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Abstract
Isotonic	 distributional	 regression	 (IDR)	 is	 a	 powerful	
non-	parametric	 technique	 for	 the	 estimation	 of	 con-
ditional	 distributions	 under	 order	 restrictions.	 In	 a	
nutshell,	 IDR	 learns	 conditional	 distributions	 that	 are	
calibrated,	and	simultaneously	optimal	relative	to	com-
prehensive	classes	of	relevant	loss	functions,	subject	to	
isotonicity	constraints	in	terms	of	a	partial	order	on	the	
covariate	 space.	 Non-	parametric	 isotonic	 quantile	 re-
gression	and	non-	parametric	isotonic	binary	regression	
emerge	as	special	cases.	For	prediction,	we	propose	an	
interpolation	method	that	generalizes	extant	specifica-
tions	 under	 the	 pool	 adjacent	 violators	 algorithm.	 We	
recommend	 the	 use	 of	 IDR	 as	 a	 generic	 benchmark	
technique	in	probabilistic	forecast	problems,	as	it	does	
not	involve	any	parameter	tuning	nor	implementation	
choices,	 except	 for	 the	 selection	 of	 a	 partial	 order	 on	
the	covariate	space.	The	method	can	be	combined	with	
subsample	 aggregation,	 with	 the	 benefits	 of	 smoother	
regression	 functions	 and	 gains	 in	 computational	 ef-
ficiency.	 In	 a	 simulation	 study,	 we	 compare	 methods	
for	 distributional	 regression	 in	 terms	 of	 the	 continu-
ous	ranked	probability	score	(CRPS)	and	L2	estimation	
error,	which	are	closely	linked.	In	a	case	study	on	raw	
and	post-	processed	quantitative	precipitation	 forecasts	
from	 a	 leading	 numerical	 weather	 prediction	 system,	
IDR	is	competitive	with	state	of	the	art	techniques.
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1 |  INTRODUCTION

There	is	an	emerging	consensus	in	the	transdisciplinary	literature	that	regression	analysis	should	
be	distributional,	with	Hothorn	et al.	(2014)	arguing	forcefully	that	

[t]he	ultimate	goal	of	regression	analysis	is	to	obtain	information	about	the	condi-
tional	distribution	of	a	response	given	a	set	of	explanatory	variables.

Distributional	regression	marks	a	clear	break	from	the	classical	view	of	regression,	which	has	
focused	on	estimating	the	conditional	mean	of	the	response	variable	in	terms	of	one	or	more	explan-
atory	variable(s)	or	covariate(s).	Later	extensions	have	considered	other	functionals	of	the	condi-
tional	distributions,	such	as	quantiles	or	expectiles	(Koenker,	2005;	Newey	&	Powell,	1987;	Schulze	
Waltrup	et al.,	2015).	However,	the	reduction	of	a	conditional	distribution	to	a	single-	valued	func-
tional	results	in	tremendous	loss	of	information.	Therefore,	from	the	perspectives	of	both	estimation	
and	prediction,	regression	analysis	ought	to	be	distributional.

In	the	extant	literature,	both	parametric	and	non-	parametric	approaches	to	distributional	re-
gression	 are	 available.	 Parametric	 approaches	 assume	 that	 the	 conditional	 distribution	 of	 the	
response	is	of	a	specific	type	(e.g.	Gaussian)	with	an	analytic	relationship	between	the	covariates	
and	 the	 distributional	 parameters.	 Key	 examples	 include	 statistically	 post-	processed	 meteoro-
logical	and	hydrologic	forecasts,	as	exemplified	by	Gneiting	et al.	(2005),	Schefzik	et al.	(2013)	
and	Vannitsem	et al.	(2018).	In	powerful	semi-	parametric	variants,	the	conditional	distributions	
remain	parametric,	but	the	influence	of	the	covariates	on	the	parameter	values	is	modelled	non-	
parametrically,	 for	 example	by	using	generalized	additive	models	 (Klein	et al.,	 2015;	Rigby	&	
Stasinopoulos,	2005;	Umlauf	&	Kneib,	2018)	or	modern	neural	networks	(Gasthaus	et al.,	2019;	
Rasp	&	Lerch,	2018).	In	related	developments,	semiparametric	versions	of	quantile	regression	
(Koenker,	2005)	and	transformation	methods	(Hothorn	et al.,	2014)	can	be	leveraged	for	distri-
butional	regression.

Non-	parametric	approaches	to	distributional	regression	include	kernel	or	nearest	neighbour	
methods	that	depend	on	a	suitable	notion	of	distance	on	the	covariate	space.	Then,	the	empirical	
distribution	of	the	response	for	neighbouring	covariates	in	the	training	set	is	used	for	distribu-
tional	regression,	with	possible	weighting	in	dependence	on	the	distance	to	the	covariate	value	
of	interest.	Kernel	smoothing	methods	and	mixture	approaches	allow	for	absolutely	continuous	
conditional	distributions	(Dunson	et al.,	2007;	Hall	et al.,	1999;	Li	&	Racine,	2008).	Classification	
and	 regression	 trees	 partition	 the	 covariate	 space	 into	 leaves,	 and	 assign	 constant	 regression	
functions	on	each	leaf	(Breiman	et al.,	1984).	Linear	aggregation	via	bootstrap	aggregation	(bag-
ging)	or	subsample	aggregation	(subagging)	yields	random	forests	(Breiman,	2001),	which	are	
increasingly	being	used	to	generate	conditional	predictive	distributions,	as	proposed	by	Hothorn	
et al.	(2004)	and	Meinshausen	(2006).

Isotonicity	 is	 a	 natural	 constraint	 in	 estimation	 and	 prediction	 problems.	 Consider,	 for	
	example,	post-	processing	techniques	in	weather	forecasting,	where	the	covariates	stem	from	the	
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output	of	numerical	weather	prediction	(NWP)	models,	and	the	response	variable	is	the	respec-
tive	future	weather	quantity.	Intuitively,	if	the	NWP	model	output	indicates	a	larger	precipitation	
accumulation,	the	associated	regression	functions	ought	to	be	larger	as	well.	Isotonic	relation-
ships	of	this	type	hold	in	a	plethora	of	applied	settings.	In	fact,	standard	linear	regression	analysis	
rests	on	the	assumption	of	isotonicity,	in	the	form	of	monotonicity	in	the	values	of	the	covari-
ate(s),	save	for	changes	in	sign.

Concerning	non-	parametric	 regression	 for	a	conditional	 functional,	 such	as	 the	mean	or	a	
quantile,	there	is	a	sizable	literature	on	estimation	under	the	constraint	of	isotonicity.	The	clas-
sical	work	of	Ayer	et al.	(1955),	Bartholomew	(1959a,	b),	Brunk	(1955),	van	Eeden	(1958),	Miles	
(1959)	 is	 summarized	 in	Barlow	et al.	 (1972),	de	Leeuw	et al.	 (2009),	Robertson	et al.	 (1988).	
Subsequent	 approaches	 include	 Bayesian	 and	 non-	Bayesian	 smoothing	 techniques	 (e.g.	 Dette	
et al.,	2006;	Mammen,	1991;	Neelon	&	Dunson,	2004;	Shively	et al.,	2009),	and	reviews	are	avail-
able	in	Groeneboom	&	Jongbloed	(2014)	and	Guntuboyina	&	Sen	(2018).

In	distributional	regression,	it	may	not	be	immediately	clear	what	is	meant	by	isotonicity,	and	
the	literature	typically	considers	one	ordinal	covariate	only	(e.g.	Davidov	&	Iliopoulos,	2012;	El	
Barmi	&	Mukerjee,	2005;	Hogg,	1965;	Rojo	&	El	Barmi,	2003),	with	a	notable	exception	being	the	
work	of	Mösching	&	Dümbgen	(2020b),	whose	considerations	allow	for	a	real-	valued	covariate.	
In	the	general	case	of	a	partially	ordered	covariate	space,	which	we	consider	here,	it	is	unclear	
whether	semi-		or	non-	parametric	techniques	might	be	capable	of	handling	monotonicity	con-
traints,	and	suitable	notions	of	isotonicity	remain	to	be	developed.

To	this	end,	we	assume	that	the	response	Y	 is	real-	valued,	and	equip	the	covariate	space		
with	 a	 partial	 order	 ⪯.	 Our	 aim	 is	 to	 estimate	 the	 conditional	 distribution	 of	 Y	 given	 the	 co-
variate	X,	 for	short	(Y |X ),	on	training	data,	 in	a	way	that	respects	 the	partial	order,	and	we	
desire	 to	use	 this	estimate	 for	prediction.	Formally,	a	distributional	 regression	 technique	gen-
erates	 a	 mapping	 from	 x ∈ 	 to	 a	 probability	 measure	Fx,	 which	 serves	 to	 model	 the	 condi-
tional	distribution	(Y |X = x).	This	mapping	is	 isotonic	if	x ⪯ x�	 implies	Fx ≤st Fx′,	where	≤st	
denotes	 the	usual	 stochastic	order,	 that	 is,	G≤stH	 if	G(y) ≥ H(y)	 for	 y ∈ ℝ,	where	we	use	 the	
same	symbols	for	the	probability	measures	G,	H	and	their	associated	conditional	cumulative	dis-
tribution	functions	(CDFs).	Equivalently,	G≤stH	holds	if	G−1(�) ≤ H−1(�)	for	α ∈ (0, 1),	where	
G−1(�) = inf{y ∈ ℝ: G(y) ≥ �}	is	the	standard	quantile	function	(Shaked	&	Shanthikumar,	2007).

Useful	comparisons	of	predictive	distributions	are	in	terms	of	proper	scoring	rules,	of	which	
the	most	prominent	and	most	relevant	instance	is	the	continuous	ranked	probability	score	(CRPS;	
Gneiting	&	Raftery,	2007;	Matheson	&	Winkler,	1976).	We	show	that	there	is	a	unique	isotonic	
distributional	regression	that	is	optimal	with	respect	to	the	CPRS	(Theorem	1),	and	refer	to	it	as	
the	isotonic distributional regression	(IDR).	As	it	turns	out,	IDR	is	a	universal	solution,	in	that	the	
estimate	is	optimal	with	respect	to	a	broad	class	of	proper	scoring	rules	(Theorem	2).	Classical	
special	 cases	 such	 as	 non-	parametric	 isotonic	 quantile	 regression	 and	 probabilistic	 classifiers	
for	threshold-	defined	binary	events	are	nested	by	IDR.	Simultaneously,	IDR	avoids	pitfalls	com-
monly	associated	with	non-	parametric	distributional	regression,	such	as	suboptimal	partitions	of	
the	covariate	space	and	level	crossing	(Athey	et al.,	2019,	p.	1167).

