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Abstract
Isotonic distributional regression (IDR) is a powerful 
non-parametric technique for the estimation of con-
ditional distributions under order restrictions. In a 
nutshell, IDR learns conditional distributions that are 
calibrated, and simultaneously optimal relative to com-
prehensive classes of relevant loss functions, subject to 
isotonicity constraints in terms of a partial order on the 
covariate space. Non-parametric isotonic quantile re-
gression and non-parametric isotonic binary regression 
emerge as special cases. For prediction, we propose an 
interpolation method that generalizes extant specifica-
tions under the pool adjacent violators algorithm. We 
recommend the use of IDR as a generic benchmark 
technique in probabilistic forecast problems, as it does 
not involve any parameter tuning nor implementation 
choices, except for the selection of a partial order on 
the covariate space. The method can be combined with 
subsample aggregation, with the benefits of smoother 
regression functions and gains in computational ef-
ficiency. In a simulation study, we compare methods 
for distributional regression in terms of the continu-
ous ranked probability score (CRPS) and L2 estimation 
error, which are closely linked. In a case study on raw 
and post-processed quantitative precipitation forecasts 
from a leading numerical weather prediction system, 
IDR is competitive with state of the art techniques.
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1  |   INTRODUCTION

There is an emerging consensus in the transdisciplinary literature that regression analysis should 
be distributional, with Hothorn et al. (2014) arguing forcefully that 

[t]he ultimate goal of regression analysis is to obtain information about the condi-
tional distribution of a response given a set of explanatory variables.

Distributional regression marks a clear break from the classical view of regression, which has 
focused on estimating the conditional mean of the response variable in terms of one or more explan-
atory variable(s) or covariate(s). Later extensions have considered other functionals of the condi-
tional distributions, such as quantiles or expectiles (Koenker, 2005; Newey & Powell, 1987; Schulze 
Waltrup et al., 2015). However, the reduction of a conditional distribution to a single-valued func-
tional results in tremendous loss of information. Therefore, from the perspectives of both estimation 
and prediction, regression analysis ought to be distributional.

In the extant literature, both parametric and non-parametric approaches to distributional re-
gression are available. Parametric approaches assume that the conditional distribution of the 
response is of a specific type (e.g. Gaussian) with an analytic relationship between the covariates 
and the distributional parameters. Key examples include statistically post-processed meteoro-
logical and hydrologic forecasts, as exemplified by Gneiting et al. (2005), Schefzik et al. (2013) 
and Vannitsem et al. (2018). In powerful semi-parametric variants, the conditional distributions 
remain parametric, but the influence of the covariates on the parameter values is modelled non-
parametrically, for example by using generalized additive models (Klein et al., 2015; Rigby & 
Stasinopoulos, 2005; Umlauf & Kneib, 2018) or modern neural networks (Gasthaus et al., 2019; 
Rasp & Lerch, 2018). In related developments, semiparametric versions of quantile regression 
(Koenker, 2005) and transformation methods (Hothorn et al., 2014) can be leveraged for distri-
butional regression.

Non-parametric approaches to distributional regression include kernel or nearest neighbour 
methods that depend on a suitable notion of distance on the covariate space. Then, the empirical 
distribution of the response for neighbouring covariates in the training set is used for distribu-
tional regression, with possible weighting in dependence on the distance to the covariate value 
of interest. Kernel smoothing methods and mixture approaches allow for absolutely continuous 
conditional distributions (Dunson et al., 2007; Hall et al., 1999; Li & Racine, 2008). Classification 
and regression trees partition the covariate space into leaves, and assign constant regression 
functions on each leaf (Breiman et al., 1984). Linear aggregation via bootstrap aggregation (bag-
ging) or subsample aggregation (subagging) yields random forests (Breiman, 2001), which are 
increasingly being used to generate conditional predictive distributions, as proposed by Hothorn 
et al. (2004) and Meinshausen (2006).

