. We therefore restrict our analysis to planets
with masses 0.37<Mp < 13 MJ with semi-major axis a< 0.1 au.
In our study, we make no attempt to correct for selection effects
where it is still challenging to detect “medium-inflated” hot
Jupiters around F stars using ground-based surveys (see the
discussion in Sect. 7.5).

Lopez & Fortney (2016) suggested that giant planets around
stars leaving the main-sequence experience a high level of irra-
diation that could ultimately increase their radii. However, other
studies argued that ohmic heating cannot reinflate planets after
they have already cooled (Wu & Lithwick 2013; Ginzburg &
Sari 2016). A handful of reinflated planets have been discov-
ered around giant stars (Grunblatt et al. 2016, 2017; Hartman
et al. 2016). Since different mechanisms can be at play around
evolved stars, we exclude such planets and only consider hot
Jupiters around solar-like stars. Specifically, we consider stars
with stellar temperature T∗ = 4000−7000 K and surface gravity
log g= 4−4.9.

The data was taken from the Transiting Extrasolar Planet
Catalogue (TEPCat1; Southworth 2011), last accessed on
November 2018. The aforementioned constraints on the planet
mass, semi-major axis, and stellar temperature and surface grav-
ity, lead to a final sample consisting of 314 hot Jupiters. The
equilibrium temperature (Teq) values in the literature are often
not homogeneous, where different teams use different assump-
tions for the albedo and heat redistribution. To mitigate this, we
compute the equilibrium temperature for all the planets assum-
ing a circular orbit, zero albedo, and full heat redistribution from
the day-side to the night-side (Guillot 2010)

Teq =T∗

√
R∗
2a

(1)

where T∗ and R∗ are the stellar temperature and radius, respec-
tively, and a is the semi-major axis. Figure 1 displays the selected
1 www.astro.keele.ac.uk/jkt/tepcat/
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Fig. 1. Equilibrium temperature–radius diagram (left panel) and mass–radius diagram (right panel) color-coded by entropy for the 314 hot Jupiters
selected for our analysis. The solid black and the red dashed lines compare the radii computed using our model completo21 and TF18, respectively.
Both models are for a 1 MJ planet with a pure H/He composition with Y = 0.27 at 5 Gyr and without accounting for inflation. The entropy was
computed using the observed physical properties and an assumed heavy-element fraction of 0.2. Planets with large radii tend to have high internal
entropy, with a weak dependence on planetary mass.

targets in the equilibrium temperature–radius (left panel) and
mass–radius (right panel) diagrams color coded by the entropy2.
The entropy was calculated for all the planets given the observed
physical properties of each system and assuming the fraction of
heavy element is 20% the planet mass. We note that this value
was chosen arbitrarily and for the rest of the results presented
in this paper, we use the mass–heavy-element mass relation
(Thorngren et al. 2016, see also Sect. 3.3). The solid black line is
the radius at 5 Gyr computed using the interior structure model
(see Sect. 3) for a 1 MJ planet with a pure H/He composition and
the He mass fraction set to Y = 0.27. The dashed red line is the
same model computed by TF18. These models do not account
for inflation and the radii can be considered as an upper limit for
radii expected in the absence of inflation mechanisms. The radii
of most of the planets with Teq > 1000 K are larger than the pre-
dicted values found with standard planet evolution models (e.g.,
Guillot & Showman 2002). It is also evident that larger inter-
nal entropy leads to larger radii as noted by previous work (e.g.,
Arras & Bildsten 2006; Spiegel & Burrows 2013; Marleau &
Cumming 2014), with a weaker dependence on planetary mass.
Planets with the largest radii have high equilibrium temperatures,
masses below 1 MJ, and high entropy in their deep convective
interior. There is thus a compelling evidence from observations
that the proximity to the star, planet mass, and the incident stellar
flux play a major role in keeping hot Jupiters at high entropy.

2 When comparing to other work, it is crucial to use the same entropy
zero-point or to correct for this. See footnote 2 of Mordasini et al. (2017).

3. Interior structure model

The primary way to gain insights into the interior structure of
exoplanets is typically derived from theoretical structure mod-
els by matching the observed mass and radius. Such models are
often used to constrain the planet bulk composition. Given the
age of the host star and the mass of the planet, the amount of
heavy elements is determined by matching the observed radius
with the radius predicted from structure models. This has been
applied to warm Jupiters (e.g., Thorngren et al. 2016), sub-
Neptunes (e.g., Valencia et al. 2013), and super-Earths (e.g.,
Dorn et al. 2019) but is challenging to apply for hot Jupiters
because the radii are inflated.

The aim of our study is to characterize the interior struc-
ture of hot Jupiters within a probabilistic framework. This allows
us to gain insights into the physical properties governing the
interior. We are specifically interested in inferring the internal
luminosity of the planets based on the observed mass, radius, and
equilibrium temperature. This in turn will provide constraints on
the heating efficiency, internal temperature, and the pressure at
the radiative–convective–boundary (RCB). The standard interior
structure model is briefly outlined in Sect. 3.1 and we discuss in
Sect. 3.3 our approach to account for heat dissipation. The main
model assumptions and limitations are addressed in Sect. 3.4.

3.1. Standard model

The planetary evolution model completo21 was presented in
Mordasini et al. (2012) and several modifications have been
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introduced since such as photoevaportation (Jin et al. 2014; Jin
& Mordasini 2018) and coupling the interior to a nongray atmo-
spheric model (Linder et al. 2019; Marleau et al. 2019). In the
following sections, we provide a brief description of the code
relevant to our work and discuss in Sect. 3.4 the limitations of
the model.

The internal structure of a gas giant planet is modeled using
the 1D equations below. Equation (2) defines the conservation
of mass. We assume that the planet is in hydrostatic equilibrium
(Eq. (3)) and that the luminosity is constant with radius (Eq. (4)).
Mordasini et al. (2012) showed that the latter assumption does
not significantly affect the evolution of the planet when the heat-
ing occurs deep, as we assume (see below). Finally, Eq. (5) is
the energy transport equation, describing the transport of energy
either via radiation or convection:
dm
dr
= 4πr2ρ (2)

dP
dr
= − Gm

r2 ρ (3)

dl
dr
= 0 (4)

dT
dr
=

T
P

dP
dr
∇. (5)

In the above equations, r is the planetary radius as measured
from the center, m the total mass inside r, ρ density, P pressure,
T temperature, l planet internal luminosity, G the gravitational
constant, and ∇ is the temperature gradient which depends on
the process energy is transported.

We use the classical SCvH EOS of hydrogen and helium
(Saumon et al. 1995) with a He mass fraction Y = 0.27. Our
model does not include a central core and all the heavy ele-
ments are homogeneously mixed in the gaseous envelope, see
Sect. 3.4.1 for a discussion on the distribution of heavy elements.
We model the heavy elements as water and adopt the widely
used EOS of water ANEOS (Thompson 1990; Mordasini 2020).
H/He and water are mixed according to the additive volume law
(Baraffe et al. 2008). The transit radius is defined at P= 20 mbar.

3.2. Atmospheric model

The atmospheric boundary conditions control the cooling rate
of irradiated giant planets. The evolution of the planet and its
final structure are thus sensitive to the upper boundary condi-
tions (Guillot & Showman 2002). Jin et al. (2014) calibrated
the semi-gray model of Guillot (2010) against the fully nongray
atmospheric models of Fortney et al. (2008) in order to deter-
mine the value of γ, the ratio of the optical to the infrared opacity.
They used a nominal value of Tint = 200 K. For our study, hot
Jupiters are thought to be inflated due to dissipation or advection
of heat into the interior, which thus leads to Tint > 200 K. Hence,
using the tabulated values of Jin et al. (2014) will lead to dif-
ferent PT structures and therefore alter significantly the interior
structure of the planet. Indeed, we find that for Teq = 1500 K,
Tint = 500 K, and log g= 3, the relative change in the radius
between using the improved version of the semi-gray model and
using a nongray model is around ∼7%, where the semi-gray
model tend to lead to larger radii. It is essential then to have
realistic atmospheric boundary conditions by using wavelength
dependent radiative transfer atmospheric models.

Following a similar approach to Linder et al. (2019), we com-
pute a grid of fully nongray atmospheric models calculated using
the petitCODE (Mollière et al. 2015, 2017). We included the fol-
lowing line absorbers CH4, H2O, CO2, HCN, CO, H2, H2S, NH3,

OH, C2H2, PH3, Na, K, TiO, VO, and SiO, and the following
pseudo-continuum absorbers H2-H2 Collision Induced Absorp-
tion, H2-He Collision Induced Absorption, H− bound-free,
H− free-free, H2 Rayleigh scattering, and He Rayleigh scattering.
The reference for these opacities can be found in Mollière et al.
(2019). These grids are then used to relate the planet atmospheric
temperature and pressure to the planet internal structure. The
atmospheric grid was calculated assuming solar composition and
covering a range of 2.5–4.5 in log g, 500–2700 K in equilibrium
temperature, and 100–1000 K in internal temperature. The equi-
librium temperature and surface gravity were chosen to cover the
range of all the hot Jupiters selected in our sample.

The coupling between the atmosphere and the interior is
done in the interior adiabat, following the first convective layer
below the RCB. Details are given in Marleau et al. (2019). For a
given log g, equilibrium temperature, and internal temperature,
the corresponding pressure and temperature were used as bound-
ary conditions to calculate the inward interior structure. The
outward structure was calculated using the petitCODE struc-
ture and assuming hydrostatic equilibrium (Eq. (3)) between the
pressure at the coupling point and 20 mbar, that is, the pressure
at which the transit radius is defined. We verify that coupling
at a high fixed pressure, P= 1000 bar, or following the RCB
layer does not significantly affect the transit radius with relative
change around ∼0.3%.

The atmospheric PT structures assume constant log g. In
fact, log g changes slightly in the radiative layers. Assuming that
the change in log g in the radiative layers during the planet evo-
lution is around ∼0.05, then the change in entropy is only around
∼0.05 kB/baryon for an internal temperature (Tint) of 700 K and
an equilibrium temperature (Teq) of 2500 K. It would take a
change of 0.5 in log g to have a significant change in entropy
(around 0.5 kB baryon−1 for Tint = 700 K and Teq = 2500 K).
We confirm that the change in entropy is negligible across
the entire grid except for models with Teq > 2500 K, Tint >
700 K, and log g < 3.5. In our sample, only WASP-12 b has
Teq = 2580 K and log g= 3.0 (Collins et al. 2017) where the
change in entropy is between 0.06 and 0.08 kB baryon−1. The
radius of only one planet in our sample could be slightly under-
estimated, and therefore a constant log g in the PT structures is
not a strong assumption.

3.3. Heat dissipation

It is well established that, compared to cold Jupiter-like plan-
ets, the high internal entropy of a hot Jupiter increases its radius
(Spiegel & Burrows 2013; Marleau & Cumming 2014). For
example, the planet interior can gain entropy through ohmic
or tidal heating. In this work, we do not attempt to model a
mechanism to transport heat into the interior. We assume the
planet is in steady state and thus do not calculate the planetary
thermal evolution. We use the planet mass, radius, and equi-
librium temperature (technically the stellar luminosity and the
semimajor axis) from observations along with the mass–heavy-
element-mass relation from Thorngren et al. (2016), to quantify
the present internal luminosity Lint of the planet. At steady state,
Lint is identical to the extra heating power deposited and thus

Lint = εF πR2
p (6)

F =σT 4
∗
(R∗

a

)2

(7)

where ε is the fraction of stellar irradiation transported into the
interior, that is, the heating efficiency, σ is the Stefan-Boltzmann
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constant, Rp the planetary radius, and F is the flux the planet
receives at the substellar point as a function of the stellar tem-
perature T∗, stellar radius R∗, and the semi-major axis a (Guillot
2010). We assume that the heat dissipated is absorbed at τ= 2/3
and deposited at the center of the planet. Komacek & Youdin
(2017) showed that heating at any depths larger than 104 bar
yields nearly similar radii. However see the discussion relevant
to this assumption in Sect. 3.4.2. Our definition agrees well with
TF18, where they also deposit the extra heat at the center.