For	illustration,	consider	the	joint	distribution	of	(X, Y),	where	X	is	uniform	on	(0, 10)	and	

so	that	(Y |X = x)≤st (Y |X = x�)	if	x ≤ x′.	Figure	1	shows	IDR	conditional	CDFs	and	quantiles	
as	estimated	on	a	training	set	of	size	n = 600.	IDR	is	capable	of	estimating	both	the	strongly	right-	
skewed	conditional	distributions	for	lower	values	of	X	and	the	more	symmetric	distributions	as	X	

(1)Y �X ∼ Gamma(shape =
√
X , scale =min{max{X , 1}, 6}),
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increases.	The	CDFs	are	piecewise	constant,	and	they	never	cross	each	other.	The	computational	
cost	of	IDR	is	of	order	at	least	(nlogn)	and	may	become	prohibitive	as	n	grows.	However,	IDR	can	
usefully	be	combined	with	subsample	aggregation	(subagging),	much	in	the	spirit	of	random	for-
ests	(Breiman,	2001),	with	the	benefits	of	reduced	computational	cost	under	large	training	samples,	
smoother	regression	functions,	and	(frequently)	improved	predictive	performance.

The	remainder	of	the	paper	is	organized	as	follows.	The	methodological	core	of	the	paper	is	
in	Section	2,	where	we	prove	existence,	uniqueness	and	universality	of	 the	IDR	solution,	dis-
cuss	computational	issues	and	asymptotic	consistency,	and	propose	strategies	for	prediction.	In	
Section	3,	we	 turn	 to	 the	critical	 issue	of	 the	choice	of	a	partial	order	on	 the	covariate	space.	
Section	 4	 reports	 on	 a	 comparative	 simulation	 study	 that	 addresses	 both	 prediction	 and	 esti-
mation,	and	Section	5	is	devoted	to	a	case	study	on	probabilistic	quantitative	precipitation	fore-
casts,	with	covariates	provided	by	the	European	Centre	for	Medium-	Range	Weather	Forecasts	
(ECMWF)	ensemble	system.	Precipitation	accumulations	feature	unfavourable	properties	 that	
challenge	parametric	approaches	to	distributional	regression:	The	conditional	distributions	have	
a	point	mass	at	zero,	and	they	are	continuous	and	right	skewed	on	the	positive	half-	axis.	In	a	

F I G U R E  1 	 Simulation	example	for	a	sample	of	size	n = 600	from	the	distribution	in	(1):	(a)	True	
conditional	CDFs	(smooth)	and	IDR	estimates	(step	functions)	for	selected	values	of	the	covariate.	(b)	IDR	
estimated	conditional	distributions.	The	shaded	bands	correspond	to	probability	mass	0.10	each,	with	the	
darkest	shade	marking	the	central	interval.	Vertical	strips	indicate	the	cross-	sections	corresponding	to	the	values	
of	the	covariate	in	panel	(a)	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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comparison	 to	state-	of-	the-	art	methods	 that	have	been	developed	specifically	 for	 the	purpose,	
namely	Bayesian	model	averaging	(BMA;	Sloughter	et al.,	2007),	ensemble	model	output	statis-
tics	(EMOS;	Scheuerer,	2014)	and	heteroscedastic	censored	logistic	regression	(HCLR;	Messner	
et  al.,	 2014),	 the	 (out-	of-	sample)	 predictive	 performance	 of	 IDR	 is	 competitive,	 despite	 the	
method	being	generic,	and	being	fully	automatic	once	a	partial	order	on	the	covariate	space	has	
been	chosen.

We	close	the	paper	with	a	discussion	in	Section	6,	where	we	argue	that	IDR	provides	a	very	
widely	 applicable,	 competitive	 benchmark	 in	 probabilistic	 forecasting	 problems.	 The	 use	 of	
benchmark	 techniques	 has	 been	 called	 for	 across	 application	 domains	 (e.g.	 Basel	 Committee	
on	Banking	Supervision,	2016;	Pappenberger	et al.,	2015;	Rossi,	2013;	Vogel	et al.,	2018),	and	
suitable	methods	should	be	competitive	in	terms	of	predictive	performance,	while	avoiding	im-
plementation	decisions	that	may	vary	from	user	to	user.	IDR	is	well	suited	to	this	purpose,	as	it	
is	entirely	generic,	does	not	involve	any	implementation	decisions,	other	than	the	choice	of	the	
partial	 order,	 applies	 to	 all	 types	 of	 real-	valued	 outcomes	 with	 discrete,	 continuous	 or	 mixed	
discrete-	continuous	distributions,	and	accommodates	general	types	of	covariate	spaces.

2 |  ISOTONIC DISTRIBUTIONAL REGRESSION

We	proceed	to	introduce	the	IDR	technique.	To	this	end,	we	first	review	basic	facts	on	proper	scor-
ing	rules	and	notions	of	calibration.	Then	we	define	the	IDR	solution,	prove	existence,	unique-
ness	and	universality,	and	discuss	its	computation	and	asymptotic	consistency.	Thereafter,	we	
turn	from	estimation	to	prediction	and	describe	how	IDR	can	be	used	in	out-	of-	sample	forecast-
ing.	Throughout,	we	identify	a	Borel	probability	measure	on	the	real	line	ℝ	with	its	cumulative	
distribution	function	(CDF),	and	we	denote	the	extended	real	line	by	ℝ = [ −∞, ∞].

2.1 | Preliminaries

Following	Gneiting	&	Raftery	(2007),	we	argue	that	distributional	regression	techniques	should	
be	 compared	 and	 evaluated	 using	 proper	 scoring	 rules.	 A	 proper scoring rule	 is	 a	 function	
S:  ×ℝ → ℝ,	where		is	a	suitable	class	of	probability	measures	on	ℝ,	such	that	S(F, ·)	is	meas-
urable	for	any	F ∈ ,	the	integral	∫S(G, y)	dF(y)	exists,	and	

for	all	F , G ∈ .	A	key	example	is	the	continuous ranked probability score	(CRPS),	which	is	defined	
for	all	Borel	probability	measures,	and	given	as	

Introduced	by	Matheson	&	Winkler	(1976),	the	CRPS	has	become	popular	across	application	areas	
and	methodological	communities,	both	for	the	purposes	of	evaluating	predictive	performance	and	
as	 a	 loss	 function	 in	 estimation;	 see,	 for	 example,	 Gasthaus	 et  al.	 (2019),	 Gneiting	 et  al.	 (2005),	
Hersbach	(2000),	Hothorn	et al.	(2014),	Pappenberger	et al.	(2015)	and	Rasp	&	Lerch	(2018).	The	

� S(F , y) dF(y) ≤ � S(G, y) dF(y)

CRPS(F , y) = �
ℝ

(
F(z)−𝟙{y≤ z})2 dz.
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CRPS	is	reported	in	the	same	unit	as	the	response	variable,	and	it	reduces	to	the	absolute	error,	|x−y|,	
if	F	is	the	point	or	Dirac	measure	in	x ∈ ℝ.

Results	in	Ben	Bouallègue	et al.	(2018),	Ehm	et al.	(2016)	and	Laio	&	Tamea	(2007)	imply	that	
the	CRPS	can	be	represented	equivalently	as	

where	the	mixture	representation	(2)	is	in	terms	of	the	asymmetric	piecewise	linear	or	pinball	loss,	

which	is	customarily	thought	of	as	a	quantile	loss	function,	but	can	be	identified	with	a	proper	scor-
ing	rule	(Gneiting,	2011,	Theorem	3).	The	representations	(3)	and	(4)	express	the	CRPS	in	terms	of	
the	elementary	or	extremal scoring functions	for	the	α-	quantile	functional,	namely,	

where	� ∈ ℝ;	and	for	probability	assessments	of	the	binary	outcome	�{y ≤ z}	at	the	threshold	value	
z ∈ ℝ,	namely	

where	c  ∈  (0, 1).	For	background	information	on	elementary	or	extremal	scoring	functions	and	
related	concepts	see	Ehm	et al.	(2016).

Predictive	distributions	ought	 to	be	calibrated	 (Dawid,	1984;	Diebold	et al.,	1998;	Gneiting	
et al.,	2007),	in	the	broad	sense	that	they	should	be	statistically	compatible	with	the	responses,	
and	various	notions	of	calibration	have	been	proposed	and	studied.	In	the	spirit	of	Gneiting	&	
Ranjan	(2013),	we	consider	the	joint	distribution	ℙ	of	the	response	Y	and	the	distributional	re-
gression	FX.	The	most	widely	used	criterion	is	probabilistic calibration,	which	requires	that	the	
probability integral transform	(PIT),	namely,	the	random	variable	

(2)CRPS(F , y) = 2∫(0,1)QS�(F , y) d�

(3)= 2∫(0,1)∫ℝS
Q
�,�
(F , y) d� d�

(4)= ∫
ℝ
∫(0,1)S

P
z,c(F , y) dc dz,

(5)QS�(F , y) =

{
(1−�)(F−1(�)−y), y≤F−1(�),

�(y−F−1(�)), y≥F−1(�),

(6)SQ
𝛼,𝜃
(F , y) =

⎧⎪⎨⎪⎩

1−𝛼, y≤𝜃 <F−1(𝛼),

𝛼, F−1(𝛼)≤𝜃 < y,

0, otherwise,

(7)SPz,c(F , y) =

⎧⎪⎨⎪⎩

1−c, F(z)< c, y≤ z,
c, F(z)≥ c, y> z,
0, otherwise,

(8)Z = FX (Y−) + V
(
FX (Y ) − FX (Y−)

)
,
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be	 standard	 uniform,	 where	 FX (Y−) = limy↑YFX (y)	 and	 V	 is	 a	 standard	 uniform	 variable	 that	 is	
	independent	of	FX	and	Y.	If	FX	is	continuous	the	PIT	is	simply	Z = FX (Y ).	Here	we	introduce	the	
novel	notion	of	threshold calibration,	requiring	that	

almost	surely	for	y ∈ ℝ,	which	implies	marginal calibration,	defined	as	ℙ(Y ≤ y) = 𝔼(FX (y))	for	
y ∈ ℝ.	If	FX = (Y |X )	then	it	is	calibrated	in	any	of	the	above	senses	(Gneiting	&	Ranjan,	2013,	
Theorem	2.8).