Isotonicity is a natural constraint in estimation and prediction problems. Consider, for 
example, post-processing techniques in weather forecasting, where the covariates stem from the 
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conditional distribution estimation, monotonicity, probabilistic 
forecast, proper scoring rule, stochastic order, subagging, 
weather prediction
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output of numerical weather prediction (NWP) models, and the response variable is the respec-
tive future weather quantity. Intuitively, if the NWP model output indicates a larger precipitation 
accumulation, the associated regression functions ought to be larger as well. Isotonic relation-
ships of this type hold in a plethora of applied settings. In fact, standard linear regression analysis 
rests on the assumption of isotonicity, in the form of monotonicity in the values of the covari-
ate(s), save for changes in sign.

Concerning non-parametric regression for a conditional functional, such as the mean or a 
quantile, there is a sizable literature on estimation under the constraint of isotonicity. The clas-
sical work of Ayer et al. (1955), Bartholomew (1959a, b), Brunk (1955), van Eeden (1958), Miles 
(1959) is summarized in Barlow et al. (1972), de Leeuw et al. (2009), Robertson et al. (1988). 
Subsequent approaches include Bayesian and non-Bayesian smoothing techniques (e.g. Dette 
et al., 2006; Mammen, 1991; Neelon & Dunson, 2004; Shively et al., 2009), and reviews are avail-
able in Groeneboom & Jongbloed (2014) and Guntuboyina & Sen (2018).

In distributional regression, it may not be immediately clear what is meant by isotonicity, and 
the literature typically considers one ordinal covariate only (e.g. Davidov & Iliopoulos, 2012; El 
Barmi & Mukerjee, 2005; Hogg, 1965; Rojo & El Barmi, 2003), with a notable exception being the 
work of Mösching & Dümbgen (2020b), whose considerations allow for a real-valued covariate. 
In the general case of a partially ordered covariate space, which we consider here, it is unclear 
whether semi- or non-parametric techniques might be capable of handling monotonicity con-
traints, and suitable notions of isotonicity remain to be developed.

To this end, we assume that the response Y is real-valued, and equip the covariate space  
with a partial order ⪯. Our aim is to estimate the conditional distribution of Y given the co-
variate X, for short (Y |X ), on training data, in a way that respects the partial order, and we 
desire to use this estimate for prediction. Formally, a distributional regression technique gen-
erates a mapping from x ∈  to a probability measure Fx, which serves to model the condi-
tional distribution (Y |X = x). This mapping is isotonic if x ⪯ x� implies Fx ≤st Fx′, where ≤st 
denotes the usual stochastic order, that is, G≤stH if G(y) ≥ H(y) for y ∈ ℝ, where we use the 
same symbols for the probability measures G, H and their associated conditional cumulative dis-
tribution functions (CDFs). Equivalently, G≤stH holds if G−1(�) ≤ H−1(�) for α ∈ (0, 1), where 
G−1(�) = inf{y ∈ ℝ: G(y) ≥ �} is the standard quantile function (Shaked & Shanthikumar, 2007).

Useful comparisons of predictive distributions are in terms of proper scoring rules, of which 
the most prominent and most relevant instance is the continuous ranked probability score (CRPS; 
Gneiting & Raftery, 2007; Matheson & Winkler, 1976). We show that there is a unique isotonic 
distributional regression that is optimal with respect to the CPRS (Theorem 1), and refer to it as 
the isotonic distributional regression (IDR). As it turns out, IDR is a universal solution, in that the 
estimate is optimal with respect to a broad class of proper scoring rules (Theorem 2). Classical 
special cases such as non-parametric isotonic quantile regression and probabilistic classifiers 
for threshold-defined binary events are nested by IDR. Simultaneously, IDR avoids pitfalls com-
monly associated with non-parametric distributional regression, such as suboptimal partitions of 
the covariate space and level crossing (Athey et al., 2019, p. 1167).

