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Background: Microsatellite instability (MSI)/mismatch repair deficiency (dMMR) is a key genetic feature which should
be tested in every patient with colorectal cancer (CRC) according to medical guidelines. Artificial intelligence (AI)
methods can detect MSI/dMMR directly in routine pathology slides, but the test performance has not been
systematically investigated with predefined test thresholds.
Method:We trained and validated AI-based MSI/dMMR detectors and evaluated predefined performance metrics using
nine patient cohorts of 8343 patients across different countries and ethnicities.
Results: Classifiers achieved clinical-grade performance, yielding an area under the receiver operating curve (AUROC) of
up to 0.96 without using any manual annotations. Subsequently, we show that the AI system can be applied as a rule-
out test: by using cohort-specific thresholds, on average 52.73% of tumors in each surgical cohort [total number of MSI/
dMMR ¼ 1020, microsatellite stable (MSS)/ proficient mismatch repair (pMMR) ¼ 7323 patients] could be identified as
MSS/pMMR with a fixed sensitivity at 95%. In an additional cohort of N ¼ 1530 (MSI/dMMR ¼ 211, MSS/pMMR ¼
1319) endoscopy biopsy samples, the system achieved an AUROC of 0.89, and the cohort-specific threshold ruled
out 44.12% of tumors with a fixed sensitivity at 95%. As a more robust alternative to cohort-specific thresholds, we
ondence to: Prof. Jakob N. Kather, University Hospital RWTH Aachen,
rmany. Tel: þ49-241-800
kather@ukaachen.de (J. N. Kather).

ontribution.

2059-7029/© 2022 The Author(s). Published by Elsevier Ltd on behalf of
European Society for Medical Oncology. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

- Issue 2 - 2022 https://doi.org/10.1016/j.esmoop.2022.100400 1

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
mailto:jkather@ukaachen.de
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.esmoop.2022.100400&domain=pdf
https://doi.org/10.1016/j.esmoop.2022.100400
https://doi.org/10.1016/j.esmoop.2022.100400


ESMO Open A. Echle et al.

2

showed that with a fixed threshold of 0.25 for all the cohorts, we can rule-out 25.51% in surgical specimens and 6.10%
in biopsies.
Interpretation: When applied in a clinical setting, this means that the AI system can rule out MSI/dMMR in a quarter
(with global thresholds) or half of all CRC patients (with local fine-tuning), thereby reducing cost and turnaround time
for molecular profiling.
Key words: artificial intelligence, biomarker, colorectal cancer, microsatellite instability, Lynch syndrome, deep learning
INTRODUCTION

