
ORIGINAL RESEARCH
published: 20 May 2021

doi: 10.3389/frai.2021.642505

Frontiers in Artificial Intelligence | www.frontiersin.org 1 May 2021 | Volume 4 | Article 642505

Edited by:

Dirk Hovy,

Bocconi University, Italy

Reviewed by:

Yves Scherrer,

University of Helsinki, Finland

John Nerbonne,

University of Freiburg, Germany

*Correspondence:

Péter Jeszenszky

peter.jeszenszky@csls.unibe.ch

Specialty section:

This article was submitted to

Language and Computation,

a section of the journal

Frontiers in Artificial Intelligence

Received: 16 December 2020

Accepted: 24 March 2021

Published: 20 May 2021

Citation:

Jeszenszky P, Steiner C and

Leemann A (2021) Reduction of

Survey Sites in Dialectology: A New

Methodology Based on Clustering.

Front. Artif. Intell. 4:642505.

doi: 10.3389/frai.2021.642505

Reduction of Survey Sites in
Dialectology: A New Methodology
Based on Clustering
Péter Jeszenszky*, Carina Steiner and Adrian Leemann

Center for the Study of Language and Society, Faculty of Humanities, University of Bern, Bern, Switzerland

Many language change studies aim for a partial revisitation, i.e., selecting survey sites

from previous dialect studies. The central issue of survey site reduction, however, has

often been addressed only qualitatively. Cluster analysis offers an innovative means of

identifying the most representative survey sites among a set of original survey sites.

In this paper, we present a general methodology for finding representative sites for an

intended study, potentially applicable to any collection of data about dialects or linguistic

variation.We elaborate the quantitative steps of the proposedmethodology in the context

of the “Linguistic Atlas of Japan” (LAJ). Next, we demonstrate the full application of

the methodology on the “Linguistic Atlas of German-speaking Switzerland” (Germ.:

“Sprachatlas der Deutschen Schweiz”—SDS), with the explicit aim of selecting survey

sites corresponding to the aims of the current project “Swiss German Dialects Across

Time and Space” (SDATS), which revisits SDS 70 years later. We find that depending on

the circumstances and requirements of a study, the proposed methodology, introducing

cluster analysis into the survey site reduction process, allows for a greater objectivity in

comparison to traditional approaches. We suggest, however, that the suitability of any

set of candidate survey sites resulting from the proposed methodology be rigorously

revised by experts due to potential incongruences, such as the overlap of objectives and

variables across the original and intended studies and ongoing dialect change.

Keywords: dialectology, survey site selection, subsampling, clustering, language variation and change, dialect

survey, linguistic geography

1. INTRODUCTION

1.1. Motivation
Spatial sampling for a dialect study, i.e., choosing localities to survey, has been one of the
central issues in dialectology. Similar to the selection of speakers, the selection of surveyed
localities (termed “survey sites” in this paper) needs careful planning according to study criteria,
such as comparability and representativeness of areas, social groups, and linguistic levels. The
issue of survey site reduction is as old as surveying itself. Linguistic and, specifically, dialect
studies often select their survey sites from earlier data collections, such as linguistic atlases, and
choose sites where certain linguistic variables of interest have already been documented. However,
site reduction is usually done qualitatively, based on linguistic expertise, without quantitative
arguments supporting selection procedures. Thus, despite their importance, most methodologies
used for the reduction of survey sites in dialect studies are not reproducible in detail.
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Researchers can adopt more objective procedures and
potentially optimize their resources by utilizing quantitative
methods for locating representative survey sites. Cluster analysis
techniques are especially appropriate for this task and are already
known in linguistics. This paper outlines a general methodology
for the problem of quantitative survey site selection based on
previously recorded dialect data (e.g., linguistic atlases) and
proposes an application of cluster analysis. To demonstrate the
versatility of the approach, the general methodology is also
applied to real dialect data sets, in one case with the aim of finding
suitable survey sites for an actual contemporary dialect study.

Researchers from different areas of linguistics could
potentially benefit from the methodology proposed in this
paper, by utilizing survey site networks of previous studies. A
potential research aim may be to conduct a dialect interview
campaign, revisiting numerous phenomena in a dialect atlas,
or recording new phenomena at the same linguistic level as
the atlas, with the objective of covering the expected variation
in fewer locations. As another example, researchers may want
to test how the dialects in a certain area have changed, and so
they plan to revisit a previous survey. Assuming that dialect
leveling has occurred since the survey, they may only want to
visit a sufficient number of sites representing the contemporary
dialectal landscape. Additionally, the methodology could be
implemented for larger databases based on online crawling or
digitized corpora (e.g., Anderwald and Wagner, 2007; Huang
et al., 2016; Ueberwasser and Stark, 2017; Grieve et al., 2019;
Willis, 2020), where the researcher might need to select limited,
representative survey sites after appropriate data pooling (e.g.,
spatially).

1.2. Research Objectives
Linguistic studies often start with the task of survey site selection
based on the sites of a previous larger scale survey. Our
aim is to provide general suggestions about optimal survey
site subsampling to the linguistic/dialectology community. As
summarized in the “first law of geography” (Tobler, 1970),
variation is assumed to be spatially autocorrelated. Representing
variation in linguistic space is therefore deemed to represent the
variation within the underlying data in geographic space as well
[cf. Fundamental Dialectological Postulate (FDP)—Nerbonne
and Kleiweg, 2007]. Consequently, subsampling survey sites
based on a spatial grid, as often done in dialectology, could
theoretically represent linguistic variation. We hypothesize,
however, that cluster analysis—already extensively used in
dialectometry for finding representative areas and boundaries—
can also be utilized for finding representative survey sites for a
related or follow-up study.

We address this hypothesis based on two research objectives.
First, we propose a general methodology, outlining the steps
for finding suitable association measures, subsequent clustering
methods and their possible validation, and, finally, a qualitative
evaluation of the reduced set of survey sites. Second, we present
the practical application of the methodology on the example of
the “Sprachatlas der Deutschen Schweiz” (SDS—Hotzenköcherle
et al., 1962–2003). The specific aim of this application is to
reduce the number of survey sites to a representative subset of

a predetermined size, to be used for a subsequent study, “Swiss
German Dialects Across Time and Space” (SDATS1—Leemann
et al., 2020c). However, dialect change and socioeconomic
processes have occurred since the collection of SDS data (around
1939–1958). This application example includes appointing a
candidate survey site subset resulting from the quantitative
steps and qualitative revision to estimate contemporary dialectal
variation, in correspondence to the needs of SDATS. Thus, we
address a research requirement beyond finding a representative
survey site set in a collection by inferring a future state
of language. We argue that most studies aiming to perform
survey site reduction have similar objectives and, therefore,
would benefit from incorporating these considerations into their
methodologies. Additionally, integrated into the outline of the
general methodology, we provide a proof of concept based
on the “Linguistic Atlas of Japan” (LAJ—NLRI, 1966–1974),
demonstrating the breadth of its applicability.

2. BACKGROUND

2.1. Site Selection in Spatial Sciences and
Dialectology
Finding point-like sampling locations (survey sites) for
representing reality is a key issue in spatial sciences, and
representativeness is heavily dependent on the spatial structure
of the variable of interest. Effective spatial sampling has to
consider the spatial autocorrelation in the population, and
the variables investigated (e.g., Griffith, 2005; Kumar et al.,
2011). Most linguistics surveys focus on multiple variables,
necessitating a balanced sampling strategy to capture factors,
such as linguistic levels, regional variation of language, and
extra-linguistic factors. Practical considerations, such as available
respondents and research budgets, impose further constraints on
study planning. Linguistic surveys (including large-scale dialect
atlases, and projects sampling their sites of interest from previous
data sets) often detail their speaker selection criteria (e.g., Linn,
1983) but disclose less about selection process of their survey
sites (for exceptions, see MacAulay’s review, 2018).

Spatial sciences use numerous sampling strategies (cf. e.g.,
Ripley, 1981; Olea, 1984; Delmelle, 2009) that are already
present in linguistic research. In a random sampling approach,
each point in a population (or area) has an equal probability
of being selected. At the same time, the spatial distribution
patterns of linguistic phenomena do not always follow the
spatial distribution of other population traits. Therefore, random
sampling might lead to oversampling the variable of interest
in densely populated regions where few variants prevail, or to
undersampling in areas with low, isolated populations that use
diverse variants. In linguistics, randomly selecting people has
been, however, successfully utilized for sociolinguistic studies,
as a large enough sample may be representative of the entire
population (Bailey and Dyer, 1992).

Systematic or stratified sampling divides the population
into groups (e.g., Kondo et al., 2014), often by grids in
space. Sample sites within this grid (which can be square,

1www.sdats.ch
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hexagonal, adjusted to the population, e.g., by a Voronoi-
tessellation, etc.) are chosen systematically or at random.
If applied spatially, stratified sampling essentially maximizes
the distance between survey sites and gives less chance for
undersampling, but might also oversample densely populated
areas, where variation may be lower. At the same time,
sparsely settled areas may also be oversampled, especially
if the variation is lower, for instance, in relatively newly
settled or expansion areas of a language (e.g., Western
United States, Lapland, Hokkaido, Siberia). Adjusted sampling
specifically concentrates on avoiding over- and undersampling
by densifying the survey site network in areas with higher
expected variation (cf. Cressie, 2015). Most traditional large-
scale linguistic atlases selected their survey sites based on such
spatial grids (cf. McDavid, 1971), e.g., the Slavic Linguistic
Atlas (“Obščeslavjanskij lingvističeskij atlas” OLA —Avanesov,
1965), with some regional atlas projects on German dialects
using coordinated survey grids (“Sprachatlas von Bayerisch-
Schwaben,” SBS—König, 1996–2009; “Vorarlberger Sprachatlas,”
VALTS—Gabriel, 1985; “Südwestdeutsche Sprachatlas,” SSA—
Steger and Schupp, 1993). A grid method was used for
selecting the most central sites of REDE’s “DigitalerWenkeratlas”
(DIWA—Lameli et al., 2015) from the original points of the
Wenker Atlas. Projects using adjusted sampling include the
“Sprach- und Sachatlas Italiens und der Südschweiz” (AIS—
Jaberg and Jud, 1928–40), the “Linguistic Atlas of the Middle and
Southern Atlantic States” (LAMSAS—Kurath, 1949; McDavid,
1971), and the “New Linguistic Atlas of Japan” (NLJ— Onishi,
2016). SDS is also a relevant example, as sampling was scaled
according to linguistic variation over population density.