2.2 | Existence, uniqueness and universality

A	partial	order	relation	⪯	on	a	set		has	the	same	properties	as	a	total	order,	namely	reflexivity,	
antisymmetry	and	transitivity,	except	that	the	elements	need	not	be	comparable,	that	is,	there	
might	be	elements	x ∈ 	and	x� ∈ 	such	that	neither	x ⪯ x�	nor	x� ⪯ x	holds.	A	key	example	is	
the	componentwise	order	on	ℝd.

For	a	positive	integer	n	and	a	partially	ordered	set	,	we	define	the	classes	

of	the	increasingly	and	decreasingly	(totally)	ordered	tuples	in	,	respectively.	Similarly,	given	a	fur-
ther	partially	ordered	set		and	a	vector	x = (x1, ⋯, xn) ∈ n,	the	classes	

comprise	the	increasingly	and	decreasingly	(partially)	ordered	tuples	in	,	with	the	order	induced	by	
the	tuple	x	and	the	partial	order	⪯	on	.

Let	I ⊆ ℝ	be	an	interval,	and	let	S	be	a	proper	scoring	rule	with	respect	to	a	class		of	proba-
bility	distributions	on	I	that	contains	all	distributions	with	finite	support.	Given	training	data	in	
the	form	of	a	covariate	vector	x = (x1, …, xn) ∈ n	and	response	vector	 y = (y1, …, yn) ∈ In	,	
we	 may	 interpret	 any	 mapping	 from	 x ∈ n	 to	n	 as	 a	 distributional	 regression	 function.	
Throughout,	we	equip		with	the	usual	stochastic	order.

Definition 1	 (S-	based	regression).	An	element	 F̂ = (F̂1, …, F̂n) ∈ n	 is	an	S-	based isotonic 
regression	of	y ∈ In	on	x ∈ n,	if	it	is	a	minimizer	of	the	empirical	loss	

over	all	F = (F1, ⋯, Fn)	in	n
↑,x

.
In	plain	words,	an	S-	based	isotonic	regression	achieves	the	best	fit	in	terms	of	the	scoring	rule	

S,	subject	to	the	conditional	CDFs	F̂1, …, F̂n	satisfying	partial	order	constraints	induced	by	the	
covariate	values	x1, …, xn.	The	definition	and	the	subsequent	results	can	be	extended	to	losses	of	

(9)ℙ(Y ≤ y |FX (y)) = FX (y)

n
↑
={x= (x1, ⋯, xn)∈n: x1⪯⋯⪯ xn},

n
↓
={x= (x1, ⋯, xn)∈n: x1⪰⋯⪰ xn}

n
↑,x ={q= (q1, ⋯, qn)∈n: qi⪯qj if xi⪯ xj},

n
↓,x ={q= (q1, ⋯, qn)∈n: qi⪰qj if xi⪯ xj}

�S(F) =
1

n

n∑
i=1

S(Fi, yi)
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the	form	�S(F) =
∑n

i=1 wiS(Fi, yi)	with	rational,	strictly	positive	weights	w1, …, wn.	The	adapta-
tions	are	straightforward	and	left	to	the	reader.

Furthermore,	the	definition	of	an	S-	based	isotonic	regression	as	a	minimizer	of	�S	continues	
to	apply	when		 is	equipped	with	a	pre-		or	quasiorder	⪯	 instead	of	a	partial	order.	Preorders	
are	not	necessarily	antisymmetric,	 and	 so	 there	might	be	elements	 x, x′	 such	 that	 x ⪯ x�	 and	
x� ⪯ x	but	x′ ≠ x.	In	this	setting,	we	define	x	and	x′	to	be	equivalent	if	x ⪯ x�	and	x� ⪯ x,	and	set	
[x]⪯p[x

�]	if	representatives	u,u′	of	the	equivalence	classes	[x], [x′]	satisfy	u ⪯ u�.	Then	the	binary	
relation	⪯p	 defines	 a	 partial	 order	 on	 the	 set	 of	 equivalence	 classes,	 and	 the	 S-	based	 isotonic	
regression	with	the	new	covariates	and	the	partial	order	⪯p	coincides	with	the	original	S-	based	
isotonic	regression.

In	Supplementary	Section	S1	we	prove	the	following	result.

Theorem 1 (existence and uniqueness). There exists a unique CRPS- based isotonic regression 
F̂ ∈ n of y on x.

We	refer	to	this	unique	F̂	as	the	IDR	of	y	on	x.	In	the	particular	case	of	a	total	order	on	the	covari-
ate	space,	and	assuming	that	x1 < ⋯ < xn,	for	each	z  ∈  I	the	solution	F̂(z) = (F̂1(z), …, F̂n(z))	
is	given	by	

for	i = 1, …, n;	see	Equations	(1.9)–	(1.13)	of	Barlow	et al.	(1972).	A	similar	max–	min	formula	applies	
under	partial	orders	(Jordan	et al.,	2021;	Robertson	&	Wright,	1980),	and	it	follows	that	F̂ i	is	piece-
wise	constant	with	any	points	of	discontinuity	at	y1, …, yn.

At	first	sight,	the	specific	choice	of	the	CRPS	as	a	loss	function	may	seem	arbitrary.	However,	
the	subsequent	result,	which	we	prove	in	Supplementary	Section	S1,	reveals	that	IDR	is	simul-
taneously	optimal	with	respect	to	broad	classes	of	proper	scoring	rules	that	include	all	relevant	
choices	in	the	extant	literature.	The	popular	logarithmic	score	allows	for	the	comparison	of	abso-
lutely	continuous	distributions	with	respect	to	a	fixed	dominating	measure	only	and	thus	is	not	
applicable	here.	Statements	concerning	calibration	are	with	respect	to	the	empirical	distribution	
of	the	training	data	(x1, y1), …, (xn, yn).

Theorem 2 (universality). The IDR solution F̂ of y on x is threshold calibrated and has the fol-
lowing properties. 

(a)	  The IDR solution F̂  is an S- based isotonic regression of y on x under any scoring rule of the 
form	

or 

(10)F̂ i(z) = min
k=1,…,i

max
j=k,…,n

1

j − k + 1

j∑
l=k

�{yl ≤ z}

(11)S(F , y) = ∫(0, 1)×ℝS
Q
�,�
(F , y) dH(�, �)

(12)S(F , y) = ∫
ℝ×(0, 1)

SPz,c(F , y) dM(z, c),
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where SQ
�,�

 is the elementary quantile scoring function (6), SPz,c is the elementary probability scoring 
rule (7), and H and M are locally finite Borel measures on (0, 1) ×ℝ and ℝ × (0, 1), respectively.

(b)	 For every	α  ∈  (0, 1)	it holds that	F̂
−1
(�) = (F̂

−1

1 (�), …, F̂
−1

n (�))	is a minimizer of	

over all � = (�1, …, �n) ∈ In
↑,x

, under any function s� : I × I → ℝ which is left- continuous in 
both arguments and such that S(F , y) = s�(F

−1(�), y) is a proper scoring rule on .

(c)	  For every threshold value z  ∈  I, it is true that F̂(z) = (F̂1(z), …, F̂n(z)) is a minimizer of 

over all ordered tuples � = (�1, …, �n) ∈ [0, 1]n
↓,x

,	under any function s: [0, 1] × {0, 1} → ℝ 
that is a proper scoring rule for binary events, which is left- continuous in its first argument, sat-
isfies s(0, y) = limp→0s(p, y), and is real- valued, except possibly s(0, 1) = −∞	or	s(1, 0) = −∞.

The	quantile	weighted	and	threshold	weighted	versions	of	the	CRPS	studied	by	Gneiting	&	Ranjan	
(2011)	arise	from	(11)	and	(12)	with	H = G0 ⊗ 𝜆	and	M = 𝜆 ⊗ G1,	where	λ	denotes	the	Lebesgue	
measure,	and	G0	and	G1	are	σ-	finite	Borel	measures	on	(0, 1)	and	ℝ,	respectively.	If	G0	and	G1	are	
Lebesgue	measures,	we	recover	the	mixture	representations	(3)	and	(4)	of	the	CRPS.	By	results	of	
Ehm	et al.	(2016),	if	H	is	concentrated	on	{�} ×ℝ	and	M	is	concentrated	on	{z } × (0,1),	these	repre-
sentations	cover	essentially	all	proper	scoring	rules	that	depend	on	the	predictive	distribution	F	via	
F−1(�)	or	F(z)	only,	yielding	universal	optimality	in	statements	in	parts	(b)	and	(c)	of	Theorem	2.

In	particular,	as	a	special	case	of	(13),	the	IDR	solution	is	a	minimizer	of	the	quantile	loss	under	
the	asymmetric	piecewise	linear	or	pinball	function	(5)	that	lies	at	the	heart	of	quantile	regression	
(Koenker,	2005).	Consequently,	as	the	mixture	representation	(2)	of	the	CRPS	may	suggest,	IDR	nests	
classical	non-	parametric	isotonic	quantile	regression	as	introduced	and	studied	by	Casady	&	Cryer	
(1976)	and	Robertson	&	Wright	(1975).	In	other	words,	part	(b)	of	Theorem	2	demonstrates	that,	if	
we	(hypothetically)	perform	non-	parametric	isotonic	quantile	regression	at	every	level	α  ∈  (0, 1)	and	
piece	the	conditional	quantile	functions	together,	we	recover	the	IDR	solution.	However,	the	IDR	
solution	is	readily	computable	(Section	2.3),	without	invoking	approximations	or	truncations,	unlike	
brute	force	approaches	to	simultaneous	quantile	regressions.	Loss	functions	of	the	form	(13)	also	
include	the	interval	score	(Gneiting	&	Raftery,	2007,	equation	(43);	Winkler,	1972),	which	constitutes	
the	most	used	proper	performance	measure	for	interval	forecasts.