Microsatellite instability (MSI) is a biomarker of high clinical
importance in colorectal cancer (CRC).1 MSI is measured
with polymerase chain reaction (PCR) or next-generation
sequencing in tissue samples. In clinical practice, MSI is
virtually synonymous with mismatch repair deficiency
(dMMR), which is measured by immunohistochemistry
(IHC) and shows a high concordance with MSI.2 MSI/dMMR
[the opposite of which is microsatellite stability (MSS) or
proficient mismatch repair (pMMR)] changes treatment in
all stages of CRC. In locally resectable cases, MSI/dMMR
status is one of the multiple factors which decides whether
patients should receive adjuvant chemotherapy after sur-
gery.2 In metastatic disease, the presence of MSI/dMMR
makes patients eligible for immunotherapy with checkpoint
inhibitors.3 Finally, testing for MSI/dMMR is used as the
first test in a sequence of screening tests for Lynch syn-
drome, one of the most common hereditary tumor syn-
dromes.4 MSI/dMMR should be tested in every CRC patient
according to the UK National Institute for Health and Care
Excellence (NICE) guidelines.5 Approximately 12% of all CRC
patients have sporadic MSI/dMMR and 2%-4% of all CRC
patients have MSI/dMMR due to Lynch syndrome.6,7 Since
2019, >10 studies have shown that MSI/dMMR status can
be detected from digitized pathology slides stained with
hematoxylin and eosin (H&E).8-17 The key technology that
enables this is deep learning (DL), an artificial intelligence
(AI) method. Such AI-based systems for detection of MSI/
dMMR status from routine histopathology slides are also in
the focus of commercial interest, as evident by a US patent
application of this technology (#16/412362 filed on 2019-
11-14 by Tempus Labs). As routine pathology diagnostic
workflows are expected to become fully digital, AI-based
biomarkers could be inexpensively implemented in exist-
ing workflows.18 In this context, MSI/dMMR detection with
AI could be a blueprint for other biomarkers.19 Clinical use
of these AI biomarkers requires extensive validation
steps.20 In addition, it is still unclear how AI-based MSI/
dMMR testing performs across different populations of
patients. Furthermore, many previous studies have re-
ported continuous prediction scores (an MSI/dMMR prob-
ability) for individual patients.8-10 Yet, for clinical use, the AI
system should also be able to make the call whether the
patient should undergo gold-standard testing for confir-
mation in addition to giving a probability score. In partic-
ular, previous studies have suggested that AI-based MSI/
dMMR testing could be used as a pre-screening tool to
select candidates for gold-standard testing and rule out the
https://doi.org/10.1016/j.esmoop.2022.100400
remaining patients.9,10 However, it is unclear how many
patients exactly could be ruled out in clinical routine by
such a system when applied to large and diverse pop-
ulations of CRC patients. In addition, it is unclear if clinical-
grade performance can be achieved on biopsies.10 In the
present study, we systematically investigated these aspects
by using a large collection of nine patient cohorts of CRC
surgical specimens and one cohort of CRC endoscopic
biopsies.

MATERIALS AND METHODS

Ethics statement

This study was carried out in accordance with the Decla-
ration of Helsinki. This study is a retrospective analysis of
digital images of anonymized archival tissue samples of
multiple cohorts of CRC patients. Data were collected and
anonymized, and ethics approval was obtained at each
contributing center (Supplementary Table S1, available at
https://doi.org/10.1016/j.esmoop.2022.100400).
STARD checklist

In this study we covered all the items in the STAndards for
Reporting Diagnostic accuracy studies (STARD) for the
transparency of the reported results. Supplementary
Table S2, available at https://doi.org/10.1016/j.esmoop.
2022.100400 shows these items and their corresponding
covering page in this current study.
Cohort description

Through coordination by the MSIDETECT consortium (www.
msidetect.eu), we collected H&E tissue slides from N ¼
8343 colorectal cancer patients from nine patient cohorts
(Supplementary Table S3, available at https://doi.org/10.
1016/j.esmoop.2022.100400) as follows: Darmkrebs: Chan-
cen der Verhütung durch Screening, Southwest Germany
(DACHS)21,22 is a large population-based case-control and
patient cohort study on CRC, including samples of patients
with stages I-IV from different laboratories in southwestern
Germany coordinated by the German Cancer Research
Center (Heidelberg, Germany). QUASAR is the ‘Quick and
Simple and Reliable’ trial (Yorkshire, UK), which investigated
survival under adjuvant chemotherapy in patients from the
UK with mostly stage II tumors.23,24 The public repository
‘The Cancer Genome Atlas’, (TCGA, publicly available at
https://portal.gdc.cancer.gov/, USA)25,26 included tumors
of all stages with the primary intent of genomic
Volume 7 - Issue 2 - 2022
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characterization. The Netherlands Cohort Study, The
Netherlands (NLCS)27,28 comprised tissue samples as part of
the Rainbow-TMA consortium, and like DACHS, this study
included patients with any tumor stage. Yorkshire Cancer
Research Bowel Cancer Improvement Programme, (YCR-
BCIP), Yorkshire, UK is a population-based register of bowel
cancer patients in the Yorkshire region of the UK.4,29 The
DUSSEL (Düsseldorf, Germany) cohort is a case series of CRC
resected in curative intent and collected at the Marien-
Hospital in Duesseldorf, Germany, between January 1990
and December 1995 with the intent of performing trans-
lational research studies.30 The Molecular Epidemiology of
Colorectal Cancer, (MECC) study, Israel31 is a population-
based case-control study in northern Israel. University
Medical Center Mannheim, (UMM), Germany, is a multi-
centric collection of CRC in patients with inflammatory
bowel diseases, centrally collected in Mannheim, Germany,
with contributions from medical centers in Germany. The
MUNICH (Munich, Germany) CRC series is a case series
collected with translational research intent at the Technical
University of Munich in Germany. Detailed clinicopatho-
logical variables are shown in Supplementary Table S3,
available at https://doi.org/10.1016/j.esmoop.2022.
100400. For each patient, either an MSI or a dMMR sta-
tus, obtained with PCR or IHC, respectively, was available
(Supplementary Table S3, available at https://doi.org/10.
1016/j.esmoop.2022.100400). Although MSI status and
dMMR status are not 100% concordant,4 they are inter-
changeably used in clinical settings and in this study. From
all cohorts, formalin-fixed paraffin-embedded tissue was
useddonly in the TCGA cohort, a small number of frozen
sections were present in the slide set labeled as ‘diagnostic
slides’. Slides were scanned decentrally at the respective
centers. Supplementary Figures S1-10, available at https://
doi.org/10.1016/j.esmoop.2022.100400, show the consort
charts for all the cohorts selected for this study. The pa-
tients are dropped out from further analysis in case of
missing MSIydMMR status, missing of whole slide image
(WSI) or because of the preprocessing step.
Experimental setup