For illustration, consider the joint distribution of (X, Y), where X is uniform on (0, 10) and 

so that (Y |X = x)≤st (Y |X = x�) if x ≤ x′. Figure 1 shows IDR conditional CDFs and quantiles 
as estimated on a training set of size n = 600. IDR is capable of estimating both the strongly right-
skewed conditional distributions for lower values of X and the more symmetric distributions as X 

(1)Y �X ∼ Gamma(shape =
√
X , scale =min{max{X , 1}, 6}),
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increases. The CDFs are piecewise constant, and they never cross each other. The computational 
cost of IDR is of order at least (nlogn) and may become prohibitive as n grows. However, IDR can 
usefully be combined with subsample aggregation (subagging), much in the spirit of random for-
ests (Breiman, 2001), with the benefits of reduced computational cost under large training samples, 
smoother regression functions, and (frequently) improved predictive performance.

The remainder of the paper is organized as follows. The methodological core of the paper is 
in Section 2, where we prove existence, uniqueness and universality of the IDR solution, dis-
cuss computational issues and asymptotic consistency, and propose strategies for prediction. In 
Section 3, we turn to the critical issue of the choice of a partial order on the covariate space. 
Section 4 reports on a comparative simulation study that addresses both prediction and esti-
mation, and Section 5 is devoted to a case study on probabilistic quantitative precipitation fore-
casts, with covariates provided by the European Centre for Medium-Range Weather Forecasts 
(ECMWF) ensemble system. Precipitation accumulations feature unfavourable properties that 
challenge parametric approaches to distributional regression: The conditional distributions have 
a point mass at zero, and they are continuous and right skewed on the positive half-axis. In a 

F I G U R E  1   Simulation example for a sample of size n = 600 from the distribution in (1): (a) True 
conditional CDFs (smooth) and IDR estimates (step functions) for selected values of the covariate. (b) IDR 
estimated conditional distributions. The shaded bands correspond to probability mass 0.10 each, with the 
darkest shade marking the central interval. Vertical strips indicate the cross-sections corresponding to the values 
of the covariate in panel (a) [Colour figure can be viewed at wileyonlinelibrary.com]
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comparison to state-of-the-art methods that have been developed specifically for the purpose, 
namely Bayesian model averaging (BMA; Sloughter et al., 2007), ensemble model output statis-
tics (EMOS; Scheuerer, 2014) and heteroscedastic censored logistic regression (HCLR; Messner 
et  al., 2014), the (out-of-sample) predictive performance of IDR is competitive, despite the 
method being generic, and being fully automatic once a partial order on the covariate space has 
been chosen.

We close the paper with a discussion in Section 6, where we argue that IDR provides a very 
widely applicable, competitive benchmark in probabilistic forecasting problems. The use of 
benchmark techniques has been called for across application domains (e.g. Basel Committee 
on Banking Supervision, 2016; Pappenberger et al., 2015; Rossi, 2013; Vogel et al., 2018), and 
suitable methods should be competitive in terms of predictive performance, while avoiding im-
plementation decisions that may vary from user to user. IDR is well suited to this purpose, as it 
is entirely generic, does not involve any implementation decisions, other than the choice of the 
partial order, applies to all types of real-valued outcomes with discrete, continuous or mixed 
discrete-continuous distributions, and accommodates general types of covariate spaces.

2  |   ISOTONIC DISTRIBUTIONAL REGRESSION

We proceed to introduce the IDR technique. To this end, we first review basic facts on proper scor-
ing rules and notions of calibration. Then we define the IDR solution, prove existence, unique-
ness and universality, and discuss its computation and asymptotic consistency. Thereafter, we 
turn from estimation to prediction and describe how IDR can be used in out-of-sample forecast-
ing. Throughout, we identify a Borel probability measure on the real line ℝ with its cumulative 
distribution function (CDF), and we denote the extended real line by ℝ = [ −∞, ∞].