In	the	special	case	of	a	binary	response	variable,	we	see	from	(c)	and	(14)	that	the	IDR	solution	is	
an	S-	based	isotonic	regression	under	just	any	applicable	proper	scoring	rule	S.	Furthermore,	thresh-
old	calibration	is	the	strongest	possible	notion	of	calibration	in	this	setting	(Gneiting	&	Ranjan,	2013,	
Theorem	2.11),	so	the	IDR	solution	is	universal	in	every	regard.	In	the	further	special	case	of	a	total	
order	on	the	covariate	space,	the	IDR	and	pool	adjacent	violators	(PAV)	algorithm	solutions	coincide,	
and	the	statement	in	(c)	is	essentially	equivalent	to	Theorem	1.12	of	Barlow	et al.	(1972).	In	partic-
ular,	 the	IDR	or	PAV	solution	yields	both	the	non-	parametric	maximum	likelihood	estimate	and	
the	non-	parametric	least	squares	estimate	under	the	constraint	of	isotonicity.	The	latter	suggests	a	
computational	implementation	via	quadratic	programming,	to	which	we	tend	now.

(13)1

n

n∑
i=1

s�(�i, yi)

(14)1

n

n∑
i=1

s(�i, �{yi ≤ z})
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2.3 | Computational aspects

The	 key	 observation	 towards	 a	 computational	 implementation	 is	 the	 aforementioned	 special	
case	of	(14),	according	to	which	the	IDR	solution	F̂ ∈ n	of	y ∈ ℝ

n	on	x ∈ n	satisfies	

at	every	threshold	value	z ∈ ℝ.	In	this	light,	the	computation	of	the	IDR	CDF	at	any	fixed	threshold	
reduces	to	a	quadratic	programming	problem.	The	above	target	function	is	constant	in	between	the	
unique	values	of	y1, …, yn,	say	ỹ1 < ⋯ < ỹm,	and	so	it	suffices	to	estimate	the	CDFs	at	these	points	
only.	In	contrast,	exact	implementations	based	on	quantiles	would	need	to	consider	all	levels	of	the	
form	i/j	with	integers	1 ≤ i < j ≤ n,	which	is	computationally	prohibitive.	In	the	threshold-	based	
approach,	the	overall	cost	depends	on	the	quadratic	programming	solver	applied,	and	the	compu-
tation	becomes	much	faster	if	recursive	relations	between	consecutive	conditional	CDFs	F̂(ỹk)	and	
F̂(ỹk−1)	are	taken	advantage	of.	In	the	case	of	a	total	order,	Henzi	et al.	(2020)	describe	a	recursive	
adaptation	of	the	PAV	algorithm	to	IDR	that	considerably	reduces	the	computation	time	as	com-
pared	to	a	naive	implementation	which	does	not	take	into	account	recursive	relations.	Under	gen-
eral	partial	orders,	active	set	methods	for	solutions	to	the	quadratic	programming	problem	(15)	have	
been	discussed	by	de	Leeuw	et al.	(2009).	In	our	implementation,	we	use	the	powerful	quadratic	
programming	solver	OSQP	(Stellato	et al.,	2020)	as	supplied	by	the	package	osqp	in	the	statistical	
programming	environment	R	(R	Core	Team,	2020;	Stellato	et al.,	2019),	which	can	be	warm-	started	
efficiently	by	taking	F̂(ỹk−1)	as	a	starting	point	for	the	computation	of	F̂(ỹk).

Clearly,	a	challenge	in	the	computational	implementation	of	IDR	with	general	partial	orders	is	
that	the	number	of	variables	in	the	quadratic	programming	problem	(15)	grows	at	a	rate	of	(n).		
As	a	remedy,	we	propose	subsample	aggregation,	much	in	the	spirit	of	random	forests	that	rely	
on	bootstrap	aggregated	(bagged)	classification	and	regression	trees	(Breiman,	1996,	2001).	It	was	
observed	 early	 on	 that	 random	 forests	 generate	 conditional	 predictive	 distributions	 (Hothorn	
et al.,	2004;	Meinshausen,	2006),	and	recent	applications	include	the	statistical	post-	processing	of	
ensemble	weather	forecasts	(Schlosser	et al.,	2019;	Taillardat	et al.,	2016;	Taillardat	et al.,	2019).	
Bühlmann	 &	Yu	 (2002)	 and	 Buja	 &	 Stützle	 (2006)	 argue	 forcefully	 that	 subsample	 aggregation	
(subagging)	tends	to	be	equally	effective	as	bagging,	but	at	considerably	lower	computational	cost.

In	view	of	the	superlinear	computational	costs	of	IDR,	smart	uses	of	subsample	aggregation	yield	
major	efficiency	gains,	taking	into	account	that	the	estimation	on	different	subsamples	can	be	per-
formed	in	parallel.	Isotonicity	is	preserved	under	linear	aggregation,	and	the	aggregated	conditional	
CDFs	can	be	inverted	to	generate	isotonic	conditional	quantile	functions,	with	the	further	benefit	of	
smoother	estimates	in	continuous	settings.	A	detailed	investigation	of	optimal	subsample	aggrega-
tion	for	IDR	is	a	topic	for	future	research.	For	illustration,	Figure	2	returns	to	the	simulation	example	
in	Figure	1,	but	now	with	a	much	larger	training	sample	of	size	n = 10,000	from	the	distribution	in	
(1).	Linear	aggregation	based	on	100	subsamples	(drawn	without	replacement)	of	size	n = 1000	each	
is	superior	to	the	brute	force	approach	on	the	full	training	set	in	terms	of	estimation	accuracy.	The	
computation	on	the	full	dataset	for	this	simulation	example	takes	11.7 s	for	the	naive	implementa-
tion,	but	only	1.1 s	for	the	sequential	algorithm	of	Henzi	et al.	(2020).	Subagging	gives	computation	
times	of	9.9	and	2.5 s,	respectively,	or	1.8	and	0.5 s	when	parallelized	over	eight	cores.1

(15)F̂(z) = arg min
�∈ [0,1]n

↓,x

n∑
i=1

(
�i−�{yi≤ z})2

	1With	Intel(R)	Xeon(R)	E5-	2630	v4	2.20GHz	CPUs,	in	R	(R	Core	Team,	2020),	using	the	doParallel	package	for	
parallelization.	Times	reported	are	averages	over	100	replicates.
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2.4 | Consistency

We	proceed	to	prove	uniform	consistency	of	the	IDR	estimator.	While	strong	consistency	of	non-	
parametric	isotonic	quantile	regression	for	single	quantiles	was	proved	decades	ago	(Casady	&	
Cryer,	1976;	Robertson	&	Wright,	1975),	uniform	consistency	and	rates	of	convergence	for	the	
IDR	estimator	have	been	established	only	recently,	and	exclusively	in	the	case	of	a	total	order,	
see	El	Barmi	&	Mukerjee	(2005,	Theorem	1)	and	Mösching	&	Dümbgen	(2020b,	Theorem	3.3).

For	 x ∈ 	 and	 y ∈ ℝ,	 let	 F̂x(y)	 denote	 the	 IDR	 estimate	 based	 on	 fixed	 or	 random	 pairs	
(X1, Y1), …, (Xn, Yn).	As	introduced	thus	far,	the	IDR	solution	F̂ = (F̂1, …, F̂n)	is	defined	at	the	
covariate	values	X1, …, Xn ∈ 	only.	For	general	x ∈ ,	we	merely	assume	that	F̂x(y)	is	some	
value	in	between	the	bounds	given	by	

Here,	we	define	the	sets	of	the	indices	of	direct predecessors	and	direct successors	of	x ∈ 	among	
the	covariate	values	as	

(16)max
i∈ s(x)

F̂ i(y) ≤ F̂x(y) ≤ min
i∈p(x)

F̂ i(y).

F I G U R E  2 	 Simulation	example	for	a	sample	of	size	n = 10,000	from	the	distribution	in	(1).	The	true	
conditional	CDFs	(smooth	dashed	graphs)	are	compared	to	IDR	estimates	(step	functions)	based	on	(a)	the	full	
training	sample	of	size	n = 10,000	and	(b)	linear	aggregation	of	IDR	estimates	on	100	subsamples	of	size	1000	
each	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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and	

respectively.
In	 Supplementary	 Section	 S2,	 we	 establish	 the	 following	 consistency	 theorem,	 which	

covers	key	examples	of	partial	orders	and	is	based	on	strictly	weaker	assumptions	than	the	
results	 of	 Mösching	 &	 Dümbgen	 (2020b).	 However,	 in	 contrast	 to	 their	 work,	 we	 do	 not	
provide	rates	of	convergence.	The	choice	 = [0, 1]d	for	the	covariate	space	merely	serves	to	
simplify	the	presentation:	As	IDR	is	invariant	under	strictly	isotonic	transformations,	any	
covariate	 vector	X = (X1, …, Xd) ∈ ℝ

d	 can	 be	 transformed	 to	 have	 support	 in	[0, 1]d,	 and	
the	componentwise	partial	order	can	be	replaced	by	any	weaker	preorder.	A	key	assumption	
uses	the	concept	of	an	antichain	in	a	partially	ordered	set	( , ⪯ ),	which	is	a	subset	A ⊆ 	
that	does	not	admit	comparisons,	in	the	sense	that	u ⪯ v	for	u, v  ∈  A	implies	u = v.	As	we	
discuss	 subsequently,	 results	of	Brightwell	 (1992)	 imply	 that	 the	 respective	distributional	
condition	is	mild.

Theorem 3 (uniform consistency). Let  = [0, 1]d be endowed with the componentwise par-
tial order and the norm ‖u‖ = maxi=1,…,d �ui � . Let further (Xni, Yni) ∈ [0, 1]d ×ℝ, n ∈ ℕ,  
i = 1, …, n, be a triangular array such that (Xn1,Yn1), …, (Xnn,Ynn) are independent and 
identically distributed random vectors for each n ∈ ℕ, and let Sn = {Xn1, …, Xnn}. Assume 
that 

(a) for all non- degenerate rectangles J ⊆ , there exists a constant cJ > 0 such that 

with asymptotic probability one, that is, if An denotes the event that #(Sn ∩ J) ≥ ncJ, then ℙ(An) 
→ 1 as n → ∞;

(b) for some γ  ∈  (0,1), 

with asymptotic probability one.