To estimate the performance of AI-based detection of MSI/
dMMR in each of the nine cohorts, we employed a novel
experimental design: Leave-one-cohort-out cross-validation.
This means that we trained a neural network for detection
of MSI/dMMR status on all patients from eight out of nine
cohorts and tested it on all patients in the ninth cohort.
Each cohort was used as a test cohort exactly once. Thereby,
we trained nine distinct deep neural networks in this study
(for external validation) and additional networks for within-
cohort cross-validation. Ultimately, this design ensured that
MSI/dMMR detections were available for every single pa-
tient. No patient was ever part of the training process and
validation process at any point. In this way the performance
of DL-based MSI/dMMR detection in nine different external
validation sets can be analyzed and compared. This leave-
one-cohort-out cross-validation was compared to a
Volume 7 - Issue 2 - 2022
threefold patient-level within-cohort cross-validation
approach which was run separately on each cohort.

Image preprocessing and DL

All data used in this studywere preprocessed according to the
‘Aachen protocol for Deep Learning histopathology’.32 All
digitized WSIs were tessellated into image tiles of 256 mm
edge length saved at 512 pixel edge length. No manual an-
notations of tumor tissue were used. Tiles were generated
from the full non-annotated WSI. Image tiles containing
background or blurry ones were automatically removed from
the dataset during this process using the detected edge
quantity (canny edge detection in Python’s OpenCVpackage).
Specifically, we obtained a normalized edge image (using
cv.canny; OpenCV, https://opencv.org/) and then removed all
tiles with a mean value below a threshold of 4. All image tiles
were subsequently color-normalized to a target image
(https://github.com/jnkather/DeepHistology/blob/master/
subroutines_normalization/Ref.png) with the Macenko
method.33 Subsequently, a ResNet18 neural network model
which was pre-trained on the Imagenet database was re-
trained on all image tiles from all patients in the training
set. The high performance of ResNet18 in computational
pathology tasks has been shown in previous work.8 For all
patientswho had>500 tiles, only 500 randomly selected tiles
were used for all subsequent steps. Furthermore, to balance
the number of tiles in the MSI/dMMR and MSS/pMMR class
in the training set, the tiles in the more abundant group were
randomly undersampled just before training to achieve class
balance. No such undersampling step was carried out for the
tiles in the test set. For processing by the neural network
(training and deployment), all tiles were resized to 224� 224
pixels. The weights in the last half layers of the pre-trained
network were updated for five epochs (mini-batch size of
1024), with a fixed learning rate of 1e-4 (weight decay of 1e-
5), while theweights of the first half layerswere frozen during
the training. Adam optimizer and cross-entropy loss function
were used to fine-tune the weights of the model. Patient-
level scores were obtained by calculating the fraction of
tiles predicted to be of each class by using a tile-level
threshold of 0.5, relative to the total number of tiles per
patient. The overall workflow and the hyperparameters were
previously validated in other studies in colorectal and gastric
cancer.8,10,34