We note that 1D models without extra heating do not transfer
energy into the interior on their own. The main effect of irradia-
tion is that it decreases the cooling rate and thus the contraction
rate of irradiated giant planets (Burrows et al. 2000). Planets
with higher Teq will have a larger radius compared to an iden-
tical planet with lower Teq but still, not as large as the observed
radii. The black line in Fig. 1 shows the radius for a 1 MJ planet
with a pure H/He envelope at 5 Gyr at different Teq. All plan-
ets have Rp < 1.25 RJ. The difference in the radius between the
highly and least irradiated planets is 0.14 RJ. As such, our defi-
nition of ε is valid where all the extra energy is transported into
the interior via a physical mechanism and it is not due to the 1D
irradiated models transporting energy at high Teq.

3.4. Model assumptions and limitations

3.4.1. Distribution of heavy elements

The distribution of heavy elements in the interior of exoplanets
is still an open question. Some models assume for simplicity that
all the heavy elements are in the core (Mordasini et al. 2012).
For warm Jupiters, Thorngren et al. (2016) set an upper limit
of 10 M⊕ of heavy elements in the core and the rest is mixed
homogeneously in the envelope. Current models developed to
explain the anomalously large radii of hot Jupiters mix all the
heavy elements in the envelope and do not include a central core
(e.g., TF18; Komacek & Youdin 2017).

From the Juno mission, we now know that Jupiter has a
diluted core (Wahl et al. 2017) based on the measurements of
Jupiter’s low-order gravitational moments (Folkner et al. 2017),
yet these findings are challenging to explain from standard for-
mation models (Muller et al. 2020). Even though the interior
structures are highly affected by the chosen equation of state, the
prediction of an enriched envelope still holds (Wahl et al. 2017).
Planet formation models based on core accretion and that include
the effect of envelope enrichment, also suggest that gas giant
planets can be formed, notably at an accelerated rate (Venturini
et al. 2016). Envelope enrichment compared to the Sun has also
been observed for all of our four giant planets (Guillot & Gautier
2014).

In this work, all the heavy elements are mixed homoge-
neously in the convective part of the interior and are made up
entirely of water. A central core is therefore not included. We
compare the effect of the distribution of the heavy elements
in the core versus in the envelope on the transit radius of the
planet and hence on the heating efficiency ε. We find that for
HD 209458 b, 42 M⊕ distributed in the core or in the envelope do
not change significantly the radius when we account for heating
in the interior. The absolute relative change in the radius is less
than 2% for ε ranging 0−5%. These results are also in agreement
with Thorngren et al. (2016), which reached the same conclu-
sion without accounting for heat dissipation. The median relative
uncertainties on the radii measurements from observations in our
sample is 4.3%, thus the distribution of the heavy elements has
little effect on the inference of Lint and therefore ε. We also show

in Sect. 6 that the uncertainty on the heating efficiency is mainly
dominated by the amount of heavy elements in the planet rather
than their distribution within the planet.

3.4.2. Depth of internal heating

In our model, we assume that the heat is deposited in the interior
of the planet. However, the pressures at which heat is deposited
is still not constrained. Within the context of ohmic dissipation
(Batygin & Stevenson 2010), the depth of internal heating is
mainly dominated by the electrical conductivity profile and by
the depth of the wind zone. The layers that contribute the most
are the layers close to the RCB. At lower pressures heat is rera-
diated, whereas at higher pressures ohmic heating is not efficient
due to the high conductivity there (Batygin & Stevenson 2010;
Batygin et al. 2011). Huang & Cumming (2012) deposit the extra
heat in the radiative layers and do not include ohmic heating
below pressures of 10 bar. Under these assumptions, the RCB
moves to higher pressures. Wu & Lithwick (2013) showed that
heat deposited at deep layers requires significantly less heating
efficiency in comparison to depositing the extra heat at shallow
pressures. For planetary parameters similar to TrEs-4 b and using
the same heating efficiency, the model of Batygin & Stevenson
(2010) yields a planetary radius of 1.9 RJ, while under a simi-
lar model Wu & Lithwick (2013) yields 1.6 RJ. Differences in
the radial profiles of the conductivity and wind might explain
this difference. This however shows the difficulty in comparing
models under the same heating mechanism but using different
assumptions.

Komacek & Youdin (2017) studied systematically the effect
of varying the depth of heating on the radius and found that
heat deposited in the convective layers can explain the radii of
hot Jupiters. Modest heating at pressures larger than 100 bar is
enough, on condition that the heating is applied at an early age
while the interior at such pressures is still convective. Heating at
any pressure deeper than 104 bar leads to similar radii.

All the results we show are based on the assumption that heat
is deposited in the deep interior. Therefore, the heating efficien-
cies we compute could be underestimated. This potentially has
also an effect on the interior structure of hot Jupiters, where we
show that the RCB moves to lower pressures.

4. Statistical model

Our goal is to estimate the internal luminosity and heating effi-
ciency for the individual planets and for the population of hot
Jupiters, while accounting for the uncertainties on the observed
parameters. In this section, we describe the method used to infer
the distribution of the internal luminosity and thus the heating
efficiency for each planet, by establishing a probabilistic frame-
work to link the observed planetary radius to the predicted one
from the theoretical model described in Sect. 3. We start by
describing how the internal luminosity for each individual planet
is computed in Sect. 4.1. We refer to this step as the lower level
of the hierarchical model. In Sect. 4.2, we then combine the indi-
vidual posterior samplings to study the global distribution of the
full population. This will be referred to as the upper level of the
hierarchical model.

4.1. Lower level of the hierarchical model: inferring Lint for
each planet

For each planet n (n= 1, 2, . . . ,N), the planetary radius Rp,n
depends in our model on the planetary mass Mp,n, the fraction
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of heavy elements Zp,n, the planet internal luminosity Lint,n, and
the stellar incident flux Fp,n, which further depends on the stellar
luminosity L∗,n and on the semi-major axis an. In what follows,
all the quantities refer to the individual hot Jupiter’s physical
parameters. In this framework, we define ωn, the parameters that
determine the planetary radius for each individual hot Jupiter

ωn ≡ (Mp,n,Zp,n, Lint,n, L∗,n, an) (8)

and thus the predicted radius from the theoretical models Rt,n is
a deterministic function of ωn, where Rt,n = f (ωn). Rt,n is deter-
mined using the internal structure model described in Sect. 3.
Given the observed planetary mass, semi-major axis, and stel-
lar luminosity, and using the mass–heavy-element mass relation
from Thorngren et al. (2016), we aim to infer the distribution
of Lint,n that reproduces the observed radius. We thus intend
to answer the question: what is the internal luminosity of the
planet given the observable parameters and our assumption on
the fraction of heavy elements? Therefore, we define the likeli-
hood function, the probability to observe the data given a specific
set of model parameters, as

P(Dn|ωn)= P(Rp,n|Mp,n,Zp,n, Lint,n, L∗,n, an). (9)

Finally, the posterior probability function, the probability of the
parameters ωn given the data Dn, is

P(ωn|Dn) ∝ P(Dn|ωn)P(ωn) (10)
∝ P(Rp,n|Mp,n,Zp,n, Lint,n, L∗,n, an)
× P(Mp,n,Zp,n, Lint,n, L∗,n, an) (11)
∝ P(Rp,n|Mp,n,Zp,n, Lint,n, L∗,n, an)
× P(Zp,n|Mp,n)P(Mp,n)P(Lint,n)P(L∗,n)P(an). (12)

In the last line in Eq. (12) we assume that Lint,n, L∗,n, and an
are independent of each other and that Zp,n depends on Mp,n fol-
lowing the mass–heavy-element mass relation (Thorngren et al.
2016). This inference allows us to account for data uncertainties.
The semi-major axis is known precisely from observations and
hence we fix the value to the observed one. We then marginalize
over Mp,n, Zp,n, and L∗,n to infer the distribution of the inter-
nal luminosity. We assume that the distribution of each of the
observed parameter is a Gaussian distribution centered on the
true quantity with a scatter given by the measurement uncertain-
ties. Following the standard statistical notation, we can write

Mp,n |Mpt,n, σMp,n ∼ N(Mpt,n, σMp,n ) (13)

Zp,n |Mp,n, α, β, σZ ∼ N(αMβ−1
p,n , σZ) (14)

L∗,n | L∗t,n, σL∗,n ∼ N(L∗t,n, σL∗,n ) (15)
Rp,n |Rt,n, σRp,n ∼ N(Rt,n, σRp,n ) (16)

ε ∼ U(0%, 5%) (17)

where α, β, and σZ are the values taken from the mass–heavy-
element mass relation established by Thorngren et al. (2016).
We use α= 57.9/317.828, β= 0.61, and σZ = 101.82/317.828
where 1MJ = 317.828 M⊕ and Mp is in Jovian mass MJ. Here,
y | µ, σ ∼ N(µ, σ) implies that y is drawn from a normal distribu-
tionN with mean µ and standard deviationσ.U denotes that ε is
sampled from a uniform distribution. We perform the inference
twice each time using a different prior for the internal luminosity

Lint,n | a, b ∼ LU(a, b) (18a)

Lint,n | a, b ∼ U(10a, 10b) (18b)

where we set τ0 = (a, b) = (0, 5). LU and U implies that Lint is
drawn from a log-uniform and uniform distribution, respectively,
and Lint is in Jovian luminosity LJ. We note that in our analysis,
we do not sample ε, we sample Lint and at each step in the
Markov chain Monte Carlo (MCMC) compute ε using

ε =
4Lint,n a2

n

L∗,n R2
p,n
, (19)

which was obtained by combining Eqs. (6) and (7) and the
relation between the stellar luminosity and flux. We further set
a uniform prior on ε over the range 0−5% (Eq. (17)).

In Eq. (18a), Lint,n is sampled from a log-uniform distribu-
tion LU. We choose this prior because the internal luminosity
covers a wide range of values and little is known about the true
underlying distribution. This prior however does not lead to a
uniform distribution in ε (see Sect. 4.1.1 and the right panel of
Fig. 3 for details), we therefore also consider a prior distribution
uniform in linear space (Eq. (18b)). The distribution of ε is uni-
form under this prior. In Sect. 4.1.1 we show in detail how the
choice of prior on the internal luminosity affects the prior on ε
and we discuss its effect on the inference. Finally, we can use the
structure models to compute the internal temperature Tint. As
discussed in Sect. 3.2, the atmospheric models were computed
for Tint between 100 and 1000 K. We therefore set an upper limit
of Tint < 1000 K in order to avoid extrapolation.

The statistical model described in Eqs. (13)–(18b) and setting
Tint < 1000 K contain all the relevant distributions to evaluate
Eq. (12). All the results shown in Sect. 6, were produced by run-
ning MCMC using emcee (Foreman-Mackey et al. 2013). For
each planet, we ran MCMC with 50 walkers each with 1000 steps
and discard the first half as burn-in. At each iteration we compute
the heating efficiency ε using Eq. (19). Using 25 000 samples we
then marginalize over the nuisance parameters and infer the pos-
terior distribution of Lint,n and of ε. The average acceptance ratio
was around ∼0.5 for almost all the planets in the sample.

As a by-product of this analysis, we also keep track of the PT
profiles and thus infer the distribution of the pressure at the RCB
and the planet internal temperature Tint. This is useful to gain
insights on the interior structure of hot Jupiters and we present
the analysis in Sect. 6.4.