2.2. Grouping and Survey Site Reduction in
Dialectology
In a site reduction task, a reduced number of sites are selected
from existing samples, such that they are representative of
other sites, typically in their neighborhood (cf. Olea, 1984).
Computational science provides an extensive coverage of
problems related to selecting data points that efficiently describe
an entire data set (e.g., Daszykowski et al., 2002; Elhamifar et al.,
2012; Gani and Limam, 2016). Spatial sciences (such as soil
science and vegetation ecology) and fields where the distribution
and change of variables over time are also spatially autocorrelated
provide various site reduction methods. For example, Lengyel
et al. (2011) select subsets of their vegetation plots by sorting
them based on decreasing mean dissimilarity between pairs and
then sorted again by increasing variance of these dissimilarities.
While many site reduction methods in the spatial sciences focus
on finding a subsample for optimizing the extraction of one or a
few variables (such as soil attributes, e.g., Maltauro et al., 2019,
or species abundance, e.g., Loos et al., 2015), linguistic studies
might aim to be representative of tens or hundreds of linguistic
variables. Besides, proximity in space per se does not define
dialect similarity (cf. Szmrecsanyi, 2012), and people, the agents
of linguistic variation, are constantly on the move, contributing
to a changing spatial distribution of linguistic variables.

Linguistic studies aiming at the comparison of contemporary
and older data, however, need to revisit all or a reduced subset
of the original survey sites. It is intuitive to convey patterns

and trends by grouping sites together for example, by drawing
isoglosses and naming dialect areas. According to the law of
spatial autocorrelation, nearer sites are expected to be similar
and distant ones to be dissimilar (Tobler, 1970; Legendre, 1993;
Nerbonne and Kleiweg, 2007). This general correlation is often
confirmed in dialectology. Cluster analysis, the quantitative
grouping of data, resulting in a lower number of representative
groups, is also a fundamental procedure in dialectometry.
The general procedure of data analysis in standard modern
dialectometry involves the calculation of linguistic distances
between every pair of survey sites, producing a linguistic
distance matrix. This matrix is then analyzed using a variety
of multivariate statistics, including multidimensional scaling
and cluster analysis, to identify common patterns of regional
variation (Grieve, 2014).

Site reduction can be considered a similar task to finding
groups and patterns among survey sites. Most projects that apply
site reduction to select sites from earlier collections, usually select
their sites, such that they retain the spatial density of sites in
the original study (e.g., Séguy, 1973; Kelle, 2001; Bucheli and
Glaser, 2002; Lameli et al., 2015; Onishi, 2016; Budin et al., 2019).
Spatial autocorrelation is usually assumed without quantitative
testing, and the sites are verified case-by-case, introducing
potential subjectivity and untested representation. Despite the
availability of sophisticated methods for deriving dialect areas
and spatial patterns, these methods have not often been used for
site reduction.

The methodology presented in this paper fills this research
gap, by demonstrating the value of cluster analysis for the task
of survey site reduction from previous collections of data.

2.2.1. Cluster Analysis
Most clustering procedures take association matrices (such
as linguistic distance matrices) as inputs, based on which
clusters are compared (Borcard et al., 2011). There are two
relevant clustering techniques important for the methodology
in this paper, distinguished by the underlying clustering
algorithms, necessary inputs, and analytical procedures.
Hierarchical clustering is the family of clustering methods
mainly used in dialectometry. Its algorithms build a hierarchy
among the data points in a nested sequence of partitions
(see overviews in Heeringa 2004, p. 146–156; Nerbonne et al.
2008; Levshina 2015, p. 309–311). In hierarchical clustering,
every step splits an existing cluster in two, based on a certain
metric. Importantly, a linkage criterion is needed to specify the
dissimilarity between the clusters present and the newly formed
cluster. Partitional clustering, usually not used in dialectometry
(Nerbonne and Wieling, 2018), aims at breaking the data
set into a predetermined number of groups and finds these
groups simultaneously, refining the solution in every iteration.
Although partitional algorithms disregard hierarchy within the
classification, Prokić and Nerbonne (2008) find that the results
of the k-means partitioning algorithm correspond to dialectal
divisions made by experts.

We introduce three clustering methods that are generally
considered to perform well in dialectology. According to the
arguments of several scholars in dialectology (Heeringa, 2004;
Prokić and Nerbonne, 2008; Grieve et al., 2011; Syrjänen et al.,
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2016; Burridge et al., 2019; Lameli et al., 2020), we decided to test
the two most promising hierarchical clustering algorithms and
one partitional algorithm. Algorithms in hierarchical clustering
differ with regard to their linkage criteria (reviewed in Jain
and Dubes, 1988). The Unweighted Pair Group Method using
Arithmetic averages (UPGMA) method assesses the dissimilarity
between the new cluster and the existing cluster based on the
distance between their means. In this process, each element in
a cluster gets an equal weight, independent of the number of
elements in the clusters (Sneath and Sokal, 1973, p. 228). Ward’s
algorithm (1963) works differently with regard to the linkage
criterion. It minimizes the within-cluster variance and therefore
is prone to producing compact clusters of similar size (within
the dimension of linguistic distances) (Wilks, 1995), which is
not always reasonable. Grieve et al. (2011) use Ward’s method
because it is based on the analysis of variance, while Prokić
and Nerbonne (2008) find the UPGMA and Ward’s method
to perform best for dialectometry. Heeringa (2004) provides a
comparison between the UPGMA and Ward’s method, but finds
UPGMA to perform better on Dutch dialect data.

The third algorithm selected is the Partitioning Around
Medoids (PAM) algorithm (Kaufman and Rousseeuw, 1987), a
popular algorithm for clustering non-Euclidean data (Schubert
and Rousseeuw, 2019). As a partitioning clustering method, PAM
classifies all observations within a data set into k number of
clusters specified beforehand. The main difference between PAM
(also known as k-medoids algorithm) and the widely used k-
means algorithm is that in each step, PAM appoints actual data
points (medoids) as the centers of clusters by minimizing the
distance between the points and the medoid. K-means, however,
minimizes the sum of squared Euclidean distances, which makes
it less robust to noise and outliers than k-medoids (Park and
Jun, 2009). Partitioning algorithms are not commonly used in
dialectology. However, k-means was applied by Hyvönen et al.
(2007) and Burridge et al. (2019), while Cheshire et al. (2011) and
Syrjänen et al. (2016) applied k-medoid clustering on different
kinds of linguistic data.

A general problem of clustering procedures is that they always
deliver clusters, even if the underlying data has little clustering
tendency (e.g., due to dialect continua). Hierarchical clustering is,
additionally, prone to large differences in results caused by small
changes in the input matrix (cf. Jain and Dubes, 1988; Nerbonne
et al., 2008). Therefore, in all cases, clustering procedures
need validation in order to obtain stable and interpretable
clustering results. Phylogenetic literature (Felsenstein, 2004)
and dialectometry (Mucha and Haimerl, 2005; Manni et al.,
2006) recommend bootstrapping. In dialectometry, bootstrapping
resamples a data set with replacement and runs the clustering
algorithm for each resampled set, arriving at a “composite” result
with information about its stability (Nerbonne et al., 2008).
Another popular method, noisy clustering builds validation in
the clustering procedure by adding noise to the data to test its
impact. The advantage of noisy clustering over bootstrapping is
that it is also applicable to single distance matrices (Prokić and
Nerbonne, 2008). The cophenetic correlation coefficient (Sokal
and Rohlf, 1962) is often used to measure the correlation between
the distances in the original data and the distances as implied

by hierarchical clustering results (Heeringa, 2004; Birkenes,
2019). Further internal measures for cluster validation assess
the compactness, connectedness, and separation of partitions,
including the Dunn-index, which identifies compact (small
variance between members) and well-separated clusters (Dunn,
1974).

External evaluation of clustering methods is often undertaken
in dialectology through comparing cluster solutions to a gold
standard (Heeringa et al., 2002; Prokić and Nerbonne, 2008;
Lameli et al., 2020), e.g., to a meticulous qualitative dialect
division made by experts. Prokić and Nerbonne (2008) compare
the clustering solutions of several algorithms to a benchmark of
Bulgarian dialects using the Rand-index (Rand, 1971), entropy,
and purity of clusters. This kind of external evaluation may not
be available for many potential studies, as the intended number
of clusters might not match expert classifications of dialect
areas. Meilă’s variation of information (VI) metric (Meila, 2007),
related to the entropy in clusters, compares the similarity of any
two clustering partitions, approximating the human intuition
of distance.

2.3. The Project SDATS
In this paper, we apply the suggested clustering-based site
reduction approach suggested to the monumental SDS. This
application specifically intends to consider the sociolinguistic
aims and other requirements of our project SDATS (Leemann
et al., 2020c).