Assume further that the true conditional CDFs Fx(y) = ℙ(Yni ≤ y |Xni = x) satisfy

(c) Fx(y) is decreasing in x for all y ∈ ℝ;
(d) for every 𝜂 > 0, there exists r > 0 such that 

(17)p(x) = {i ∈ {1, …, n}: Xi ⪯ Xj ⪯ x ⇒ Xj = Xi, j = 1, …, n}

(18)s(x) = {i ∈ {1, …, n}: x ⪯ Xj ⪯ Xi ⇒ Xj = Xi, j = 1, …, n},

#(Sn ∩ J) ≥ ncJ

max{#A:A ⊂ Sn is antichain} ≤ n𝛾

sup{ �Fx(y) − Fx�(y) � : x, x� ∈ [0, 1]d, ‖x − x�‖ ≤ r, y ∈ ℝ} < 𝜂.
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Then for every ε > 0 and δ > 0, 

Assumption	(a)	requires	that	the	covariates	are	sufficiently	dense	in	,	as	is	satisfied	under	
strictly	positive	Lebesgue	densities	on	.	In	order	to	derive	rates	of	convergence,	the	size	of	
the	rectangles	J	 in	(a)	would	need	to	decrease	with	n,	as	 in	condition	(A.2)	of	Mösching	&	
Dümbgen	(2020b);	we	leave	this	type	of	extension	as	a	direction	for	future	work.	Assumption	
(c)	 is	 the	 basic	 model	 assumption	 of	 IDR,	 while	 assumption	 (d)	 requires	 uniform	 continuity	
of	the	conditional	distributions,	which	is	weaker	than	Hölder	continuity	in	condition	(A.1)	of	
Mösching	&	Dümbgen	(2020b).

Assumption	(b),	which	is	always	satisfied	in	the	case	of	a	total	order,	calls	for	a	more	detailed	
discussion.	In	words,	the	maximal	number	of	mutually	incomparable	elements	needs	to	grow	
at	a	rate	slower	than	n�.	Evidently,	the	easier	elements	can	be	ordered,	the	smaller	the	maximal	
antichain.	Consequently,	Theorem	3	continues	to	hold	under	the	empirical	stochastic	order	and	
the	empirical	 increasing	convex	order	on	the	covariates	 introduced	in	Section	3.3,	and	indeed	
under	 any	 preorder	 that	 is	 weaker	 than	 the	 componentwise	 order.	The	 key	 to	 understanding	
the	distributional	implications	of	(b)	is	Corollary	2	in	Brightwell	(1992),	which	states	that	for	a	
sequence	of	independent	random	vectors	from	a	uniform	population	on	[0, 1]d	the	size	of	a	max-
imal	antichain	grows	at	a	rate	of	n1−1∕d;	see	also	the	remark	following	the	proof	of	Theorem	3	in	
Supplementary	Section	S2.

As	 comparability	 under	 the	 componentwise	 order	 is	 preserved	 under	 monotonic	 transfor-
mations,	 any	 covariate	vector	X ∈ ℝ

d	 that	 can	be	obtained	as	a	monotone	 transformation	of	
a	uniform	random	vector	of	arbitrary	dimension	guarantees	(b).	This	includes,	for	example	all	
Gaussian	random	vectors	with	non-	negative	correlation	coefficients.	In	this	light,	assumption	(b)	
is	rather	weak,	and	well	in	line	with	the	intuition	that	for	multivariate	isotonic	(distributional)	re-
gression	to	work	well,	there	ought	be	at	least	minor	positive	dependence	between	the	covariates.	
In	the	context	of	our	case	study	in	Section	5,	high	positive	correlations	between	the	covariates	are	
the	rule,	as	exemplified	by	Table	3	in	Raftery	et al.	(2005).

2.5 | Prediction

As	noted,	the	IDR	solution	F̂ = (F̂1, …, F̂n) ∈ n
↑,x

	is	defined	at	the	covariate	values	x1, …, xn ∈ 	
only.	 Generally,	 if	 a	 (not	 necessarily	 optimal)	 distributional	 regression	F = (F1, …, Fn) ∈ n

↑,x	 is	
available,	a	key	task	in	practice	is	to	make	a	prediction	at	a	new	covariate	value	x ∈ 	where	
x ∉ {x1, …, xn}.	We	denote	the	respective	predictive	CDF	by	F.

In	the	specific	case	 = ℝ	of	a	single	real-	valued	covariate	there	is	a	simple	way	of	doing	this,	
as	frequently	implemented	in	concert	with	the	PAV	algorithm.	For	simplicity,	we	suppose	that	
x1 < ⋯ < xn.	If	x < x1	we	may	let	F = F1;	if	x ∈ (xi, xi+1)	for	some	i  ∈  {1, …, n−1}	we	may	
interpolate	linearly,	so	that	

(19)lim
n→∞

ℙ

(
sup

x∈ [�,1−�]d,y∈ℝ

|F̂x(y) − Fx(y)| ≥ �

)
= 0.

F(z) =
x − xi
xi+1 − xi

Fi(z) +
xi+1 − x

xi+1 − xi
Fi+1(z)



976 |   HENZI et al.

for	z ∈ ℝ,	and	if	x > xn	we	may	set	F = Fn.	However,	approaches	that	are	based	on	interpolation	
do	not	extend	to	a	generic	covariate	space,	which	may	or	may	not	be	equipped	with	a	metric.

In	contrast,	the	method	we	describe	now,	which	generalizes	a	proposal	by	Wilbur	et al.	(2005),	
solely	uses	information	supplied	by	the	partial	order	⪯	on	the	covariate	space	.	For	a	general	
covariate	value	x ∈ ,	the	sets	of	the	indices	of	direct	predecessors	and	direct	successors	among	
the	covariate	values	x1, …, xn	 in	the	training	data	are	defined	as	at	(17)	and	(18),	respectively,	
with	X1, …, Xn	replaced	by	x1, …, xn.	If	the	covariate	space		is	totally	ordered,	these	sets	con-
tain	at	most	one	element.	If	the	order	is	partial	but	not	total,	p(x)	and	s(x)	may,	and	frequently	do,	
contain	more	than	one	element.	Assuming	that	p(x)	and	s(x)	are	non-	empty,	any	predictive	CDF	
F	that	is	consistent	with	F	must	satisfy	

at	all	threshold	values	z ∈ ℝ.	We	now	let	F	be	the	pointwise	arithmetic	average	of	these	bounds,	
that	is,	

for	z ∈ ℝ.	If	s(x)	is	empty	while	p(x)	is	non-	empty,	or	vice	versa,	a	natural	choice,	which	we	employ	
hereinafter,	is	to	let	F	equal	the	available	bound	given	by	the	non-	empty	set.	If	x	is	not	comparable	
to	any	of	x1, …, xn	the	training	data	lack	information	about	the	conditional	distribution	at	x,	and	a	
natural	approach,	which	we	adopt	and	implement,	is	to	set	F	equal	to	the	empirical	distribution	of	
the	response	values	y1, …, yn.

The	difference	between	the	bounds	(if	any)	in	(20)	might	be	a	useful	measure	of	estimation	
uncertainty	and	could	be	explored	as	a	promising	avenue	towards	the	quantification	of	ambi-
guity	and	generation	of	second-	order	probabilities	(Ellsberg,	1961;	Seo,	2009).	In	the	context	of	
ensemble	weather	forecasts,	the	assessment	of	ambiguity	has	been	pioneered	by	Allen	&	Eckel	
(2012).	Interesting	links	arise	when	the	envelope	in	(20)	is	interpreted	in	the	spirit	of	randomized	
predictive	systems	and	conformal	estimates	as	studied	by	Vovk	et al.	(2019);	compare,	for	exam-
ple,	their	Figure	5	with	our	Figure	4b	below.

3 |  PARTIAL ORDERS

The	 choice	 of	 a	 sufficiently	 informative	 partial	 order	 on	 the	 covariate	 space	 is	 critical	 to	 any	
successful	application	of	 IDR.	In	 the	extreme	case	of	distinct,	 totally	ordered	covariate	values	
x1, …, xn ∈ 	and	a	perfect	monotonic	relationship	to	 the	response	values	 y1, …, yn,	 the	IDR	
distribution	associated	with	xi	is	simply	the	point	measure	in	yi,	for	i = 1, …, n.	The	same	happens	
in	the	other	extreme,	when	there	are	no	order	relations	at	all.	Hence,	the	partial	order	serves	to	
regularize	the	IDR	solution.

Thus	far,	we	have	simply	assumed	that	 the	covariate	space		 is	equipped	with	a	partial	
order	 ⪯,	 without	 specifying	 how	 the	 order	 might	 be	 defined.	 If	 ⊆ ℝ

d,	 the	 usual	 compo-
nentwise	order	will	be	suitable	in	many	applications,	and	we	investigate	it	in	Section	3.1.	For	
covariates	that	are	ordinal	and	admit	a	ranking	in	terms	of	importance,	a	lexicographic	order	
may	be	suitable.

(20)max
i∈ s(x)

Fi(z) ≤ F(z) ≤ min
i∈p(x)

Fi(z)

(21)F(z) =
1

2

(
max
i∈ s(x)

Fi(z) + min
i∈p(x)

Fi(z)

)
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If	groups	of	covariates	are	exchangeable,	as	 in	our	case	study	on	quantitative	precipitation	
forecasts,	other	types	of	order	relations	need	to	be	considered.	In	Sections	3.2	and	3.3,	we	study	
relations	that	are	tailored	to	this	setting,	namely,	 the	empirical	stochastic	order	and	empirical	
increasing	convex	order.	Proofs	are	deferred	to	Supplementary	Section	S3.

3.1 | Componentwise order

Let	 x = (x1, …, xd)	 and	 x� = (x�
1
, …, x�

d
)	 denote	 elements	 of	 the	 covariate	 space	ℝd.	 The	 most	

commonly	used	partial	order	in	multivariate	isotonic	regression	is	the	componentwise order	de-
fined	by	

This	order	becomes	weaker	as	the	dimension	d	of	the	covariate	space	increases:	If	x̃ = (x1, …, xd, xd+1)	
and	 x̃� = (x�

1
, …, x�

d
, x�
d+1

)	 then	 x ⪯ x�	 is	a	necessary	condition	 for	 x̃ ⪯ x̃�.	The	 following	 result	 is	
an	 immediate	consequence	of	 this	observation	and	the	structure	of	 the	optimization	problem	in	
Definition	1.