2.1  |  Preliminaries

Following Gneiting & Raftery (2007), we argue that distributional regression techniques should 
be compared and evaluated using proper scoring rules. A proper scoring rule is a function 
S:  ×ℝ → ℝ, where  is a suitable class of probability measures on ℝ, such that S(F, ·) is meas-
urable for any F ∈ , the integral ∫S(G, y) dF(y) exists, and 

for all F , G ∈ . A key example is the continuous ranked probability score (CRPS), which is defined 
for all Borel probability measures, and given as 

Introduced by Matheson & Winkler (1976), the CRPS has become popular across application areas 
and methodological communities, both for the purposes of evaluating predictive performance and 
as a loss function in estimation; see, for example, Gasthaus et  al. (2019), Gneiting et  al. (2005), 
Hersbach (2000), Hothorn et al. (2014), Pappenberger et al. (2015) and Rasp & Lerch (2018). The 

� S(F , y) dF(y) ≤ � S(G, y) dF(y)

CRPS(F , y) = �
ℝ

(
F(z)−𝟙{y≤ z})2 dz.



968  |      HENZI et al.

CRPS is reported in the same unit as the response variable, and it reduces to the absolute error, |x−y|, 
if F is the point or Dirac measure in x ∈ ℝ.

Results in Ben Bouallègue et al. (2018), Ehm et al. (2016) and Laio & Tamea (2007) imply that 
the CRPS can be represented equivalently as 

where the mixture representation (2) is in terms of the asymmetric piecewise linear or pinball loss, 

which is customarily thought of as a quantile loss function, but can be identified with a proper scor-
ing rule (Gneiting, 2011, Theorem 3). The representations (3) and (4) express the CRPS in terms of 
the elementary or extremal scoring functions for the α-quantile functional, namely, 

where � ∈ ℝ; and for probability assessments of the binary outcome �{y ≤ z} at the threshold value 
z ∈ ℝ, namely 

where c  ∈  (0, 1). For background information on elementary or extremal scoring functions and 
related concepts see Ehm et al. (2016).

Predictive distributions ought to be calibrated (Dawid, 1984; Diebold et al., 1998; Gneiting 
et al., 2007), in the broad sense that they should be statistically compatible with the responses, 
and various notions of calibration have been proposed and studied. In the spirit of Gneiting & 
Ranjan (2013), we consider the joint distribution ℙ of the response Y and the distributional re-
gression FX. The most widely used criterion is probabilistic calibration, which requires that the 
probability integral transform (PIT), namely, the random variable 

(2)CRPS(F , y) = 2∫(0,1)QS�(F , y) d�

(3)= 2∫(0,1)∫ℝS
Q
�,�
(F , y) d� d�

(4)= ∫
ℝ
∫(0,1)S

P
z,c(F , y) dc dz,

(5)QS�(F , y) =

{
(1−�)(F−1(�)−y), y≤F−1(�),

�(y−F−1(�)), y≥F−1(�),

(6)SQ
𝛼,𝜃
(F , y) =

⎧⎪⎨⎪⎩

1−𝛼, y≤𝜃 <F−1(𝛼),

𝛼, F−1(𝛼)≤𝜃 < y,

0, otherwise,

(7)SPz,c(F , y) =

⎧⎪⎨⎪⎩

1−c, F(z)< c, y≤ z,
c, F(z)≥ c, y> z,
0, otherwise,

(8)Z = FX (Y−) + V
(
FX (Y ) − FX (Y−)

)
,
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be standard uniform, where FX (Y−) = limy↑YFX (y) and V is a standard uniform variable that is 
independent of FX and Y. If FX is continuous the PIT is simply Z = FX (Y ). Here we introduce the 
novel notion of threshold calibration, requiring that 

almost surely for y ∈ ℝ, which implies marginal calibration, defined as ℙ(Y ≤ y) = 𝔼(FX (y)) for 
y ∈ ℝ. If FX = (Y |X ) then it is calibrated in any of the above senses (Gneiting & Ranjan, 2013, 
Theorem 2.8).

2.2  |  Existence, uniqueness and universality

A partial order relation ⪯ on a set  has the same properties as a total order, namely reflexivity, 
antisymmetry and transitivity, except that the elements need not be comparable, that is, there 
might be elements x ∈  and x� ∈  such that neither x ⪯ x� nor x� ⪯ x holds. A key example is 
the componentwise order on ℝd.