“Swiss German Dialects Across Time and Space” aims at
conducting a large-scale collection of the contemporary dialects
of Swiss German and a subsequent comparison to dialectal forms
recorded in SDS. To reach these goals, SDATSmaintains a similar
number of participants as SDS (1,000 participants, compared to
c. 1,500 in SDS)2 recruited from a reduced number of survey
sites. Instead of 573 sites in the SDS, SDATS includes 125
survey sites and increases the number of speakers per site to
eight speakers (of different social backgrounds) from the 1–3
“Non-mobile Old Rural Males” (and females) recorded in SDS.
The main reasons for the site reduction are trends of dialect
change in the last 70 years (significant leveling occurred—cf.
Christen, 1998), sociolinguistic aims, manpower, and financial
resources. Rather than searching for the “base dialect,” as SDS
did, SDATS aims to record more intralocal, colloquial variation
by interviewing respondents of different backgrounds, with an
emphasis on the provenance of respondents. Data collection
began in 2020 by means of a custom-developed open-source
smartphone application (Leemann et al., 2020b), used mostly
in virtual settings (Leemann et al., 2020a) due to the COVID-
19 pandemic.

Previous site reduction attempts on SDS have been arbitrary
and not replicable. Kelle (2001) digitized 170 SDS maps and
selected about one-sixth (101) of the original 573 survey
sites, as equidistant as possible, in order to perform a new

2Trüb (2003) mentions that SDS had around 1,500 participants in total, but not
the whole questionnaire was answered by all of them. Often the local variety is
summarized based on the answers of 2–3 participants answering different parts of
the questionnaire (https://sprachatlas.ch/originalmaterial-split/infos).
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typological classification and confront traditional qualitative
dialect classifications. Unfortunately, his selection criteria are
not elaborated (with the exception of equidistance), and site
representativeness could not be evaluated without digital data
of the whole corpus. Almost in parallel, the “Syntactic Atlas
of Swiss German” (SADS—Bucheli and Glaser, 2002) reduced
the network of SDS to 383 survey sites. Their selection aimed
to keep the comparison of desired isoglosses possible (Glaser
and Bart, 2015), and was mainly based on merging villages
with a smaller number of inhabitants into single survey sites
(Bucheli Berger, 2008).

2.3.1. Digitized SDS Data
Despite being the most comprehensive collection of Swiss
German dialect data, SDS has not yet been entirely digitized.
Starting in 2007, Yves Scherrer (with the help of his colleagues)
undertook the partial digitization of SDS for the sake of several
projects; (Scherrer, 2021, 2012; Kellerhals, 2014; Scherrer and
Stoeckle, 2016). In Scherrer’s process, a subset of variables was
defined according to linguistic criteria, with general preference
given to phonological and morphosyntactic phenomena. In
addition, lexical phenomena that were expected to occur
frequently, such as function words, were included (Scherrer,
2021). After scanning and georeferencing the SDS maps, they
appointed the locally recorded linguistic variant(s) for each
survey site in each map, using geographic information systems.
This procedure registered the presence and absence of each
variant in digital tables. Scherrer’s projects involved a simplified
categorization of variables (Scherrer, 2021). This categorization
granularity is in many cases (including phonetic variables), not
sufficient for SDATS, which aims at a fine-grained comparison
across SDS and contemporary dialect usage.

3. GENERAL METHODOLOGY

This section details a general methodology that researchers may
consider for a survey site reduction task in order to identify
representative sites based on data from a previous, larger-scale
dialect study. At each step of the methodology, requirements and
possible methods are described, and typical quantitative steps are
demonstrated on the example of the LAJ (NLRI, 1966–1974).
Then, in section 4, the methodology is applied to SDS data, with
the specific goal of appointing survey sites for SDATS.

3.1. Requirements and the Steps of the
Reduction Process
The general survey site reduction process combines the following
quantitative and qualitative steps:

1. Digitize the original database, prepare the linguistic data for
the sampling, typically including the (re-)categorization of
variants, and select linguistic items appropriate to represent
the original data in consideration of the intended study (this
step is not explained in detail)

2. Calculate linguistic distance matrices based on the selected
linguistic items, thus obtaining association measures among
the survey sites, as detailed in section 3.2

3. Carry out the clustering procedures and appoint candidate
survey sites in the resulting clusters. Typically, this step
involves clustering survey sites based on one or multiple
linguistic distance matrices and performing validation tests
on clusters. The reduction and the subsequent selection of
candidate sites are detailed in sections 3.3 and 3.4

4. Evaluate the candidate survey sites, involving (typically
qualitative) revision by dialect experts and through
sociogeographic filtering to find sites that correspond to
the criteria of the intended study, detailed in section 3.5

To aid researchers potentially implementing this outline in
their flow of research, we add a non-exhaustive list of further
considerations. Our methodology assumes that the original study
is part of a large-scale dialect survey. The correspondence of
overlapping items in the intended study and the original data
needs to be scrutinized and potentially recategorized. As it
appears to be a typical task to infer contemporary dialectal
variation from the original data, it is important to select items
that are representative at both points in time. Thus, items that
are irrelevant for the intended study should be removed, such as
names of rural work-tools in a large-scale study of vernaculars.
The effect of each variable or groups of variables can be tested by,
e.g., jackknifing or other cross-validation methods. The selection
of data will always depend on the research question, thus in
some cases one or a combination of linguistic levels will be used.
Although it is crucial from the point of view of data quality, we
do not detail the steps of digitization in this general methodology
and we assume that the original data is already digitally available.

The core of the site reduction methodology is a grouping
algorithm, which classifies the survey sites within the original
database into (a desired amount of) groups, with the aim of
finding candidate survey sites in the resulting groups, similar
to stratified sampling strategies. As in geospatial analysis, no
single resampling strategy is optimal or superior: the method for
subsampling also has to be appropriately selected depending on
the objectives of the intended study and the original data (cf.
Knollová et al., 2005). It is crucial for a researcher to decide
what they mean by representativeness when selecting candidate
survey sites, e.g., linguistic centrality, spatial centrality, or other,
external characteristics. These decisions can be prompted by
conducting exploratory analyses on the digitally available data,
for example, based on aggregate linguistic distance matrices,
visualizing overlaps, or testing clustering tendencies (Lawson and
Jurs, 1990).

If the intended study aims to compare findings over time, then
selected survey sites should already be present in the original
database. Further, beyond the scope of the original data set,
the selected survey sites should be representative of the survey
sites surrounding them (in a linguistic sense) at the time of the
intended study. A crucial consideration about the preservation of
variation is that site reduction will always eliminate some source
of variation, especially with language change occurring since the
recording of the original survey. If the goal is capturing diversity,
or documenting all linguistic variation possible at the expense of
overall representativeness, then field knowledge and qualitative
revision are crucial, as even original data or digitized data
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might not cover all variation. Although the clustering procedure
should produce results representative of the original survey, the
qualitative evaluation step might overwrite these choices.

3.1.1. The Linguistic Atlas of Japan
Typical quantitative steps in the proposed methodology are
demonstrated using data from the LAJ (NLRI, 1966–1974), the
largest systematic nationwide dialect collection in Japan. LAJ
presents the recorded material of a large-scale survey conducted
between 1957 and 1965. In total, 2,400 localities were surveyed
across Japan, interviewing one (generally) male speaker per
locality, born between 1879 and 1903. The atlas survey contains
285, mostly lexical phenomena.

The data set used in this example contains 37 publicly
available3 lexical variables from LAJ (Kumagai, 2016), with a
focus on basic vocabulary in relation to body parts, weather and
time, animals and plants, and levels of kinship. Admittedly, the
focus of the data is a risk factor to results being representative of
the complete lexical level recorded in LAJ.

To prepare the survey sites for a representative clustering,
well-known outliers are removed, leaving 2,238 survey sites. The
Ryukyu Islands, in the southwest, are removed due to their large
linguistic distance from other parts of Japan. Hokkaido, in the
north, was settled by the Japanese primarily as of the end of the
19th century, and thus is removed due to small dialectal variation
and mixture.

3.2. Linguistic Distance
There should be significant overlap between the original data and
the intended study. If that cannot be achieved, a distribution
of linguistic data balanced across linguistic levels might be
beneficial. Similar to clustering in dialectometry, it is advisable
to take as many variables as possible from the original data
set, curated for the objectives of the intended study and
categorized accordingly.

Once the linguistic basis of the site reduction has been
determined, researchers must construct an association measure
among the survey sites. In a typical case, a linguistic distance
matrix is calculated in a site × site manner, based on a set of
linguistic variables.

Methods of linguistic distance calculation vary depending
on the linguistic level, the variants’ categorization granularity,
and, if involved, the details of transcription. For calculating
phonetic similarity across variants, edit distances are used
most often (cf. Wieling and Nerbonne, 2015). For categorical
data, linguistic distance is mostly measured based on presence
and absence of variants, e.g., the Hamming distance (Spruit,
2006) or Goebl’s (1983) Relative Identity Value, calculated on
pairwise matches and mismatches. At this point, it would also
be possible to test the effect of single variables. Researchers may
consider removing variables with spatially similar or correlating
distributions as duplicates.

Aggregate linguistic distance matrices can be explored in
various ways in order to explore patterns in dialectal variation

3Available online at the Linguistic Atlas of Japan DataBase (LAJDB)—
www.lajdb.org.

and to detect outliers and potentially problematic regions.
Popular methods include similarity trees, e.g., Neighbor-net (cf.
Cysouw, 2007), multidimensional scaling (MDS) (Heeringa,
2004; Lameli et al., 2020) (both of which are included in the
dialectometry support software Gabmap—Leinonen et al., 2016),
or thematic maps. The latter may focus on one certain survey
site or present the aggregate picture in linguistic distance maps
(Goebl, 1982; Scherrer and Stoeckle, 2016). Such plots and
maps, in essence, help discover clustering tendencies and gradual
transitions among dialect areas (based on the limited data).

3.2.1. Linguistic Distance Calculation Applied to LAJ
For LAJ, the linguistic distance matrix is calculated using a
formula based on Goebl’s Relative Identity Value (RIVjk) (1983),
similar to Scherrer and Stoeckle (2016) as applied in Jeszenszky
et al. (2019). For each lexical variable, the variants (up to
hundreds in some cases) are categorized on two levels. First,
variant categories are constructed based on phonetic similarity.
Within variant categories, further distinction is made between
individual variants: variants within a variant category receive a
flat difference rate4.

