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ABSTRACT

The key aspect determining the post-formation luminosity of gas giants has long been considered to be the
energetics of the accretion shock at the planetary surface. We use one-dimensional radiation-hydrodynamical
simulations to study the radiative loss efficiency and to obtain post-shock temperatures and pressures and thus
entropies. The efficiency is defined as the fraction of the total incoming energy flux which escapes the system
(roughly the Hill sphere), taking into account the energy recycling which occurs ahead of the shock in a radia-
tive precursor. We focus here on a constant equation of state to isolate the shock physics but use constant and
tabulated opacities. While robust quantitative results will require a self-consistent treatment including hydrogen
dissocation and ionization, the results presented here show the correct qualitative behavior and can be under-
stood semi-analytically. The shock is found to be isothermal and supercritical for a range of conditions relevant
to core accretion (CA), with Mach numbers M & 3. Across the shock, the entropy decreases significantly,
by a few entropy units (kB/baryon). While nearly 100 percent of the incoming kinetic energy is converted
to radiation locally, the efficiencies are found to be as low as roughly 40 percent, implying that a meaningful
fraction of the total accretion energy is brought into the planet. For realistic parameter combinations in the CA
scenario, a non-zero fraction of the luminosity always escapes the system. This luminosity could explain, at
least in part, recent observations in the young LkCa 15 and HD 100546 systems.

Keywords: planets and satellites: formation — planets and satellites: gaseous planets — planets and satellites:
physical evolution

1. INTRODUCTION

Starting with the discovery of planetary and low-mass
companions to 2M 1207, 1RXS 1609, HR 8799, and β Pic
in the last decade (Chauvin et al. 2004; Lafrenière et al.
2008; Marois et al. 2008; Lagrange et al. 2009), photometric
and spectroscopic direct observations of several dozen young
(. 20–100-Myr-old) objects have challenged and enriched
our knowledge about exoplanets, providing access to their
theirmodynamic state, chemically complex atmospheres, and
otherwise unobtainable information on the outer (& 20 au) ar-
chitecture of planetary systems. One major limitation, how-
ever, has been the difficulty of determining the masses of
these objects, which is of particular importance in the light
of recent or upcoming surveys expected to detect several
young objects (e.g., LEECH, SPHERE, GPI, Project 1640,
CHARIS; see Skemer et al. 2014; Zurlo et al. 2014; Macin-
tosh et al. 2014; Oppenheimer et al. 2012; Peters-Limbach
et al. 2013 and references therein) as they seek to provide
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constraints on the mass distribution of planetary or very-low-
mass companions (e.g. Biller et al. 2013; Brandt et al. 2014;
Clanton & Gaudi 2015).

While the uncertainty on the age of the parent star often re-
mains considerable, it is, to first order, presumably random.
However, the conversion of a luminosity to a mass entails a
theoretical, probably systematic uncertainty: that of the lu-
minosity of a planet or low-mass object at the end of its for-
mation, as it enters into the evolutionary ‘cooling’ phase1.
This is a major source of uncertainty (Bowler 2016). Indeed,
at those young ages, cooling has not yet erased traces of the
formation process, as reflected in a planet’s luminosity and
radius (and thus also spectrum); this happens on the Kelvin–
Helmholtz timescale tKH ≡ GMp

2/RL∼ 107–109 yr. Forma-
tion models up to now (e.g., Marley et al. 2007; Mordasini
et al. 2012) have only made predictions in the limiting cases
of ‘hot’ and ‘cold starts’, as discussed below, without how-
ever attempting to model the shock in detail.

1 Deuterium burning might slow down the cooling but the argument re-
mains the same.
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What is thought to be the key process setting the entropy
of the gas is the accretion shock in the runaway gas accretion
phase (Marley et al. 2007; Spiegel & Burrows 2012). This
accretion shock is traditionally associated with core accretion
but it might also occur in some circumstances in the context
of gravitational instability (see the discussion in Section 8.1
of Mordasini et al. 2012). When the planet becomes massive
enough, it detaches from the local disk and gas falls freely
onto it. The question is usually put in terms of what happens
to the kinetic energy of the gas, namely whether it is radi-
ated away at the shock or whether it gets added as thermal
energy to the planet. The extreme outcome of full radiative
loss leads to ‘cold starts’, while the limiting case of no radia-
tive loss leads to ‘hot starts’, as the resulting planets are then
respectively colder or hotter (Marley et al. 2007).

Mordasini (2013) found that the mass of the solid core (in
the core-accretion framework) correlates with post-formation
luminosity but, as explained there, this is due to a self-
amplifying process based on the shock. Thus the shock (or at
least its computational treatment in formation calculations)
is crucial is setting the post-formation radius and luminosity.

It has been shown (Marleau & Cumming 2014) how to
place joint constraints on the mass and initial entropy of an
object from a luminosity and age measurement. Now, how-
ever, we take a first step towards predicting this initial en-
tropy by presenting simulations of the shock efficiency, con-
sidering snapshots of the formation process.

In this first paper, we focus on the physics at the accretion
shock and the upstream region. Since ionization and disso-
ciation act as energy sinks (Zel’dovich & Raizer 1967), we
focus on an ideal-gas equation of state (EOS) with constant
heat capacity and mean molecular weight to isolate the shock
physics from the microphysics. However, we use both con-
stant and more realistic opacities. Also to simplify the anal-
ysis, we assume here that the gas and the radiation couple
perfectly and therefore use ‘one-temperature’ (1-T ) radiation
transport (discussed below). A forthcoming paper will be
concerned with the effects of dissociation and ionization and
will also address the importance of 2-T radiation transport.
Finally, a subsequent work will also discuss how the shock
results can be used in formation calculations and perform this
coupling. Only with this will it be possible to predict directly
post-formation entropies and thus the luminosities and radii
of young gas giants.

2. MODEL

2.1. Physical picture

Each simulation is meant as a snapshot of the accretion
process when the planet is at a radius Rp = rshock, the shock
radius. To follow gas accretion onto a growing planet which
is detached from the nebula, we let our simulation box extend
from the top-most layers of the planet to a large fraction of
its accretion radius Racc, defined through (Bodenheimer et al.

2000)

1
Racc

=
1

kLissauerRHill
+

1
RBondi

, (1)

where

RHill = a
(

Mp

3M∗

)1/3

, RBondi =
GMp

c∞
2 (2)

are the Hill and Bondi radii, respectively, with a the semi-
major axis of the planet of mass Mp around a star of mass
M∗ and c∞ the sound speed in the disk at the planet’s loca-
tion. The factor kLissauer = 1/3 accounts for the findings of
Lissauer et al. (2009) that only the inner part of the material
in the planet’s Roche lobe is bound to it, most of the gas in
the volume flowing with the material in the disk (Mordasini
et al. 2012). The sphere of radius Racc is thus the approximate
region where gas should become bound to the planet, both in
terms of gravitational force compared to that from the star
(RHill) and thermal energy compared to the planet’s potential
energy (RBondi). In the runaway phase, the RHill term usually
(though marginally) dominates.

While global and local disk simulations have shown that
the accretion onto the protoplanet is highly three-dimensional
(Ayliffe & Bate 2009; Tanigawa et al. 2012; D’Angelo &
Bodenheimer 2013; Ormel et al. 2015; Fung et al. 2015;
Szulágyi et al. 2016) and possibly affected by magnetic fields
in the gap and protoplanetary disk (e.g., Uribe et al. 2013;
Keith & Wardle 2015), we take a first step here by using a
spherically-symmetric set-up and neglecting magnetic fields.
This allows us to model in detail the last stages of the ac-
cretion process on small scales around the proto-planetary
object (r . 30 RJ). This stages should remain similar in more
complex geometries.