For a positive integer n and a partially ordered set , we define the classes 

of the increasingly and decreasingly (totally) ordered tuples in , respectively. Similarly, given a fur-
ther partially ordered set  and a vector x = (x1, ⋯, xn) ∈ n, the classes 

comprise the increasingly and decreasingly (partially) ordered tuples in , with the order induced by 
the tuple x and the partial order ⪯ on .

Let I ⊆ ℝ be an interval, and let S be a proper scoring rule with respect to a class  of proba-
bility distributions on I that contains all distributions with finite support. Given training data in 
the form of a covariate vector x = (x1, …, xn) ∈ n and response vector y = (y1, …, yn) ∈ In , 
we may interpret any mapping from x ∈ n to n as a distributional regression function. 
Throughout, we equip  with the usual stochastic order.

Definition 1  (S-based regression). An element F̂ = (F̂1, …, F̂n) ∈ n is an S-based isotonic 
regression of y ∈ In on x ∈ n, if it is a minimizer of the empirical loss 

over all F = (F1, ⋯, Fn) in n
↑,x

.
In plain words, an S-based isotonic regression achieves the best fit in terms of the scoring rule 

S, subject to the conditional CDFs F̂1, …, F̂n satisfying partial order constraints induced by the 
covariate values x1, …, xn. The definition and the subsequent results can be extended to losses of 

(9)ℙ(Y ≤ y |FX (y)) = FX (y)

n
↑
={x= (x1, ⋯, xn)∈n: x1⪯⋯⪯ xn},

n
↓
={x= (x1, ⋯, xn)∈n: x1⪰⋯⪰ xn}

n
↑,x ={q= (q1, ⋯, qn)∈n: qi⪯qj if xi⪯ xj},

n
↓,x ={q= (q1, ⋯, qn)∈n: qi⪰qj if xi⪯ xj}

�S(F) =
1

n

n∑
i=1

S(Fi, yi)
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the form �S(F) =
∑n

i=1 wiS(Fi, yi) with rational, strictly positive weights w1, …, wn. The adapta-
tions are straightforward and left to the reader.

Furthermore, the definition of an S-based isotonic regression as a minimizer of �S continues 
to apply when  is equipped with a pre- or quasiorder ⪯ instead of a partial order. Preorders 
are not necessarily antisymmetric, and so there might be elements x, x′ such that x ⪯ x� and 
x� ⪯ x but x′ ≠ x. In this setting, we define x and x′ to be equivalent if x ⪯ x� and x� ⪯ x, and set 
[x]⪯p[x

�] if representatives u,u′ of the equivalence classes [x], [x′] satisfy u ⪯ u�. Then the binary 
relation ⪯p defines a partial order on the set of equivalence classes, and the S-based isotonic 
regression with the new covariates and the partial order ⪯p coincides with the original S-based 
isotonic regression.

In Supplementary Section S1 we prove the following result.

Theorem 1  (existence and uniqueness). There exists a unique CRPS-based isotonic regression 
F̂ ∈ n of y on x.

We refer to this unique F̂ as the IDR of y on x. In the particular case of a total order on the covari-
ate space, and assuming that x1 < ⋯ < xn, for each z  ∈  I the solution F̂(z) = (F̂1(z), …, F̂n(z)) 
is given by 

for i = 1, …, n; see Equations (1.9)–(1.13) of Barlow et al. (1972). A similar max–min formula applies 
under partial orders (Jordan et al., 2021; Robertson & Wright, 1980), and it follows that F̂ i is piece-
wise constant with any points of discontinuity at y1, …, yn.

At first sight, the specific choice of the CRPS as a loss function may seem arbitrary. However, 
the subsequent result, which we prove in Supplementary Section S1, reveals that IDR is simul-
taneously optimal with respect to broad classes of proper scoring rules that include all relevant 
choices in the extant literature. The popular logarithmic score allows for the comparison of abso-
lutely continuous distributions with respect to a fixed dominating measure only and thus is not 
applicable here. Statements concerning calibration are with respect to the empirical distribution 
of the training data (x1, y1), …, (xn, yn).

Theorem 2  (universality). The IDR solution F̂ of y on x is threshold calibrated and has the fol-
lowing properties. 