We use an MDS approach to discover latent clusters and
dialect continua in the data. We plot the first two or three
dimensions of the multidimensional scaling results and associate
the first three dimensions to RGB colors and map them5. These
visualizations show that continua are present in this data set,
thus clusters with lower stability and more (spatial) overlap
are expected.

3.3. Clustering
The linguistic distance matrix is the input of clustering
algorithms used for site reduction. Dialectometry often uses
cluster analysis to find the internally most homogeneous
and externally most heterogeneous groups in dialect data.
Importantly, however, clustering techniques have mostly been
used to find the optimal split6 and spatial distribution in the data,
thereby often defining dialect areas. In a typical site reduction
study, however, the researcher would aim for much more than
the optimal number of clusters in the data.

Hierarchical clustering results in dendrograms and
association values between survey sites. Dendrograms cut at the
desired or optimized level can also be spatially represented by
a cluster map. Partitional clustering produces a predetermined
number of clusters, the optimal number of which can be
determined by optimization. Researchers might not know the
exact number of survey sites they want to extract from the
original set, which might influence the choice of clustering
method. In any case, it is worth experimenting with different
numbers of clusters, also around a previously decided number,

4For more details on the database and linguistic distance calculation, see Kumagai
(2016) and Jeszenszky et al. (2019).
5For a visualization of the dialects and linguistic distance in this dataset, including
an MDS map, in Japan (without Okinawa), see Jeszenszky et al. (2019, p. 16–18).
6By means of e.g., the silhouette technique (Rousseeuw, 1987), it is possible to find
the optimal number of clusters for partitional clustering, but it is not relevant for
most studies in which the present methodology is potentially applicable, as they
aim for sampling a higher number of survey sites.
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in particular for exploratory analyses. Depending on their aims,
researchers might determine k clusters directly for a partitional
method, or, for a hierarchical method, they might select a
cophenetic distance, beneath which they find their k clusters in
the dendrogram. It is always possible to adjust the final number
of survey sites in a qualitative revision.

3.3.1. Application of Clustering to LAJ Data
We demonstrate the performance of three clustering algorithms
(PAM, UPGMA, and Ward’s method), using the example of LAJ.
All three clustering algorithms are implemented using the fpc
package (Hennig, 2020)7 in R (R Core Team, 2020). We perform
clustering on the linguistic distance matrix resulting from section
3.2.1. Using each clustering method, partitions of k = 20, 50, 100,
150, 200, 300, 400, and 500 clusters are produced.

To validate the results of the different clustering methods, we
used a bootstrapping approach (e.g., Nerbonne et al., 2008), as
included in the fpc package. In the bootstrapping approach,
each cluster is calculated in 100 bootstraps (default value) with
resampled data. For each cluster, the Jaccard-similarities of the
initial cluster solution (in bootstrap nr. 1) to cluster solutions in
all other bootstraps are computed (Hennig, 2007). This approach
provides stability values for each “composite” cluster found, based
on which the performance of clustering algorithms and the
sensibility of the choice of k (number of clusters) can be assessed.

As linguistic variation is assumed to be spatially
autocorrelated, members of clusters found in the data are
supposed to be clustered in space as well. To confirm this, and
to visually explore the spatial patterns, we map the clusters
produced, along with their stability values. Figure 1 presents the
clusters found in the database by the three clustering algorithms
(Maps A—PAM, B—UPGMA, and C—Ward’s method) with k
= 150, an overall large number for site reduction requirements
given the number of sites in LAJ. Clusters are presented on a
diverging, repeating color scale. In Maps D–F, the cluster stability
values are mapped to the members of the clusters. Such stability
values should not be evaluated solely based on descriptive
statistics (e.g., means and standard deviation) as they may
vary substantially across clusters, further justifying mapping.
Maps D–F also contain the histograms of the stability values,
presenting considerable deviations from a normal distribution.

In PAM’s map (A), clusters do not appear spatially compact,
although members are clustered in the same region. In UPGMA’s
map (B), several clusters are visible with a high number of
members. UPGMA is based on the average difference between
clusters and, because of this, chaining effects are not typical for
this algorithm (Lameli et al., 2020). The small, unstable clusters
of single members (singletons) are thus possibly outliers in the
linguistic space, found as clusters by this method. UPGMA shows
39 singletons for k = 150 while the other methods show none.
Ward’s method, based on their positions in the map (C) seems
to find clusters structurally more similar to UPGMA. Compact
clusters are a characteristic of Ward’s method, contributing to its

7In fpc, the k-medoids clustering is implemented by two algorithms, pam is
slower but produces more stable results, while clara is faster but more unstable.
For a large number of clusters, clara proved significantly more unstable.

popularity in dialectology. The clusters in Map F look somewhat
more stable and spatially more compact than those in PAM, and
clusters of the same color (Map C) present clearer boundaries in
space, appearing to overlap less. Based on the stability histograms
in D–F, PAM seems to have the lowest overall values, making
it less suitable for clustering than the hierarchical methods (in
case of k = 150). It is intuitive to expect lower stability when
k is higher, as smaller clusters are expected to be also more
similar to neighboring clusters. This is even more significant
when (dialectal) continua are present in the data, as in the case
of Japanese. When applying multiple clustering algorithms with
different k, it is interesting to see which algorithm produces more
stable results with a certain number of clusters.

In terms of external validation,8 Meilă’s VI (Meila, 2007)
can also be used for calculating similarities across clustering
solutions. In Table 1, we compare the clustering solutions
resulting from the three clustering methods with different k
number of clusters. Higher values of Meilă’s VI indicate greater
variation between cluster solutions. Larger k usually means larger
potential difference, but in our case k grows to a degree where
difference between cluster solutions cannot increase anymore.
Indeed, above k = 150, VI values start to decrease again. Table 1
shows, somewhat surprisingly, that PAM is more different from
the two other solutions than they are from each other, despite
UPGMA’s tendency for producing large clusters and singletons.
This might mean that UPGMA’s clusters contain, or are
structurally similar toWard’s clusters, while PAM’s clusters might
not overlap well withWard’s. PAM’s lower stability and UPGMA’s
and Ward’s method’s different cluster solutions, despite their
structural similarity, suggests that researchers should strongly
consider the choice of cluster algorithms.

3.4. Selecting Candidate Survey Sites
Once the validity and stability of clusters are assessed,
representative sites can be identified. This can be regarded
as an analogy to stratified sampling strategy, where one
point is selected from each stratum. In our case, strata
are the clusters, the partitions in the abstract linguistic
dimensions. Studies might differ in terms of requirements
for representative sites, generating several methodological
considerations.

Studies might differ in the distribution granularity of
variants. Resampling has to consider this granularity, along
with other spatial patterns. If capturing fine-grained spatial
variation is the aim, then sampling density should be adjusted
accordingly. One approach could be choosing points in
clusters that are central in a linguistic sense. This approach
is demonstrated on LAJ in section 3.4.1 and on SDS in
section 4.2.2. In case of running multiple clustering procedures
and composite dendrograms, the representative sites’ identity
becomes less obvious, as clusters from different runs overlap.
It is possible, however, to appoint a central site for each

8Recently, the LAJ actually received a follow-up at a subset of 554 survey sites
(Fukushima, 2016), in the “New Linguistic Atlas of Japan” (NLJ) (Onishi, 2016).
Due to the low number of (only lexical) variables in our data set, however, it would
not be sensible to use NLJ as a ground truth.
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FIGURE 1 | The cluster maps (A–C), stability maps (D–F), and the stability histograms for the three clustering methods PAM (left), UPGMA (center), and Ward’s (right)

method, calculated for k = 150 clusters. Clusters in maps (A–C) are presented on a diverging scale of 15 colors, which repeat. Stability maps (D–F) also contain

candidate survey sites selected based on linguistic centrality within their own cluster. Large differences are visible across the cluster solutions and smaller differences

across the stability of the clusters. Besides, stability shows little spatial autocorrelation beyond the large size of clusters found by UPGMA.

calculated cluster and count the number of times each survey
site becomes the central one. This approach is implemented in
section 4.3.

Depending on the time elapsed since the original data
collection, it might also be useful to estimate dialect change. One
approach is to assume that “linguistic gravity” (Trudgill, 1974)
has driven local varieties to become more similar to, e.g., the
most populous nearby survey site. In this sense, linguistic gravity
can be used to estimate language change emanating from local
hubs into their hinterlands, making themmore similar to the hub.
Such patterns are often associated with dialect leveling, e.g., in
Swiss German dialects (cf. Christen, 1998). This approach is also
implemented on SDS in section 4.2.2 and section 4.3.2.

Geography playing a small role in selecting candidate sites
is relatively small, as clustering happens in the linguistic
dimensions. It is, nevertheless, intuitive to designate the spatially
central point in a cluster as a candidate, and surveys in
dialectology often set out from equidistant samples, based
on thorough qualitative arguments. For example, in case of
limited or biased available data, this strategy may be reasonable
for the estimation of a hypothetical future linguistically
central point.

TABLE 1 | Meilă’s VI values, comparing the cluster partitions across the three

bootstrapped clustering solutions for k = 20, 50, 100, 150, 200, 300, 400, and

500.

k UPGMA Ward k UPGMA Ward

PAM 20 1.9338 2.0656 PAM 200 2.4114 2.3403

UPGMA 20 1.4823 UPGMA 200 1.8859

PAM 50 2.1974 2.2349 PAM 300 2.1907 2.0897

UPGMA 50 1.6984 UPGMA 300 1.7146

PAM 100 2.4787 2.3981 PAM 400 2.0009 1.8902

UPGMA 100 1.9108 UPGMA 400 1.5331

PAM 150 2.5056 2.4467 PAM 500 1.8243 1.7581

UPGMA 150 1.9315 UPGMA 500 1.3471

The higher Meilă’s VI, the more different the cluster partitions are.