Note that, in the detached runaway phase, the continued
accretion of solids (dust and planetesimals) by the planet is
important for setting the final mass of the core (Mordasini
2013). However, this accretion rate of solids is several or-
ders of magnitude smaller than that of gas and is therefore
neglected here.

2.2. Methods

For our one-temperature radiation hydrodynamics sim-
ulations, we use the static-grid version of the modular
(magneto-)hydrodynamics code PLUTO (version 3; Mignone
et al. 2007, 2012) combined with the grey, 1-T flux-limited
diffusion (FLD) radiation transport module Makemake de-
scribed and tested in Kuiper et al. (2010) and Kuiper &
Klessen (2013), without ray tracing. We use the HLL hy-
drodynamical solver and the flux limiter λ from Levermore
& Pomraning (1981) given by

λ (R) =
2+R

6+3R+R2 , (3)
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where the radiation parameter R is defined through

Frad =−DF∇Erad, (4a)

DF ≡
λ (R)c
κRρ

, (4b)

R≡ ‖∇ lnErad‖
κR ρ

, (4c)

where Frad and Erad are the radiation flux and energy density,
respectively, κR the Rosseland mean opacity, ρ the density,
and c the speed of light. There is some freedom in the choice
of the flux limiter’s functional form but it is required to be-
have asymptotically as (Levermore 1984)

λ (R)→

 1
3 , R� 1 (diffusion limit)
1
R , R� 1 (free-streaming limit)

(5)

to recover the limiting regimes of pure diffusion, where
Frad =

1
3 c∇Erad/κRρ , and free-streaming, where Frad = cErad

in the direction opposite to the Erad gradient.
The local radiation quantity R(ρ,T,Erad) defined in Equa-

tion (4c) compares the photon mean free path λphot =

1/κρ to the ‘radiation energy density scale height’ HErad =

Erad/(∂Erad/∂ r); in spherical coordinates it is given by

R =
1

κρErad

∣∣∣∣∂Erad

∂ r

∣∣∣∣= ∣∣∣∣∂ lnErad

∂τ

∣∣∣∣ (6a)

=
λphot

HErad

. (6b)

Large R values mean that the radiation energy density—and
thus, in the 1-T approximation, the temperature—changes
over a shorter distance than photons get absorbed and re-
emitted.

2.3. Set-up

We use a semi-open box fixed at some height in the atmo-
sphere of the planet, with a closed left, inner edge (towards
the centre of the planet) at r = rmin, and start with an at-
mosphere of some arbitrary small height (e.g., 0.5 RJ), onto
which gas falls from the outer edge of the grid at rmax. For
the initial set-up, we calculate an atmosphere in hydrostatic
equilibrium with a constant luminosity Lp = 10−3 L� using
the usual equations of stellar structure (but Equation (7d) as
appropriate for an atmosphere):

dmr

dr
= 4πr2

ρ, (7a)

dT
dr

= ∇act
T
P

dP
dr

, (7b)

dP
dr

=−ρ
Gmr

r2 , (7c)

dL
dr

=
dmr

dr

(
ε−T

dS
dr

)
,

= 0, (7d)

where mr is the mass interior to r (dominated by Mp), P,
T , and S are respectively the pressure, the temperature, and
the entropy per mass, L = 4πr2Frad is the luminosity, G the
universal gravitational constant, and ε the energy generation
rate. The actual, adiabatic, and radiative gradients are given
respectively by

∇act = min(∇ad,∇rad) (8a)

∇ad =
γ−1

γ
, (8b)

∇rad =
3LPκ

64πσGmrT 4 . (8c)

Equation (8a) is the Schwarzschild criterion. (Note that con-
vection therefore plays a role only in the initial profile; in the
radiation-hydrodynamical simulations proper there is no con-
vection because of the assumption of spherical symmetry.)
We use an adaptive step size for the integration to resolve
accurately the pressure and temperature gradients. This at-
mosphere is then smoothly joined onto a calculated accretion
flow for ρ and v. (See Equations (11ff) below.) The goal
of these efforts is (i) to provide a numerically sufficiently
smooth initial profile while (ii) beginning with a certain at-
mospheric mass to speed up the computation.

The grid is uniform from rmin to rmin +∆r and has a high
resolution to resolve sufficiently well the pressure gradient
in the innermost part, using by default ∆r = 0.5 RJ and N =

500 cells there. The other grid patch is a stretched segment
out to rmax, with usually also N = 500, i.e., a much smaller
resolution. This has proven to be stable and accurate.

As gas is added to the simulation domain, quasi-
hydrostatic equilibrium establishes below the shock. The
shock position rshock defining the top of the planet’s atmo-
sphere is simply given by the location where the gas pressure
is equal to the ram pressure. The shocks moves in time as
gas is added (inward or outward depending on the simula-
tion), usually at a negligible speed, i.e., drshock/dt � vshock,
where vshock is the pre-shock velocity. Nevertheless, we al-
ways take this term into account when calculating mass or
energy fluxes; this possibly leads to slightly non-nominal ef-
fective accretion rates but allows for a more accurate verifi-
cation of energy conservation. We consider only data from
after an early adjustment phase, once the lab-frame accretion
rate at the shock is equal to the one set through the outer
boundary conditions, described below.

2.4. Boundary conditions

For the hydrodynamics, reflective (zero-gradient) bound-
ary conditions are used at rmin in the density, pressure, and
velocity, i.e.,

dP
dr

=
dρ

dr
=

dv
dr

= 0 (9)

Since the condition dv/dr = 0 ensures that no mass flows
over the boundary, it is not necessary to enforce hydrostatic
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equilibrium at rmin. In the radiation transport also, we prevent
the flow of energy over rmin by using

dErad

dr
= 0. (10)

The outer edge of the grid rmax is set well outside of the at-
mosphere and away from the shock. For the hydrodynamics,
we choose an accretion rate and approximate the velocity as
the free-fall velocity:

v(r) = vff(rmax) =

√
2GMp

(
1

rmax
− 1

Racc

)
, (11)

with Racc defined in Equation (1). Mass conservation then
determines the ‘free-fall density’:

ρff(rmax) =
Ṁ

4πr2|v(rmax)|
. (12)

The pressure gradient here too is required to vanish:

dP
dr

∣∣∣∣
rmax

= 0. (13)

We considered for some simulations a Dirichlet boundary
condition with P = P(ρff(rmax), Tneb) for a nebula temper-
ature Tneb, taken as Tneb = 150 K (e.g., Mizuno 1980). This
did not change the results significantly.

Finally, the radiation outer boundary condition is usually
set to the flux-divergence-free condition

∂ r2Erad

∂ r
= 0, (14)

which corresponds to a constant luminosity if the reduced
flux fred, defined in Section 3.2, is sufficiently close to 1.
However, even when the flux at the outer edge is rather in
the diffusion regime, we obtain similar results for a simple
Dirichlet boundary condition on the radiation temperature.

