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1, Stéphane Marchand-

MailletID
3, Aziza Merzouki1☯, Olivia Keiser1☯

1 Institute of Global Health, University of Geneva, Geneva, Switzerland, 2 Institute of Mathematical Statistics

and Actuarial Science, University of Bern, Bern, Switzerland, 3 Department of Computer Science, Viper

Group, University of Geneva, Geneva, Switzerland

☯ These authors contributed equally to this work.

* Erol.Orel@unige.ch

Abstract

Introduction

High yield HIV testing strategies are critical to reach epidemic control in high prevalence and

low-resource settings such as East and Southern Africa. In this study, we aimed to predict

the HIV status of individuals living in Angola, Burundi, Ethiopia, Lesotho, Malawi, Mozam-

bique, Namibia, Rwanda, Zambia and Zimbabwe with the highest precision and sensitivity

for different policy targets and constraints based on a minimal set of socio-behavioural

characteristics.

Methods

We analysed the most recent Demographic and Health Survey from these 10 countries to

predict individual’s HIV status using four different algorithms (a penalized logistic regression,

a generalized additive model, a support vector machine, and a gradient boosting trees). The

algorithms were trained and validated on 80% of the data, and tested on the remaining 20%.

We compared the predictions based on the F1 score, the harmonic mean of sensitivity and

positive predictive value (PPV), and we assessed the generalization of our models by test-

ing them against an independent left-out country. The best performing algorithm was trained

on a minimal subset of variables which were identified as the most predictive, and used to 1)

identify 95% of people living with HIV (PLHIV) while maximising precision and 2) identify

groups of individuals by adjusting the probability threshold of being HIV positive (90% in our

scenario) for achieving specific testing strategies.

Results

Overall 55,151 males and 69,626 females were included in the analysis. The gradient boost-

ing trees algorithm performed best in predicting HIV status with a mean F1 score of 76.8%

[95% confidence interval (CI) 76.0%-77.6%] for males (vs [CI 67.8%-70.6%] for SVM) and

78.8% [CI 78.2%-79.4%] for females (vs [CI 73.4%-75.8%] for SVM). Among the ten most
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predictive variables for each sex, nine were identical: longitude, latitude and, altitude of

place of residence, current age, age of most recent partner, total lifetime number of sexual

partners, years lived in current place of residence, condom use during last intercourse and,

wealth index. Only age at first sex for male (ranked 10th) and Rohrer’s index for female

(ranked 6th) were not similar for both sexes. Our large-scale scenario, which consisted in

identifying 95% of all PLHIV, would have required testing 49.4% of males and 48.1% of

females while achieving a precision of 15.4% for males and 22.7% for females. For the sec-

ond scenario, only 4.6% of males and 6.0% of females would have had to be tested to find

55.7% of all males and 50.5% of all females living with HIV.

Conclusions

We trained a gradient boosting trees algorithm to find 95% of PLHIV with a precision twice

higher than with general population testing by using only a limited number of socio-beha-

vioural characteristics. We also successfully identified people at high risk of infection who

may be offered pre-exposure prophylaxis or voluntary medical male circumcision. These

findings can inform the implementation of new high-yield HIV tests and help develop very

precise strategies based on low-resource settings constraints.

Introduction

In order to reach epidemic control by 2030, the Joint United Nations Programme

(UNAIDS) has set fast track targets to rapidly scale up effective HIV services [1]. One of the

aims is to ensure that 95% of the approximately 38 million people globally living with HIV

(PLHIV) are aware of their HIV status and that 95% of those with HIV positive diagnoses

are on treatment [2].

People in East and Southern Africa are disproportionately burdened by HIV, constituting

more than half of the global PLHIV with 20.7 million people currently estimated to be HIV

positive [2]. As of 2020, 87% of PLHIV in this region were aware of their HIV status, of whom

83% were accessing treatment [3]. In addition, 25% of new HIV infections in East and South-

ern Africa were concentrated among key populations such as female sex workers, men having

sex with men, prisoners, and people who inject drugs [3].