Statistical analyses

We pursued multiple approaches to determine the optimal
threshold on the test set: First, we obtained a ‘cohort-
specific threshold’ at fixed 95% sensitivity in each test set.
Second, we tested three candidates for a global threshold:
0.25, 0.50 and 0.75 which were subsequently applied to all
cohorts. Third, we trained the DL system on all eight training
cohorts, obtained a ‘learned threshold’ by averaging the
optimal thresholds of all eight training cohorts (which were
obtained by cross-validation within each cohort, and finally
deployed the model and the learned threshold to the test
cohort (the ninth cohort). Statistical endpoints were the
https://doi.org/10.1016/j.esmoop.2022.100400 3
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area under the receiver operating curve (AUROC), sensi-
tivity, specificity, positive predictive value, negative predic-
tive value and F1-score. We calculated the 95% confidence
intervals of the area-under-the-curve values which are
formed from quantiles of the 1000-bootstrap resampling
distribution.
Reader study

To identify potential reasons for misclassified cases, we
carried out a reader study of misclassified [false-positive
(FP) and false-negative (FN)] samples. Two pathologists
(SFB, NPW) reviewed FN and FP cases at different thresh-
olds but were blinded to other clinicopathological features.
For each case, they commented on the presence of po-
tential technical confounders (artifacts), amount of tumor
tissue on the slide and unusual or rare morphological pat-
terns. Among these potential confounders, the pathologists
chose the most relevant confounder, which was then used
for further statistical analysis.
Implementation, code availability and data availability

All codes were implemented in Python 3.8 (Python Soft-
ware Foundation, Wilmington, DE) using Pytorch and were
run on Windows Server 2019 on multiple NVIDIA RTX8000
graphics-processing units. All source codes for preprocess-
ing are available at https://github.com/KatherLab/
preProcessing and all source codes for DL are available as
part of the ‘Histology Image Analysis’ (HIA) package at
https://github.com/KatherLab/HIA. All trained classifiers are
available at https://doi.org/10.5281/zenodo.5151502 and
are available for re-use. Access to raw data can be
requested from the respective consortia who independently
decide on data access for their respective patient cohorts.
The corresponding authors of this study do not have any
role in decisions about data access in the primary datasets.

RESULTS

DL achieves robust MSI/dMMR detection performance
across cohorts

In this study, a DL system was used to detect MSI/dMMR
status from routine digitized H&E tissue slides of CRC
(Figure 1A) in a novel leave-one-cohort-out experimental
design (Figure 1B). We found that MSI/dMMR status could
be determined from histology slides with a high perfor-
mance: eight out of nine cohorts achieved a patient-level
AUROC of >0.85 (Table 1), corresponding to a high de-
gree of separation of the detected MSI/dMMR scores in the
‘true MSI/dMMR’ compared to the ‘true MSS/pMMR’ group
(Supplementary Figure S11, available at https://doi.org/10.
1016/j.esmoop.2022.100400). In the YCR-BCIP cohort, the
MSI/dMMR detection AUROC was 0.96 (0.94-0.98). Only
one cohort achieved lower results: in the MECC cohort, the
AUROC was 0.74 (0.69-0.80). The performance on held-out
validation cohorts was comparable to the within-cohort
performances (Table 1), demonstrating the robustness of
classifiers trained in a multicentric setting. Supplementary
4 https://doi.org/10.1016/j.esmoop.2022.100400
Figures S12 and S13, available at https://doi.org/10.1016/
j.esmoop.2022.100400 show the ROC curves and
precision-recall curves correspondingly for all the internal
and external validation experiments.