2.5. Microphysics

To isolate the shock physics, we consider in this work a
constant equation of state (EOS). The EOS enters into the
radiation-hydrodynamical simulations through the effective
heat capacity ratio γ ≡ cp/cv = P/Eint + 1, where Eint is the
internal energy per volume, and through the mean molecu-
lar weight µ . Estimates presented in Appendix A suggest
that the hydrogen will be in molecular or atomic form at the
shock. Accordingly, γ = 1.44 and γ = 1.1 bracket the ex-
pected range, while µ varies from 2.353 to 1.23 (see Fig-
ure A1).

We consider both constant and tabulated opacities. The
contribution of the dust to the opacity dominates below ap-
proximately 1400–1600 K, at which temperature the refrac-
tory components (olivine, silicates, pyroxene, etc.) evapo-
rate (Pollack et al. 1994; Semenov et al. 2003). The standard
opacity tables we use are the smoothed Bell & Lin (1994,
hereafter BL94) tables. We can also make use of the Malygin

et al. (2014) gas opacities combined with the dust opacities
from Semenov et al. (2003) and compare these in Figure 1.

Note that the Bell & Lin (1994) lacks water opacity
lines just above the dust destruction temperatures (M. Ma-
lygin, priv. comm.; see also Figure 1 of Arras & Bild-
sten 2006); as a consequence, their opacities reach down to
κR ∼ 10−6 cm2 g−1 for ρ = 10−11 g cm−3, where κR is the
Rosseland mean, some four orders of magnitude smaller than
in more recent calculations (Freedman et al. 2008; Malygin
et al. 2014).

Figure A1 shows that for low masses and accretion rates,
the shock temperature should be Ts . 1500 K, in which case
the dust is not destroyed and the opacity is relatively high.
When higher temperatures are reached, the opacity is lower
by orders of magnitude, so that the total (gas and dust) Rosse-
land opacities range from κR ∼ 10−2 to 10 cm2 g−1 overall.
This provides approximate values when considering constant
opacities. Since 1-T requires only the Rosseland mean, the
subscript on κR will be dropped hereafter.

2.6. Quantities to be measured
2.6.1. Efficiencies

The main goal of this study is to determine the radiative
loss efficiency of the accretion shock. There are several ways
of defining this. The classical definition, ηkin, indicates what
fraction of the inward-directed kinetic energy flux is con-
verted into a jump in outgoing radiative flux (e.g., Hartmann
et al. 1997; Baraffe et al. 2012; Zhu 2015). This kinetic-
energy luminosity is at most

Lacc, max = 4πRp
2 1

2
ρv3 =

1
2

Ṁv2 (15)

≈
GMpṀ

Rp
, (16)

where Ṁ = 4πr2ρv is the mass accretion rate (neglecting the
sign of v) and the last expression is valid for free fall from a
large radius. Therefore, the energy actually radiated away at
the shock is written as

Lacc = η
kin GMpṀ

Rp
(17)

and it is usually assumed that ηkin = 100 percent (i.e., full
loss). This is called ‘cold accretion’. Note that this ηkin

corresponds to the quantity (1− η) of Spiegel & Burrows
(2012), αh of Mordasini et al. (2012), (1−α) of Hartmann
et al. (1997), and X of Commerçon et al. (2011).

We present here and use a second definition based on the
total energy available. This efficiency ηphys measures what
fraction of the total energy flowing towards the planet actu-
ally remains below the shock, i.e., is absorbed by the embryo:

η
phys ≡ Ė(rmax)− Ė(rshock

−)

Ė(rmax)
, (18)

where rshock
− is immediately downstream of the shock and
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Bell & Lin (1994)

Figure 1. Gas, dust, and total Rosseland mean opacities from Malygin et al. (2014), BL94, and Semenov et al. (2003). Three densities
are shown: ρ = 10−13,−11,−9 g cm−3. For the Semenov et al. (2003) opacities, we use their ‘nrm.h.s’ model, with dust grains made of
‘normal silicates’ ([Fe/(Fe+Mg)] = 0.4) as homegeneous spheres. The Malygin et al. (2014) opacities are kept constant above the table limit of
T = 2×104 K.

the outer edge of the computation domain rmax is used as a
proxy for the accretion radius Racc corresponding to the loca-
tion of the nebula. The material-energy flow rate is defined
as

Ė(r)≡−|Ṁ| [ekin(r)+h(r)+∆Φ(r,rshock)] , (19)

where ekin = 1
2 v2, eint, and h = eint +P/ρ are respectively

the kinetic energy, internal energy density, and the enthalpy
per unit mass and Φ the external potential. The ∆Φ term in
Equation (19) accounts for the work done by the potential on
the gas down to the shock, with the potential difference from
r0 to r given by

∆Φ(r,r0) =−GMp

(
1
r
− 1

r0

)
. (20)

Thus ηphys measures how much of the incoming energy flow
Ė(rmax) in the gas is still flowing inward once it has passed
through the shock; if both are equal (Ė(rshock

−) = Ė(rmax)),
ηphys = 0 and the accretion would be thought of as ‘hot’. If
in the other extreme case none of the energy traverses the
shock, ηphys = 100 percent, implying that the energy must
have been entirely converted to outward-traveling radiation.
This therefore automatically reflects the fact that the (non-
)heating of the planet is determined by the imbalance be-
tween the amount of kinetic energy converted to internal en-
ergy and the re-emitted radiation.

By energy conservation, the numerator of ηphys should be
equal to the difference Ė(rshock

+)− Ė(rshock
−) between the

material energy flow rate directly across the shock. This is
true for a zero-temperature gas (infinite Mach number), for

which the potential energy is entirely converted in kinetic en-
ergy by the external potential. For finite temperatures, how-
ever, a (small) pressure gradient builds up ahead of the shock;
in this case, only part of the change in potential energy serves
to increase the kinetic energy, the remainder going into inter-
nal energy and thus, outside of phase transitions, into pres-
sure.

Also by energy conservation, ∆Ė(rshock
±) measured in the

shock frame should be equal (up to a sign) to the change
in the luminosity ∆L across the shock. However, in the
case that the radiative precursor (Zel’dovich & Raizer 1967)
is contained within the accretion region—roughly the Hill
sphere—, it is not true anymore that Ė(rshock

+)= Ė(rmax). In
fact, the luminosity upstream of the precursor can be smaller
than downstream (i.e., the planet is invisible, at least in the
grey approximation), which would lead to a negative effi-
ciency if using ∆L. Thus, ∆Ė is a more useful numerator
because it is intuitive and applicable both when the precursor
reaches to rmax and not.

Note finally that the definition of Equation (18) takes into
account the fact that even if the entire kinetic energy is con-
verted to luminosity, the net efficiency can still be zero if
this radiation is absorbed by the incoming material. This was
seen by Vaytet et al. (2013a) in the case of Larson’s second
core and estimated by Baraffe et al. (2012) to be the case at
high accretion rates in the context of magnetospheric accre-
tion onto stars.

Thus, we will focus in this study on the efficiencies as de-
fined above: on the classical, ‘kinetic’ efficiency ηkin, which
makes a direct statement about the energy conversion at the
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shock, with ηkin < 100 percent for either an isothermal shock
at Mach number M . 2.5 (Commerçon et al. 2011) or an
non-isothermal shock; and on the ‘physical’ efficiency ηphys,
which indicates how much the upstream gas is able to recycle
the energy liberated at the shock (Drake 2006).