4.1.1. Choice of prior on the internal luminosity

In the lower level of the hierarchical model (Sect. 4.1), we use
noninformative uniform distributions in log and linear space as
prior for the internal luminosity. It is worth studying the effect
of the prior distribution on the final results. Figure 2 shows the
marginalized distributions for HD 209458 b using the two differ-
ent priors. The luminosity distribution is shown in log-scale for
both distributions for illustrative purposes. Red shows the sam-
ples using a log-uniform distribution while blue using a uniform
distribution in linear space. Note the strong correlation between
the fraction of heavy elements Zp and the internal luminos-
ity with a Pearson correlation coefficient ρ> 0.9. The observed
parameters (Rp, Mp, and L∗) are reproduced in both cases and
the distributions look almost identical. But the distributions of
Lint, the main parameter of interest, are different leading thus to
different distributions in heating efficiency ε. We are in a regime
where the data size is small and the choice of the prior distri-
bution is important and dominates the inference. We note that
Fig. 2 shows the radius distribution even though we do not sam-
ple this parameter. This is useful to validate the model and to
check that it predicts the observed data. Such plots are referred
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Fig. 2. Posterior distributions inferred for HD 209458 b using our model (Eq. (12)). The gray dashed lines show the observed value for the relevant
parameters. The effect of using different prior distribution leads to different posterior distributions for Lint, ε, and Zp. The inferred posterior
distributions for the other parameters (L∗, Mp, and Rp) are almost identical for both priors since they are constrained well from observations.

to as posterior predictive plots and we apply them in Sect. 6.1 to
validate the model for each planet.

Ideally, we would want to learn about the internal luminos-
ity of the planet by relying entirely on the observed parameters
while the choice of the prior should have minor effects on the
posterior inference. Even though both distributions are nonin-
formative, the data is not enough that the prior dominates. To
put it in another way, more data is needed to be able to infer
the distribution of Lint independently of the choice of prior.
Unfortunately, the physical parameters that can be observed for
exoplanets in general and transiting planets specifically are very
limited. One promising avenue might be inferring precisely the
internal temperature, which was for the first time recently esti-
mated for WASP-121 b (Sing et al. 2019) with Tint = 500 K. In
our results for WASP-121 b, the Tint distributions look similar
using both priors and therefore it is not possible to put tighter

constraints on Lint. Another promising approach is to put tighter
constraints on the planet mass–heavy-element mass relation,
which translates to tighter constraints on Lint due to the large
degeneracy between Lint and Zp. This can be achieved by increas-
ing the number of confirmed transiting warm Jupiters, that is,
giant planets with Teq < 1000 K. Such relatively cool planets are
not inflated (Demory & Seager 2011). This allows to infer the
fraction of heavy elements for such planets and recalibrate the
relation between the planet mass and fraction of heavy elements,
similar to what was done by Thorngren et al. (2016) but with a
larger sample.

It is important to explicitly mention that given the setup of
the statistical model, the prior distributions for the individual
planets are not the same because of the imposed upper limit
of ε = 5%, which further depends on the observed parameters
(Eq. (19)). This can be understood by looking at the bottom
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Fig. 3. Left: PDF of the prior on the inter-
nal luminosity distributions for WASP-48 b
and EPIC-211418728 b under the linear-U
prior. The systems were chosen arbitrarily
for illustrative purposes. Even if we initially
set a uniform prior between 10a and 10b LJ,
with a= 0 and b= 5, the actual prior dis-
tributions for each planet are not similar
and have different a and b values. Notice
the log scale for better visualization. Right:
the heating efficiency prior distribution for
EPIC-211418728 b. Assuming log-uniform
prior distribution on Lint leads to biases
toward smaller values on ε.

line in Eq. (12)3, where it is clear that each planet has differ-
ent L∗, Mp, a, and Zp distributions due to differences in the
observed physical properties. We confirm this by sampling the
prior probability density function (PDF), that is, by running the
model on an empty data set Dn for two different planets EPIC-
211 418 729 b and WASP-48 b. By not sampling Dn in Eq. (12),
we effectively sample the prior PDF. The left panel of Fig. 3
illustrates this concept where we show that the internal luminos-
ity prior distributions are different under the linear-uniform prior
for both planets. Note though the log scale for better visualiza-
tion. Even though we imposed a uniform distribution between
100 and 105 LJ, Lint larger than 102.5 LJ for EPIC-211418729 b are
not sampled and thus are ruled out. This cutoff in the distribution
at high Lint values is a consequence of the upper limit imposed
on ε and the low stellar luminosity which translates to low Teq.
With an equilibrium temperature roughly of Teq = 700 K, a heat-
ing efficiency of 5% for EPIC-211 418 729 b is equivalent to a
maximum Lint = 102.5 LJ. On the other hand, WASP-48 b with
Teq = 2000 K (i.e., high L∗), an upper limit of 5% on the heating
efficiency is equivalent to a maximum of Lint ∼ 105 LJ. We note
that for WASP-48 b low Lint values are not ruled out but are less
probable. To summarize, even if the initial prior imposed on Lint
isU(10a, 10b) with a= 0 and b= 5, the actual prior distributions
for the individual planets are different with different a and b val-
ues. This is a consequence of the additional prior on ε (ε < 5%).
Planets with low Teq, their distributions are truncated at high Lint
values (with b< 5). While this is not the case for planets with
high Teq (with b= 5). The importance of a and b is relevant for
the discussion in Sect. 4.2.

It is also worth studying the consequence of using different
Lint priors (U and LU) on the heating efficiency ε prior PDF
since the relationship between the two parameters is determinis-
tic following Eq. (19). We follow the same procedure described
in the previous paragraph, that is, we run the model on an empty
data set for EPIC-211418729 b. The right panel of Fig. 3 shows
samples from the prior distribution on ε for EPIC-211418729 b
using the linear-uniform and log-uniform cases. It is evident that
a log-uniform prior distribution on Lint does not lead to a uni-
form prior on ε and the inference is biased toward small ε values.
Whereas this is not the case when assuming a linear-uniform
prior on Lint. We want to stress that this holds for almost all of the

3 The top line in Eq. (12) is the likelihood probability density function
(PDF) and the bottom line is the prior PDF.

planets in our sample and not only for EPIC-211418729 b, which
was chosen arbitrarily.

From a statistical point of view, a log-uniform prior distri-
bution is favored because of the large range of values and it
is therefore easier to explore the entire parameter space in log
space. However, this prior leads to biases in the ε distribution.
To mitigate this, in the following section (Sect. 4.2) we develop a
flexible hierarchical Bayesian model that accounts for the choice
of prior. We study the population distributions under both priors
in Sect. 6 and show that the inference at the population level is
independent on the choice of prior.

4.2. Upper level of the hierarchical model: population level
posterior samplings

4.2.1. General framework

In Sect. 4.1, we inferred the distributions of Lint, ε, Tint, and
pressure at the RCB (PRCB) for each planet individually. In
this section, we derive the equations needed to study the gen-
eral distribution of the (i) internal luminosity as a function of
planet radius, (ii) heating efficiency, (iii) internal temperature,
and (iv) pressure at the RCB as a function of Teq. The distribu-
tions (i), (iii), and (iv) provide insights into the interior structure
of hot Jupiters while (ii) gives insights into the efficiency of
transporting energy into the interior, similar to the work of TF18.

Distributions (i) and (iv) are modeled using a 4th degree
polynomial

gp (x) = a0 + a1x + a2x2 + a3x3 + a4x4. (20)

The set of parameters describing the population is referred to as
hyperparameter and defined as τ= {a0, a1, a2, a3, a4}. x is the
planet radius Rp for (i) and equilibrium temperature Teq for (iv).
There are many benefits of using polynomial regression com-
pared to other parametric and nonparametric approaches. One
important factor is that these models are flexible and can take
a variety of shapes and curvatures to fit the data, making the
results thus less model dependent compared to parametric mod-
els. Another important factor is that polynomial regression is
similar to fitting a linear model and thus is computationally inex-
pensive and very fast to compute, unlike nonparametric models
such as Gaussian process. A disadvantage to this approach is the
curse of dimensionality, where the number of model parameters
grows much faster than linearly with the growth of degree of the
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polynomial. In our case, we use univariate polynomial regression
with degree 4 and thus the total number of model parameters
is 5.

Distribution (ii) is modeled using both a 4th degree polyno-
mial and a Gaussian function

gg
(
Teq

)
= εmax exp

−1
2

(
Teq − Teq0

s

)2 (21)

where the hyperparameters τ=
{
εmax, Teq0, s

}
are the amplitude,

the temperature at εmax, and the width of the Gaussian function,
respectively.

Finally, distribution (iii) is modeled using a Gaussian func-
tion with the hyperparameter τ=

{
Tint,max, Teq0, s

}
.

4.2.2. Derivation

In what follows, we derive the key equation which the inference
is based on (Eq. (28)) but first provide the motivation and simple
description of the method. We aim to use the single distributions
we inferred in the lower level of the hierarchical model to infer
the set of population parameters τ, which we refer to as hyper-
parameters. The general form of the full posterior distribution in
the hierarchical framework is

p(τ,ωn | {Dn}) ∝ p(τ)
N∏
n

p(ωn) p(Dn |ωn). (22)

In this equation N is the total number of planets, p(τ) is the
prior probability distribution on the hyperparameters, p(ωn)
and p(Dn |ωn) are the prior and likelihood distributions for the
individual planets, respectively. The population posterior distri-
bution is a strong function of the prior imposed at the lower level
of the hierarchical model. This can be understood if we assume
that p(ωn) is the same for all planets. Using this assumption,
p(τ,ωn | {Dn}) scales with p(ωn)N .

It is crucial therefore to make sure that the distribution we
infer for the population has physical origins rather than is an
output of the choice of prior. Hence, in order to account for
the prior distribution imposed at the lower level of the hierar-
chical model, we apply the importance sampling algorithm. We
follow closely the pioneering work established by Hogg et al.
(2010) (see also the Appendix of Price-Whelan et al. 2018). This
method has been used by Foreman-Mackey et al. (2014) to infer
the occurrence rate of planets as a function of period and radius
and by Rogers (2015) to infer the radius at which the composition
transition from rocky super-Earth to volatile-rich sub-Neptunes.
Briefly, we reweight the individual posterior samples by the ratio
of the value of the hyperparameters τ evaluated given the new
hyperprior distribution to the old prior on which the individual
sampling is based on evaluated at the old default τ0 values. We
derive below the marginal likelihood distribution.

For each n of N planets, we obtain K posterior sam-
ples of the parameters that determine the planetary radius
θn = (Mp,n,Zp,n, L∗,n, an) and Lint,n. Following similar notation to
Sect. 4.1 and for brevity, we define the full set of parameters as

ωn= (θn, Lint,n)= (θn, yn). (23)

We use the individual posterior samplings to compute the likeli-
hood of the hierarchical model. For a single planet, the likelihood

given the hyperparamters τ is

p(Dn | τ) =
∫

p(Dn |ωn) p(ωn | τ) dωn (24)

=

∫
p(Dn |ωn) p(ωn | τ)

p(ωn | Dn, τ0)
p(ωn | Dn, τ0)

dωn (25)

∝
∫

p(ωn | τ)
p(ωn | τ0)

p(ωn | Dn, τ0) dωn, (26)

where in the last equation we applied Bayes’ theorem on the
posterior distribution p(ωn | Dn, τ0), which is the posterior dis-
tribution for a single planet computed using Eq. (12). The set
of parameters from which the previous inference was generated
is denoted by τ0. For example, as described in the previous sec-
tion, the parameters describing the distribution of Lint are τ0 = (a,
b) = (0, 5). We can then apply the Monte Carlo integral approx-
imation to estimate the marginalized likelihood distribution
over θ

p(Dn | τ) ≈ 1
K

K∑
k

p(ynk | τ)
p(ynk | τ0)

. (27)

Essentially, we are assuming that all the probability integrals
can be approximated as sums over samples. In case of infi-
nite samples, this approximation becomes exact. Having derived
the marginalized likelihood distribution for a single planet
(Eq. (27)), the full marginal likelihood is then the product of the
individual likelihoods

p({Dn} | τ) ≈
N∏
n

1
K

K∑
k

p(ynk | τ)
p(ynk | τ0)

. (28)

We can then choose a prior probability distributions for the
hyperparameter τ and the posterior probability distribution is

p(τ | {Dn}) ∝ p(τ)
N∏
n

p(Dn | τ) (29)

≈ p(τ)
N∏
n

1
K

K∑
k

p(ynk | τ)
p(ynk | τ0)

. (30)

Inside the sum, the numerator is the new probability distribution
that we want to infer given a new set of hyperparameters τ, while
the denominator is the value of the default prior on which the sin-
gle posterior samples is based at the previously assumed values
of τ0. We then reweight the ynk posterior samples by the ratio.
This approach of using the posterior samples from the lower
level of the hierarchical model like data in the upper level has
been first addressed by Hogg et al. (2010) (see also Foreman-
Mackey et al. 2014, and TF18). Ideally, the inference of τ and ωn
for all the planets should be done simultaneously, however this
is computationally very expensive as it involves solving 4N + m
integrals, where N is the number of planets and m is the number
of hyperparameters in our model.