Beyond these aspects and the objectives of the intended study,
candidate survey sites might also be selected using external
characteristics of the survey sites or a ranked eligibility measure
of multiple characteristics. In case of studies interested in smaller
areas or a few survey sites, qualitative methods may suffice
from this point onward. If stable clusters are obtained, it is
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possible to investigate them one by one to choose the sites most
appropriate for the contemporary dialectal variation and the
intended study.

3.4.1. Candidate Selection in LAJ
For LAJ, we find linguistically central survey sites in each
cluster by summing linguistic distances within clusters. The
survey site with the smallest total linguistic distance within
the cluster becomes the candidate site. In case of PAM, this
point is exactly the medoid. Figure 1 plots, for k = 150, the
candidate sites for each clustering method in Figures 1D–F,
as white points with a black contour. Candidate sites from
PAM and Ward’s method are identical in 63 cases, whereas
their overlap with UPGMA is much lower (21 and 9,
respectively).

Candidate sites in the case of UPGMA are distributed
more evenly than the cluster structure, comprising several large
clusters, suggests. This is due to singletons and unlikely clusters
that are made up of several sites farther apart (such as the
blue sites in Map B scattered within the largest purple cluster
in the east—around Tokyo). Accepting these candidate sites
as a reduced set of survey sites would cause problems in
representation of spatially surrounding dialects.

The continuous nature of the data and the validity of FDP
are confirmed by Jeszenszky et al. (2019). Based on the cluster
structure, cluster stability patterns, and the patterns of candidate
sites seen in Figure 1, we conclude that Ward’s method is the
most well-grounded for k = 150. Due to their spatially compact
clusters it yields, Ward’s method presents itself as the safest
bet, knowing the bias in the data because of the phenomena
it contains. In contrast, UPGMA produces unrealistically large
dialect areas and unreasonable singletons, and PAM is less stable
with more clusters overlapping in space.

3.5. Evaluation and Revision of Candidate
Survey Sites
The candidate survey site sets resulting from the site reduction
procedures are assumed to be representative of the original
data. However, their main aim, as candidates, is to provide a
quantitatively supported starting point for determining the sites
that actually need to be researched. Several reasons call for a
further qualitative evaluation of candidate survey sites. First,
the linguistic basis of the site reduction might not be perfect
due to various potential factors within the original database,
the requirements of the intended study, and the circumstances
that might have changed since the original survey. Second,
dialect change may have progressed, due to people’s changing
way of life, mobility patterns, language attitudes, etc. Third,
potential survey sites might have changed with regard to their
sociodemographic settings, language policies, etc. Therefore, any
set of candidate survey sites has to be revised in accordance
with the requirements of the intended research, which potentially
collects contemporary dialect data. Generally, the potential
uncertainty about representativeness of contemporary dialectal
variation increases with time elapsed since the original data was
recorded, thus increasing the value of expert revision. Depending
on the study’s aims, the step of evaluation may result in swapping

sites, adding sites that were originally not recorded, selecting
more than one site from a cluster, rebalancing a clustering
solution based on a spatial grid, etc. In section 4.4, we provide
a qualitative revision of a candidate site set from SDS.

4. APPLICATION EXAMPLE: SDATS

In this real-life example, we present the entire site reduction
procedure as applied to digital data from the “Sprachatlas der
deutschen Schweiz” (SDS), with the aim of finding survey sites
corresponding to the requirements of the contemporary dialect
research project SDATS. Thus, the final goal is to find a way to
represent the estimated contemporary variation, inferred from
the original data and revised based on experts’ field knowledge.

“Swiss German Dialects Across Time and Space” aims for
candidate sites that are linguistically as different from one
another as possible, thereby covering the largest swath of dialectal
forms used. We carry out the clustering experiment with two
different approaches on the same data set. First, Approach I
is used for the demonstration of a generalizable methodology,
presented in section 4.2. This approach applies the quantitative
steps of the methodology similarly to the example in section 3.
Second, Approach II is used to arrive at the survey sites actually
used in SDATS, as detailed in section 4.3. This approach applies
only the PAM clustering algorithm with a different custom-made
validation approach. Then, candidate survey sites are revised to
represent the contemporary dialectal variation, in section 4.4.

4.1. Linguistic Distance
Scherrer’s digitized SDS database (termed Scherrer’s data)9 covers
289 linguistic variables: 107 phonetic, 118 morphosyntactic,
and 64 lexical variables (Scherrer, 2021). SDATS’s initial plans
included revisiting 200 linguistic phenomena in SDS. At the time
of selecting the survey sites, however, the extent of the overlap of
SDATS variables with Scherrer’s data was not clear yet, therefore
all digitized variables were utilized for the site reduction.

The linguistic distance matrix is calculated similarly to section
3.2.1, based on Goebl’s Relative Identity Value (RIVjk) (Goebl,
1983; Jeszenszky et al., 2019). For each variable, the difference
based on the variant categories is noted for each survey site
pair, allowing for multiple answers. The final linguistic distance
between a survey site pair is the proportion of the differing
variables among those variables where an answer is present for
both survey sites (n), or

D
ling
ij =

∑
DQ

n
(1)

where DQ is the number of diverging variables regarding survey
sites i and j. For example, if in survey sites i and j answers for
all linguistic variables are in different variant categories, then a
linguistic distance of 1 is assigned to this survey site pair10. To

9The digitized data, together with its documentation is available in a tabular format
at dialektkarten.ch, where individual variables are also interactively mapped.
10For more details, see Jeszenszky et al. (2019, p. 8–9).
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discover linguistic distances in an aggregate manner, it is possible
to use multidimensional scaling and thematic mapping11.

4.2. Site Reduction: Approach I—Bootstrap
Clustering
“Swiss German Dialects Across Time and Space” aims to select
125 survey sites and has the objective of collecting a balanced
set of phenomena across linguistic levels Therefore, we intend
to use data from SDS such that is also balanced across the
linguistic levels. We group the linguistic variables according
to the linguistic levels and calculate the linguistic distance
matrices for each of them. To counter the higher numbers of
morphosyntactic and phonetic variables, the mean value of these
three matrices (termed themean linguistic distance matrix,−LD)
is the input for the clustering steps. Note, however, that doing so
leads to the increased weight of individual lexical phenomena.

We apply the three clustering methods presented in section
3.3.1. We perform clustering with bootstrapping on LD using
PAM, UPGMA, and Ward’s method from the fpc package, with
k = 125, in accordance with the hard criterion in SDATS. Similar
to section 3.3.1, we use the stability values associated with clusters
as the method of internal validation. We also calculate Meilă’s VI
to compare clustering solutions’ similarity across methods and
across clustering solutions resulting from different subsets of the
data. In addition, in section 4.2.2, we test how well different sets
of candidate survey sites represent the original LD .

4.2.1. Clustering and Validation
Figure 2 maps cluster solutions based on the three clustering
methods, PAM (A), UPGMA (B), and Ward’s method (C). As
expected, cluster members are also spatially clustered in the
overwhelming majority of the cases. In a few cases, members of a
cluster are separated by members of other clusters. In addition,
singletons are present. Both PAM’s and Ward’s maps show
spatially compact clusters (corresponding to the FDP), while the
UPGMA map is more prone to producing larger clusters and
clusters of singleton outliers. UPGMA finds 50 singletons, while
PAM and Ward’s method find 27 and 17, respectively. These
patterns are structurally similar to the clustering results of LAJ.

Figures 2D–F present the stability of clusters. It is visible, here,
that some clusters are stable regardless of the clustering method,
while values vary in other areas. Most of the Swiss Plateau12

shows low cluster stability, especially with PAM. Overall stable
regions include the cantons of Schwyz (SZ), Uri (UR), Obwalden
(OW), Glarus (GL), the Entlebuch region in the canton of
Lucerne (LU), the Haslital region and the SE part of the Bernese
Oberland in canton Berne (BE), and the Eschenbach region of
canton St. Gallen (SG). The singleton survey sites, e.g., in the
canton of Graubünden (GR) and elsewhere do not show very
high stability, independent of clustering method. Interestingly,
UPGMA andWard’s method provide stable clusters in the canton

11Kellerhals (2014) has already produced the MDS maps for each linguistic level,
and as an aggregate, based on the contemporary status of Scherrer’s data. Also
consult Yves Scherrer’s homepage, dialektkarten.ch, for average linguistic maps and
other parameter maps based on several linguistic atlases.
12Germ.: “Mittelland,” the relatively flat part of German-speaking Switzerland from
Lake Constance to Lake Bienne in the west.

of Basle-Country (BL), while PAM and Ward’s method show
stability in the Oberland region of canton Zurich (ZH).

Stability values are also presented as histograms in
Figures 2G–I. The skew toward the right implies that the
bulk of clusters are stable, with little difference between the
clustering methods. Based on the stability values, the cluster
structures and the field expertise of SDATS project members,
each cluster solution is deemed acceptable for the production
of candidate sites. However, there are some evident drawbacks.
PAM’s stability, on average, seems lower, but the differences in
the maps and histograms are visually not as substantial as those
seen in the application to LAJ data. UPGMA’s larger clusters and
singletons are often linguistically not supported (e.g., an expert
would expect to find more clusters in the canton of Valais—VS).
Finally, the compact and similar-sized clusters of Ward’s method
are tempting for dialectology, but they are often unreasonable,
e.g., in the Swiss Plateau.