(a)	 �The IDR solution F̂  is an S-based isotonic regression of y on x under any scoring rule of the 
form 

or 

(10)F̂ i(z) = min
k=1,…,i

max
j=k,…,n

1

j − k + 1

j∑
l=k

�{yl ≤ z}

(11)S(F , y) = ∫(0, 1)×ℝS
Q
�,�
(F , y) dH(�, �)

(12)S(F , y) = ∫
ℝ×(0, 1)

SPz,c(F , y) dM(z, c),
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where SQ
�,�

 is the elementary quantile scoring function (6), SPz,c is the elementary probability scoring 
rule (7), and H and M are locally finite Borel measures on (0, 1) ×ℝ and ℝ × (0, 1), respectively.

(b)	 For every α  ∈  (0, 1) it holds that F̂
−1
(�) = (F̂

−1

1 (�), …, F̂
−1

n (�)) is a minimizer of 

over all � = (�1, …, �n) ∈ In
↑,x

, under any function s� : I × I → ℝ which is left-continuous in 
both arguments and such that S(F , y) = s�(F

−1(�), y) is a proper scoring rule on .

(c)	 �For every threshold value z  ∈  I, it is true that F̂(z) = (F̂1(z), …, F̂n(z)) is a minimizer of 

over all ordered tuples � = (�1, …, �n) ∈ [0, 1]n
↓,x

, under any function s: [0, 1] × {0, 1} → ℝ 
that is a proper scoring rule for binary events, which is left-continuous in its first argument, sat-
isfies s(0, y) = limp→0s(p, y), and is real-valued, except possibly s(0, 1) = −∞ or s(1, 0) = −∞.

The quantile weighted and threshold weighted versions of the CRPS studied by Gneiting & Ranjan 
(2011) arise from (11) and (12) with H = G0 ⊗ 𝜆 and M = 𝜆 ⊗ G1, where λ denotes the Lebesgue 
measure, and G0 and G1 are σ-finite Borel measures on (0, 1) and ℝ, respectively. If G0 and G1 are 
Lebesgue measures, we recover the mixture representations (3) and (4) of the CRPS. By results of 
Ehm et al. (2016), if H is concentrated on {�} ×ℝ and M is concentrated on {z } × (0,1), these repre-
sentations cover essentially all proper scoring rules that depend on the predictive distribution F via 
F−1(�) or F(z) only, yielding universal optimality in statements in parts (b) and (c) of Theorem 2.

In particular, as a special case of (13), the IDR solution is a minimizer of the quantile loss under 
the asymmetric piecewise linear or pinball function (5) that lies at the heart of quantile regression 
(Koenker, 2005). Consequently, as the mixture representation (2) of the CRPS may suggest, IDR nests 
classical non-parametric isotonic quantile regression as introduced and studied by Casady & Cryer 
(1976) and Robertson & Wright (1975). In other words, part (b) of Theorem 2 demonstrates that, if 
we (hypothetically) perform non-parametric isotonic quantile regression at every level α  ∈  (0, 1) and 
piece the conditional quantile functions together, we recover the IDR solution. However, the IDR 
solution is readily computable (Section 2.3), without invoking approximations or truncations, unlike 
brute force approaches to simultaneous quantile regressions. Loss functions of the form (13) also 
include the interval score (Gneiting & Raftery, 2007, equation (43); Winkler, 1972), which constitutes 
the most used proper performance measure for interval forecasts.

In the special case of a binary response variable, we see from (c) and (14) that the IDR solution is 
an S-based isotonic regression under just any applicable proper scoring rule S. Furthermore, thresh-
old calibration is the strongest possible notion of calibration in this setting (Gneiting & Ranjan, 2013, 
Theorem 2.11), so the IDR solution is universal in every regard. In the further special case of a total 
order on the covariate space, the IDR and pool adjacent violators (PAV) algorithm solutions coincide, 
and the statement in (c) is essentially equivalent to Theorem 1.12 of Barlow et al. (1972). In partic-
ular, the IDR or PAV solution yields both the non-parametric maximum likelihood estimate and 
the non-parametric least squares estimate under the constraint of isotonicity. The latter suggests a 
computational implementation via quadratic programming, to which we tend now.