Equation (28) is the main equation we use to infer the
general distributions of (i), (ii), (iii), and (iv) defined at the
beginning of this Section. We use Kernel Density Estimation
(KDE) to estimate the probability density function (PDF) of each
of the previously inferred distributions to compute p(ynk | τ),
where we discuss below the functional forms. We note that even
though we define a flat distribution for the internal luminosity,
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Eqs. (18a) and (18b), and set τ0 = (a, b) = (0, 5), this is not strictly
the case because additionally we truncate the heating efficiency
0< ε < 5% and require 100<Tint < 1000 K. Also, as noted in
Sect. 4.1.1, each planet has a different prior probability distribu-
tion, leading thus to different values of τ0 for each planet (for an
example see left panel of Fig. 3). Therefore to evaluate p(ynk | τ0),
we sample Eq. (12) for each planet on an empty data set similar
to what was done in Sect. 4.1.1 and then estimate the PDF using
KDE.

For each of the four distributions, we define the general form
ynk = g(xnk), specifically ynk =

Lint, nk = g(Rp, nk) (31)
εnk = g(Teq, nk) (32)

Tint, nk = g(Teq, nk) (33)
PRCB, nk = g(Teq, nk) (34)

where Rp, nk and Teq, nk are the samples of the individual posterior
distributions for the planetary radius and equilibrium tempera-
ture, respectively. The latter was computed at each iteration in
the MCMC at the lower level of the hierarchical model and the
values were stored.

4.2.3. Computational details

We summarize below the computational procedure. First, at each
iteration in the MCMC we sample the hyperparameters τ and
evaluate the function ynk = g(xnk) using the sampled values of τ.
Second, we compute p(ynk | τ) and p(ynk | τ0) using the precom-
puted KDE functions. Finally, we evaluate the log-likelihood of
Eq. (28)

lnp({Dn} | τ) ≈
N∑
n

ln  K∑
k

p(ynk | τ)
p(ynk | τ0)

 − lnK

 (35)

≈
N∑
n

ln  K∑
k

exp (lnp(ynk | τ) − lnp(ynk | τ0))

 − lnK


(36)

where in the last equation we compute the log of the sum of
exponentials (log-sum-exp). In practice, this is numerically more
stable compared to evaluating Eq. (35).

For all the results presented below, we use emcee to sam-
ple from the posterior probability distribution (Eq. (30)). The
functional forms of g(xnk) are either a 4th degree polynomial
or a Gaussian function or both. These are specified in Sect. 6.
In what follows, we draw K = 2000 random samples from the
single posterior samples when evaluating the mass–luminosity–
radius relation. For the other relations we set K = 1 and use the
observed Teq values. This is possible since the equilibrium tem-
perature is often well constrained from observations. We verified
that accounting for the uncertainties does not effect the results.
We adopt 44 walkers and run the sampler for 4000 iterations
where the first half are discarded as burn-in and retain only every
20th sample in the chain to produce independent samples. We
monitored convergence by computing the acceptance ratio and
by visually inspecting the trace plots and corner plots. We note
that for each relation, we execute this procedure twice, each time
using the samples drawn under the different prior, log-uniform
LU and uniform U. By running this process twice, in Sects. 5
and 6 we show that the results are not biased by the choice of
prior, unlike the lower level of the hierarchical model. All the

data and results are available online4 and the source code can be
found on github5.

5. Model validation using planet population
synthesis

To validate the statistical method, we applied the hierarchical
model to a synthetic catalog based on planet population synthe-
sis. The true distribution under which the synthetic dataset was
generated is known. Applying thus our hierarchical model on this
dataset allows us to evaluate the quality of the fit and to check
whether the statistical model gives an accurate representation of
the real distribution based on the observed data.

5.1. Generating synthetic catalog

The data set was generated using the Generation III Bern model
of planetary formation and evolution (Emsenhuber et al. 2020).
Inflation was accounted for by including a parameterized bloat-
ing model with a small addition during the formation phase
compared to Eq. (6) defined as

Lint = εF πR2
p exp(−τmp) (37)

where τmp is the optical depth in the disk midplane from the star
to the planet. This relation takes into account that at early times
the disk is optically thick and the planet is at large semimajor
axis, therefore bloating is inefficient. At later times, the planet
migrates inward, the disk dissipates, and the heating becomes
relevant. Mol Lous & Miguel (2020) showed that migration can
affect the inflation and radius of the planet only when high frac-
tion of energy is deposited into the interior (ε > 5%) but has no
effect for smaller ε values.

For the heating efficiency ε, we use the Gaussian relation
(Eq. (21)). Specifically, we use the values we infer using the log-
U and presented in Table 1. For more details check Sect. 6.3.
Our model also assumes the heating efficiency is constant in time
and the stellar mass was fixed to 1 M�. Using the same assump-
tions discussed in Sect. 3, the heavy elements are distributed
homogeneously in the envelope and we use the fully nongray
atmospheric models of the petitCODE.

We perform the same cut on the synthetic data, that is, we
select only planets with 0.37<Mp< 13 MJ and semi-major
axis a< 0.1 au. Since the population synthesis did not produce
hot Jupiters with Teq > 2250 K, we manually moved the plan-
ets inward by 0.04 au after the formation epoch. This however
does not have an effect on the inference. The population synthe-
sis consists of 30 000 single embryo per disk systems (population
NG73) out of which 174 hot Jupiters made it into the synthetic
sample.

One of the main advantages of the statistical model is the
ability to account for uncertainties on the parameters. We gener-
ate synthetic uncertainties by calculating the relative uncertainty
for Mp, Rp, T∗, and R∗ based on the observed data and then taking
the median of the computed values. The median of the relative
uncertainty for Mp and Rp is 7 and 4%, respectively. Whereas the
median of the relative uncertainty based on the observed data for
T∗ and R∗ is 1 and 4%, respectively. These parameters were then
used to calculate the uncertainty on L∗.

4 https://tinyurl.com/bloated-hjs-results
5 https://github.com/psarkis/bloatedHJs
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Fig. 4. Model validation on planet population synthesis data. Heating efficiency – equilibrium temperature (HEET) posterior distribution using the
linear-uniform (left) and the log-uniform (middle) priors for a Gaussian and 4th degree polynomial. The thick lines denotes the posterior median
for the relevant functions and the dashed black line denotes the true distribution implemented in the Bern population synthesis model, which was
used to generate the synthetic data. The dark and light shaded region contains the 68 and 90% credible interval. To better compare the same model
using different priors, the right panel shows the Gaussian models using log (red) and linear (blue) uniform priors. The light gray model in the right
panel is the inferred posterior distribution in case we do not correct for the choice of prior. Our model is able to retrieve the Gaussian-like function
when modeled using a 4th degree polynomial. The posterior median provides a good fit to the true distribution although the linear model predicts
a lower heating efficiency. The credible intervals derived are able to accurately constrain the true values of the model parameters.

Table 1. Comparison of the Gaussian function using the log and linear
uniform prior along with comparison to TF18 results.

τ log-U linear-U TF18

εmax[%] 2.46+0.29
−0.24 2.49+0.31

−0.28 2.37+1.30
−0.26

Teq0 [K] 1982+83
−58 1862+67

−61 1566+55
−61

s [K] 532+110
−73 508+66

−48 327+25
−43

5.2. Performing statistical inference on the synthetic catalog

The Bern planet population synthesis model is based on the core-
accretion model. As such, the model self-consistently computes
the accretion of gas and solids onto the protoplanets, which we
keep track of. We find that the mass of heavy elements is lower
in the synthetic planets than inferred by Thorngren et al. (2016).
We therefore refrain from using this relation in the lower level of
the hierarchical model and replace Eq. (14) by

Zp,n ∼ N(Zps,n, 0.05) (38)

where Zps,n is the value from the population synthesis with a
standard deviation of 0.05, which is equivalent to a relative
uncertainty of 5%.

With this only modification to the original lower level of the
hierarchical model described in Sect. 4.1, we apply the method
to infer the distribution of Lint and ε for each of the synthetic
planets. We compare the marginalized posterior distributions of
the parameters to the simulated values and confirm that we were
able to reproduce Mp, Rp, L∗, and thus Teq for all the synthetic
planets. We repeated this procedure twice each time assuming
Lint follows a log-uniformLU distribution or a linear-uniformU
distribution. The individual posterior distribution for most of the
synthetic planets are flat, which highlights the need for a hierar-
chical model that combines the individual distributions to extract
useful information at the population level. This is one of the
main advantages of using hierarchical Bayesian model (Loredo
& Hendry 2019).

We therefore use the marginalized ε distribution for each
planet to infer the heating efficiency–equilibrium temperature
(HEET) for the synthetic population following the method
described in Sect. 4.2. We model the HEET distribution with
both a Gaussian function and a 4th degree polynomial. The for-
mer function is used to test the ability of our hierarchical model
to retrieve the input parameters of the Gaussian function and the
latter function to test whether our model can indeed predict a
Gaussian-like pattern.

5.3. Results using synthetic data

With this procedure, we end up with four posterior distributions,
which are shown in Fig. 4. The left and middle panel show the
inference done assuming Lint follows a linear-uniform and log-
uniform distributions, respectively, for the Gaussian function and
4th degree polynomial. The right panel compares the Gaussian
functions shown in the left and middle panel under both prior
distributions. The black dashed line is the true distribution as
implemented in the Bern population synthesis model. The dark
and light shaded region shows the 68 and 90% credible interval.
The Gaussian-like pattern is retrieved when using a 4th degree
polynomial and also in agreement with the inferred Gaussian dis-
tribution. The median posterior using the linear-uniform prior
underestimates slightly the heating efficiency at the 68% (1σ)
level but the true model is contained within the 90% (2σ) credi-
ble interval. This test shows that the statistical framework is able
to retrieve the true distribution.

The light gray distribution in the right panel is the inference
done assuming log-uniform distribution without correcting for
the choice of prior at the lower level. This shows the importance
of understanding the prior at the lower level and highlights the
need to reweight the distributions.

6. Results using real data

We now apply the model described in Sect. 4.1, that is, the lower
level of the hierarchical model, to infer the distribution of Lint, ε,
Tint, and PRCB for each of the detected planets. In Sect. 6.1, we
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Fig. 5. Mass–luminosity–radius (MLR)
posterior distribution for four different mass
bins showing the median (thick line) and
68% credible interval (shaded area) assum-
ing a uniform prior in log (blue) and lin-
ear (red) space. Using either prior leads to
almost identical results. The internal lumi-
nosity is high with the largest planets having
a luminosity approximately four orders of
magnitude larger than Jupiter.

present diagnostic tools to validate the lower level of the hierar-
chical model. We then use the inferred posterior distributions to
study the mass–luminosity–radius (MLR), Tint–Teq, PRCB–Teq,
and heating efficiency – equilibrium temperature (HEET) distri-
butions for the population of hot Jupiters following the model
introduced in Sect. 4.2. In Sect. 6.2, we show that by prop-
erly correcting for the choice of prior, the MLR distribution at
the population level is prior independent. We hence present the
rest of the results under the uniform in linear space prior in
Sects. 6.3–6.4. For completeness, we show the results using both
priors in Appendix A.