HIV is transmitted within a complex network that is influenced by biological, behavioural,

and social factors. In East and Southern Africa, there is large geographical variation in the dis-

tribution of the HIV epidemic [4]. In order to identify populations at a high risk of infection,

global HIV prevention efforts have shifted toward optimizing resource allocation by consider-

ing geographical data as a way of increasing program impact and efficiency [5].

Modern predictive algorithms have the power to substantially enhance HIV prevention and

detection, increasing the prediction capability by processing large amounts of data of a differ-

ent nature. This methodology has been implemented to establish patterns of HIV risk behav-

iour, to optimise HIV treatment modalities, and to identify high-risk individuals for targeted

interventions from a number of novel data sources [6–15].

As more PLHIV are diagnosed, finding persons with undiagnosed HIV becomes progres-

sively more difficult and expensive. Hence, resource constraints and potential funding short-

ages have resulted in demands for differentiated high yield testing strategies in parallel to

provider-initiated HIV testing and counselling (PITC) [14, 16, 17]. In this paper, we aim to
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identify new key populations based on socio-behavioural characteristics by comparing four

different prediction algorithms. These insights intend to both inform targeted case-finding

strategies as well as identify high risk HIV negative individuals eligible for prevention services

such as voluntary medical male circumcision (VMMC) and/or pre-exposure prophylaxis

(PrEP).

Methods

Data

Since 1984, the Demographic and Health Surveys (DHS) program has provided technical assis-

tance for over 400 surveys in more than 90 countries, advancing global understanding of

health and population trends in developing countries [18]. DHS are nationally-representative

household surveys that provide data for a wide range of monitoring and impact evaluation

indicators on health and nutrition. Standard DHS surveys have large sample sizes (usually

between 5,000 and 30,000 households) and are typically conducted every five years [19]. We

used the most recent DHS surveys at or after 2013 of ten East and Southern African countries

(S1 Table) with a generalised HIV epidemic: Angola, Burundi, Ethiopia, Lesotho, Malawi,

Mozambique, Namibia, Rwanda, Zambia and, Zimbabwe.

We combined separately male and female datasets of each country with their corresponding

household’s geographic position and their HIV test results. We then merged the ten countries

and obtained two datasets containing 68,979 males and 83,910 females with 527 and 3,213 var-

iables respectively, since different socio-behavioural characteristics are recorded for each sex.

The target variable was the HIV status of the individuals (0 for HIV negative and 1 for HIV

positive). During the data pre-processing step, only individuals with positive or negative HIV

status were included in the analysis; those with unknown status were discarded. We cleaned,

concatenated, filtered, transformed, and aggregated the data (S2 Table). We imputed missing

values, that we assumed missing at random, using multiple imputation by chained equations

(MICE) (as detailed in S3 and S4 Tables) and the data were further harmonized and scaled [20,

21]. Thus, the final dataset included 55,151 males and 69,626 females with 84 and 122 variables

respectively; 73 variables were common to both sexes (S5 Table).

Training, validation and test procedure steps

Fig 1—Step 1. From these two datasets, we first left one of the 10 countries out (switching

left out country) to create 10 different datasets per sex, each one comprised of only 9 countries.

This has been done for generalization purposes in order to further assess the quality of our

models when the data were not drawn from the exact same distribution. Then, each of the 10

newly created datasets per sex were split at the individual level between a stratified (due to

imbalanced outcomes) 80% training set and a 20% test set. The above described MICE imputa-

tion and data standardization was then performed separately on training and test datasets to

avoid information from the training dataset to contaminate the test dataset.

Fig 1—Step 2. Using the training datasets and 50 randomly selected sets of hyperpara-

meters, a stratified 5-fold cross-validation was then performed for each algorithm on each of

the training sets for training and validation. The set of hyperparameters that obtained the max-

imum mean F1 score over the validation datasets was selected.