2.6.2. Post-shock entropy

The post-shock temperature and thus entropy depend on
the thermal profile of the layers below the shock, which are
expected to adjust to carry the luminosity from deeper down
(Paxton et al. 2013). Since however we do not attempt to pre-
dict this luminosity accurately with our set-up of a truncated
atmosphere, the reported temperature values will serve only
as an indication. Moreover, there is a non-trivial relationship
between the post-shock entropy values and their influence on
the entropy of the planet’s deep adiabat; in particular, the
post-shock material does not simply set, weigthed by mass,
the interior entropy. This question is the subject of separate
studies (Berardo et al. 2016, Marleau et al., in prep.), which
however require the obtained post-shock entropies as bound-
ary conditions.

3. RESULTS: RADIAL PROFILES AND EFFICIENCIES

We have performed a large number of simulations, varying
physical parameters (mass, radius, accretion rate) but also
computational or numerical settings (technique for accret-
ing gas into the domain, outer temperature boundary condi-
tion, resolution, Courant number, etc.). For the latter, we
select the most stable set-up (as described in Section 2.2
above), and present results for a typical combination rele-
vant to core accretion formation calculations (Bodenheimer
et al. 2000; Mordasini et al. 2012). We look at the properties
of the accretion shock for Mp = 1.3 MJ, Ṁ = 10−2 M⊕ yr−1,
and rshock ≈ 1.8 RJ. The Bondi, Hill, and resulting accre-
tion radius according to Equation (1) are RBondi ≈ 4200 RJ,
RHill ≈ 800 RJ, and Racc ≈ 250 RJ (for Tneb = 150 K and a
solar-mass star, which however does not affect Racc strongly).
Figure 2 shows the detailed structure of the accretion flow
near the shock for κ = 10−2 and 1 cm2 g−1, as well as with
the Bell & Lin (1994) opacities. For the EOS, we con-
sider a hydrogen–helium mixture with a helium mass fraction
Y = 0.25 and cases where hydrogen is everywhere molecular
(µ = 2.353, γ = 1.44) or atomic (µ = 1.23, γ = 1.1). The ra-
dial structures are as expected and show a number of typical
features, which we discuss in the following.

3.1. Density, velocity, and pressure

The density and velocity reveal gas almost exactly free-
falling onto a nearly hydrostatic atmosphere abruptly cut off
at the shock. The mass in the total domain, dominated by
the post-shock region, is typically ∆M ∼ 10−4 M⊕, making
perfectly justified the neglect of the self-gravity of the gas.
The density jumps at the shock by a factor ρ2/ρ1 ∼ 200,
where ρ2 and ρ1 are the post- and pre-shock density. Thanks

to the transport of energy by radiation, this is a much larger
compression than the infinite-Mach number limit for a hydro-
dynamical shock, where ρ2/ρ1 = (γ + 1)/(γ − 1) ≈ 4 to 20
for γ = 5

3 to 1.1 (e.g., Mihalas & Mihalas 1984; Commerçon
et al. 2011). As it falls deeper in the potential well of the
planet, the gas slows down to slightly sub-free-fall speeds
due to the pressure gradient caused by the increasing temper-
ature and density.

The post-shock pressure is given very accurately by the
ram pressure of the incoming gas,

Ppost = Pram = ρv2. (21)

This differs slightly from the strong-shock (high-Mach-
number), non-radiating case where Ppost = 2/(γ + 1)ρv2

(Drake 2006, his Equation 4.18), as we verified with a simu-
lation using a higher γ = 5/3 to increase the difference.

3.2. Optical depth, reduced flux, and radiation regime

We begin by discussing the reduced flux. The reduced flux

fred ≡ Frad/(cErad) (22)

is a local measure of the extent to which radiation is stream-
ing freely ( fred → 1) or diffusing ( fred → 0). This is thus
the more correct, physical measure of what is often loosely
termed the optical depth, as discussed below. The reduced
flux, radiation quantity R, and flux limiter λ are related in
general by fred = λ (R)R. Note that the effective speed of
propagation of the photons is ceff = fredc.

Next, we consider the optical depth. For a free-fall profile
with Racc � rshock (so that ρ ∝ r−3/2) and a radially suffi-
ciently constant opacity (κ ∝ rα with |α| � 1

2 ), the optical
depth to the shock is

∆τ =
∫

∞

rshock

κ(r)ρ(r)dr (23a)

= 2κρrshock (const. κ), (23b)

where κρ is evaluated at the shock2. For the data of Fig-
ure 2, ρ = 1.5×10−10 g cm−3 upstream of the shock, so that
∆τ = 3.9

(
κ/1 cm2 g−1

)
. This agrees very well with the ac-

tual optical depths (measured from rmax = 0.7Racc ≈ 250 RJ)
in the constant-opacity cases. For the simulation with the
Bell & Lin (1994) opacities, the estimate is moderately ac-
curate, if one takes for κ not the actual pre-shock value
(κ ∼ 10−5 cm2 g−1, set by the gas) but rather a typical value
(κ ∼ 1 cm2 g−1) in the outer regions (r & 40 RJ), where the
dust is not destroyed. Also for non-constant opacities, then,

2 This justifies (within a factor of a few) the estimate κρrshock of Stahler
et al. (1980) for the optical depth upstream (and not downstream, as the for-
mula might at first suggest) of the accretion shock in the context of Larson’s
second core. The estimate is certainly rough for a non-constant opacity but
at least it does estimate the optical depth in the correct (upstream) direction.
A similar expression is used by Mordasini et al. (2012) in their boundary
conditions.
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Figure 2. Detailed shock profiles for simulations with Mp = 1.3 MJ, rshock ≈ 1.8 RJ, and Ṁ = 10−2 M⊕ yr−1 using a constant equation
of state and constant opacities or the Bell & Lin (1994) opacities (see legend). The simulation grids extend to 0.7 of the accretion radius
Racc ≈ 250 RJ but only the inner region is shown. The axis labels describe the quantities shown, and only a few comments are needed: The
temperature panel also shows the lower bound estimate of Equation (28b; filled dots); in the luminosity panel, the maximal accretion luminosity
Lacc, max(r) = 1

2 Ṁv(r)2 ≈ GMpṀ/r is shown at every radius (gray dashed curve); the velocity panel also displays the free-fall velocity from
Racc (the same for all simulations; grey dotted line); in the opacity panel, simulations with constant opacity overlap; in the temperature–density
phase diagram, the solid dots mark the up- and downstream conditions of shock, the solid lines show contours of 10, 50, and 90 percent atomic
hydrogen (relative to the hydrogen species), and the grey region hightlights where the dust is being destroyed, with κ ∼ 1 cm2 g−1 below and
κ ∼ 10−6–10−3 cm2 g−1 above; the pressure panel also displays the ram pressure Pram = ρv2, the same for all simulations (dashed curve); and
the entropy is computed self-consistently from Equation (29).
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the optical depth to the shock will be roughly given by

∆τ ∼ 3
(

κ

1 cm2 g−1

)(
Ṁ

10−2 M⊕ yr−1

)
×

√(
1 MJ

Mp

)(
2 RJ

rshock

)
, (24)

using that Ṁ = 4πr2ρv. Since the nebula should always
be at temperatures lower than the dust destruction temper-
ature Tdest ≈ 1500 K, the high opacity of the dust will always
contribute to the optical depth. Therefore, independently of
whether dust is destroyed in the inner parts of the flow, close
to the shock, the opacity to insert in Equation (24) should be
of order κ ∼ 1 cm2 g−1.

Secondly, writing Erad = Frad/(c fred) ∝ L/(r2 fred), it
is clear that when L/ fred is locally spatially constant
(L/ fred ∝ rβ with |β | � 2), the radiation quantity R =

1/(κρ) |∂ lnErad/∂ r| is given by R≈ 2/(κρr) where κρ and
r are evaluated locally3. This result applies in general, inde-
pendently of the radiation regime (diffusion or free stream-
ing).