Proposition 1 Let x = (x1, …, xn) and x∗ = (x∗1 , …, x∗n) have components xi = (xi1, …, xid) ∈ ℝ
d 

and x∗
i
= (xi1, …, xid, xi,d+1) ∈ ℝ

d+1 for i = 1, … ,n, and let S be a proper scoring rule. Then 
if ℝd and ℝd+1 are equipped with the componentwise partial order, and F̂ and F̂

∗
 denote S- 

based isotonic regressions of y on x and x∗, respectively, it is true that 

In	simple	words,	under	the	componentwise	partial	order,	the	inclusion	of	further	covariates	
can	only	improve	the	in-	sample	fit.	This	behaviour	resembles	linear	regression,	where	the	addi-
tion	of	covariates	can	only	improve	the	(unadjusted)	R-	square.

3.2 | Empirical stochastic order

We	now	define	a	relation	that	is	based	on	stochastic	dominance	and	invariant	under	permutation.

Definition 2 Let x = (x1, …, xd) and x� = (x�
1
, …, x�

d
) denote elements of ℝd. Then x is smaller 

than or equal to x′ in empirical stochastic order, for short x⪯st x�, if the empirical distribution 
of x1, …, xd is smaller than the empirical distribution of x�

1
, …, x�

d
 in the usual stochastic 

order.

This	relation	is	tailored	to	groups	of	exchangeable,	real-	valued	covariates.	The	following	
result	summarizes	its	properties	and	compares	to	the	componentwise	order,	which	we	denote	
by	⪯.

x ⪯ x� ⟺ xi ≤ x�i for i = 1, …, d.

�S(F̂
∗
) ≤ �S(F̂).
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Proposition 2 Let x = (x1, …, xd) and x� = (x�
1
, …, x�

d
) denote elements of ℝd with order statis-

tics x(1) ≤⋯ ≤ x(d) and x′
(1)

≤ ⋯ ≤ x′
(d)

. 

(a) The relation x⪯st x� is equivalent to x(i) ≤ x′
(i)

 for i=1,  …,  d.
(b) If x ⪯ x� then x⪯st x�.
(c) If x⪯st x� and x and x′ are comparable in the componentwise partial order, then x ⪯ x�.
(d) If x⪯st x� and x� ⪯st x then x and x′ are permutations of each other. Consequently, the 

relation ⪯st defines a partial order on ℝd
↑
.

In	a	nutshell,	the	empirical	stochastic	order	is	equivalent	to	the	componentwise	order	on	the	
sorted	elements,	and	this	relation	is	weaker	than	the	componentwise	order.	However,	unlike	the	
componentwise	order,	the	empirical	stochastic	order	does	not	degenerate	as	further	covariates	
are	added.	To	the	contrary,	empirical	distributions	of	larger	numbers	of	exchangeable	variables	
become	more	informative	and	more	easily	comparable.

3.3 | Empirical increasing convex order

In	applications,	the	empirical	stochastic	order	might	be	too	strong,	in	the	sense	that	it	does	not	
generate	sufficiently	informative	constraints.	In	this	light,	we	now	define	a	weaker	partial	order	
on	ℝd

↑
,	which	also	is	based	on	a	partial	order	for	probability	measures.	Specifically,	let	X	and	X ′	

be	random	variables	with	CDFs	F	and	F ′.	Then	F	is	smaller	than	F ′	in	increasing	convex	order	if	
�(�(X )) ≤ �(�(X ′))	for	all	increasing	convex	functions	ϕ	such	that	the	expectations	exist	(Shaked	
&	Shanthikumar,	2007,	Section	4.A.1).

Definition 3 Let x = (x1, …, xd) and x� = (x�
1
, …, x�

d
) denote elements of ℝd. Then x is smaller than 

or equal to x′ in empirical increasing convex order, for short x⪯icx x�, if the empirical distribution 
of x1, …, xd is smaller than the empirical distribution of x�

1
, …, x�

d
 in increasing convex order.

This	notion	provides	another	meaningful	relation	for	groups	of	exchangeable	covariates.	The	
following	result	summarizes	its	properties	and	relates	it	to	the	empirical	stochastic	order.

Proposition 3 Let x = (x1, …, xd) and x� = (x�
1
, …, x�

d
) denote elements of ℝd with order statis-

tics x(1) ≤ ⋯ ≤ x(d) and x′
(1)

≤ ⋯ ≤ x′
(d)

. 

(a) The relation x⪯icx x� is equivalent to 

(b) If x⪯st x� then x⪯icx x�.
(c) If x⪯icx x� then 

where g is the Gini mean difference, 

d∑
i=j

x(i) ≤
d∑
i=j

x�
(i)

for j = 1, …, d.

1

d

d∑
i=1

xi +
d − 1

2(d + 1)
g(x) ≤ 1

d

d∑
i=1

x�i +
d − 1

2(d + 1)
g(x�),
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(d)	If	x⪯icx x�	and	x� ⪯icx x	then	x	and	x′	are permutations of each other. Consequently, the relation	
⪯icx	defines a partial order on	ℝd

↑
.

Figure	3	illustrates	the	various	types	of	relations	for	points	in	the	positive	quadrant	of	ℝ2.	As	
reflected	by	the	nested	character	of	the	regions,	the	componentwise	order	is	stronger	than	the	
empirical	stochastic	order,	which	in	turn	is	stronger	than	the	empirical	increasing	convex	order.	
The	latter	is	equivalent	to	weak	majorization	as	studied	by	Marshall	et al.	(2011).	In	the	special	
case	of	vectors	with	non-	negative	entries,	their	Corollary	C.5	implies	that	x ∈ ℝ

d	is	dominated	by	
x� ∈ ℝ

d	in	empirical	increasing	convex	order	if,	and	only	if,	it	lies	in	the	convex	hull	of	the	points	
of	the	form	(�1x��(1), …, �dx

�
�(d)

),	where	π	is	a	permutation	and	�i ∈ {0, 1}	for	i = 1, …, d.

4 |  SIMULATION STUDY

Since	we	view	IDR	primarily	as	a	tool	for	prediction,	we	compare	it	to	other	distributional	regression	
methods	in	terms	of	predictive	performance	on	continuous	and	discrete,	univariate	simulation	exam-
ples,	as	measured	by	the	CRPS.	However,	as	noted	below	and	formalized	in	Supplementary	Section	
S4,	the	CRPS	links	asymptotically	to	L2	estimation	error,	so	under	large	validation	samples,	predic-
tion	and	estimation	are	assessed	simultaneously.	A	detailed	comparative	study	on	mixed	discrete-	
continuous	data	with	a	multivariate	covariate	vector	is	given	in	the	case	study	in	the	next	section.

Here,	 our	 simulation	 scenarios	 build	 on	 the	 illustrating	 example	 in	 the	 introduction.	
Specifically,	we	draw	a	covariate	X∼Unif(0,10)	and	then	

(22)g(x) =
1

d(d − 1)

d∑
i,j=1

|xi − xj | .

(23)Y1 �X ∼ Gamma(shape =
√
X , scale =min{max{X , 1}, 6}),

(24)Y2 |X = Y1 |X + 10 ⋅ �{X ≥ 5},

F I G U R E  3 	 Regions	of	smaller,	greater	and	incomparable	elements	in	the	positive	quadrant	of	ℝ2,	as	
compared	to	the	point	(1, 3),	for	the	(left)	componentwise,	(middle)	empirical	stochastic	and	(right)	empirical	
increasing	convex	order.	Coloured	areas	below	(above)	of	(1, 3)	correspond	to	smaller	(greater)	elements,	while	
blank	areas	contain	elements	incomparable	to	(1, 3)	in	the	given	partial	order	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]
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Under	each	scenario,	we	generate	500	training	sets	of	size	n = 500,	1000,	2000	and	4000	each,	
fit	distributional	regression	models,	and	validate	on	a	test	set	of	size	m = 5000.	For	comparison	
with	 IDR,	we	use	a	non-	parametric	kernel	 (or	nearest	neighbour)	 smoothing	 technique	 (NP;	
Li	&	Racine,	2008),	semiparametric	quantile	regression	with	monotone	rearrangement	(SQR;	
Chernozhukov	et al.,	2010;	Koenker,	2005),	conditional	transformation	models	(TRAM;	Hothorn	
et al.,	2014)	and	distributional	or	quantile	random	forests	(QRF;	Athey	et al.,	2019;	Meinshausen,	
2006).	These	methods	have	been	chosen	as	they	are	not	subject	to	restrictive	assumptions	on	the	
distribution	 of	 the	 response	 variable	 and	 have	 well-	established	 and	 well-	documented	 imple-
mentations	in	the	statistical	programming	environment	R	(R	Core	Team,	2020).	We	also	include	
the	ideal	forecast,	that	is,	the	true	conditional	distribution	of	the	response	given	the	covariate,	
in	the	comparison.

Implementation	details	for	the	various	methods	are	given	in	Table	S1	in	Supplementary	
Section	S5.	Here	we	only	note	that	QRF	uses	the	grf	package	(Tibshirani	et al.,	2020)	with	
a	splitting	rule	that	is	tailored	to	quantiles	(Athey	et al.,	2019).	We	see	that,	unlike	IDR,	its	
competitors	 rely	 on	 manual	 intervention	 and	 tuning.	 For	 example,	 QRFs	 perform	 poorly	
under	 the	 default	 value	 of	 5	 for	 the	 tuning	 parameter	min.node.size,	 which	 we	 have	
raised	to	40.	Further	improvement	may	arise	when	tuning	parameters,	such	as	honesty	frac-
tion	and	node	size,	are	judiciously	adjusted	to	the	specific	scenario	and	training	sample	size	
at	hand.	In	contrast,	IDR	is	entirely	free	of	implementation	decisions,	except	for	the	subag-
ging	variant,	IDRsbg,	where	we	average	predictions	based	on	estimates	on	100	subsamples	of	
size	n/2	each.