4.2.2. Selection of Candidate Survey Sites
The next step in the methodology is appointing a candidate
survey site within each cluster.We can select linguistically central
sites, defined by the smallest total linguistic distance toward
cluster members. Appointing this site intrinsically makes PAM a
practical method for the application. However, as SDATS aims to
investigate contemporary dialectal variation, we select candidate
survey sited based on estimated potential dialectal change since
data collection in SDS. We aim to find sites that have potentially
influenced their local surroundings since 1950, assuming, based
on Trudgill’s linguistic gravity theory (1974), their surroundings
have become more similar to them (Christen, 1998; Szmrecsanyi,
2012; Schmid et al., 2019). To address this, we select survey sites
with the highest population in 2018 from each cluster, using
official census data (BFS, 2018).

Figure 3 presents these two kinds of candidate survey sites
sets for the three clustering methods (A—PAM; B—UPGMA;
and C—Ward’s). Linguistically central sites are depicted by +’s,
and sites with the highest population by ×’s. In Map D, all
candidate sites from the other three maps are stacked, to show
the potential eligibility of any SDS survey site. In the case
of UPGMA (Map B), the two requirements overlap in more
than half of the cases, though this happens less frequently
for the other two clustering methods. Maps A–C convey the
message that the site with the highest population might not
be the linguistically central or representative site with regard
to the original data, suggesting that estimating future linguistic
scenarios based on linguistic gravity should be approached with
caution. In Map D, overlaps of the symbols show a higher
potential eligibility of sites in the Alps, especially in the canton
of Graubünden (GR), with the latter due to the high proportion
of singleton clusters. This, nevertheless, hints at the presence of
unique dialects.

To evaluate these candidate site sets, we test if they are
representative of the original survey site set of SDS (573 sites).
Technically, we test if the similarity of the distributions in
the linguistic distance matrices of the candidate set and the
SDS set (LD) is statistically significant. Since the values in the
matrices of the original set and in the candidate sets are not
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FIGURE 2 | The cluster maps (A–C), stability maps (D–F), and the stability histograms (G–I) for the three clustering methods PAM (top), UPGMA (center), and Ward’s

(bottom) method, calculated for k = 125 clusters. Clusters in maps (A–C) are presented on a diverging scale of 15 colors, which repeat. Substantial differences are

visible across the cluster solutions and smaller differences across the stability of the clusters across the methods. Importantly, clusters in some regions stay stable

independent of the clustering method.

normally distributed, we use the Kruskal—Wallis test to test
the significance of the differences. Affirming this, the pairwise
Wilcoxon rank sum test allows us to test which candidate
sets’ linguistic distance matrices have a significantly different
distribution from the original LD. In addition to the candidate
sets, we test the performance of random site sets as well. For

each of the clustering methods, we create ten random site sets,
selecting one random site from each of their clusters. Further,
we create 1,000 unrestricted random site sets from the SDS
survey sites.

The Wilcoxon rank sum tests shows that no candidate site
set presents a significant difference from the original linguistic
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FIGURE 3 | Maps of the two types of candidate survey sites. Centers are appointed by the smallest total linguistic distance within a cluster (red +), and the highest

population within a cluster (blue ×), for each clustering method (A—PAM; B—UPGMA; and C—Ward’s method). Map (D) shows all candidate survey sites in a

stacked manner. All maps contain the original SDS survey sites in the background (gray squares).

matrix set. Importantly, however, only 27.64% of the unrestricted
random sets show a significant difference from LD. This value
is still 40.7% when sinking p-value’s threshold to 0.001. At
the same time, random site sets from clusters never exhibit a
p-value over 5 × 10−13. Thus, there is substantial possibility
that an unrestricted random sample becomes representative of
the whole population. We argue that this is due to sampling
one out of five points, a relatively large sample, and that a
threshold of representativeness has to be cautiously applied by
the researcher.

Figure 4 presents some distributions of the linguistic distance
matrices of the candidate site sets in relation to the original LD.
Figure 4A presents six random sets from the previous test, with
random sets from clusters in brown and unrestricted random sets
in yellow. Brown lines stay below the distribution of LD in the
left side and overshoot LD at its peak. Yellow lines follow the
distribution of LD more exactly, but this is not always enough
to be representative. Figure 4B presents the densities of the
candidate site sets. All lines stay somewhat below the distribution
of LD on the left side and overshoot the LD at its peak. Thismeans
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FIGURE 4 | Density graph of the values within linguistic distance matrices. In (A), the linguistic distance matrices from three unrestricted random sets (yellow) and

random sets from the resulting clusters of each clustering method (brown) are plotted together with the original mean linguistic distance matrix (LD—red). In (B),

linguistic distance matrices from the candidate survey site sets are presented. Beside unrestricted random sets, all sets overshoot the peak density of LD. Thus, on

average, linguistic distances are larger within these candidate site sets, as expected, and their members are linguistically more different from one another.

that the candidate survey site sets include more of those survey
sites that have a higher linguistic distance toward one another,
ultimately intensifying the variation present in the candidate set
while overlooking survey sites that are less diverse, thus less
different from one another.

4.3. Site Reduction: Approach
II—Candidates Resulting From Ranking
This section serves the purpose of detailing the site reduction
approach implemented to define the conclusive candidate site
set for SDATS, which is used from section 4.4 for the qualitative
revision. We present a customized methodology of cluster
analysis and site selection to fulfill two aims. First, we address
SDATS’ requirement of balance across linguistic levels. Second,
we address the requirement of inferring a future linguistic
situation based on the theory of linguistic gravity. To this end,
we use a special-purpose cluster validation technique and build
the qualitative requirements of the SDATS project partly into the
clustering step (i.e., selecting a candidate site with a relatively
high population from a cluster). We arrive at the candidate
survey site set by ranking the survey sites based on two measures
introduced below, one related to their stability in their clusters
(J), and another based on their population (Ptop).

Scherrer’s data are imbalanced across linguistic levels and it
contain 107 phonetic, 118 morphosyntactic, and 64 lexical items.
In section 4.2, we calculated themean linguistic distance based on
the three linguistic levels. This means, however, that the weight
of each lexical item is almost double the morphosyntactic items.

The approach introduced here is proposed as an experimental
method to counter this effect. In order to get a sample of
items representative of each linguistic level, we create S subsets,
drawing equal numbers of random items from each of the three
linguistic levels. On the one hand, we randomly select 64 items
from each linguistic level (referred to as subsets S64)13. On the
other hand, we randomly select 20 items from each linguistic
level (referred to as subsets S20). The number 64 is decided by the
number of lexical items in Scherrer’s data, the lowest among the
linguistic levels. In parallel, sets of 20 items are used to decrease
the bias assumed to be caused by the constant presence of all 64
lexical items in the S64 subsets. We create 35 subsets of S20 (S20101,
S20102, S

20
103 ... S

20
135), and 30 subsets of S64 (S641 , S642 ... S645 , and S64201,

S64202, S
64
203 ... S

64
225)

14.
The overlap of items across random subsets is visualized in

Figure 5. It is visible that the overlap is much smaller (warmer,
reddish colors) among S20 subsets, compared to S64 subsets,
around 20% on average, with some outliers. Overlaps across S20

and S64 subsets are much larger (colder colors), with an average
of around 70% overlap. The overlaps among S64 subsets are more
uniform (around 70%, with less deviation), as they include by

13We use specific seeds in R to create reproducible randomized subsets. Setting
a seed determines the starting number used to generate a sequence of random
numbers; using the same seeds ensures the reproducibility of the same subsets.
14Seeds of S20 and S64 subsets (shown as the lower indices) do not overlap to avoid
complete overlap across the items selected.
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FIGURE 5 | The number of SDS linguistic items overlapping across balanced random subsets. Group-internal overlaps belonging to Scenarios A–C (introduced in

section 4.3.2, below) are highlighted in triangles. The histograms show the amounts of overlap for the three scenarios.

definition all 64 lexical items and the majority of phonetic and
morphosyntactic items.

For each S subset, we calculate the linguistic matrices. Effects
of random item selection in the subsets are shown by Pearson
correlation coefficient values across their linguistic matrices,
which are almost always above 0.9, with the lowest values around
0.75. The high values (R2 ≥ 0.62) confirm the similarity across
the random subsets even in cases of smaller item overlaps across
S20 subsets.

4.3.1. Clustering and Validation
We carry out PAM clustering with k = 125 on the linguistic
distance matrix calculated from each of the S subsets, using the
cluster package (Maechler et al., 2019) in R. Figure 6 shows
the clusters resulting from PAM runs based on variables in five
subsets. Structurally, the cluster patterns look similar to the PAM
map (Map A) in Figure 2.

To justify using PAM, we test the similarity of S subsets’
cluster solutions to the cluster solutions of LD (PAM, UPGMA,

and Ward’s method), using Meilă’s VI. The most important
results are shown in Table 2. It becomes visible that PAM
clusterings of S subsets are more similar to the PAM clustering
of the mean linguistic distance matrix (LD_PAM) than the
Ward’s (LD_Ward) or UPGMA clustering of LD (LD_UPGMA).
Therefore, if we accept that each of the clustering methods
produce linguistically plausible cluster partitions on LD, then
the PAM clustering of the S subsets can also be accepted with a
high probability.

We validate clusters using a custom method resembling the
noisy clustering and bootstrapping approaches often used for
cluster validation in dialectometry. For each survey site pair, we
note the number of occurrences when the two sites are clustered
together. Then, for each survey site, we calculate the percentage
(termed J) of clustering runs, in which the site is clustered
together with the same other survey sites. If survey sites h, i, and
j always fall into the same cluster and there is no other survey
site ever falling into this cluster, then each of the sites h, i, and
j get the maximal J value. A survey site that always becomes a
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FIGURE 6 | Clusters resulting from five balanced random subsets of SDS variables. Clusters are presented on a diverging scale of 15 colors, which repeat.

singleton would also get this value, giving the chance for very
local but unique dialects to stand out as stable clusters.