6.1. Posterior predictive checks

For each system, we infer the distribution of the internal lumi-
nosity that reproduces the observed radius, mass, and stellar
luminosity while fixing the semi-major axis to the observed
value. We visually inspect each system to double check that
the marginalized posterior distributions of the observed param-
eters, Mp, Rp, L∗, and thus Teq, are reproduced. Such plots are
important to check that the model is a good fit and is thus
capable of generating data that resemble the observed data.
There are in total 17 systems where the observed mass and/or
radius was not reproduced and thus we exclude these systems
from the data set and do not include them in the analysis pre-
sented below. For most of the planets the radii are not possible
from theoretical models as they are at the edge of the computed
grid for a given planet mass, stellar luminosity, and semi-major
axis. The observed radii tend to be larger than what is possible

from the theoretical grid and most of these planets have masses
Mp > 2.5 MJ. We note that for three systems the stellar luminos-
ity and therefore the equilibrium temperature was not reproduced
(HAT-P-20, Qatar-2, and WASP-43). We decide however to keep
these systems since the difference in the equilibrium temperature
is on the order of ∼30 K and hence the change in the internal
luminosity is almost insignificant.

6.2. Mass–Luminosity–Radius (MLR) distribution

We divide the samples into four mass ranges, similar to the mass
bins estimated by Sestovic et al. (2018) but further divide their
second mass bin into two: the sub-Jupiter planets (0.37−0.7 MJ
and 0.7−0.98 MJ) and the massive-Jupiter planets (0.98−2.5 MJ
and > 2.5 MJ). The number of planets in each group is 86, 59,
119, and 33 planets, respectively. To infer the MLR distribution,
we run the model (Eq. (28) or equivalently Eq. (36)) for each
mass bin by specifying the functional form of gp(x) as a 4th
degree polynomial using Eq. (20). As such, x is the planet radius
Rp in Eq. (20) and the hyperparameter τ= {a0, a1, a2, a3, a4}.

At each iteration in the MCMC, we compute ε following
Eq. (19), where the semi-major axis is fixed to the observed value
and L∗ and Rp are drawn from the individual marginalized pos-
terior distributions. We further impose an additional log-normal
prior on ε ∼ LN(−1, 1) for the planets with an equilibrium tem-
perature less than 1000 K. This reflects our beliefs that planets
with low equilibrium temperatures are not inflated (Demory &
Seager 2011), and thus ε should be small. We tested several prior
probability distributions on ε and verify that our results are not
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affected by the choice prior. We repeat the full procedure twice
each time drawing samples from the lower level of the hierar-
chical model under the different priors at the lower level (LU
and U) and assign uniform uninformative priors on the hyper-
parameters. In Tables A.1 and A.2 we give the 68% credible
interval values assuming linear-uniform and log-uniform priors
and provide the chains online6.

Figure 5 shows the posterior distribution inferred for all mass
bins under the two priors, uniform in log (red) and linear (blue)
space. Notice that the lower right panel has a different scale to
better visualize the results. Each data point is represented by a
small line at the bottom of the plot at the corresponding radius.
Such plots are called rug plots and are used to visualize the distri-
bution of the data. The posterior distributions under both priors
are almost identical and indistinguishable inline with the conclu-
sion reached in Sect. 5 by validating the hierarchical model on
synthetic data. There are few differences between both models,
such as at small radii for the least massive planets and at large
radii for the most massive ones. These differences are mainly
dominated by the small number of planets in these regions. This
highlights the importance of reweighting the samples by divid-
ing by the prior used to do the sampling at the lower level of
the hierarchical model. For the rest of the paper, we show the
results under the prior uniform in linear space, but confirm that
the choice of prior at the lower level of the hierarchical model
does not affect the main results and conclusions.

The basic shape of the MLR relation is similar across all
mass bins, where as expected larger planets have higher inter-
nal luminosity with a plateau around 1.6 RJ beyond which the
luminosity is almost constant. The small drop toward high radii
has little statistical significance and likely reflects the choice of
a fourth-order polynomial. The inferred internal luminosity for
most of the planets is several orders of magnitude larger than
Jupiter, reaching even up to four orders of magnitude. We also
find that the internal luminosity is mass dependent, with the most
massive planets having the highest internal luminosity.

A noticeable feature is that the sub-Jupiter planets with
masses 0.37−0.98 MJ and radii less than 1 RJ have an internal
luminosity larger than Jupiter. At first glance, one might expect
such planets to have an internal luminosity smaller than Jupiter’s.
We note however that the planets that have an equilibrium tem-
perature less than 1000 K, indeed tend to have Lint ∼ 3 LJ and
not more. A higher luminosity is expected because, even with
Teq < 1000 K, these planets are still much closer than Jupiter,
which reduces the cooling rate and thus leads to higher internal
luminosity. As for the planets that have equilibrium temperature
larger than 1000 K, they tend to have higher fraction of heavy ele-
ments distributed in the envelope. There are only two sub-Jupiter
planets in our sample that have radii less than 0.7 RJ, K2-60
and WASP-86, both of which require large fraction of heavy ele-
ments, 0.64 and 0.8, respectively, ruling out values less than 0.5.
The high fraction of heavy elements explains the high luminosity
values and the small number of planets with radii less than 1 RJ
is why the distribution is poorly constrained in this regime.

6.3. Heating efficiency equilibrium temperature (HEET)
distribution

Similar to the previous section, we also apply the model defined
in Sect. 4.2 to study the HEET relation using both function
forms: gp a 4th degree polynomial (Eq. (20)) and gg a Gaussian

6 https://tinyurl.com/bloated-hjs-results

function (Eq. (21)) with τ=
{
εmax, Teq0, s

}
. The former is a flex-

ible function that allows us to constrain the general shape of the
relation by relying entirely on the data as motivated in the previ-
ous section, while the latter allows us to compare our results to
TF18 and to theoretical predictions. Following the same method-
ology applied to the MLR relation, we further impose for the gp
model the LN(−1, 1) prior on the heating efficiency for planets
with equilibrium temperatures less than 1000 K. We note that the
individual distributions are flat, similar to the distributions of the
synthetic planets and useful information can only be extracted by
combining the individual distributions.

In Table A.3 we give the 68% credible interval values assum-
ingLU andU priors using the polynomial model. The Gaussian
models are shown in Table 1 and the MCMC chains are available
online7. The true distribution that was used to generate the syn-
thetic data in Sect. 5 are the values we obtained using the log-U
prior and shown in Table 1.

The left panel of Fig. 6 shows that the posterior distributions
are similar under both functional forms, with the polynomial
function leading slightly to higher efficiencies. Using an inde-
pendent interior structure model and a larger sample focused on
FGK main-sequence stars, our results are qualitatively consistent
with TF18. We confirm the Gaussian pattern holds independent
of the choice of prior (see Fig. A.1). This pattern was predicted
by ohmic dissipation first based on simulations (e.g., Menou
2012) and then later supported by TF18. Our analysis provides
further evidence of the Gaussian-like distribution.

6.3.1. Comparison to TF18

To compare our results to TF18, we report the median and the
68% credible interval of TF18 in Table 1. We also show the
posterior distributions in the right panel of Fig. 6. The heating
efficiency increases until a maximum is reached at Teq0, beyond
which the efficiency decreases. Our result regarding the maxi-
mum heating efficiency agrees well within 1σ with TF18, where
we determine εmax ∼ 2.50%, compared to ∼2.37%. In our model,
the peak occurs at ∼1860 K, while TF18 estimate the transition at
∼1566 K. This discrepancy can be attributed either to differences
in the statistical framework or in the interior structure model. We
will address both next.

While TF18 used a nonparametric Gaussian Process (GP)
approach to model the HEET distribution, they found consistent
results with the Gaussian function. In our study, instead of mod-
eling the HEET distribution with a nonparametric GP model,
we use a flexible 4th degree polynomial that we stress is very
fast to compute8 and find consistent results with the Gaussian
function. To test whether this discrepancy could be due to the
statistical framework, we ran our statistical model using the
individual distributions inferred by the analysis of TF18, which
were shared with us. We note that using their data, there is no
need to reweight the distributions. See Sect. 6.3.2 for a detailed
explanation. We confirm we were able to recover their posterior
distribution using both a Gaussian function and a 4th degree
polynomial. There is a very good agreement at the 1σ level,
except for Teq < 1000 K where the results are slightly different.
The amplitudes are in agreement at the 1σ level even though
we find tighter credible intervals at the 1σ level but very good

7 https://tinyurl.com/bloated-hjs-results
8 It takes around 5 min on a modern laptop to evaluate the upper model
for K = 1, that is, without accounting for uncertainties on the x-axis. For
K = 2000, it takes around 2 CPU hours on a server using 20 cores.
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Fig. 6. Left: heating efficiency–equilibrium
temperature (HEET) posterior distribution
under the linear-uniform prior using a
Gaussian function and a 4th degree poly-
nomial. Right: the Gaussian function shown
on the left side in comparison to the HEET
posterior distribution inferred by TF18. The
shaded region show the 68% credible inter-
val. There is a good agreement between the
Gaussian and poly models, which shows
that indeed the HEET distribution follows a
Gaussian function. Our results are in agree-
ment with the findings of TF18 although
the peak in our models is shifted to higher
equilibrium temperatures.

agreement at 2σ. With this we conclude that the differences are
not due to the statistical framework.

We now study the differences in the interior structure model
by comparing the solid black and dashed red models in the left
panel of Fig. 1 computed using our model completo21 and by
TF189, respectively. Both of these models are for a 1 MJ planet
with a pure H/He envelope without accounting for inflation. In
our case the planets are 5 Gyr old. Using our structure model,
Rp ranges between 1.12 and 1.22 RJ for Teq between 800 and
2500 K. In comparison, Rp is between 1.11 and 1.31 RJ using
the TF18 models for the same Teq interval. While the radii at
low Teq are almost identical, the differences at high Teq are up
to ∼0.1 RJ. We notice that both models lead to different radii
starting at Teq > 1500 K. This difference could explain the higher
heating efficiency we infer at Teq > 2000 K. Since the planets
in our model have smaller radii starting at 1500 K, then more
energy needs to be transported into the interior to reproduce the
observed radius, leading to higher ε values compared to TF18.
We note that this is a simple case scenario where the models
are for planets made entirely of pure H/He. While this scenario
explains the trend, more tests are needed to compare the radii at
different Teq for different fraction of heavy elements since the
details of the EOS for the heavy element could in principle also
be a source of discrepancy between the models.

The discrepancy in the radii could be caused by differences
in the atmospheric modeling. We next compare the atmospheric
models of petitCODE and Fortney et al. (2007), which was used
by TF18 and did not include TiO and VO. The previously com-
puted atmospheric grid using petitCODE include TiO and VO
(see Sect. 3.2). We therefore calculate the PT structure for a typ-
ical hot Jupiter at solar compostion, Tint = 100 K, Teq = 2000 K,
and log g= 3.27 without accounting for these absorbers. We find
that in the absence of TiO and VO no inversion was formed
with similar profiles using both atmospheric models. We then
calculate the entropy of both structures using our EOS. We find
that the entropy in the convective layers at pressure of 104 bar
is 7.55 kB baryon−1 using petitCODE compared to an entropy
of < 7.65 kB baryon−1 at pressure of 1000 bar using the models
of Fortney et al. (2007). We note that at this pressure the struc-
ture is still not convective and thus the entropy is smaller than
7.65 kB baryon−1 in the convective layers and most likely the

9 This is the same red dashed model shown in Fig. 1 in the TF18 paper.

difference is < 0.1 kB baryon−1 between both models. We note
that when including TiO/VO the entropy is ∼7.5 kB baryon−1.
A higher entropy leads to larger radii (e.g., Spiegel & Burrows
2013; Marleau & Cumming 2014) and as such we conclude that
the difference between both models presented in Fig. 1 could be
due to differences in the opacities high up in the atmosphere,
namely TiO/VO, which then have a larger effect on the deep
atmosphere due to the (anti) greenhouse effect.

A more systematic comparison between both atmospheric
models for different Teq and log g is required to further quantify
the discrepancies, which is beyond the scope of this paper. We
note that both studies do not account for systematic differences
in the structure models. Such comparisons will therefore allow
similar future studies to account for the systematic differences
and thus infer more reliable credible intervals.

6.3.2. Are the results of TF18 prior dependent?

In short, no.
In our study, we sample Lint and then compute ε using

Eq. (19). We imposed two different prior distributions on Lint
because we do not have a priori knowledge which distribution
best represent the population. Within a statistical framework, a
log-uniform distribution is preferred in order to explore the entire
parameter space. However, as we showed in the right panel of
Fig. 3, this leads to biases giving more weight to lower heating
efficiency. Whereas, a linear-uniform prior distribution on Lint
leads to approximately a uniform prior distribution on ε.