Combining these observations leads to the result that, in
the case of constant opacity and L/ fred, the reduced flux up-
stream of the shock is

fred(rshock
+) = λ

(
4

∆τ

)
× 4

∆τ
(25a)

≈
(

3
4

∆τ +1
)−1

, (25b)

where the second line would be an equality for the simple
flux limiter λ = 1/(3+R) (LeBlanc & Wilson 1970; Lev-
ermore 1984; Ensman 1994). We will return to this result
in Section 3.3. For a non-constant opacity, Equation (25)
provides in fact an approximate lower bound of fred(rshock

+)

given ∆τ or vice versa: indeed, a low opacity in front of the
shock will drive down fred (compared to the prediction of
Equation (25)) but without decreasing much the total optical
depth. This highlights the conceptual independence between
the (non-local) optical depth and the (local) radiation trans-
port regime (free-streaming or diffusion).

The optical depths from the shock out to rmax ≈ Racc are
∆τ ≈ 2–5 for all except the κ = 10−2 cm2 g−1 simulation,
which has ∆τ ≈ 3× 10−2. (A comparison run with the dust
opacities of Semenov et al. (2003) and the gas opacities of
Malygin et al. (2014) yielded very similar profiles and opti-
cal depths.) In the κ 6= 10−2 cm2 g−1 simulations, the shock
would therefore be called ‘optically thick’. However, the ef-
fective speed of light ceff = fredc & 0.3c throughout the flow
(see below), which is still orders of magnitude larger than
the gas flow speed v ∼ 10−4c. This is the regime Mihalas &

3 It may seem surprising that the local quantity R depends on an abso-
lute coordinate r but this is in fact a simple consequence of the (spherical)
geometry.

Mihalas (1984) term ‘static diffusion’. Therefore, the radi-
ation is able to diffuse into the incoming gas, heating it up
out to the edge of the computation grid, near the accretion
radius. In other words, the shock precursor is larger than the
Hill radius, which implies that the radiation should be able
to escape from the system to at least the local disk. In this
sense, the shock for these parameter values is an optically
thick–thin shock (down- and upstream, respectively) in the
classification of Drake (2006). That despite the somewhat
high optical depth the shock is not equivalent to a hydrody-
namical shock is already hinted at by the large compression
ratio pointed out in Section 3.1.

3.3. Temperature
3.3.1. Shock temperature

For all choices of κ and the EOS (γ , µ), the temperatures
immediately up- and downstream of the shock are essentially
equal, i.e., there is no jump in the temperature. This is thus a
supercritical shock (Zel’dovich & Raizer 1967), in which the
downstream gas is able to pre-heat the incoming gas up to the
post-shock temperature. Note that the 1-T approach to the ra-
diation transport used here cannot reveal the Zel’dovich spike
expected in the gas temperature. This feature of radiation-
hydrodynamical shocks consists of a sharp increase of the
gas temperature immediately behind the shock, followed by
a quick decrease in a ‘radiative relaxion region’, while the ra-
diation temperature remains essentially constant (Zel’dovich
& Raizer 1967; Mihalas & Mihalas 1984; Stahler et al. 1980;
see Drake 2007 and Vaytet et al. 2013b for a more detailed
description). However, this is not of concern since this spike
is very thin both spatially (physically, a few molecular mean
free paths, broadened in simulations to a few grid cells; e.g.,
Ensman 1994; Vaytet et al. 2013b; Marleau et al. in prep.)
and in optical depth, and below the Zel’dovich spike, the mat-
ter and radiation equilibrate again. Therefore, the Zel’dovich
spike should affect neither the post-shock temperature or en-
tropy nor the shock efficiency. A possible disequilibrium in
temperatures just upstream of the shock will be explored in a
forthcoming publication.

We find shock temperatures of Tshock ≈ 2500 K for the
cases with a low pre-shock opacity (κ = 10−2 cm2 g−1 or
with Bell & Lin (1994)), but Tshock ≈ 3500 K for the other
two cases, both with κ = 1 cm2 g−1. These temperature
values (and their relatively large difference of 1000 K) can
be understood from an analytical estimate, presented next.
Firstly, one can always write

F(rshock
+) = F(rshock

−)+η
kin 1

2
ρvshock

3, (26)

where here ρ is the density just ahead of the shock, vshock is
the velocity at the same location, and ηkin is the ‘kinetic-
energy loss efficiency’, discussed in Section 3.6. In gen-
eral, the flux on either side of the flux is F(rshock

±) =

fred
±caT 4(rshock

±), where fred
± ≡ fred(rshock

±) and a is the
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radiation constant, related to the Stefan–Boltzmann constant
σ by ac = 4σ . Note that here fred = Frad/cErad should be
negative (one usually implicitly takes the norm) if the down-
stream radiation is flowing inward (Frad < 0). For an isother-
mal shock at Tshock, Equation (26) then implies that

σTshock
4 =

ηkin

4∆ fred

ρvshock
3

2
, (27)

where ∆ fred ≡ fred
+− fred

−. Combining with Equations (24)
and (25) yields the estimates for an isothermal shock

Tshock(∆τ � 1)≈ 2315 K
(

rshock

2 RJ

)−3/4

(
Ṁ

10−2 M⊕ yr−1

)1/4( M
1 MJ

)1/4

(28a)

Tshock(∆τ � 1)≈ 2710 K
(

rshock

2 RJ

)7/8(
κ

1 cm2 g−1

)1/4

(
Ṁ

10−2 M⊕ yr−1

)1/2( M
1 MJ

)1/8

, (28b)

where a
(
ηkin

)1/4 factor was left out on the right-hand sides
since we find it is ≈ 1 (see Section 3.6). The first expres-
sion used that, by Equation (25), ∆τ � 1 implies fred

+ ≈ 1,
and further took fred

− � fred
+. The second case is some-

what crude for non-constant opacities. This assumes a con-
stant luminosity in the shock’s near upstream vicinity. Since
the post-shock region is very dense, fred

− is small; this is
equivalent to neglecting the downstream luminosity, which
is related in a non-trivial way to the interior luminosity of the
planet (Berardo et al. 2016; Marleau et al., in prep.).

The filled circles in Figure 2 show the lower bound of
Equation (28b). The simulations with a low pre-shock opac-
ity (κ = 10−2 cm2 g−1 or with Bell & Lin (1994)) have
fred ≈ 1 upstream of the shock and indeed have a tempera-
ture given by Equation (28b), whereas in the other cases a
higher temperature is needed to carry a similar luminosity.
The difference is quite large and nearly 1000 K. One way of
thinking about this is that the effective speed of light is lower
than c, so that Erad must increase in order to reach the same
Frad = ceffErad.

Interestingly, the molecular- and atomic-hydrogen cases
lead to a very similar temperature Tshock = 3500 K. The phase
diagram indicates that the atomic-hydrogen simulation with
κ = 1 cm2 g−1 is self-consistent, but that the case with atomic
hydrogen and detailed opacities leads to temperatures and
densities where the dissociation process (and thus a varying
µ and γ) would be important. One can already anticipate the
result that, for an isothermal shock, the hydrogen should re-
combine in part through the shock (Marleau et al., in prep.)
since at fixed temperature the abundance of H2 increases with
density.