Fig 1—Step 3. Each one of the 10 best models per sex and per algorithm was then ran on

the corresponding test set and the resulting metric scores were averaged. We selected the algo-

rithm with the maximum mean F1 score over the 10 test datasets. Finally, we applied each

selected model on the corresponding left out country dataset.
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Algorithms

We compared four algorithms for the prediction of the HIV status of an individual: a penalized

logistic regression (Elastic Net) [22], a generalized additive model (GAM) [23], a support vec-

tor machine (SVM) [24], and an implementation of gradient boosted trees (XGBoost) [25].

The Elastic Net and the GAM are among the most widely used classification methods in biol-

ogy and medicine, SVM is a very common machine learning algorithm, and XGBoost is a deci-

sion-tree-based ensemble which has gained a lot of attraction since its development a few years

ago due to its excellent performances (more details about the models can be found in the S1

File). Our primary interest was to find the largest number of HIV positive individuals (sensitiv-

ity) with the highest possible yield (positive predictive value (PPV)). We, therefore, used the F1

score for assessing the performance of the different algorithms. This metric combines the sen-

sitivity and the precision in a harmonic mean and is often recommended for unbalanced data-

sets when comparing models [26]. The probability threshold to classify if someone is

considered HIV positive was set at 50%. In addition, to validate our results with a strictly

proper scoring rule, we also computed the Brier score. This score is strictly equivalent to the

mean squared error as applied to predicted probabilities for unidimensional predictions.

The analysis was done in two steps for each of the four algorithms (Fig 1—Step 2, 3), and

separately for males and females. Training and validation were performed using the stratified

5-fold cross-validation on the training sample with 50 different sets of hyperparameters ran-

domly chosen from a grid (as detailed in S1 File). Among these sets, we selected the one with

the highest mean F1 score, and tested the obtained model on the test sample and on the left-

out country, which were not used during training and validation (Fig 1—Step 3). We selected

the best algorithm based on its averaged F1 scores on the ten test samples.

Fig 1. Methodology diagram of the analysis part 1.

https://doi.org/10.1371/journal.pone.0264429.g001
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Variables selection and HIV status prediction

For variables selection and HIV status prediction, we used the exact same training, validation

and testing strategy than in the first part of our analysis except that no country was left out.

We split each unique dataset par sex into a stratified 80% training and validation set and a 20%

test set. The best algorithm was trained and validated using a random grid-search over 250 sets

of hyperparameters and a stratified 5-fold cross-validation. The first predictions were per-

formed using all available variables. Based on the F1 scores, sensitivity, and PPV, we compared

two imputation methods, namely MICE (models M1 and F1 for males and females, respec-

tively) and a built-in method from the selected algorithm [25] (models M2 and F2).

We used a sequential forward floating selection (SFFS), which eliminates (or adds) variables

based on a defined classifier performance metric, on the 80% training samples and calculated

the F1 scores for different subsets of variables. We selected the subset of variables for which the

F1 scores plateaued and we then assessed the direction of the association between these vari-

ables and the probability of being HIV-positive using Shapley values [27].

We retrained the best algorithm with the above defined subsets of variables (models M3

and F3) and also on a minimal subset common to both sexes (models M4 and F4). The F1

scores, the sensitivity, and the PPV were compared to the ones obtained for M1, M2, F1, and

F2. With our last models based on a minimal subset common to both sexes (models M4 and

F4), we further analysed the results at country level, comparing the F1, sensitivity and PPV

between countries and the differences between observed and predicted prevalences.

Scenarios

We tested two scenarios: for the first scenario, the sensitivity was set to 95%, equivalent to 95%

of PLHIV knowing their status, and we reported the corresponding precision and number of

individuals to be tested. For the second scenario, we identified a population for which the

probability of being HIV positive was higher than 90%. We considered that these groups of

individuals are targets for specific testing strategies or ideal candidates for prevention services.

Ethical review

No ethical approval was needed for this study.

Data and code availability

The data supporting the findings of this study are available from the DHS Program https://

dhsprogram.com/. The DHS Program is authorized to distribute, at no cost, unrestricted sur-

vey data files for legitimate academic research. Registration is required to access the data.

The data was collected between 2013 and 2017 depending on each country.

All analyses were performed in Python version 3.7.4. The code is available on https://gitlab.

com/Triphon/predicting_hiv_status.