As discussed in Sect. 4.2.2, the choice of prior distribution
is important as the posterior distribution scales to the number
of planets N. Thus the need to reweight the distributions at the
upper level. Another way to approach this study is to perform a
full hierarchical Bayesian modeling where the inference on both
the individual planets and population is made simultaneously
(Wolfgang & Lopez 2015; Wolfgang et al. 2016).

In the study of TF18, the setup is different. They sample ε and
impose a uniform prior between 0 and 5%. There are no addi-
tional conditions that truncate the ε distribution, which itself is
flat noninformative prior. Therefore, there is no need to reweight
the distributions.

In general, it is always a good practice to sample the prior
PDF distribution (Hogg & Foreman-Mackey 2018). This step
is important to check whether MCMC samples correctly the
specified prior distributions.
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Fig. 7. Posterior distributions of the heating efficiency ε for all the plan-
ets with Teq > 2000 K. The colors indicate planets with Teq < 2250 K
and Teq > 2250 K in blue and red, respectively. Six out of the seven
planets shown in red favor small heating efficiency values with the most
probable value close to ε ∼ 1%. This provides evidence that the interior
structure model disfavor high ε values and thus the decrease seen in the
HEET distribution is real given our structure model.

6.3.3. The decrease in efficiency at high Teq is real

In order to check whether the decrease in the heating efficiency at
high Teq is real or not, we reran the lower-level model for all the
planets with Teq > 2000 K. We assumed a linear-uniform prior
for Lint to ensure the results are not biased toward small ε values.
Additionally, we did not put constraints on Tint. This is important
for the highly irradiated planets where Tint ∼ 1000 K translates
to ε < 5%.

The main goal of this exercise is to check whether the interior
structure model allows for high ε values for all the planets with
Teq > 2000 K. The cutoff was chosen to be close to the peak of
the Gaussian function as inferred previously in Sect. 6.3 (see also
Table 1). This allows us to compare the ε distribution for planets
with Teq close to 2000 K to the highly irradiated ones. If the
structure model allows for high ε values for the mostly irradiated
planets, then we do not have enough evidence that the decrease
in the heating efficiency is real. Otherwise, there is evidence that
the decrease is real.

Figure 7 shows the posterior distributions of the heating effi-
ciency ε. Planets with Teq < 2250 K are in blue and planets with
Teq > 2250 K are shown in red. As can be seen, all but one
of the planets with Teq > 2250 K disfavor high ε values with
the most probable value around ∼1%. The only planet where
high ε values are likely is the massive hot Jupiter WASP-18 b
(10.52 MJ; Maxted et al. 2013). At this mass, the radius is a weak
function of Lint and ε as it is difficult to inflate massive plan-
ets (Sestovic et al. 2018). We therefore consider WASP-18 b an
exceptional case, especially that all the planets with Teq > 2000 K
have Mp < 2.4 MJ.

This analysis illustrates that hot Jupiters with Teq > 2250 K
require low heating efficiencies to reproduce their radii using
our interior structure model, which supports the Gaussian-like
pattern and the decrease at 2000 K. With 20 planets having
Teq > 2000 K out of which only 7 planets have Teq > 2250 K,
future ultra-short hot Jupiters discoveries are essential to further
confirm or refute this trend.

6.4. Distributions of internal temperature and pressure at the
RCB

Having inferred the population level distributions of the internal
luminosity distribution and the heating efficiency, it is interesting
to study the effect of energy dissipation on the interior structure
of the planet. In particular, we show that as a consequence of
transporting energy into the interior, hot Jupiters have very hot
interiors which in turn pushes the RCB to low pressures. Our
findings are in agreement with T19, where they used the HEET
relation presented in TF18 to compute Tint and then generate PT
atmospheric models for a range of Teq and surface gravities to
locate the PRCB.

As mentioned in Sect. 4.1, we keep track of the PT profiles,
and thus we can infer the distribution of the internal temper-
ature and the pressure of the RCB for each planet. We again
apply the model defined in Sect. 4.2 to study the distributions of
Tint and PRCB as a function of Teq. We model the distributions,
Tint–Teq and PRCB–Teq, as a Gaussian function and 4th degree
polynomial, respectively. At steady state,

Tint = ε
1/4Teq (39)

= gg
(
Teq

)1/4
Teq (40)

where the last equation was obtained by replacing Lint =
4πR2

pσT 4
int in Eq. (6) and combining Eqs. (1) and (7). We use the

samples from our previous analysis using the Gaussian model
(see Sect. 6.3) to compute Tint using Eq. (40) and compare the
results to the hierarchical Bayesian approach. We refer to the for-
mer method as the analytical approach. For all the models, we
assign uniform distributions on all the hyperparameters.

Figure 8 shows the inferred posterior distribution for the
internal temperature (upper panel) and pressure at the RCB
(lower panel) as a function of the equilibrium temperature.
The analytical approach leads similar results to the Bayesian
approach at the lowest and highest equilibrium temperatures.
However, Tint is overestimated at the 2σ level for Teq between
1000 and 1800 K. This difference could be because we did not
account for intrinsic scatter in the model, which we leave for
future work.

For both models, almost all hot Jupiters have Tint larger than
200 K, while, for comparison, the internal temperature of Jupiter
is 100 K (Li et al. 2012; Guillot & Gautier 2014). This is expected
given the observed inflated radii. WASP-121 b is the only exo-
planet to date whose internal temperature was constrained from
observations of Mg and Fe in the transmission spectrum, with a
reported value of 500 K (Sing et al. 2019). With an equilibrium
temperature of Teq = 2358± 52 K (Delrez et al. 2016), we infer
Tint ∼ 800 K and by inspecting the individual posterior distribu-
tion of WASP-121 b, we rule out values below 500 K. This is the
first hint from observations that hot Jupiters possess hot interiors,
which is associated with a high internal entropy.

Another notable parameter to study is the pressure of the
RCB as this partly controls the planetary cooling rate (Arras &
Bildsten 2006; Spiegel & Burrows 2013). It is known that high
equilibrium temperature pushes the RCB deeper into the planet
(e.g., Fortney et al. 2007), however high internal temperature
pushes the RCB to lower pressures. Therefore, the location of
the RCB is not known beforehand for planets with high equilib-
rium and internal temperatures. The lower panel of Fig. 8 shows
that the RCB is situated at low pressures or at shallow depths for
high Teq. The effect of the high internal temperature is thus dom-
inant. The planets receiving high stellar irradiation tend to have
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Fig. 8. Tint–Teq and PRCB–Teq diagrams in
the upper and lower panels, respectively.
The dark and light shaded regions present
the 68 and 95% credible intervals. Although
the analytical approach overestimates the
internal temperature at Teq between 1000
and 1800 K, there is a good agreement at
Teq < 1000 K and Teq > 1800 K. Due to the
increase in the internal temperature with
equilibrium temperature, the PRCB moves to
lower pressures with increasing Teq, reach-
ing up to ∼3 bar for the most irradiated
planets.

hot interiors, typically around ∼800 K, which pushes the RCB to
low pressures, reaching ∼3 bar for the most extreme cases.

Our results agree well with T19. While we report a maxi-
mum Tint of 800 K at Teq ∼ 2500 K, T19 finds the maximum
Tint of 700 K at Teq ∼ 1800 K. The difference is mainly due
to the differences in the ε(Teq) distribution (see Sect. 6.3). We
estimate the RCB to be at 100 bar and 4 bar for Teq = 1000 K
and 2000 K, respectively, in agreement with the findings of T19.
Qualitatively, both models show the same pattern where the hot
interior of hot Jupiters drive the RCB to lower pressures.

We provide the 68% credible interval values for the
Gaussian model under both priors for the Tint–Teq distribution in
Table A.4. The values for the PRCB–Teq distribution are shown
in Table A.5, also under both priors. For both distributions the
chains are available online10.

7. Discussion

Building on the assumption that hot Jupiters are inflated because
of a process leading to high internal luminosity, we infer for
each planet the internal luminosity distribution that reproduces
the radius given the planet mass and equilibrium temperature
from observations and using the mass–heavy-element relation
(Thorngren et al. 2016) as a prior for the fraction of heavy
elements. We then combine the individual distributions to con-
strain the population mass–luminosity–radius (MLR) distribu-
tion. Assuming that the source of extra heat in the interior is the
irradiation by the host star (e.g., tides or magnetic fields), we then
compute the fraction of the incident flux ε deposited in the inte-
rior and study the heating-efficiency–equilibrium-temperature
(HEET) distribution for the full population. Finally, as a by-
product of our structure model, we can also gain insights into
the interior structure of the planets by inferring the distributions
of the internal temperature and the pressure at the RCB.

10 https://tinyurl.com/bloated-hjs-results

In what follows, in Sect. 7.1 we discuss the consequences
of the hot interior hot Jupiters possess on the internal structure.
Then we discuss our results within the context of the competing
heating mechanisms, mainly ohmic dissipation in Sect. 7.2 and
advection of potential temperature in Sect. 7.3. In Sect. 7.4, we
give a general comparison with analytical relations and discuss
the limitations and caveats of our results in Sect. 7.5.

7.1. Insights into the interior structure of hot Jupiters

We have shown that hot Jupiters have hot interiors, with an
internal temperature as high as 800 K. This has important conse-
quences on the location of the RCB, which in turn is important
for the heating mechanism. Komacek & Youdin (2017) showed
that heat dissipated in the convective layers suppresses cool-
ing and thus enables the planet to maintain a large radius. Heat
deposited in the radiative layer, however, does not significantly
inhibit cooling. Most it is reradiated away leading therefore
to small radii. The location of the RCB is hence important
to constrain the minimum depth at which the heat should be
deposited and thus the efficiency of the heating mechanism. We
find that the RCB is around 100 bar for planets with equilibrium
temperatures of about 1000 K, and can reach 3 bar for the highly
irradiated planets, which is significantly lower than previous esti-
mates of 1000 bar without accounting for a bloating mechanism
(Fortney et al. 2007). Our results are in agreement with T19
based on coupling the heating efficiency relation (TF18) to a
planetary interior structure model.

Mechanisms based on transporting heat into the deep inte-
rior, such as atmospheric circulation (Showman & Guillot 2002),
ohmic dissipation (Batygin & Stevenson 2010), or advection of
potential temperature (Tremblin et al. 2017) rely on the existence
of winds in the interior. While the extra heat must be deposited
in the convective layer in order to inflate the planet (Komacek &
Youdin 2017), the actual wind speeds are not constrained from
Global Circulation Models (GCMs) due to inaccurate coupling
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between the atmosphere and deep interior. Recently, Carone
et al. (2020) showed that through a better treatment of the lower
boundary condition, that is, by accounting for a hot interior, shal-
low zonal winds are present at 100 bar. With new estimates and
better understanding of the internal temperature and pressure at
the RCB, the depth of the wind zone and wind speeds can be
constrained from GCM models, which in turn will be key inputs
to further study the efficiency of the proposed mechanisms.

7.2. Comparison to ohmic dissipation

The general idea of ohmic dissipation is that equilibrium temper-
atures larger than 1000 K lead to thermally ionized atmospheres
that couples to the magnetic field and in the presence of strong
winds produces currents, which then dissipate thermally in
the deep interior (Batygin & Stevenson 2010; Batygin et al.
2011). However, in the high equilibrium temperature regime and
therefore high atmospheric ionization fraction, ions slow down
the winds due to Lorentz force, which in turn decrease the effi-
ciency of ohmic dissipation (Perna et al. 2010a,b). Scaling law
relations based on ohmic dissipation showed that indeed the
heating efficiency increases with equilibrium temperature until
a maximum is reached beyond which the efficiency decreases
(Menou 2012), which was also confirmed by TF18 and now in
our study. The scaling laws also suggest that the location of the
peak depends on the strength of the magnetic field. Therefore,
studying the functional form of the HEET distribution provides
insights within the context of ohmic dissipation.