Table	1	shows	the	mean	CRPS	for	the	different	methods	and	simulation	scenarios.	Scenario	
(23)	 is	 the	same	as	 in	 the	 introduction	and	 illustrated	 in	Figure	1.	 It	has	a	smooth	covariate–	
response	relationship,	and	NP,	SQR,	and	even	the	misspecified	TRAM	technique,	which	are	tai-
lored	to	this	type	of	setting,	outperform	QRF	and	IDR.	However,	the	assumption	of	continuity	in	
the	response	is	crucial,	as	the	results	under	the	discontinuous	scenario	(24)	demonstrate,	where	
IDR	and	IDRsbg	perform	best.	In	the	non-	isotonic	scenario	(25),	IDR	and	IDRsbg	retain	acceptable	
performance,	even	though	the	key	assumption	is	violated.	Not	surprisingly,	SQR	faces	challenges	
in	the	Poisson	scenario	(26),	where	the	conditional	quantile	functions	are	piecewise	constant,	
and	IDR	is	outperformed	only	by	TRAM.	Throughout,	the	simplistic	subagging	variant	of	IDR	
has	slightly	lower	mean	CRPS	than	the	default	variant	that	is	estimated	on	the	full	training	set,	
and	it	would	be	interesting	to	explore	the	relation	to	the	super-	efficiency	phenomenon	described	
by	Banerjee	et al.	(2019).

These	results	lend	support	to	our	belief	that	IDR	can	serve	as	a	universal	benchmark	in	prob-
abilistic	forecasting	and	distributional	regression	problems.	For	sufficiently	large	training	sam-
ples,	IDR	offers	competitive	performance	under	any	type	of	type	of	linearly	ordered	outcome,	
without	reliance	on	tuning	parameters	or	other	implementation	choices,	except	when	subsam-
pling	is	employed.

(25)Y3 |X = Y1 |X − 2 ⋅ �{X ≥ 7},

(26)Y4 |X ∼ Poisson(� =min{max{X , 1}, 6}).
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5 |  CASE STUDY: PROBABILISTIC QUANTITATIVE 
PRECIPITATION FORECASTS

The	past	decades	have	witnessed	tremendous	progress	 in	 the	science	and	practice	of	weather	
prediction	(Bauer	et al.,	2015).	Arguably,	the	most	radical	innovation	consists	in	the	operational	
implementation	of	ensemble	systems	and	an	accompanying	culture	change	from	point	forecasts	
to	distributional	forecasts	(Leutbecher	&	Palmer,	2008).	An	ensemble	system	comprises	multiple	
runs	of	numerical	weather	prediction	(NWP)	models,	where	the	runs	or	members	differ	from	
each	other	in	initial	conditions	and	numerical-	physical	representations	of	atmospheric	processes.

Ideally,	one	would	like	to	interpret	an	ensemble	forecast	as	a	random	sample	from	the	condi-
tional	distribution	of	future	states	of	the	atmosphere.	However,	this	is	rarely	advisable	in	prac-
tice,	as	ensemble	forecasts	are	subject	to	biases	and	dispersion	errors,	thereby	calling	for	some	
form	of	statistical	post-	processing	(Gneiting	&	Raftery,	2005;	Vannitsem	et al.,	2018).	This	is	typi-
cally	done	by	fitting	a	distributional	regression	model,	with	the	weather	variable	of	interest	being	
the	 response	 variable,	 and	 the	 members	 of	 the	 forecast	 ensemble	 constituting	 the	 covariates,	
and	applying	this	model	to	future	NWP	output,	to	obtain	conditional	predictive	distributions	for	
future	weather	quantities.	State	of	the	art	techniques	include	Bayesian	Model	Averaging	(BMA;	
Raftery	et al.,	2005;	Sloughter	et al.,	2007),	Ensemble	Model	Output	Statistics	(EMOS;	Gneiting	
et al.,	2005;	Scheuerer,	2014),	and	Heteroscedastic	Censored	Logistic	Regression	(HCLR;	Messner	
et al.,	2014).

In	this	case	study,	we	apply	IDR	to	the	statistical	post-	processing	of	ensemble	forecasts	of	
accumulated	precipitation,	a	variable	 that	 is	notoriously	difficult	 to	handle,	due	 to	 its	mixed	
discrete-	continuous	 character,	 which	 requires	 both	 a	 point	 mass	 at	 zero	 and	 a	 right	 skewed	
continuous	 component	 on	 the	 positive	 half-	axis.	 As	 competitors	 to	 IDR,	 we	 implement	 the	
BMA	technique	of	Sloughter	et al.	(2007),	the	EMOS	method	of	Scheuerer	(2014),	and	HCLR	
(Messner	et al.,	2014),	which	are	widely	used	parametric	approaches	that	have	been	developed	
specifically	for	the	purposes	of	probabilistic	quantitative	precipitation	forecasting.	In	contrast,	
IDR	is	a	generic	technique	and	fully	automatic,	once	the	partial	order	on	the	covariate	space	
has	been	specified.

5.1 | Data

The	data	in	our	case	study	comprise	forecasts	and	observations	of	24 h	accumulated	precipitation	
from	6	January	2007	to	1	January	2017	at	meteorological	stations	on	airports	in	London,	Brussels,	
Zurich	and	Frankfurt.	As	detailed	in	Table	2,	data	availability	differs,	and	we	remove	days	with	
missing	entries	 station	by	 station,	 so	 that	all	 types	of	 forecasts	 for	a	given	 station	are	 trained	

T A B L E  2 	 Meteorological	stations	at	airports,	with	International	Air	Transport	Association	(IATA)	airport	
code,	World	Meteorological	Organization	(WMO)	station	ID,	and	data	availability	in	days	(years)

IATA code WMO ID Data availability

Brussels,	Belgium BRU 06449 3406	(9.3)

Frankfurt,	Germany FRA 10637 3617	(9.9)

London,	UK LHR 03772 2256	(6.2)

Zurich,	Switzerland ZRH 06670 3241	(8.9)
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and	evaluated	on	the	same	data.	Both	forecasts	and	observations	refer	to	the	24 h	period	from	
6:00	UTC	to	6:00	UTC	on	the	following	day.	The	observations	are	in	the	unit	of	millimetre	and	
constitute	the	response	variable	in	distributional	regression.	They	are	typically,	but	not	always,	
reported	in	integer	multiples	of	a	millimetre.

As	covariates,	we	use	the	52	members	of	the	leading	NWP	ensemble	operated	by	the	European	
Centre	for	Medium-	Range	Weather	Forecasts	(ECMWF;	Buizza	et al.,	2005;	Molteni	et al.,	1996).	
The	ECMWF	ensemble	system	comprises	a	high-	resolution	member	(xHRES),	a	control	member	
at	lower	resolution	(xCTR)	and	50	perturbed	members	(x1, …, x50)	at	the	same	lower	resolution	
but	with	perturbed	initial	conditions,	and	the	perturbed	members	can	be	considered	exchange-
able	(Leutbecher,	2019).	To	summarize,	the	covariate	vector	in	distributional	regression	is	

where	 xPTB = (x1, …, x50) ∈ ℝ
50.	 At	 each	 station,	 we	 use	 the	 forecasts	 for	 the	 corresponding	

latitude-	longitude	gridbox	of	size	0.25×0.25	degrees,	and	we	consider	prediction	horizons	of	1	to	5	
days.	For	example,	the	two	day	forecast	is	initialized	at	00:00	Universal	Coordinated	Time	(UTC)	and	
issued	for	24 h	accumulated	precipitation	from	06:00	UTC	on	the	next	calendar	day	to	06:00	UTC	
on	the	day	after.	ECMWF	forecast	data	are	available	through	the	ECMWF	Meteorological	Archival	
and	 Retrieval	 System	 (MARS;	 https://www.ecmwf.int/en/forec	asts)	 and	 via	 the	 TIGGE	 system	
(Bougeault	et al.,	2010;	Swinbank	et al.,	2016).	Observation	data	are	provided	by	NOAA’s	Integrated	
Surface	Database	(ISD;	https://www.ncdc.noaa.gov/isd).

Statistical	 post-	processing	 is	 both	 a	 calibration	 and	 a	 downscaling	 problem:	 Forecasts	 and	
observations	are	at	different	spatial	scales,	whence	the	unprocessed	forecasts	are	subject	to	rep-
resentativeness	error	(Wilks,	2019,	Chapter	8.9).	Indeed,	if	we	interpret	the	predictive	distribu-
tion	from	the	raw	ensemble	(27)	as	the	empirical	distribution	of	all	52	members—	a	customary	
approach,	which	we	adopt	hereinafter—	there	is	a	strong	bias	in	probability	of	precipitation	fore-
casts:	Days	with	exactly	zero	precipitation	are	predicted	much	less	often	at	the	NWP	model	grid	
box	scale	than	they	occur	at	the	point	scale	of	the	observations.

5.2 | BMA, EMOS and HCLR

Before	describing	our	IDR	implementation,	we	review	its	leading	competitors,	namely,	state	of	
the	art	parametric	distributional	regression	approaches	that	have	been	developed	specifically	for	
accumulated	precipitation.

Techniques	of	ensemble	model	output	 statistics	 (EMOS;	Gneiting	et al.,	2005)	 type	can	be	
interpreted	as	parametric	instances	of	generalized	additive	models	for	location,	scale	and	shape	
(GAMLSS;	Rigby	&	Stasinopoulos,	2005).	The	specific	variant	of	Scheuerer	(2014)	which	we	use	
here	is	based	on	the	three-	parameter	family	of	 left-	censored	generalized	extreme	value	(GEV)	
distributions.	The	left-	censoring	generates	a	point	mass	at	zero,	corresponding	to	no	precipita-
tion,	and	the	shape	parameter	allows	for	flexible	skewness	on	the	positive	half-	axis,	associated	
with	rain,	hail	or	snow	accumulations.	The	GEV	location	parameter	is	modelled	as	a	linear	func-
tion	of	xHRES,	xCTR,	mPTB =

1

50

∑50
i=1 xi	

(27)x =
(
x1, …, x50, xCTR, xHRES

)
=
(
xPTB, xCTR, xHRES

)
∈ ℝ

52,

pZERO =
1

52

(
�{xHRES = 0} + �{xCTR = 0} +

50∑
i=1

�{xi = 0}

)
,

https://www.ecmwf.int/en/forecasts
https://www.ncdc.noaa.gov/isd
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and	the	GEV	scale	parameter	is	linear	in	the	Gini	mean	difference	(22)	of	the	52	individual	forecasts	
in	the	covariate	vector	(27).	While	all	parameters	are	estimated	by	minimizing	the	in-	sample	CRPS,	
the	GEV	shape	parameter	does	not	link	to	the	covariates.