Results

Overall, 55,151 males and 69,626 females were analysed with a prevalence ranging from 0.8%

among males in Ethiopia to 33.3% among females in Lesotho with a global HIV prevalence of

8.0% (4,417 individuals) for males and 11.5% (8,011 individuals) for females. Individuals aged

25 to 34 years were the largest age group, representing 35.9% of females and 31.9% of males.

About two-thirds of people lived in rural areas (S6 Table).
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Algorithms

Fig 2 shows the performance of the four algorithms on the test samples and independent left-

out countries. XGBoost had the highest F1 scores on all test samples with a mean F1 score of

76.8% [95% confidence interval (CI) 76.0%-77.6%] for males and 78.8% [CI 78.2%-79.4%] for

females. In comparison, SVM had a mean F1 score of 69.2% [CI 68.2%-70.2%] for males and

74.6% [CI 73.7%-75.5%] for females. For Elastic Net, the mean F1 score was 32.6% [CI 31.8%-

33.4%] for males and 41.5% [CI 40.3%-42.7%] for females. GAM performed the worst with a

mean F1 score of 26.2% [CI 25.0%-27.4%] for males and 39.8% [CI 38.1%-41.5%] for females.

When focusing on the Brier scores, XGBoost was still the best performing algorithm, followed

by SVM, GAM and finally ElasticNet. In general, the scores obtained by the models with the

best Brier score were very similar to the ones obtained with the best F1 score (S7 to S10

Tables).

When tested against the ten left-out countries, the performance of the algorithms was

substantially lower than on the test samples and the F1 scores varied more widely (Fig 2—

RH). The mean F1 score was the best for Elastic Net with 21.4% [CI 12.3%-30.5%] for males

and 32.6% [CI 21.2%-44.0%] for females, followed closely by XGBoost with 20.9% [CI

14.3%-27.5%] and 29.8% [CI 19.0%-40.6%], respectively. In comparison, the mean F1 score

for SVM was 15.4% [CI 10.9%-19.9%] for males and 22.3% [CI 14.1%-30.5%] for females.

Again, GAM performed the worst with a mean F1 score of 6.6% [CI 0.9%-12.1%] and 17.1%

[CI 4.4%-29.8%]. See S7 to S10 Tables for details on PPV, sensitivity and Brier scores. How-

ever, the algorithms performed generally better in countries with higher prevalence (S7 to

S10 Tables).

Given that the best performance on the test samples was obtained with XGBoost, both for

F1 and Brier scores, we used this algorithm for the selection of variables and the prediction of

the HIV status of the individuals on the entire datasets, where no country was left out. The

results on all variables using the two different imputation methods are shown in Table 1. For

both sexes, the XGBoost imputation (M2 and F2) resulted in slightly higher F1 scores com-

pared to the MICE imputation (M1 and F1). The F1 scores on the validation samples were

75.5% [CI 73.7%-77.3%] vs 74.9% [CI 73.3%-76.5%] for males and 76.1% [CI 74.9%-77.3%] vs

75.5% [CI 74.6%-76.4%] for females. Given the similarity of the obtained results, we decided to

use the built-in XGBoost method for further analyses (i.e. models M3, F3, M4 and, F4) because

of its simplicity of implementation and its lower computation time.

Fig 2. Boxplot of the f1 scores for the 4 algorithms on the test and left-out samples per sex.

https://doi.org/10.1371/journal.pone.0264429.g002
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Variables selection and HIV status prediction

Fig 3 shows the subset of most relevant variables to predict an individual’s HIV status, as

selected by the SFFS procedure. With 15 variables for males and 27 variables for females, the

F1 score plateaued at 99.6% and 97%, respectively.