DL can rule out patients based on cohort-specific
thresholds

While an AUROC gives an estimate of classifier perfor-
mance, real-world use of classifiers requires a ‘threshold’
that converts probabilities into binary predictions. There-
fore, for each dataset, we derived a cohort-specific
threshold value from the model predictions. This
threshold was set at a 95% sensitivity value, aiming to
minimize the fraction of FN predictions. We found that for
such a (95%) threshold, negative predictive values were
>93% in all cohorts (Table 1), demonstrating the potential
of this AI system as a pre-screening tool. The true-negative
fraction or rule-out fraction (how many patients can be
safely excluded from confirmatory testing) ranged from
12.6% in MECC to 78.8% in YCR-BCIP while the ‘FN fraction’
remained always <0.3% (Table 1, Figure 2).

Performance of predefined threshold values for patient
classification

An alternative to cohort-specific determination of optimal
thresholds is the use of fixed thresholds for MSI/dMMR
classification in patients. We defined 0.25, 0.50 and 0.75 as
cutoff values for determining which patients to rule out.
Using the lowest threshold (0.25), n ¼ 2128 (25.5%) pa-
tients were correctly classified as MSS/pMMR while only 22
patients (0.26%) were incorrectly detected to be MSS/
pMMR (false negatives). Thus, this high-sensitivity classifier
which is not tuned to specific cohorts would be able to
exclude 25.5% of all patients from subsequent molecular
testing, while only missing 0.26% of all patients if it is used
as a pre-screening test before ultimate gold-standard
testing (Figure 2B), using a fixed threshold value which
does not need to be tailored to a specific cohort. To analyze
reasons for the high classification performance, we
reviewed spatial detection maps generated by the DL
classifiers (Figure 3). This qualitative analysis was carried out
in at least 10 tumors per cohort by two observers (NGL,
JNK). We found that in MSS/pMMR tumors (as defined by
the ground truth method), the classifier wasdin the ma-
jority of casesdhomogeneously detecting tumor tissue and
adjacent non-tumor tissue to be MSS/pMMR. Interestingly,
the tumor-invasive edge was detected to be MSI/dMMR in
approximately half of all analyzed cases, presumably due to
tumor-adjacent lymphocytes (Figure 3A). In true MSI/
dMMR tumors (as defined by the ground truth), the tumor
tissue was generally homogeneously detected to be MSI/
dMMR (Figure 3B). Subsequently, we carried out a sys-
tematic analysis of misclassified cases.

Learned thresholds yield a high performance

Cohort-specific thresholds indicate a potential for high
performance of the classifier, but can lead to overfitting
Volume 7 - Issue 2 - 2022
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Table 1. Results of external validation of the MSI detection network in all cohorts

Cohort N patients
included

AUROC
deployment
(95% CI)

Specificity
at 95%
sensitivity (%)

Positive
predictive
value (%)

Negative
predictive
value (%)

Rule-out
fraction

False-negative
fraction

F1-score AUROC within-cohort
(95% CI)

DACHS 2039 0.89 (0.87-0.92) 50 18 99 0.459 0.005 0.30 0.91 (0.88-0.93)
QUASAR 1774 0.93 (0.91-0.95) 71 34 99 0.614 0.008 0.50 0.90 (0.88-0.92)
TCGA 426 0.91 (0.87-0.95) 53 25 98 0.465 0.007 0.40 0.79 (0.72-0.85)
NLCS 2098 0.92 (0.90-0.94) 69 27 99 0.622 0.005 0.42 0.85 (0.82-0.87)
YCR-BCIP 805 0.96 (0.94-0.98) 89 58 99 0.768 0.007 0.72 0.93 (0.90-0.96)
DUSSEL 196 0.85 (0.74-0.93) 28 15 96 0.230 0.010 0.26 0.75 (0.64-0.85)
MECC 683 0.74 (0.69-0.80) 15 17 93 0.126 0.009 0.29 0.70 (0.64-0.75)
UMM 35 0.92 (0.69-1.00) 68 23 95 0.629 0.029 0.35 0.98 (0.93-1.00)
MUNICH 287 0.88 (0.80-0.95) 40 17 98 0.352 0.007 0.29 0.80 (0.71-0.88)