Based on our analysis, we find that the HEET distribution
can be modeled by a Gaussian function, in agreement with TF18
and with the theoretical predictions. We find however that the
location of the peak is at 1860 K, which is higher compared to
the work of TF18 that reported the peak around 1566 K (see
Table 1). Menou (2012) showed that the transition is a function of
the strength of the magnetic field (see his Fig. 4) where stronger
magnetic fields push the peak to higher equilibrium temperatures
(the peak is at ∼1800 K for a 30 G field). Ginzburg & Sari (2016)
estimate the transition around ∼1500 K based on analytical mod-
els and Rogers & Komacek (2014) at ∼1500−1600 K based on
magnetohydrodynamic simulations. Yadav & Thorngren (2017)
estimate the surface magnetic field strength of hot Jupiters using
the energy flux scaling law from Christensen et al. (2009) and
account for the extra heat injected using the heating efficiency
relation presented by TF18. They found magnetic field strengths
around 50−100 G for the most inflated hot Jupiters. There are
no theoretical atmospheric circulation models with such strong
magnetic fields, which might hence change the location of the
peak. The transition is still not well constrained and might
depend on the field strength but the Gaussian distribution is
robust and most importantly is prior independent. Future obser-
vations of magnetic field strengths could potentially provide a
better overview but for now they remain unconstrained from an
observational point of view (for a current review see Griessmeier
2017; Lazio 2018).

7.3. Comparison to advection of potential temperature

Another source of heat could be the movement of high-entropy
fluid parcels deeper into the atmosphere, a process known as
advection of potential temperature. Within this context, Tremblin
et al. (2017) suggested, using two-dimensional (2D) circulation
model, that this process leads to a hot interior that can naturally
explain the radius anomaly of hot Jupiters. This was further sup-
ported recently by 3D GCM simulations (Sainsbury-Martinez
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Fig. 9. Temperature at 100 bar derived from our PT structures com-
pared to the values from the average PT profiles using 2D circulation
models presented by Tremblin et al. (2017) resulting from the advection
of potential temperature. All the models correspond to a planet with
log g= 2.97± 0.15 and increasing stellar incident flux. The gray dashed
line shows the 1:1 relation while the red dashed line shows the fit to the
data.

et al. 2019). The 2D models show that a stronger stellar inci-
dent flux leads to hotter interior adiabat (see their Fig. 5). We
compare our results based on the 1D model to the 2D mod-
els by selecting four planets from our sample that matches their
simulation parameters, that is, log g= 2.97± 0.15 with the cor-
responding equilibrium temperatures. We do not include the
model with the lowest equilibrium temperature (∼500 K) as it
does not match any of the selected systems in our sample. The
planets we selected as a function of increasing stellar incident
flux are HAT-P-17 b, Corot-4 b, HD209458 b, and HATS-35 b.
We then compare the temperatures at 100 bar (T100) using the
PT profiles based on the 2D models to the ones based on our
1D model presented in Sect. 3. The results are illustrated in
Fig. 9, where the derived temperatures at 100 bar are shown
in blue circles and the red dashed line shows the fit to the
data. The gray dashed line shows the 1:1 relation on which
the points would lie if their model and our data derived from
observations would predict identical temperatures. We find that
roughly the results agree well with a slope of 1.25, deviating
from the 1:1 relation. We note however that these values are
model dependent and any change in the treatment of the atmo-
spheric model, for example, including clouds and new opacity
sources, will change these values. The temperatures estimated
from the average PT profiles using the 2D circulation models are
larger than the values predicted by our model, varying from 6
up to 15% for the most irradiated planets. This is expected since
the 2D models tend to overestimate the radii compared to the
observed ones (Tremblin et al. 2017). Our results concerning the
adiabatic profile are also in agreement, where the 2D and 3D
atmospheric circulation models suggest a hot adiabat starting at
∼10 bar, significantly at lower pressures compared to standard
irradiated models (e.g., Fortney et al. 2007). This is in agree-
ment with our findings and conclusions that future GCM models
should account for the extra heat in the interior of inflated hot
Jupiters and in-line with the work of Carone et al. (2020). We
note however that convection is not included in the models of
Tremblin et al. (2017). In this context, the RCB should not be
interpreted as a Radiative-Convective-Boundary but rather as
a proxy for the Radiative-Circulation-Boundary. As such, the
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energy flux is downward and not upward, which in turn leads
to a hotter adiabat.

7.4. General comparison to previous studies

It is useful and informative to compare the results of our model
with analytical relations. We consider the analytical approxi-
mations of the internal luminosity based on ohmic dissipation
(LHuang; Eq. (14) of Huang & Cumming 2012) and thermal tides
(LSocrates; Eq. (8) of Socrates 2013):

LHuang = 3× 1022 erg s−1
(

Bφ0

10 G

)2 (
σt

106 s−1

)−1

×
(

Teq

1500 K

) (
Rp

RJ

)4 (
Mp

MJ

)−1

(41)

LSocrates = 1.5× 1028 erg s−1
(

P
4 days

)−2

×
(

Teq

2000 K

)3 (
Rp

1010 cm

)4

. (42)

In the above equations, Bφ0 is the toroidal component of the mag-
netic field at a reference pressure of 10 bar, σt is the electrical
conductivity in the dissipation region, and P is the orbital period.
To compute LHuang, we fix σt to the nominal value 106 s−1 and
consider two different cases for Bφ0. In the first case, we fix Bφ0
to 10 G and in the second case, we compute the mean magnetic
field strength at the surface of the dynamo based on the scaling
law of Christensen et al. (2009) in the form given by Reiners &
Christensen (2010):

Bdyn = 4.8× 103 G×
(

ML2

R7

)1/6

(43)

where M, L, and R are the mass, luminosity, and radius of
the planet normalized to solar units. We assume Bφ0 = Bdyn.
We note that using this relation, Bdyn ranges roughly between
30 and 480 G for our sample, in agreement with the previous
estimates of Yadav & Thorngren (2017). We refer to these cases
as LHuang,Bfixed and LHuang,Bvar, respectively. It is straightforward
then to calculate LSocrates, LHuang,Bfixed and LHuang,Bvar for each hot
Jupiter in our sample using the relevant physical properties.

We also examine our results within the context of advec-
tion of high-entropy material based on models of Tremblin et al.
(2017). Our aim is to compare the internal luminosity of the
planets that this mechanism predicts to the internal luminosities
derived in Sect. 4.1. Tremblin et al. (2017) computed 2D PT pro-
files only for four planets with different Teqvalues. We thus need
to estimate the internal luminosity of all the planets based on the
model of advection of potential temperature, for which we fol-
low the procedure described next. We first compute the entropy
using the SCvH EOS (Saumon et al. 1995) and T100, which was
derived from the 2D PT profiles based on four fiducial planets
with different Teq (see Sect. 7.3 for more details). Second, we fit
a relation between the equilibrium temperatures of the four plan-
ets and their estimated entropy. Finally, to convert the entropy
into an internal luminosity, we use the entropy–mass–luminosity
relation from an updated version of the population synthesis of
Mordasini (2018). The second step allows us to compute the
entropy for all the selected hot Jupiters in our sample using the
observed Teq. Having calculated the entropy and knowing Mp
from observations, the last step allows us to compute the inter-
nal luminosity of the planets. With this procedure, we therefore

calculate the internal luminosity of the planets predicted by this
mechanism based on these fits and based on Teq and Mp from
observations. We consider three cases for comparison by assum-
ing the planets are composed of H/He and setting the fraction
of heavy elements to 0, 10, and 20%. We refer to these models
as LTremblin0 , LTremblin10 , and LTremblin20 , respectively. We point out
that the values should be taken with caution as there are strong
approximations involved in this approach.

Finally, to compare our results to TF18, we use the analytical
ε(Teq) (Eq. (34) in their paper) to compute ε and then estimate
LTF18 using Eq. (6).

Figure 10 compares our results to the various studies where
the dashed lines are the 1:10, 1:1, and 1:0.1 relations. The
predicted luminosities based on the analytical solution of ther-
mal tides as suggested by Socrates (2013) and the advection
of potential temperature (Tremblin et al. 2017) are on the same
order of magnitude as the ones we derive in this work based on
observations. The advection of potential temperature (Tremblin
et al. 2017) predicts high luminosity values for the least lumi-
nous planets in our sample. This is expected since their model
tend to overestimate the radii compared to observations, even for
planets with incident flux below the threshold of inflation (stellar
incident flux of ∼2× 108 erg s−1 cm−2 or Teq ≈ 1000 K).

The relation of Huang & Cumming (2012) based on ohmic
dissipation leads to small internal luminosity values. We note
that this relation is an order-of-magnitude estimation of the total
ohmic power. We therefore caution that these results do not
provide evidence against ohmic dissipation, but rather that this
relation underestimates the ohmic power. Based on our results
and the work of TF18, there is compelling evidence from the
HEET relation that ohmic dissipation can explain the radii of
hot Jupiters. The ohmic power values estimated by Batygin
& Stevenson (2010) and Menou (2012) are up to three orders
of magnitude higher than the values predicted by Huang &
Cumming (2012) and thus on the same order of magnitude esti-
mated in this work. Moreover, the small internal luminosity
values using the relation of Huang & Cumming (2012) could
also explain the findings of Lopez & Fortney (2016), where it was
shown that the relation did not lead to reinflation of hot Jupiters.

For our models with Lint < 102 LJ, the model of TF18 predicts
smaller values of Lint. This difference is a direct consequence of
the discrepancy in ε as shown in the right panel of Fig. 6, where
as discussed in Sect. 6.3 we predict higher heating efficiencies
for the least and the most irradiated planets.

Converting the luminosity values to a heating efficiency
using Eq. (6), the models of Socrates (2013) and Tremblin et al.
(2017) do not lead to a decrease in the heating efficiency at the
highest equilibrium temperatures. The former predicts a contin-
uous increase as was shown by TF18 with values as high as
20–25% and the latter seems to increase moderately up to 30,
10, and 2% for Zp = 0, 0.1, and 0.2, respectively. This is expected
given the steeper increase in the luminosity values above 104 LJ
for both models. These are the highly inflated and highly irra-
diated hot Jupiters (Rp > 1.4 RJ and Teq > 1900 K). We note that
the peak in the HEET distribution in our model occurs close to
1900 K (see Sect. 6.3 and Table 1), beyond which ε decreases
for higher Teq. This explains why the models of Socrates (2013)
and Tremblin et al. (2017) do not predict a Gaussian function,
that is, why ε does not decrease at high Teq. We stress that
these models can nevertheless explain the observed radii of
most of the hot Jupiters and can be the dominant mechanisms
responsible for inflation even in the absence of the Gaussian
function. It could be thus that these mechanisms are too effi-
cient in inflating hot Jupiters at temperatures above than 1900 K.
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Fig. 10. Comparison of the internal luminosity derived in this work from observations and other (theoretical) studies. The solid dashed lines
are from top to bottom the 1:10, 1:1, and 1:0.1 relations. The different panels show the results in comparison with analytical relations (Huang
& Cumming 2012; Socrates 2013), numerical modeling (Tremblin et al. 2017), and based on a statistical approach similar to ours (TF18). See
text for explanations on the different versions of LHuang and LTremblin. Notice the different scales in each panel. The results based on the analytical
approximations of Huang & Cumming (2012) underestimate Lint. There is an agreement with TF18, Tremblin et al. (2017), and Socrates (2013)
giving thus evidence for advection of potential temperature and thermal tides as possible mechanisms to explain the radius inflation conundrum.

Thermal tides have received less attention within the context
of the radius anomaly problem and thus more work is needed
to understand the physical regime where this mechanism is
efficient.

In summary, we provide evidence that thermal tides and
advection of potential temperature can reproduce the large
observed radii of most of the hot Jupiters based on the internal
luminosity predicted using these models. Moreover, the HEET
distribution suggests that ohmic dissipation can also explain the
radii of the close-in giant planets (see Sect. 7.2). We therefore
conclude that all of these three mechanisms can explain the infla-
tion of hot Jupiters. This is in line with our main goals where we
stress that these mechanisms were tested on only a handful of
exoplanets and a statistical approach is necessary to confirm or
refute these mechanisms for the entire population.