(13)1

n

n∑
i=1

s�(�i, yi)

(14)1

n

n∑
i=1

s(�i, �{yi ≤ z})
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2.3  |  Computational aspects

The key observation towards a computational implementation is the aforementioned special 
case of (14), according to which the IDR solution F̂ ∈ n of y ∈ ℝ

n on x ∈ n satisfies 

at every threshold value z ∈ ℝ. In this light, the computation of the IDR CDF at any fixed threshold 
reduces to a quadratic programming problem. The above target function is constant in between the 
unique values of y1, …, yn, say ỹ1 < ⋯ < ỹm, and so it suffices to estimate the CDFs at these points 
only. In contrast, exact implementations based on quantiles would need to consider all levels of the 
form i/j with integers 1 ≤ i < j ≤ n, which is computationally prohibitive. In the threshold-based 
approach, the overall cost depends on the quadratic programming solver applied, and the compu-
tation becomes much faster if recursive relations between consecutive conditional CDFs F̂(ỹk) and 
F̂(ỹk−1) are taken advantage of. In the case of a total order, Henzi et al. (2020) describe a recursive 
adaptation of the PAV algorithm to IDR that considerably reduces the computation time as com-
pared to a naive implementation which does not take into account recursive relations. Under gen-
eral partial orders, active set methods for solutions to the quadratic programming problem (15) have 
been discussed by de Leeuw et al. (2009). In our implementation, we use the powerful quadratic 
programming solver OSQP (Stellato et al., 2020) as supplied by the package osqp in the statistical 
programming environment R (R Core Team, 2020; Stellato et al., 2019), which can be warm-started 
efficiently by taking F̂(ỹk−1) as a starting point for the computation of F̂(ỹk).

Clearly, a challenge in the computational implementation of IDR with general partial orders is 
that the number of variables in the quadratic programming problem (15) grows at a rate of (n). 	
As a remedy, we propose subsample aggregation, much in the spirit of random forests that rely 
on bootstrap aggregated (bagged) classification and regression trees (Breiman, 1996, 2001). It was 
observed early on that random forests generate conditional predictive distributions (Hothorn 
et al., 2004; Meinshausen, 2006), and recent applications include the statistical post-processing of 
ensemble weather forecasts (Schlosser et al., 2019; Taillardat et al., 2016; Taillardat et al., 2019). 
Bühlmann & Yu (2002) and Buja & Stützle (2006) argue forcefully that subsample aggregation 
(subagging) tends to be equally effective as bagging, but at considerably lower computational cost.

In view of the superlinear computational costs of IDR, smart uses of subsample aggregation yield 
major efficiency gains, taking into account that the estimation on different subsamples can be per-
formed in parallel. Isotonicity is preserved under linear aggregation, and the aggregated conditional 
CDFs can be inverted to generate isotonic conditional quantile functions, with the further benefit of 
smoother estimates in continuous settings. A detailed investigation of optimal subsample aggrega-
tion for IDR is a topic for future research. For illustration, Figure 2 returns to the simulation example 
in Figure 1, but now with a much larger training sample of size n = 10,000 from the distribution in 
(1). Linear aggregation based on 100 subsamples (drawn without replacement) of size n = 1000 each 
is superior to the brute force approach on the full training set in terms of estimation accuracy. The 
computation on the full dataset for this simulation example takes 11.7 s for the naive implementa-
tion, but only 1.1 s for the sequential algorithm of Henzi et al. (2020). Subagging gives computation 
times of 9.9 and 2.5 s, respectively, or 1.8 and 0.5 s when parallelized over eight cores.1

(15)F̂(z) = arg min
�∈ [0,1]n

↓,x

n∑
i=1

(
�i−�{yi≤ z})2

 1With Intel(R) Xeon(R) E5-2630 v4 2.20GHz CPUs, in R (R Core Team, 2020), using the doParallel package for 
parallelization. Times reported are averages over 100 replicates.
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