4.3.2. Selection of Candidate Survey Sites
As in section 4.2.2, we aim to find those survey sites that most
affected their surroundings in the last 70 years through the effect
of linguistic gravity. To this end, we find the survey site with
the highest contemporary population (BFS, 2018) in each cluster,
for each of S subsets’ cluster solution. For each survey site, we
note the proportion of S subsets’ cluster solutions at which the
survey site exhibits the highest population in their own cluster.
This proportion is termed Ptop.

Survey site eligibility is then ranked based on J and Ptop.
The scatterplots in Figure 7 show these factors that test the
correspondence of SDS sites to SDATS requirements. The x-axis,
along with the point color and size, presents Ptop (green, over
50%; blue, between 25 and 50%; and gray, below 25%, the latter
corresponding to a low eligibility for the final SDATS set). The y-
axis, along with the background color, shows the J value of the
site, running from dark purple (low “stability in own cluster”)
to yellow (high “stability in own cluster”). An ideal survey site
would score high with regard to both requirements, reaching the
top right corner of the scatterplots. Based on the point color,
size, and background color, J and Ptop can be transferred to the

maps on the left. Values of J are shown in Maps A–C as the
colors of Voronoi-polygons around their SDS sites, illustrating
the areal distribution of J. Because clusters mostly contain more
than one survey site, similar J values are expected to cluster
in space.

Before we select the candidate sites based on the clustering
solutions of all subsets, however, we revisit the potential bias
caused by the imbalance across linguistic levels. In the data set,
lexical variables make up the smallest portion. However, lexical
variables are the most diverse, therefore their variation patterns
are potentially the most different from one another and, thus,
are associated with greater linguistic distances. Table 3 presents
the mean, median, SD, and variance values of the three linguistic
levels, with values of the lexical level substantially exceeding the
other two levels.

As we select roughly one-third of the lexical variables in S20

subsets, there will be a variation in the effect across subsets (as
deductible from the overlaps across S subsets in Figure 5). S64

subsets, however, contain all lexical variables, always conveying
the full effect of the lexicon.

We aim to select the SDATS survey sites based on a balance
across linguistic levels. In order to assess the effect of lexicon,
we set up three Scenarios which pool the cluster solutions from
a number of S subsets. The difference between Scenarios is the
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TABLE 2 | Meilă’s VI values, comparing the cluster partitions across linguistic

distance matrices of S subsets and cluster partitions of LD using the three

clustering methods, PAM, UPGMA, and Ward’s method.

Clustering A Clustering B Meilă’s VI

1 S64
224 PAM LD_PAM 0.3796

2 S64
126 PAM LD_PAM 0.4069

3 S64
218 PAM LD_PAM 0.4096

4 S64
217 PAM LD_PAM 0.4288

5 S64
4 PAM LD_PAM 0.4303

6 S64
206 PAM LD_PAM 0.4370

7 S64
129 PAM LD_PAM 0.4479

8 S64
211 PAM LD_PAM 0.4485

9 S64
208 PAM LD_PAM 0.4509

10 S64
204 PAM LD_PAM 0.4583

...

46 S64
128 Ward LD_PAM 0.6302

47 S64
215 Ward LD_PAM 0.6398

48 S64
4 Ward LD_PAM 0.6473

49 LD_Ward LD_PAM 0.6476

...

76 LD_UPGMA LD_PAM 0.7366

77 S64
221 Ward LD_PAM 0.7424

78 S64
130 UPGMA LD_PAM 0.7434

...

143 phon_Ward LD_PAM 0.9909

...

160 phon_PAM LD_PAM 1.0541

...

255 ... ... ...

proportion to which they contain S64 subsets, those that convey
the full effect of lexicon:

• In Scenario A, the proportion of the full effect of lexicon is 1/3,
• In Scenario B, the proportion of the full effect of lexicon is 1/2,
• Scenario C is entirely made up of S64 subsets, thus always

conveying the full effect of lexicon.

Within the Scenarios, we employ a consensus approach based
on the numerous cluster solutions pooled, expecting the cluster
solutions, which are somewhat different across subsets, to
converge toward a central value. S64 subsets overlap to a larger
degree than S20 subsets, causing cluster solution across S64

subsets to be more similar. Therefore, the higher the involvement
of S64 subsets, the higher J values are expected. The difference
of J values across the maps and scatterplots in Figure 7, thus,
demonstrates the effect of imbalance across linguistic levels.

With the qualitative revision already taking a foothold in
the cluster validation steps, the initial candidate survey sites are
selected based on their ranking of J and Ptop. Scenario C’s map,
regarding the J values, resembles the stability map of PAM (Map
A) in Figure 2 (despite J values not being equivalent to the
stability values in a bootstrapping approach), which hints at the
similarity of Scenario C and the bootstrap clustering in section

4.2.1. Although our original aim was countering the overweight
of lexicon present in LD, the candidate survey sites resulting from
the customized site reduction do not differ substantially across
the three Scenarios. This is indicated by the set of survey sites
highlighted with their names in Scenario C’s map, which forms a
superset of sites visible in Maps of Scenario A and B. Thus, it is
visible that the qualitative decision of using Ptop as a candidacy
factor overwrites the effect of linguistic levels. Still, the potential
effect of linguistic imbalance is a valid limitation for applications
of the general methodology.

Initially, based on the rankings in J and Ptop, 114 candidate
survey sites are selected, fewer than the number of clusters
originally sought. This is a result of a manual intervention, which
is due to the fact that for the aims of SDATS, it is not the number
of clusters or their identity that is relevant, but the survey sites’
ranking on J and Ptop values. Beyond the first 114 survey sites,
further sites’ ranking with regard to either J or Ptop was too low,
thus we decided to leave it to the qualitative revision to fill up
the selection, as we ultimately maintain the aim of selecting 125
survey sites.

4.4. Revision Based on Linguistic and
Sociodemographic Factors
For the qualitative revision of candidate survey sites, we use the
candidate site set resulting from section 4.3. This means that the
candidate set of survey sites is not equal to the number of clusters
sought in the earlier steps. Nevertheless, qualitative revision is not
necessarily bound by the clusters or candidate sites yielded by the
quantitative steps.

Several reasons impede us from relying fully on the clustering
results. First, the cluster partitions reflect the state of the dialectal
landscape around 1950, in contrast to the SDATS requirements
of investigating contemporary local colloquial dialects. Second,
Switzerland has undergone sociodemographic changes, often
affecting the composition of the population in settlements. People
have becomemore mobile, and the communities in certain towns
and villages recorded in SDS might have changed massively due
to industrialization, urbanization, and suburbanization. Third,
the digital linguistic data are not entirely optimal for the
site reduction. Even if the 289 items in Scherrer’s data were
representative of SDS, the categorization of the variants within
an item corresponds to the needs of SDATS for only 45 items.
Besides, if each item is supposed to have the same weight in
the process, neither Approach I nor Approach II can completely
preclude the disproportionate effect of linguistic levels.

To address these factors, the initial candidate survey site
set is evaluated from the following viewpoints, including the
indispensable insight of linguists with expertise in past and
contemporary dialectal variation. We inspect:

• whether important sociodemographic changes could have
occurred at the candidate sites leading to a change or a
mixture of dialects. If there was a remarkable change (such as
a population boom due to extraordinary economic prosperity,
or becoming a touristic hotspot), the location was eliminated
from the list of candidate sites (e.g., Uster, canton of Zurich—
ZH, or Klosters, canton of Graubünden—GR);
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FIGURE 7 | Composite maps and graphs presenting the two candidacy factors deciding the ranking of an SDS survey site to become a candidate site for SDATS.

The proportion of occasions a survey site was clustered together with the same others, J (stability of a site in its own cluster) is mapped between dark purple and

yellow hues, where yellow means higher stability. The number of times (among the clustering solution on different subsets) a site has the most inhabitants in its own

cluster is shown by Ptop. The best candidate sites score high in both Ptop and J. Such sites are presented as green circles on lighter polygons in the map.
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TABLE 3 | Descriptive statistics of each linguistic level’s linguistic distance

matrices.

Lexicon Morphosyntax Phonology

Mean 0.5337 0.4013 0.4001

Median 0.5652 0.4158 0.4216

Standard deviation 0.1771 0.1505 0.1354

Variance 0.0314 0.0226 0.0183

Besides higher linguistic distance values on average, lexicon has a wider statistical spread

as well.

• whether a candidate site’s location has merged into another
community (e.g., Masans into Chur, GR);

• whether a community is very small or has lost many
inhabitants, creating difficulties for recruiting enough
respondents from all social backgrounds (e.g., we removed
Weisstannen, canton of St. Gallen—SG, but kept Hospental,
canton of Uri—UR);

• whether it is known that the local dialect is remarkably
interesting (for the general public or from objective linguistics
viewpoints). In some cases, local studies have documented
change and peculiarities, validating the candidacy of some
potential sites (e.g., Bosco Gurin, a partly German-speaking
village in the Italian-speaking canton of Ticino—TI, or Blatten,
a village in the secluded Lötschental valley in the canton of
Valais—VS);

• whether the candidate site is perceived as linguistically
representative of the region. For example, the city of Basel is
traditionally not regarded as representative of its surrounding
region;

• and, less importantly, whether there is a chance for an
equidistant choice of survey sites. Following traditional
sampling in dialectology, we might select a survey site that
makes the survey site set equidistant (counterexamples include
candidate sites separated by linguistically significant cantonal
borders, e.g., between Niederbipp—BE, and Oensingen,
canton of Solothurn—SO).