Statistics describe the cohort-specific threshold when the network was trained in all cohorts except the one it was tested on. As a comparison, the last column compared this
validation performance to the results for threefold cross-validation experiments within each cohort. A classifier used for pre-screening should have a high true-negative fraction
(rule-out fraction) and a low false-negative fraction. For detailed patient numbers, see CONSORT flowcharts in Supplementary Figures S1-9, available at https://doi.org/10.1016/j.
esmoop.2022.100400.
AUROC, area under the receiver operating curve; CI, confidence interval; DACHS, Darmkrebs: Chancen der Verhütung durch Screening; MECC, Molecular Epidemiology of
Colorectal Cancer; NLCS, Netherlands Cohort Study; QUASAR, Quick and Simple and Reliable; TCGA, The Cancer Genome Atlas; UMM, University Medical Center Mannheim; YCR-
BCIP, Yorkshire Cancer Research Bowel Cancer Improvement Programme.
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while fixed thresholds can lead to underperformance.
Therefore, we investigated an additional ‘learned threshold’
which was determined in the training cohorts and applied
to each testing cohort (Supplementary Table S4, available at
https://doi.org/10.1016/j.esmoop.2022.100400). We found
that this threshold yielded a high performance across all
cohorts as evident by a low number of FN cases and a high
number of true-negative cases, representing a high rule-
out-fraction (Figure 2C). As we can see in Supplementary
Table S4, available at https://doi.org/10.1016/j.esmoop.
2022.100400, the average of these learned thresholds for
all the nine cohorts is 0.29 which can be defined as an
optimal threshold for all the cohorts.
Volume 7 - Issue 2 - 2022
Clinical, molecular and morphological properties of
misclassified cases

Next, we investigated the clinical and molecular properties
of misclassified cases in the TCGA cohort, specifically, pa-
tients who were assigned high MSI/dMMR scores but were
MSS/pMMR according to gold-standard methods. Sixteen
out of 365 MSS/pMMR patients were assigned MSI/dMMR
probability scores >0.5, while in the true MSI/dMMR pa-
tients, 41 out of 61 patients achieved scores of >0.5.
Among these 16 patients, 11 patients had a known
consensus molecular subtype (CMS) and 6 out of 11 pa-
tients were CMS1, which is highly associated with an
https://doi.org/10.1016/j.esmoop.2022.100400 7
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MSI-like inflamed tumor microenvironment.35 In contrast,
only 52 out of 368 patients in the overall cohort were
CMS1. Furthermore, 2 out of 16 patients were hyper-
mutated according to a predefined criterion36 while 73 out
of 460 patients in the overall cohort were hypermutated.
Lastly, 15 out of 16 patients had detailed primary tumor
location data available and 10 out of these 15 patients were
right-sided primary tumors while 176 out of 424 patients in
the overall cohort had right-sided primary tumors
(Supplementary Figure S14, available at https://doi.org/10.
1016/j.esmoop.2022.100400).

Subsequently, we extended the analysis of misclassified
cases to FPs and FNs in all cohorts. Specifically, we carried
out a histopathological review of all FN cases based on a
8 https://doi.org/10.1016/j.esmoop.2022.100400
fixed threshold of 0.25 and of all FP cases based on a fixed
threshold of 0.75 (Figure 2B). An exception needed to be
made for the TCGA cohort, as there were no FP cases at a
threshold of 0.75 and therefore, FP cases at a threshold of
0.5 were reviewed. Readers concluded that in the FP group,
a plausible reason for misclassifications could be identified
in 56% of cases (Figure 4A), mostly related to mucinous
differentiation of the tumor, which in the observed cases
was associated with a low percentage of tumor epithelium
on the tissue slides. In 23 out of 52 (44%) misclassified FP
cases, no reason was identifiable. In a clinical application as
a pre-screening tool, FN cases are more problematic than
FP cases. In the FN cohort, a probable reason was identified
in 15 out of 22 (68%) cases. The most common reasons
Volume 7 - Issue 2 - 2022
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were artifacts on the slides (32%, especially poor preser-
vation, folding or blurring) and no viable tumor tissue (9%)
or only very little viable tumor tissue (23%) on the slide
(Figure 4B-G). Based on these findings, we provide an
expert opinion on inclusion criteria of histopathological
slides (Supplementary Table S5, available at https://doi.
org/10.1016/j.esmoop.2022.100400).