Note that Stahler et al. (1980, their Equation 24) present
an estimate similar to Equation (27) in the context of stellar

accretion. Their assumptions about the reprocessing of shock
photons4 imply that, when Frad(rshock

−)� Frad(rshock
+) and

neglecting their Td term, ∆ fred ≈ fred
+ ≈ 1/3 automatically.

Commerçon et al. (2011, their Equation 22 or 53) give a for-
mula similar to Equation (27) in the limiting case ηkin = 1
but do not include the factor 1/(4∆ fred). This is because they
equate the temperature at the shock with the effective temper-
ature needed to radiate away the kinetic energy, increasing
the temperature estimate by ≈ 40 % (a factor 41/4 ≈ 1.4), or
≈ 1200 K for Ts ≈ 3000 K.

3.3.2. Temperature profile

Equation (22) implies that, if the luminosity and the re-
duced flux are radially roughly constant, T ∝ r−1/2 since
L= 4πr2Frad, independently of the optical depth to the shock.
This is the case for the constant-κ simulations but not so for
the tabulated opacities (at larger radial distances than shown).

Note that if the temperature increased solely due to adi-
abatic compression, i.e., at constant entropy in the absence
of radiation transport, we would have T ∝ ργ−1 ∝ r−1.5(γ−1),
i.e., T ∝ r−0.15 or T ∝ r−0.66 for γ = 1.1 or 1.44, respec-
tively. Thus, when T ∝ r−1/2, entropy decreases inward if
γ > 4/3≈ 1.33.

3.4. Entropy

To compute the entropy, we use the Sackur–Tetrode equa-
tion (e.g., Marleau & Cumming 2014; Berardo et al. 2016,
and references therein) for an ideal gas composed of H2 and
He or H and He:

SH2–He =8.80+3.38log10

(
T

1000 K

)
−1.01log10

(
P

1 bar

)
, (29a)

SH–He =13.47+4.68log10

(
T

1000 K

)
−1.87log10

(
P

1 bar

)
, (29b)

respectively, using Y = 0.243, and where the entropies are
in units of Boltzmann’s constant per baryon, kB/baryon.
In Figure 2, we see that the entropy decreases across the
shock by |∆S| ≈ 2.5 and 4.0 kB/baryon for the molecu-
lar and atomic case, respectively. (In general but for con-
stant γ and µ , the jump in entropy at an isothermal shock is
∆S =−2.303/µ× log10(γM 2) in units of kB/baryon.) That
the entropy decreases through this shock is actually in agree-

4 They assume that half of the photons generated at the shock move in-
ward, and the other half outward; in turn, one half of this outward-moving
radiation is assumed to be reradiated inward by an absorbing layer ahead of
the shock. If one ignores the contribution from the interior luminosity, this
implies that ηkin = 25 percent. However, it seems to us that one needs ra-
diative transfer calculations such as the ones presented here (or using more
detailed radiation transport as in Drake 2007) to justify this accounting.
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ment with the statement that entropy increases across a hy-
drodynamical shock. Indeed, once it arrives at the radiative
shock found here, the gas has already seen its entropy in-
crease from the value far outside of the precursor. (In the
case that the precursor is larger than the simulation domain,
as applies for these simulations, this ‘far-field’ value cannot
be obtained directly. However, already at rmax is the entropy
much lower than downstream of the shock.) Thus the radia-
tive shock which is the subject of this work can be thought as
being embedded in a usual hydrodynamical shock, a ‘shock
within a shock’ (Mihalas & Mihalas 1984), or a hydrody-
namical shock as being a radiative shock with an infinitely or
unresolved thin precursor. Separate test simulations with ex-
tremely high opacity values (κ = 102 cm2 g−1), such that the
precursor is contained in the simulation domain, confirm that
the post-shock entropy is higher than the entropy far away
from the shock.

The post-shock entropies are respectively S ≈ 12 and
20 kB/baryon for the molecular and atomic cases. Compared
to the range of entropies seen for cold starts to hot starts
(S ≈ 8–14 kB/baryon; Marley et al. 2007; Spiegel & Bur-
rows 2012; Mordasini 2013), this is an extremely large dif-
ference, which is due mostly to the different mean molecular
weights. Moreover, it highlights the importance of using a
self-consistent EOS which follows in particular the dissocia-
tion of hydrogen. However, the entropy values do not depend
sensitively on the precise opacity (see Figure 2).

Finally, it is important to remember that these entropy val-
ues are meant to be rather indicative at this stage. First of all,
they are not entirely self-consistent with the probable state of
the hydrogen in all parts of the domain (see the phase dia-
gram in Figure 2). Second of all, what they actually imply
for the post-formation entropy needs to be worked out sepa-
rately, with a study of the post-shock settling region and its
coupling to the planet interior (Berardo et al. 2016, Marleau
et al., in prep.).

3.5. Luminosity

The luminosity increases from the imposed L = 0 value
at rmin to the shock where it jumps by a finite amount ∆L,
then decreasing with radius. The value of L downstream of
the shock reflects in part the cooling of the layers below it,
and is set in reality also by (inefficient) convective energy
transport, which we do not attempt to include in these sim-
ulations. Thus the post-shock gas will probably have a dif-
ferent thermal history than if the layers were allowed to sink
further down into the planet instead of stopping at most at
rmin. Nevertheless, the obtained immediate post-shock lu-
minosities are roughly Ldownstr ≈ 3×10−4 L� and thus have
values comparable to the (rough) internal luminosities of ac-
creting planets (Mordasini et al., submitted). Therefore, the
inclusion of convection or similar changes to the tempera-
ture structure should not lead to very different values for the
post-shock region.

A general feature of these shock simulations is that L de-
creases radially outward. This is not due to absorption of the
light with optical depth according to L ∝ exp(−∆τ), as one
might naively expect, but rather reflects energy conservation.
To derive this, we start with the total energy equation (e.g.,
Kuiper et al. 2010),

dEtot

dt
+∇ · ([Ekin +H]v+Frad) = ρv ·g, (30)

where the total energy volume density is Etot =Ekin+H, with
Ekin = 1

2 ρv2, and the enthalpy is H = Eint +P for an inter-
nal energy density Eint. For a constant EOS, Eint = ρcvT =

ρ/(γ − 1)× kBT/(µmH) = 1/(γ − 1)× P, where cv is the
heat capacity. It is easy to verify that the thermal timescales
are much shorter than the dynamical timescales, so that the
flow is in steady state and the time derivative dEtot/dt can
be neglected. Also, Ṁ is constant radially. Remembering
that ∇ ·F = 1/r2d/dr(r2F) for a vector F , Equation (30) be-
comes

dL
dr

= Ṁ
dh
dr

+ Ṁ
d
dr

(
1
2

v2−
GMp

r

)
, (31)

where h = H/ρ is the specific enthalpy per mass and is h =

γ/(γ−1)kBT/(µmH) for a constant EOS. The accretion rate
Ṁ was taken to be positive here, i.e., Ṁ = |4πr2ρv|, and one
can trivially replace GMp/r by GMp (1/r−1/Racc). If the
second term on the righthand side of Equation (31) is small,
Equation (31) shows that the radial decrease in L is mostly
due to the inward increase in enthalpy. Therefore, it is not
an explicit function of the optical depth, although T (r) and
thus h(T ) are indirectly set by the opacity. Note that this
derivation is valid for a general EOS (with variable effective
γ) and also does not depend on the opacity being constant.