Among those variables, four were specific to females (‘currently breastfeeding’, ‘fertility

preference’, ‘time to get to water source’ and ‘entries in birth history’) and two to males (‘num-

ber of women fathered children with’ and ‘respondent circumcised’). Out of the ten most pre-

dictive variables for both sexes, nine were identical: geographic position (longitude, latitude,

and altitude), current age, age of most recent partner, total lifetime number of sexual partners,

years lived in current place of residence, condom used during last sexual intercourse with

most recent partner, and a wealth index from the DHS which combines numerous wealth-

related variables such as household assets and utility services [28]. The age at first sexual inter-

course ranked tenth for males but only twentieth for females; the Rohrer’s index (an estimate

of obesity) ranked sixth for females but was not available for males.

Older age, older age of most recent partner, older age and more years since first cohabita-

tion, higher total lifetime number of sexual partners, longer time since last sex, higher number

of unions, higher number of women fathered children with, condom use during last sexual

intercourse with most recent partner, having been tested for HIV, living in an urban area,

higher longitude coordinate and buying vegetables from vendor with HIV were positively

associated with the probability of HIV positivity for most individuals, either males, females or

both. Higher age at first sex, higher wealth index, higher latitude coordinate, higher altitude,

higher number of years of education, higher number of entries in birth history, circumcision,

higher Rohrer’s index, more years lived in place of residence, use of contraceptive, currently

breastfeeding and higher number of household’s members were mainly negatively associated

with HIV positivity. The direction of association was not clear for the age of the household

head and the time to get to the water source (Fig 3).

Table 1. Results per sex of the XGBoost algorithm for different imputation methods and sets of variables.

TP FN FP TN F1 score Sensitivity PPV

Complete with MICE imputation (Model M1) Validation 74�9% (± 1�6%) 71�2% (± 2�9%) 79�1% (± 0.8%)

Test 627 256 164 9,984 74.9% 71.0% 79.3%

Complete with MICE imputation (Model F1) Validation 75�5% (± 0�9%) 75�4% (± 1�6%) 75�6% (± 0�5%)

Test 1,264 338 375 11,949 78.0% 78.9% 77.1%

Complete with XGBoost imputation (Model M2) Validation 75�5% (± 1�8%) 69�6% (± 2�2%) 82�5% (± 2�2%)

Test 617 266 122 10,026 76.1% 69.9% 83.5%

Complete with XGBoost imputation (Model F2) Validation 76�1% (± 1�2%) 75�5% (± 1�7%) 76�8% (± 1�2%)

Test 1,279 323 379 11,945 78.5% 79.8% 77.1%

15 variables with XGBoost imputation (Model M3) Validation 73�7% (± 2�9%) 67�9% (± 2�5%) 80�7% (± 3�7%)

Test 605 278 129 10,019 74.8% 68.5% 82.4%

27 variables with XGBoost imputation (Model F3) Validation 75�6% (± 1�2%) 70�0% (± 1�2%) 82�2% (± 1�7%)

Test 1,212 390 234 12,090 79.5% 75.7% 83.8%

9 variables with XGBoost imputation (Model M4) Validation 72�9% (± 2�3%) 65�6% (± 1�6%) 81�9% (± 3�9%)

Test 595 288 124 10,024 74.3% 67.4% 82.8%

9 variables with XGBoost imputation (Model F4) Validation 72�4% (± 1�2%) 68�5% (± 1�4%) 76�8% (± 1�6%)

Test 1,184 418 249 12,075 78.0% 73.9% 82.6%

True Positive (TP), False Negative (FN), False Positive (FP), True Negative (TN), Positive Predictive Value (PPV)

Multiple Imputation by Chained Equations (MICE).

(± %): 95% Confidence Interval.

https://doi.org/10.1371/journal.pone.0264429.t001
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Fig 3. Shapley values. The variables are displayed sorted by importance from top to bottom (from the highest Shapley

value to the lowest). The blue and red colours represent the value range of the variable (blue (red) represents the low

(high) value range of the variable). For example, the older the age, the more likely the person will be HIV positive. N.b.:

Shapley values do not describe the causal impact of each covariate, only the additional change in overall outcome by

adding this covariate.

https://doi.org/10.1371/journal.pone.0264429.g003
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Table 1 shows the results (confusion matrix, PPV, sensitivity and F1 score) of the XGBoost

algorithm on the 15 most important variables for males (M3) and 27 most important variables

for females (F3). As expected from the SFFS procedure, the F1 scores of these two models were

close to the scores obtained with all available variables (M2 and F2). The F1 scores decreased

only by 1.8 percentage points for males and by 0.5 percentage points for females. In compari-

son, by using the nine most predictive common variables (M4 and F4), the F1 scores decreased

respectively by 2.6 and 3.7 percentage points compared to M2 and F2. M4 and F4 were the

models used for the two scenarios considering that the drop in performance compared to the

previous, more complex models, was minimal.