4.4.1. Revision by Dialectological and

Sociogeographic Expertise
Following the aspects listed, the candidate survey sites are
revised. The revision is done partly based on sites’ rankings
on J and Ptop: when a candidate has to be removed, we often
turn to these rankings for the next candidate or to validate the
choice made based on other factors. For example, Lucerne, Horw,
and Ebikon (LU), each were included in the initial set of 114
candidates. However, their geographic proximity allowed them
to became a city complex in the last half century, functioning
essentially as one unit, with a potential to drawing population
from all over Switzerland. Therefore, we only chose Lucerne,
the center, to represent this complex. Further, SDS survey sites
that have merged in the last 70 years are treated as one, such as
Schwamendingen and Zürich (ZH), or Masans and Chur (GR).

Next, we amended the candidate list in a qualitative fashion
based on dialect expertise of the SDATS project members.

For example, we added locations with local research already
present and deemed interesting, such as Jaun (canton of
Freiburg—FR), a German-speaking isolate, and Obersaxen (GR),
a former island of Walser dialect. We also strived to cover some
local dialects deemed peculiar due to the dwindling German-
speaking population (Bosco Gurin, TI) or isolation (Vättis,
SG). Importantly, major cities and towns of central importance
have been taken into the SDATS sample regardless of the
clustering results.

At this stage, external dialect experts made further suggestions
about available SDS survey sites that are overall representative
in their region today, thus not necessarily reflected in the digital
data. Some external dialect experts objected to the involvement of
urban centers due to the assumptions that urban mixed dialects
have already been outliers in SDS, a dialectal phenomenon of
rural-urban contrast which needs to be addressed. As we assume
dialects of less populated places to converge toward regional
hubs, it is indeed beneficial to test this assumption in later
analyses with contemporary data if smaller communities are
selected along with regional hubs. For example, Reigoldswil
(BL), Maur (ZH), and Wilchingen (canton of Schaffhausen—
SH) were added for this reason. Additionally, this step has led
to dropping some touristic locations assumed to have changed
their dialects, such as Klosters (GR), places that became suburbs,
such as Pratteln (BL), and to adding more rural varieties, such
as Mammern (canton of Thurgau—TG) and Linthal (GL). After
consolidating external experts’ opinions, the overlap of the
initial set of candidate sites and the final selection was 91 out
of 114.

Finally, Figure 8 presents the conclusive 125 survey sites
resulting from the synthesis of the clustering results and their
sociodemographic and linguistic revision. In this figure, red
sites present those selected for SDATS, while all other SDS
survey sites are shown in gray. The distribution of the selected
sites is more or less uniform and equidistant, similar to SDS.
This means a higher density of SDATS survey sites in the
alpine regions, relative to its lower population. At the same
time, the alpine region exhibits a greater local variation of
dialects, owing to the higher potential isolation caused by more
rugged terrain. It has to be noted, however, that the qualitative
requirement to have equidistant survey sites did not inform the
experiment design.

5. DISCUSSION

5.1. Summary and Key Findings
Dialectometry uses clustering extensively for determining
dialect areas based on linguistic similarity. However,
such methods have not been utilized so far for the task
of site reduction. We explored this direction with a
linguist in mind who aims to revisit dialectal phenomena
at representative survey sites of a previously recorded
database. We propose a general pathway for incorporating
a clustering procedure into the site selection methodology.
Since we basically detect clusters in linguistic distance
matrices and then appoint a representative survey site in
(the spatial projection of) the clusters as candidates subject
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FIGURE 8 | The final selection of SDATS survey sites (in red with names), along with all SDS sites (gray). After the quantitative analysis and the qualitative revision, 125

sites are selected from the original 573.

to a qualitative revision, the methodology is appropriate
for several situations. Essentially, the general methodology
is based on suggestions and best practices; there is no
one-size-fits-all strategy.

Rather than selecting sites based on a grid, we argue for the
definition of clusters in non-spatial dimensions, where possible.
We demonstrated the quantitative steps of the methodology
on data from LAJ as a proof of concept and elaborated a
complete application with data from SDS. These examples show
that expert revision of candidate survey sites is indispensable,
due to the potential bias and uncertainties in the underlying
data. Due to constant language change, this expertise appreciates
in value with the time elapsed since the collection of the
original database.

5.2. Interpretation of the Contributions
We find that the following three intertwined aspects impact the
choice of specific aspects in the methodology and play a role in
the feasibility of an objective implementation:

• An optimal site reduction procedure depends on the overlap
of the original and intended studies with regard to their
objectives and variables.

• The dialect change that has potentially occurred between
the original and intended studies needs to be considered,
since the aim of most site reduction tasks is to represent the
contemporary dialectal variation.

• Local representation, sought by the applied method, may
crucially depend on the purpose of the intended study.
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Therefore, a qualitative revision of candidate sites may
overwrite previous decisions based on several considerations.

By applying the outlined methodology to two databases, we
demonstrate that an arbitrary number of representative survey
sites can be found within digitized linguistic survey data. The
main benefit of the general methodology is to offer candidate
survey sites in a quantitative framework, despite the underlying
data being potentially fuzzy and uncertain. In a subsequent
step, researchers are encouraged to revise the candidate survey
sites according to the requirements of their intended study.
Specifically, the magnitude of the potential language change that
has occurred since the collection of the original data appears to
impact the importance of the (partly) qualitative revision over the
quantitative steps resulting in candidate survey sites.

The overlap of objectives between the SDS survey and SDATS
are decreased by the sociolinguistic aims of SDATS, including
SDATS’ requirement of more participants per survey site, and
its interest in a local colloquial dialect rather than the base
dialect. Interpreting the application of the methodology to SDS,
we conclude that the individual parameters of the site reduction
methodologymight be less important than the aims and linguistic
knowledge of the researchers. Therefore, the selected 125 survey
sites of SDATS are subjective to some degree.

Although not often used in dialectology, we argue that
random samples are not ideal for site reduction in a project which
specifically aims to capture representative linguistic variation.
Even with a high number of random points, following the spatial
distribution of the survey genitive sites network, random samples
might not follow the distributions in linguistic variables as much
as clustering solutions do by design. By selecting the linguistically
central points in clusters, one can assert with a higher confidence
that the selected site represents the other cluster members.

Our approach essentially also implies that, if digital data
are present, it is possible to achieve the representation of the
underlying data based on any number of chosen points, e.g., by
taking the 20 most distinctive survey sites. This would, of course,
lead to a large-scale loss of variation, and it would imply the need
for an even more careful qualitative revision after partitioning
the data.

5.3. Implications for Contemporary
Dialectology
The methodology proposed has a number of implications
for contemporary research in dialectology and beyond, for
sociolinguistics, and more general language surveys. First, the
automation of the site reduction process, based on the proposed
methodology, allows for greater objectivity in comparison to a
traditional approach where researchers have to go through the
previous records or atlas data linked to the original survey sites
to find the most distinct and/or representative survey sites. The
availability of digitized data, clearly, opens opportunities toward
faster quantitative approaches.

Second, the usage of cluster validation methods can mitigate
the uncertain and fuzzy nature of the underlying data, as reflected
in the clustering results. Bootstrapping and noisy clustering

methods aid the estimation of this uncertainty during the
clustering procedure itself, allowing researchers to adjust their
site reduction methods, e.g., the intended number of survey
sites, based on stability measures and the aims of their study.
Most previous studies (e.g., Kelle, 2001; Christen et al., 2015)15

used a grid approach for resampling their respective original
set of survey sites and adjusted their sites manually based
on expertise.

Third, partitioning clustering algorithms have specific
implications. The weakness of partitioning algorithms for the
classic usage in dialectometry—finding the optimal number
of clusters—lies in their sensitivity to outliers. In this regard,
however, PAM’s k-medoid approach is more robust than the
k-means algorithm, whereas, as seen in the application examples,
UPGMA method also seems to produce unreasonable clusters.
These clustering algorithms, generally considered successful in
dialectology, perform differently on two data sets, suggesting
that researchers have to select their methods carefully. Due
to the high number of clusters in our case, however, potential
outliers often become clusters on their own or together with
fellow outliers, regardless of the clustering method. Nerbonne
and Wieling (2018) argue for the general usage of hierarchical
clustering in dialectometry based on the uncontroversial nature
of dialects as hierarchically structured. We argue, however, that
at local levels the original hierarchy driven by phylogenetics is
not pure, and variation can be more easily overwritten by the
radius of local spread of varieties increasing due to the changing
contact patterns and increased mobility of the population.

A final benefit of the general methodology is its versatility.
As also shown in the application to SDS, survey sites that
are outliers in a linguistic sense (e.g., mountain villages in
Switzerland, Norway, or Bulgaria), would be uncovered by
appropriate clustering in the linguistic space, even if they are
spatially embedded in an otherwise homogeneous area (e.g.,
the Frisian cities in The Netherlands). If the data presents
a perfect continuum (e.g., parts of Sweden, as shown by
Leinonen, 2010), the application of the methodology with a
bootstrapping approach would result in uniformly sized clusters
in the abstract linguistic dimensions and in space as well.
These clusters, however, would not be very stable, as, due to
the continuous nature of the data, specific boundaries between
clusters would not be meaningful, and clusters in each bootstrap
would be slightly different, without stable “cores.” In such
cases, stratifying the area with a uniform spatial grid would
also be justified, and a random equidistant survey site network
would necessarily represent the variation. The application of
the proposed methodology would also be beneficial for smaller
studies, aiming to revisit a few phenomena (or new phenomena
in a similar linguistic level) in a reduced set of sites. In this case,
the low number of variables intentionally overlapping with the
aims of the intended study allows for a less biased cluster solution.
Further, it is also appropriate to apply the methodology to data
other than traditional dialect collections. Sociolinguistic studies,

15A similar study is currently running at the “Deutsch in Österreich” project
(DiÖ)—https://dioe.at/projekte/task-cluster-b-variation/pp02/.
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beyond obtaining survey sites in space, could successfully apply
the reduction method to quantitatively appoint representative
speakers within groups that are identified based on linguistic
items and metadata. Moreover, the methodology may help the
analysis of contemporary data, such as geotagged tweets collected
and then pooled according to some criteria.
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