Diagnostic performance on biopsy samples

To evaluate the performance of the MSI/dMMR detection
system in endoscopic biopsy samples, we use the classifier
which was trained on all surgical samples except YCR-BCIP.
We deployed this network on endoscopic biopsies from
n ¼ 1530 CRC patients from the Yorkshire region. We found
that this systemdalthough it was trained on surgical
resection samplesdyielded a high AUROC of 0.89 (0.87-
0.92). When evaluated with a cohort-specific threshold that
identified MSS/pMMR patients with a fixed sensitivity at
0.95, we found that 44.12% of all patients could be
correctly identified as MSS/pMMR. The fixed threshold of
0.25dwhich had consistently achieved a good separation in
surgical specimensddid not misclassify any true MSI/
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dMMR patients as MSS/pMMR, but at the same time it only
identified 6% of all patients correctly as MSS/pMMR
(Figure 5A-D). This shows that using a DL system to exclude
patients from unnecessary testing is less powerful in biopsy
samples than in surgical samples.

DISCUSSION

MSI/dMMR is a key biomarker for identification of heredi-
tary cancer, detection of chemotherapy response and
detection of immunotherapy response in CRC. Despite be-
ing recommended as a test in all CRC patients, MSI/dMMR
is currently not ubiquitously tested. Previous studies have
shown that DL can be used to screen for MSI/dMMR solely
based on routine pathology slides8,9 and that implementa-
tion of this technology as a pre-screening test would lead to
cost savings in health care systems.18 The current study
aimed to quantify the percentage of patients which can be
ruled out from conventional testing by an AI-based pre-
screening test for MSI/dMMR in multiple populations and
also provide evidence to generate practical guidelines for
the optimal quality of pathology slides for AI-based diag-
nostic testing (Supplementary Table S5, available at https://
466

194

1307 12

144 67

159 1160

0 211

True
negative

False
negative

False
positive

True
positive

Predicted
MSS/pMMR

True
MSS/pMMR

True
MSI/dMMR

MSS

MSI

xed
old 0.5

Fixed
threshold 0.75

Learned
threshold

Predicted
MSI/dMMR

rned thresholds. Confusion matrices follow the same layout as in Figure 2. (B and
n maps based on the tile-wise detection of the deep learning classifier.
stable; pMMR, proficient mismatch repair.

https://doi.org/10.1016/j.esmoop.2022.100400 9

https://doi.org/10.1016/j.esmoop.2022.100400
https://doi.org/10.1016/j.esmoop.2022.100400
https://doi.org/10.1016/j.esmoop.2022.100400
https://doi.org/10.1016/j.esmoop.2022.100400
https://doi.org/10.1016/j.esmoop.2022.100400


ESMO Open A. Echle et al.
doi.org/10.1016/j.esmoop.2022.100400). Our study shows
that on average, test load in surgical specimens could be
reduced by close to 50% and by 44% in biopsies when using
cohort-specific thresholds. For the clinical implementation
of AI systems, it is important to identify situations
in which such systems fail. When AI systems are used as
pre- screening tools in a cascading diagnostic workflow, FN
detections are a much larger concern than FP detections. In
the current study, 22 out of 8343 patients (0.26%) had FN
detections when a low MSI/dMMR fixed threshold of 0.25
was used (Figure 2D). Further efforts to reduce this FN
fraction seem possible by identifying specific reasons for
misclassifications, although no quantitative data exist which
define the level of acceptable misclassifications from the
perspective of different stakeholders, including patients.