S11 Table shows the results of our models’ predictions at country-level and per sex. For

males, Malawi has the lowest predictive power with a F1 score of 61.4% compared to 81.8% for

Angola. For females, Angola has the lowest F1 score with 61.8% versus 80.0% for Burundi. Sen-

sitivity values are ranging from 51.3% for males in Malawi to 79.3% for females in Lesotho. For

PPV, the lowest value is for males in Burundi with 75.0% versus 100% for males in Angola and

Ethiopia.

Again, at country level, we have then aggregated the HIV status predictions per country to

estimate national prevalence. Our models underestimated country-specific HIV prevalence

but with small relative differences ranging from -0.6% for females in Zimbabwe to -33.3% for

males in Malawi (S12 Table). Fig 4 shows two maps per sex, one representing the predicted

prevalence per country (left) and the other one the absolute difference between the predicted

and the observed prevalence (right). The worst absolute difference is for males in Zambia with

-3.1% versus -0.1% for males in Burundi and female in Zimbabwe.

Scenarios

1) 95% PLHIV know their status. For males, a sensitivity of 95% would require that 5,450

individuals out of 11,031 (49.4%) would need to be tested to identify 840 HIV positives out of

the 883 PLHIV. The corresponding PPV is 15.4%; 7 individuals would therefore need to be

tested to find one HIV positive person (number needed to test NNT). For females, 6,696 indi-

viduals out of 13,926 (48.1%) would need to be tested to find 1,522 HIV positives out of the

1,602 PLHIV. The PPV is 22.7% and the NNT is 5.

2) At least 90% probability of being HIV positive. Out of 11,031 males and 13,926

females, 512 males (4.6%) and 837 females (6.0%) were identified as high-risk populations (i.e.

at least 90% of being HIV positive). Overall, 492 males would have been correctly identified as

HIV positive out of the 883 male PLHIV (sensitivity of 55.7% and PPV of 96.1%) and 809

females would have been correctly identified as HIV positive out of the 1,602 female PLHIV

(sensitivity of 50.5% and PPV of 96.7%).

Discussion

Using large representative datasets with over 120,000 persons from ten East and Southern Afri-

can countries, we were able to accurately predict the HIV status of individuals using demo-

graphic and socio-behavioural characteristics only. Our approach allowed us to select the nine

most important predictor variables common for both sexes: geographic position (longitude,

latitude and, altitude), current age, age of most recent partner, total lifetime number of sexual

partners, years lived in current place of residence, condom use during last sexual intercourse

with most recent partner, and wealth index. Using these nine variables to predict HIV positiv-

ity reduces dramatically the amount of knowledge needed to identify key populations.

We also determined the direction of the association between predictor variables and HIV

status. We confirmed a number of established HIV risk factors such as older age or older age
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of the most recent partner [29], a high number of sexual partners [30], and living in an urban

area [31]. Additionally, circumcision and breastfeeding were associated with a lower risk of

HIV positivity [31]. Unlike previous findings [32], condom use during the last sexual inter-

course increased the probability of HIV positivity in our study. This seemingly counterintui-

tive finding may be the result of increased condom use in individuals who are already aware of

their positive HIV status. The differences in individual HIV status due to the altitude are likely

multifactorial. These factors stem from environmental, biological, as well as socio-behavioural

and policy-level differences that impact infection and transmission [30, 33–35]. The cross-sec-

tional nature of our study limits our ability to investigate this further. We also identified risk

factors for HIV infection which have rarely been investigated before. For example, an

increased distance to water source was associated with HIV status; the association could be

either positive or negative, but not neutral. A previous study showed that the risk of sexual

assault of women, and hence the risk of HIV infection, increased when the time to reach a

Fig 4. Predicted prevalence per country (LH) and absolute difference between predicted and observed prevalence

(RH).

https://doi.org/10.1371/journal.pone.0264429.g004
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water source increased [32]. However, longer time to get to water sources are more common

in rural areas where HIV prevalence is known to be generally lower, hence a decrease in risk of

HIV positivity.