Equation (31) can be integrated to yield, when the second
term on the righthand side of Equation (31) is negligible,

L(r)−Ldownstr = ∆L(rshock)

[
1− Ṁ∆h(r)

∆L(rshock)

]
, (32)

where ∆L(rshock) = ηkinLacc, max is the jump in luminosity
at the shock, and ∆h(r) ≡ h(rshock)− h(r) is the change in
enthalpy relative to the shock, with ∆h > 0 for outwards
decreasing enthalpy. This result seems plausible: the in-
ward enthalpy flux is comparable to the outward radiation
flux only when the infalling gas absorbs a significant frac-
tion of the radiation and thus decreases L. The maximal
drop in luminosity occurs for h(rmax)� h(rshock), i.e., when
the effective nebula temperature Tneb� Tshock. This leads to
L(rmax)−L(rshock

+) =−Ṁh(Tshock).

3.6. Efficiencies

Next we show in Figure 3 the main result for the examples
of Figure 2, the loss efficiency ηphys of the accretion shock.
We recall that ηphys = 0 would correspond to all the kinetic
energy of the gas being absorbed by the planet and the gas
being accreted, while ηphys = 100 percent would correspond
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to the entire kinetic energy being radiated away when go-
ing out to the accretion radius Racc, roughly the Hill sphere
(here approximated by the outer radius near Racc). Contrary
to ηkin, ηphys takes into account the energy recycling which
occurs due to the incoming gas absorbing the radiation lib-
erated at the shock (see Equation (18) and the discussion be-
low Equation (20)). We find that they are ηphys ≈ 85 per-
cent for the atomic-hydrogen cases with different opacities,
and ηphys ≈ 95 percent for the molecular case. Thus, a
fraction 1−ηphys ≈ 5–15 percent of the total incoming en-
ergy is added to the planet. How significant this is for the
energy budget of the planet can be assessed by comparing
(1−ηphys)Ė(rmax) to the internal luminosity of the planet.
For these simulations, both are typically of the same order
of magnitude, implying that the accreting gas is able to heat
the downstream region. As mentioned above, how this then
affects the entropy and luminosity of the planet and their evo-
lution will have to be studied separately.

We show also the efficiencies from simulations covering
a range of accretion rates Ṁ = 10−5–10−2 M⊕ yr−1, masses
Mp ≈ 0.3–10 MJ, and shock locations rshock ≈ 1–20 RJ, and
varying again the opacity. At the largest radii, efficiencies
down to almost 20 percent are reached, and to 99 percent at
the other extreme.

By contrast, the ‘kinetic efficiency’ is ηkin ≈ 100 percent
(up to the numerical accuracy of the code given the res-
olution) for all simulations shown in Figure 3, with (1−
ηkin)Etot smaller by orders of magnitude than Lp. In other
words, the entire kinetic energy is converted to an immedi-
ate jump in the luminosity as the gas is brought to subsonic
speeds through the shock. However, a significant fraction
does get reabsorbed in the accretion flow, leading to the lower
ηphys values. Nevertheless, we find generally that the precur-
sor is greater than the accretion radius, which is of order of
the Hill radius. The optical depths from the shock to the Hill
sphere are at most ∆τ ∼ 30, and using a variable equation
of state (which would yield other temperatures) should not
change this significantly. We therefore expect the radiation
to always be able to escape from the shock to the local disk
(the nebula).

These numerical results can be compared to analytical the-
ory for radiative shocks. Drake (2006, his equation 7.82) de-
rived that the kinetic efficiency of a shock in which radiation
pressure is negligible is in general given by

η
kin ≡ ∆F

1
2 ρ−v−3

= 1+
2

(γ−1)M 2
r−1
r

+
γ +1
γ−1

1
r2 . (33)

where r ≡ ρ2/ρ1 is the ratio of the post-shock to the pre-
shock density. For isothermal shocks (as we find here), r =
γM 2, and Commerçon et al. (2011) show that the efficiency
is then

η
kin
isoth = 1− 1

γ2M 4 . (34)

Thus a higher Mach number leads to a higher fraction of the

incoming kinetic energy being converted to radiation for an
isothermal shock. Since the total energy flux is

ρvetot = ρv
(

1
2

v2 +h
)

(35a)

=
1
2

ρv3
(

1+
2

γ−1
1

M 2

)
, (35b)

we can derive that the physical efficiency, as measured by ∆L
at the shock, is

η
phys
isoth = η

kin
isoth×

(
1+

2
γ−1

1
M 2

)−1

. (36)

Therefore, the physical efficiency is lower than the kinetic
since the former considers the heating of the radiative pre-
cursor. In other words, not all radiation liberated at the
shock can leave the planet, and therefore gets incorporated
in the planet’s entropy. Note that naively, one might expect
in strongly supersonic flows (M = v/cs � 1) the internal
energy (measured by cs

2) to be negligible compared to the
kinetic energy (measured by v2), but the 2/(γ−1) factor can
make this assumption cruder than expected, especially for
low γ values; for instance, when γ = 1.1 and even with a
high Mach number M = 10, the factor 2/M 2(γ−1) is 0.2,
i.e., a 20 per cent contribution.

The Mach numbers range from M ≈ 3–20, and the η
phys
isoth

curve is compared to the data in Figure 3 for γ = 1.1 and
γ = 1.44. The agreement is excellent. The deviation from
the theoretical curve, seen for a few simulations, is possibly
due to small measurement errors related to the identification
of the shock region, and to inaccuracies in the measurement
of the velocity at which the shock is spreading; this speed
becomes somewhat important (at the several-percent level)
at low Mach numbers. However, the overall agreement is
excellent, independent of the opacity and optical depth in the
flow (not shown).

At least for the constant EOS used here, these simulations
and other tests indicate that extreme parameter values (e.g.,
Ṁ > 10−1 M⊕ yr−1 or κ > 100 cm2 g−1) would be needed to
obtain a shock with a Mach number M . 2, in which ηkin

would clearly be lower than 100 percent. Note that, while
vff ∝

√
Mp, very small masses are not sufficient to obtain

a lower Mach number since M ∝ v/
√

T ; at lower masses,
the temperature in the pre-shock region too is smaller, which
does not let M get much lower than about 3.

4. DISCUSSION AND SUMMARY

We have studied spherically symmetric gas accretion onto
a gas giant during the detached runaway phase, when the gas
falls freely from the accretion radius (of order of the Hill
radius) onto the planet, where it shocks. We determine the
radiative efficiency of the shock at the planet’s surface and
argue that this should be defined with the total incoming en-
ergy flux, i.e., taking both the kinetic but also the internal
energy into account. Even if, at a Mach number M = 4,
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Figure 3. Physical loss efficiency ηphys of the radiative accretion shock (see Equation (18)). The limit ηphys = 0 corresponds to all the incoming
energy being absorbed (no loss), while ηphys = 100 percent means that the kinetic energy of the gas entirely leaves the accretion flow onto
the planet; see Section 2.6.1. The diamonds display the efficiency for the cases shown in Figure 2. The other points come from considering a
range of accretion rates Ṁ = 10−5–10−2 M⊕ yr−1, masses Mp ≈ 0.3–10 MJ, and shock locations rshock ≈ 1–20 RJ. Both constant and tabulated
opacities are used as indicated in the legend. The last four groups of points (see legend) all take µ = 2.353. The results match the analytical
result for an isothermal shock at the measured Mach number (Equation (34, from Commerçon et al. 2011), for γ = 1.44 and γ = 1.1 (solid
black and dashed dark gray curves, respectively). Theoretical curves for the ‘kinetic efficiency’ ηkin

isoth for an isothermal shock are shown for
comparison (pale grey curves).

an isothermal shock converts 100 percent of the incoming
kinetic energy into radiation, only 77 percent (40 percent)
for γ = 1.44 (γ = 1.1) ultimately escape, with 23 percent
(60 percent) absorbed by the infalling gas and therefore reac-
creted to the system. This efficiency has direct observational
consequences as it controls the amount of radiation which
leaves the planet and is possibly observable. The efficiency
is also important since the complementary fraction is carried
through the shock into the settling region, where the gas is
being incorporated to the planet. To the best of our knowl-
edge, the energetics of the shock have not yet been studied
in detail as we have done, yet are thought to be key in deter-
mining the post-formation thermal state of gas giants, with
several orders of magnitude of difference in the resulting lu-
minosity between the two extreme cases, hot and cold starts.