In a detailed histopathological review of these 22 cases,
we identified a potential reason for this misclassification
(Figure 4A): in eight (36%) of these misclassified cases, pa-
thologists identifiedno tumororonly avery small portionof the
tumor on the slide. In another seven (32%) of the misclassified
slides, themorphologywasheavily distortedby artifacts related
to over-staining or tissue folds. These slides should have
beendbut were notdexcluded before the computational
image analysis which shows the importance of rigorous quality
control.37 For another seven (32%) of the misclassified slides,
no reason for misclassification could be identified. In addition,
potential reasons for FP misclassification were analyzed
(Figure 4B), although the level of concern about FP cases is low
for a pre-screening test. Ultimately, clinical users of tests need
to be aware of the avoidable and unavoidable mis-
classifications.To further reduce the rate ofmisclassifications in
the future, we provide a set of expert recommendations for
quality control of slides (Supplementary Table S5, available at
https://doi.org/10.1016/j.esmoop.2022.100400). In addition,
technical innovations could improveperformance in the future,
especially new models which are more robust to cohort and
sample differences irrespective of the threshold values. Such
generalizable models would ideally not require fine-tuning to
every target population, but provide robust performance in any
populations. Alternatively, however, models with imperfect
generalization couldbefine-tuned in specific institutionsbefore
use in diagnostic routine. Predictions of the diagnostic tests
could also drift over time so repeated quality-control measures
could be required in diagnostic routine. Finally, it is known that
even the gold-standard tests for MSI/dMMR do not have 100%
sensitivity and specificity.38 Therefore, it is conceivable that
some ‘misclassified’ cases actually represent misclassifications
by the ground truth method.

In this study, most cohorts yielded consistent classifica-
tion results, including a cohort of patients with CRC and
inflammatory bowel diseases (‘UMM’ cohort, Figure 1B),
constituting a rare but clinically relevant subgroup. How-
ever, a lower performance was observed in samples from
the MECC study (Figure 2). One potential contributing fac-
tor to this lower performance is the high percentage of MSI
cases in this cohort. To find additional reasons for the
comparably low performance in this cohort, we reviewed
the histopathological quality of the scanned slides as well as
10 https://doi.org/10.1016/j.esmoop.2022.100400
the technical specifications of the digitized data files but did
not identify relevant differences compared to the other
patient cohorts. However, a possible reason for the overall
lower performance of the system in samples from the MECC
study is the ethnicity of the patient population included in
this study: This study is a population-based study from
northern Israel and has a high proportion of Ashkenazi Jews
who have a specific genetic mechanism in familial CRC39

and potentially differences in genetics of sporadic CRC, as
evident by a higher proportion of BRAF mutations in CRC.40

These ethnic differences could conceivably result in a lower
performance. For future studies, it is therefore important to
record and specifically analyze the performance of AI-based
diagnostic systems with respect to ethnicity. Except for
ethnicity, other clinicopathological features did not show
any obvious interrelation with classification performance
(Supplementary Table S3, available at https://doi.org/10.
1016/j.esmoop.2022.100400).10

Additional limitations of our study are that our AI system
is a non-clinically approved research tool. Based on our
results, MSI/dMMR detection systems could and should be
built as a diagnostic device with regulatory approval. In
addition, although our method addressed cohort-specific
thresholds, other ways of addressing a distribution shift in
different populations could be investigated by future
studies, for instance improved data normalization
procedures.

Taken together, these data quantify potential resource
savings that could be achieved by DL-based MSI/dMMR
testing in diagnostic routine in multiple independent pa-
tient cohorts. Our findings provide a quantitative bench-
mark for future technological improvements and evaluation
of the system in diagnostic routine. In addition, by identi-
fying potential reasons for misclassifications in the
underlying technology, our study provides heuristics
(Supplementary Table S5, available at https://doi.org/10.
1016/j.esmoop.2022.100400) of potential practical utility
for future applications of AI-based diagnostic systems in
histopathology.
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