Our model was also able to accurately predict the prevalence at country level per sex. The

difference in predictive power by country depends on many factors, such as the prevalence of

the country, the percentage of the country sample size compared to the overall sample and the

similarity of the country risk factors versus its peers.

When adapting our predictive algorithm to finding 95% of PLHIV, we needed to test 7

males (NNT of 7; PPV of 15.4%), and 5 females (NNT of 5; PPV of 22.7%) to find one HIV

positive individual. A previous systematic review of different testing strategies showed that

NNTs ranged between 3 and 86 for community-based testing strategies and between 4 and 154

for facility-based testing strategies [36]. Our method is, consequently, among the best perform-

ing testing strategies and can reduce by two the number of tests needed to find 95% of PLHIV

compared to current general population testing.

When targeted HIV case-finding strategies are implemented to increase the cost-effective-

ness of testing, a high yield is important to ensure that many of those tested are HIV positive.

It is currently unknown if additional behavioural-based testing strategies can enhance or com-

plement current targeted case-finding strategies such as index testing. Acceptable cut-offs for

both sensitivity and PPV would need to be adapted for specific low resources settings and for

the desired testing coverage. In our second scenario, we identified about 5% of the population

at high risk of being HIV positive using a probability cut-off of 90%. This allowed us to identify

more than 50% of all PLHIV with most of the tested population being HIV-positive; the

remaining HIV-negative tested individuals are choice candidates for preventative services

such as pre-exposure prophylaxis (PrEP). We were consequently able to maximise the efficacy

of the testing. We believe that our method would, therefore, be a valuable addition to current

targeted strategies.

To our knowledge, this study is the first to use machine learning methods to predict HIV in

generalised HIV epidemic East and Southern African countries using routinely collected sur-

vey data. The main scope was to determine common risk factors of HIV positivity between

countries with high HIV prevalence and the predictive ability of machine learning models

based on these common risk factors. Hence, one of the limitations of this study was the gener-

alizability of our predictive models for countries that were not used to train the algorithm. The

accuracy of the prediction decreased, probably due to different risk factor distributions

between countries. Future studies could improve the generalizability by selecting more similar

countries than the country we aimed at generalizing to or apply our algorithm to country-spe-

cific individuals. We were also limited by the available variables in our dataset, and as a result

we were unable to consider differences in viral load suppression, health-care expenditure, spe-

cific HIV-related interventions, and conflicts and wars. Additionally, missing values were to

be found in the data and implied making assumptions about their randomness and using

imputation methods that are necessarily imperfect by nature [37]. Finally, although HIV test-

ing was laboratory-based and not self-reported, some results were inconclusive and, thus, dis-

carded. A number of variables were self-reported and therefore subject to social desirability

and recall bias.

Conclusions

Using machine learning algorithms, we identified strong predictors of HIV positivity. Our

findings may explain the spatial variability of HIV prevalence and can inform HIV testing

strategies in resource-limited settings. While the implementation of a machine learning based
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risk score for targeted interventions was feasible in rural East Africa [38], the acceptability and

use of potentially sensitive behavioural risk factors to directly identify individuals for HIV test-

ing needs to be evaluated. Our algorithm performed well with only a limited number of vari-

ables, which do not require extensive interviews or questionnaires. This approach may be

implemented by clinicians and community health care workers or utilised through additional

HIV case-finding modalities such as call centres, social media, and self-testing initiatives. The

availability of individual-level data on the association of various diseases with socio-beha-

vioural characteristics is rapidly increasing. Advanced methods to analyse these large sources

of data can help to prevent, diagnose and treat HIV and other diseases more efficiently.
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