We have considered both constant and tabulated opacities
(Bell & Lin 1994) but have only used a constant equation of
state to concentrate on the shock physics. Therefore, the nu-
merical results are rather illustrative in a quantitative sense,

but the qualitative behavior of the radial profiles and the de-
rived results revealed a number of interesting features. We
find the following:

1. The shock was observed always to be isothermal,
which corresponds in the classical terminology to a su-
percritical shock (Stahler et al. 1980; Mihalas & Miha-
las 1984).

2. The effective speed of light of the escaping photons
is always much larger than the gas flow speed, so that
the upstream region is in the ‘static diffusion’ regime
(Mihalas & Mihalas 1984).

3. Our radiation-hydrodynamics simulations confirm,
over a large range of Mach numbers, the theoretical ex-
pression for the efficiency given by Commerçon et al.
(2011, our Equation 34).

4. Unrealistically high constant opacity values were sep-
arately verified to be needed to cause the luminosity
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generated at the shock to be completely absorbed in the
precursor, ahead of the shock region. For reasonable
constant or tabulated opacities, all luminosity profiles
are qualitatively similar, decreasing by some amount
with increasing distance and with a non-zero value at
the outer edge (see last point below). An analytical
formula is derived for the drop based on energy con-
servation and shows that, roughly, the decrease in lu-
minosity is significant only if the incoming gas carries
a significant amount of energy compared to the accre-
tion luminosity.

5. We generally find higher shock temperatures then pre-
dicted by the usual estimate of the shock temperature,
Equation (28b). We show analytically that this is a
lower bound. The shock temperature being higher is
due to the radiation of the pre-shock matter. (The
difference between the actual and estimated temper-
ature can be large—near 1000 K in our examples—,
enough to possibly change the state of the gas signifi-
cantly, from molecular to atomic.) This leads to lower
Mach numbers and thus overall lower efficiencies of
the shock.

6. The entropy was seen to decrease across the shock
since it is in fact the radiative shock embedded in
the hydrodynamical shock; over the latter, the en-
tropy does increase as expected. The decrease ∆S
was found to be large, with ∆S ≈ 1.5–4 kB/baryon for
the examples considered. Thus the shock is very ef-
ficient in radiating away the entropy of the shocked
gas. The post-shock values were seen to be clearly
high (S > 12 kB/baryon), with the choice for the EOS
making a significant difference. We however point out
that the obtained densities and temperatures were not
consistent with the assumed (constant) mean molec-
ular weight and heat capacity. Therefore the entropy
values, while consistent within the parameter choices
for the simulations, should in general be expected to be
different when using a non-constant complete equation
of state. This will be the subject of Paper II.

7. For most of the formation parameter space, nearly all
of the kinetic energy is radiated away at the shock, i.e.,
ηkin ≈ 100 per cent. This is in agreement with the ana-
lytical formula of Drake (2006) and Commerçon et al.
(2011), which predicts ηkin ≈ 100 percent for suffi-
ciently high upstream Mach numbers (M & 3). How-
ever, it is important to remember that the Mach num-
ber itself depends on the shock temperature, which is
an outcome of the simulations and can at best only be
estimated beforehand.

8. However, most importantly, we found that the physical
(or “planet-heating”) efficiency is usually smaller than
100 percent, with values down to ηphys ≈ 20 percent

for a reasonable range of parameter values. This en-
ergy flux coming into the planet is often comparable to
or in fact much higher than its internal luminosity, sug-
gesting that the accretion process can play an impor-
tant role also energetically. The complementary frac-
tion of the accretion luminosity should reach at least
the Hill sphere, and may even have already been de-
tected for a few low-mass objects in the form of H α

emission (Close et al. 2014; Quanz et al. 2015; Sallum
et al. 2015).

The next steps will be to extend our analysis to cases of a
non-constant EOS to obtain realistic values for the efficien-
cies, and to verify the assumption of perfect gas–radiation
coupling (the 1-T assumption) with 2-T radiation transport
calculations. Then, we will couple these efficiency results to
formation calculations, especially in the framework of pop-
ulation synthesis, to make predictions of the post-formation
luminosity of gas giants.

Beyond this, due to the generality of our approach, we can
easily perform these shock calculations not only in the con-
text of core accretion but also more generally. Indeed, these
calculations apply also to magnetospheric accretion (Koenigl
1991; Lovelace et al. 2011), where high-density accretion
columns hit the surface of the star; a similar accretion ge-
ometry is a possibility in the context of planet formation
(Katarzyński et al. 2016; Marleau et al., in prep.). Also
we could easily adapt the parameters (mass, shock radius) to
values appropriate for the flow geometry revealed by global
three-dimensional simulations (D’Angelo et al. 2003; Tani-
gawa et al. 2012; Szulágyi et al. 2016), where gas falls from
high latitudes and shocks on the circumplanetary disk.
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shock ≈GMpṀ/Rp (see Equation (27)), with ρ given by the free-fall density (Equation (12)).

Shown are contours of γ = 1.10–1.40 in steps of 0.05 (blue through green to red) with γ ≈ 1.4 from≈ 100 to 1000 K, as well as of the ionization
or dissociation fraction for hydrogen of XH = 0.1, 0.5, and 0.9 (black dashed lines), and the region of dust destruction in BL94 (grey band),
with κ of order 1 cm2 g−1 at lower T . The groups of points are, from left to right, for logṀ/(M⊕ yr−1) =−5, −4, −3, and −2.

APPENDIX

A. RELEVANT PARAMETER SPACE

Here we estimate the temperature and density values relevant for the shock by using the Mp, Rp, Ṁ, and Lp values from the
population synthesis of Mordasini et al. (2012). (These data and many more are available on the Data Analysis Centre for
Exoplanets (DACE) platform at https://dace.unige.ch/evolution/index.) Figure A1 shows the lower bound to
the shock temperature for an isothermal shock (Equation (28b)) using the free-fall velocity (Equation (11)), and the pre-shock
density, given by Equation (12). We consider Mp ≈ 0.2–30 MJ and Ṁ ≈ 10−4–10−2 M⊕ yr−1, with rshock ≈ 1–30 RJ. Comparing
to the contours of constant γ and the rough ρ–T region were dust is destroyed and the opacity drops from∼ 1 to∼ 10−2 cm2 g−1,
one can expect for Ṁ . 10−5 M⊕ yr−1 the hydrogen to remain molecular and dust to be only partially destroyed. At higher
accretion rates, however, i.e., for most of the parameter space of interest here, both dissociation and dust destruction are expected
to play a role.
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