7.5. Limitations and caveats

There are important caveats and limitations related to this work
that should be explicitly mentioned.

Our results and conclusions are based on a simple 1D interior
structure model. Hot Jupiters however are tidally locked, which
gives rise to a temperature gradient between the day-side and
the night-side. The RCB at the night-side might thus be at lower
pressures compared to the day-side leading to uneven cooling.
As a consequence of that, Spiegel & Burrows (2013) showed
using a 1+1D model that the net effect of incorporating night-
side cooling leads to higher cooling rates compared to the default
1D models. 2D circulation models also showed that the location
of the RCB differs from the day-side to the night-side, which
further enhances the cooling rate (Rauscher & Showman 2014)
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and thus requires even higher efficiency to explain the radii of
hot Jupiters. This is especially important for the highly irradiated
planets as it was shown that the day-side–night-side tempera-
ture differences increases with stellar irradiation (Komacek &
Showman 2016; Komacek et al. 2017).

In addition, we assume that the heat is deposited in the inte-
rior of the planet and we do not account for dissipation in the
intermediate layers. A better treatment would be to deposit the
heat over a range of depths similar to Ginzburg & Sari (2016) or
Komacek & Youdin (2017). Moreover, even though we showed
that the Gaussian profile of the HEET distribution is in agree-
ment with ohmic dissipation there are few shortcomings to this.
A key component for ohmic dissipation is the electrical conduc-
tivity σ, where the ohmic power is proportional to 1/σ (Batygin
& Stevenson 2010). The electrical conductivity increases dra-
matically in the interior leading to efficient heating only at lower
densities and thus at lower pressures. However, the layers that
contribute to the inflation are not at the surface where the con-
ductivity is maximum but rather at deeper layers (between 100
and 1000 bar; Batygin et al. 2011). Wu & Lithwick (2013) con-
firmed these results by showing that heat deposited at 100 bar
requires significantly less heating efficiency in comparison to 10
or 3 bar (0.3% compared to 3% and 200%, respectively, see their
Fig. 3). It is therefore unclear whether the Gaussian functional
form holds for energy dissipated at lower pressures.

The depth of the heating has also direct consequences on
the interior structure. For example, Huang & Cumming (2012)
included ohmic heating only in the radiative layers deeper than
10 bar and showed that as a consequence of that the RCB moves
to deeper pressures. However, their model cannot reproduce the
radii of massive planets. Understanding the location of the RCB
is crucial as it regulates the planetary cooling rate and thus the
contraction rate (Arras & Bildsten 2006; Marleau & Cumming
2014). Future developments of state-of-the-art GCM models that
solve the complete equations without approximations and that
couple the upper atmosphere with the deep convective layers will
provide a complete picture of the underlying physical processes.

Finally, in this work we did not account for observational
biases. A large number of the hot Jupiters discovered to date
are discovered using ground based telescopes, such as WASP
(Pollacco et al. 2006) and the HATNet and HATSouth (Bakos
2018) exoplanet surveys. There is a lack of hot Jupiters with
radii smaller than ∼1.4 RJ around early- and mid-F stars. This
is because detecting such planets is still challenging from the
ground as the transit depths are shallow and less than 0.5%.
Heng (2012) showed that if ohmic dissipation can explain the
anomalously large radii of hot Jupiters, then this naturally
leads to scatter in the radii at a given stellar incident flux
due to variations in the opacity, albedo, cloud/hazes proper-
ties, and the magnetic fields strength. It is therefore still not
quite clear whether the lack of “medium-inflated” hot Jupiters
around F stars is due to observational biases or variations in the
efficiency of the heating mechanism. The NASA Transiting Exo-
planet Survey Satellite mission (TESS; Ricker et al. 2015) will
discover such planets if they exist and will help to better con-
strain the efficiency of the heating mechanisms either by the lack
or existence of such planets. Subsequently high precision follow-
up observations with the CHaracterising ExOPlanet Satellite
(CHEOPS; Broeg et al. 2013) will help to get very accurate radii.

8. Conclusion

In this work, we developed a flexible and robust hierarchical
Bayesian model to couple the observed physical parameters of

hot Jupiters to an interior structure model. The model accounts
for observational uncertainties and for the scatter in the relation
between planet mass and heavy-element fraction. We validated
the statistical method by applying it to synthetic planets based
on planet population synthesis and showed that we are able to
retrieve the true distribution. We then applied this method to
quantify the internal luminosity needed to explain the radii of
a sample of 314 hot Jupiters. We tested this model under two
different priors (assuming a log-uniform and a linear-uniform
distributions for Lint) and showed that the population level dis-
tributions are prior independent (Fig. 5). This provides useful
and robust constraints on the interior structure of hot Jupiters.
We find that such planets tend to have hotter interiors compared
to previous assumptions, and as a result, the RCB is located at
low pressures, in agreement with recent work by Thorngren et al.
(2019) (Fig. 8).

Assuming the planet has reached steady state and assuming
that the additional source of heat is the stellar irradiation, we
compute the heating efficiency ε, defined as the fraction of stel-
lar irradiation deposited into the interior of the planet that is,
needed to explain the observed inflated radii. We find that the
heating-efficiency–equilibrium-temperature relation is described
by a Gaussian function (Fig. 6), in agreement with previous work
by TF18, however, the peak is not consistent in both studies. We
found that the models of TF18 predict larger radii than our mod-
els for Teq > 1500 K, which we attribute due to differences in
the atmospheric modeling. The Gaussian-like pattern is more
importantly in agreement with theoretical predictions based on
the ohmic dissipation model (Menou 2012). We also show that
thermal tides (Arras & Socrates 2010; Socrates 2013) and advec-
tion of potential temperature (Tremblin et al. 2017) can explain
the observations of most of the planets in our sample and thus
are possible mechanisms responsible for the anomalously large
radii of hot Jupiters (Fig. 10).

To conclude, we provide new insights into the interior of hot
Jupiters by coupling observations to theoretical models within a
powerful statistical framework. With a better understanding of
the interior, we highlight the importance of accounting for the
extra heat flux in the interior in 3D GCM models, which will
further improve our understanding of wind speeds and hence on
the efficiency of the heating mechanisms.

The future of hot Jupiters is exciting and bright. Simula-
tions of the exptected TESS yield (Barclay et al. 2018) predict
that TESS will discover more than 250 hot Jupiters suitable for
RV follow-up (Rp > 1 RJ) with orbital periods <10 days orbit-
ing bright stars (V < 14 mag), almost doubling the number of
hot Jupiters discovered. The mission already detected few hot
Jupiters (e.g., Kossakowski et al. 2019; Wang et al. 2019) with
many yet to be discovered. Furthermore, CHEOPS (Broeg et al.
2013) is capable of detecting the phase curves of hot Jupiters,
which provide information on the day-night temperature con-
trast. CHEOPS will therefore play a major role in providing clues
into the efficiency of energy transport in hot Jupiter atmospheres
(e.g., HD 189733 b; Knutson et al. 2007). With a better under-
standing of the interior structure of hot Jupiters thanks to the
development of flexible and computationally efficient statistical
tools, we will be able to provide further constraints on the radius
inflation conundrum.

The source code for the hierarchical model is open source11

under the MIT open source software license. Part of the code is
still being added and available upon request.

11 Available at https://github.com/psarkis/bloatedHJs
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The posterior samples at the population level are also avail-
able online12.

Software: corner (Foreman-Mackey 2016), emcee
(Foreman-Mackey et al. 2013), Jupyter https://jupyter.
org/, matplotlib (Hunter 2007), numpy (van der Walt
et al. 2011), petitCODE (Mollière et al. 2015, 2017), pandas
(McKinney 2010), scikit-learn (Pedregosa et al. 2011),
scipy (Virtanen et al. 2020).
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Appendix A: Supplemental information

In Sect. 6.2, we showed that the mass–luminosity–radius (MLR)
posterior distribution is similar when assuming Lint follows
either a linear-uniform or a log-uniform prior distribution. In this
appendix we show that the heating-efficiency–equilibrium tem-
perature (HEET), Tint–Teq, and PRCB–Teq distributions are also
similar using both priors. Figures A.1 and A.2 show the HEET

and both the Tint–Teq and PRCB–Teqdistributions, respectively.
Tables A.1 and A.2 present the 68% credible interval values for
the model parameters for the MLR distribution assuming linear-
uniform and log-uniform priors. Similarly, Table A.3 for the
HEET distribution using a 4th degree polynomial, Table A.4 for
the Tint–Teq distribution using a Gaussian function, and finally
Table A.5 for the PRCB–Teq distribution using a polynomial
function.
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Fig. A.1. HEET posterior distribution under the linear–uniform (left) and the log–uniform (middle) priors using a Gaussian and 4th degree polyno-
mial. The shaded region shows the 68% credible interval. There is a good agreement between both models using the same prior. To better compare
the same model using different priors, the right panel shows the Gaussian models using log (red) and linear (blue) uniform priors.

Table A.1. 68% credible interval values of the parameters for the mass–luminosity–radius (MLR) distribution for the linear–U case modeled as a
4th degree polynomial gp (x) = a0 + a1 x + a2 x2 + a3 x3 + a4 x4 where x=Rp.

τ a0 a1 a2 a3 a4

0.37−0.7 MJ 28+11
−10 −85+28

−31 92+29
−29 −39+12

−12 6+1
−2

0.7−0.98 MJ 27+14
−13 −91+38

−44 106+46
−43 −48+20

−22 8+3
−4

0.98−2.5 MJ 48+12
−13 −160+39

−38 186+40
−45 −88+21

−19 15+3
−4

>2.5 MJ 72+52
−54 −224+200

−198 244+276
−274 −102+161

−165 14+36
−36

Table A.2. 68% credible interval values of the parameters for the mass–luminosity–radius (MLR) distribution for the log–U case modeled as a
4th degree polynomial gp (x) = a0 + a1 x + a2 x2 + a3 x3 + a4 x4 where x=Rp.

τ a0 a1 a2 a3 a4

0.37−0.7 MJ 20+8
−7 −66+19

−22 73+22
−21 −32+9

−10 5+1
−1

0.7−0.98 MJ 23+12
−10 −79+32

−39 94+43
−39 −44+19

−21 7+3
−4

0.98−2.5 MJ 50+17
−14 −166+42

−51 195+54
−48 −94+22

−26 16+4
−4

>2.5 MJ 86+70
−70 −272+263

−269 306+370
−366 −135+219

−223 19+49
−48
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Fig. A.2. Tint–Teq and PRCB–Teq diagrams
in the upper and lower panels, respectively.
The shaded regions show the 95% credi-
ble interval. Both distributions are similar at
the 95% level using the linear–uniform (red)
and the log-uniform (blue) priors.

Table A.3. 68% credible interval values of the parameters for the
heating-efficiency–equilibrium temperature (HEET) distribution for the
linear–U and log–U cases using the 4th degree polynomial model
gp (x) = a0 + a1 x + a2 x2 + a3 x3 + a4 x4, where x=Teq/1000.

τ a0 a1 a2 a3 a4

log-U 11+5
−5 −33+15

−17 35+19
−18 −14+8

−9 2+1
−1

linear-U 7+4
−4 −21+13

−15 19+16
−16 −6+7

−8 1+1
−1

Table A.4. 68% credible interval values of the parameters for the Tint–
Teq distribution for the linear–U and log–U cases using the Gaussian
function Eq. (21), where x=Teq and Tint is in K.

τ Tint,max Tint0 s

log-U 835+69
−58 2270+202

−120 709+154
−70

linear-U 786+85
−56 2333+149

−109 723+75
−46

Table A.5. 95% credible interval values of the parameters for the PRCB–
Teq distribution for the linear–U and log–U cases under the polynomial
function Eq. (20), where x=Teq/1000 and gp/100 in bar.

τ a0 a1 a2 a3 a4

log-U 16+6
−13 −29+26

−15 19+12
−20 −5+6

−4 0.59+0.57
−0.85

linear-U 6+6
−4 −8+9

−14 4+10
−8 −1+2

−4 0.03+0.48
−0.37
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