The	general	idea	of	the	Bayesian	model	averaging	(BMA;	Raftery	et al.,	2005)	approach	is	to	
employ	a	mixture	distribution,	where	each	mixture	component	is	parametric	and	associated	with	
an	individual	ensemble	member	forecast,	with	mixture	weights	that	reflect	the	member’s	skill.	
Here	we	use	the	BMA	implementation	of	Sloughter	et al.	(2007)	for	accumated	precipitation	in	
a	variant	that	is	based	on	xHRES,	xCTR,	mPTB =

1

50

∑50
i=1 xi	which	we	found	to	achieve	more	stable	

estimates	 and	 superior	 predictive	 scores	 than	 variants	 based	 on	 all	 members,	 as	 proposed	 by	
Fraley	et al.	(2010)	in	settings	with	smaller	groups	of	exchangeable	members.	Hence,	our	BMA	
predictive	CDF	is	of	the	form	

for	y ∈ ℝ,	where	the	component	CDFs	G(y|·)	are	parametric,	and	the	weights	wHRES,	wCTR	and	wPTB	
are	non-	negative	and	sum	to	one.	Specifically,	G(y |xHRES)	models	the	logit	of	the	point	mass	at	zero	
as	a	linear	function	of	 3

√
xHRES	and	pHRES = �{xHRES = 0},	and	the	distribution	for	positive	accumu-

lations	as	a	gamma	density	with	mean	and	variance	being	linear	in	 3
√
xHRES	and	xHRES,	respectively,	

and	analogously	 for	G(y |xCTR)	and	G(y |xPTB).	Estimation	relies	on	a	 two-	step	procedure,	where	
the	(component	specific)	logit	and	mean	models	are	fitted	first,	followed	by	maximum	likelihood	
estimation	of	the	weight	parameters	and	the	(joint)	variance	model	via	the	EM	algorithm	(Sloughter	
et al.,	2007).

Heteroscedastic	censored	logistic	regression	(Messner	et al.,	2014)	originates	from	the	obser-
vation	that	conditional	CDFs	can	be	estimated	by	dichotomizing	the	random	variable	of	interest	
at	given	thresholds	and	estimating	the	probability	of	threshold	exceedance	via	logistic	regression.	
The	HCLR	model	used	here	assumes	that	square-	root	transformed	precipitation	follows	a	logistic	
distribution	censored	at	zero,	with	location	parameter	linear	in	

√
xHRES,	

√
xCTR	and	the	mean	of	

the	square-	root	transformed	perturbed	forecasts,	and	a	scale	parameter	linear	in	the	standard	de-
viation	of	the	square-	root	transformed	perturbed	forecasts.	Like	EMOS,	HCLR	can	be	interpreted	
within	the	GAMLSS	framework	of	Rigby	&	Stasinopoulos	(2005).

Code	for	BMA,	EMOS	and	HCLR	is	available	within	the	ensembleBMA,	ensembleMOS	and	
crch	packages	in	R	(Messner,	2018).	Unless	noted	differently,	we	use	default	options	in	imple-
mentation	decisions.

5.3 | Choice of partial order for IDR

IDR	applies	readily	in	this	setting,	without	any	need	for	adaptations	due	to	the	mixed-	discrete	
continuous	character	of	precipitation	accumulation,	nor	requiring	data	transformations	or	other	
types	of	implementation	decisions.	However,	the	partial	order	on	the	elements	(27)	of	the	covari-
ate	space	 = ℝ

52,	or	on	a	suitable	derived	space,	needs	to	be	selected	thoughtfully,	considering	
that	the	perturbed	members	x1, …, x50	are	exchangeable.

In	the	sequel,	we	apply	IDR	in	three	variants.	Our	first	 implementation	is	based	on	xHRES,	
xCTR	and	mPTB =

1

50

∑50
i=1 xi	along	with	the	componentwise	order	on	ℝ3,	in	that	

Fx(y) = wHRESG(y |xHRES) + wCTRG(y |xCTR) + wPTBG(y |xPTB)

(28)x ⪯ x� ⟺mPTB ≤m�
PTB, xCTR ≤ x�CTR, xHRES ≤ x�HRES.
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The	second	implementation	uses	the	same	variables	and	partial	order,	but	combined	with	a	simple	
subagging	approach:	Before	applying	IDR,	the	training	data	is	split	into	the	two	disjoint	subsamples	
of	training	observations	with	odd	and	even	indices,	and	we	average	the	predictions	based	on	these	
two	subsamples.

Our	third	implementation	combines	the	empirical	increasing	convex	order	for	xPTB	with	the	
usual	total	order	on	ℝ	for	xHRES,	whence	

Henceforth,	we	refer	to	the	three	implementations	based	on	the	partial	orders	in	(28)	and	(29)	as	
IDRcw,	IDRsbg,	and	IDRicx.	With	reference	to	the	discussion	preceding	Theorem	1,	the	relations	(28)	
and	(29)	define	preorders	on	ℝ52	and	partial	orders	on	ℝ3	and	ℝ50

↑
×ℝ,	respectively.

We	have	experimented	with	other	options	as	well,	 for	example,	by	incorporating	the	maxi-
mum	maxi=1,…,50xi	of	the	perturbed	members	in	the	componentwise	order	in	(28),	with	the	mo-
tivation	that	the	maximum	might	serve	as	a	proxy	for	the	spread	of	the	ensemble,	or	by	using	the	
empirical	stochastic	order	⪯st	in	lieu	of	the	empirical	increasing	convex	order	⪯icx	in	(29).	IDR	is	
robust	to	changes	of	this	type,	and	the	predictive	performance	remains	stable,	provided	that	the	
partial	order	honors	the	key	substantive	insights,	in	that	the	perturbed	members	x1, …, x50	are	
exchangeable,	while	xHRES,	due	to	its	higher	native	resolution,	is	able	to	capture	local	informa-
tion	that	is	not	contained	in	xPTB	nor	xCTR.	Hence,	xHRES	ought	to	play	a	pivotal	role	in	the	partial	
order.

5.4 | Selection of training periods

The	selection	of	the	training	period	is	a	crucial	step	in	the	statistical	post-	processing	of	NWP	out-
put.	Most	post-	processing	methods,	including	the	ones	used	in	this	analysis,	assume	that	there	
is	a	stationary	relationship	between	the	forecasts	and	the	observations.	As	Hamill	(2018)	points	
out,	this	assumption	is	hardly	ever	satisfied	in	practice:	NWP	models	are	updated,	instruments	
at	observation	stations	get	replaced,	and	forecast	biases	may	vary	seasonally.	These	problems	are	
exacerbated	by	the	fact	that	quantitative	precipitation	forecasts	require	large	training	datasets	in	
order	to	include	sufficient	numbers	of	days	with	non-	zero	precipitation	and	extreme	precipita-
tion	events.

For	BMA	and	EMOS,	a	training	period	over	a	rolling	window	of	the	latest	available	720	
days	at	 the	time	of	 forecasting	 is	 (close	to)	optimal	at	all	stations.	This	resembles	choices	
made	by	Scheuerer	&	Hamill	(2015)	who	used	a	training	sample	of	about	900	past	instances.	
Scheuerer	 (2014)	 took	 shorter	 temporal	 windows,	 but	 merged	 instances	 from	 nearby	 sta-
tions	into	the	training	sets,	which	is	not	possible	here.	In	general,	it	would	be	preferable	to	
select	training	data	seasonally	(e.g.	data	from	the	same	month),	but	in	our	case	the	positive	
effect	 of	 using	 seasonal	 training	 data	 does	 not	 outweigh	 the	 negative	 effect	 of	 a	 smaller	
sample	size.

As	a	non-	parametric	technique,	IDR	requires	larger	sets	of	training	data	than	BMA	or	EMOS.	
As	training	data	for	IDR,	we	used	all	data	available	at	the	time	of	forecasting,	which	is	about	2500	
to	3000	days	for	the	stations	Frankfurt,	Brussels	and	Zurich,	and	1500	days	for	London	Heathrow.	
The	same	training	periods	are	also	used	for	HCLR,	where	no	positive	effect	of	shorter,	rolling	
training	periods	has	been	observed	(Messner	et al.,	2014).

(29)x ⪯ x� ⟺ xPTB⪯icxx
�
PTB, xHRES ≤ x�HRES.
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For	evaluation,	we	use	the	years	2015	and	2016	(and	01	January	2017)	for	all	post-	processing	
methods	and	the	raw	ensemble.	This	test	dataset	consists	of	roughly	700	instances	for	each	sta-
tion	and	lead	time.

5.5 | Results

Before	 comparing	 the	 BMA,	 EMOS,	IDRcw,	IDRsbg	 and	IDRicx	 techniques	 in	 terms	 of	 out-	of-	
sample	predictive	performance	over	the	test	period,	we	exemplify	them	in	Figure	4,	where	we	
show	predictive	CDFs	for	accumulated	precipitation	at	Brussels	on	16	December	2015,	at	a	pre-
diction	horizon	of	2	days.	In	panel	(a),	the	marks	at	the	bottom	correspond	to	xHRES,	xCTR,	the	
perturbed	members	x1, …, x50	and	their	mean	mPTB.	The	observation	at	4 mm	is	indicated	by	the	
vertical	line.	Under	all	four	techniques,	the	point	mass	at	zero,	which	represents	the	probability	
of	no	precipitation,	is	vanishingly	small.	While	the	BMA,	EMOS	and	HCLR	CDFs	are	smooth	
and	supported	on	the	positive	half-	axis,	the	IDRcw,	IDRsbg	 and	IDRicx	CDFs	are	piecewise	con-
stant	with	jump	points	at	observed	values	in	the	training	period.	Panel	(b)	illustrates	the	hard	

F I G U R E  4 	 Distributional	forecasts	for	accumulated	precipitation	at	Brussels,	valid	16	December	2015	at	
a	prediction	horizon	of	2	days.	(a)	BMA,	EMOS,	IDRcw,	IDRsbg	and	IDRicx	predictive	CDFs.	The	vertical	line	
represents	the	observation.	(b)	IDRcw	CDF	along	with	the	hard	and	soft	constraints	in	(20)	as	induced	by	the	
order	relation	(28).	The	thin	lines	show	the	IDRcw	CDFs	at	direct	predecessors	and	successors	[Colour	figure	can	
be	viewed	at	wileyonlinelibrary.com]
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and	soft	constraints	on	the	IDRcw	CDF	that	arise	from	(20)	under	the	order	relation	(28),	with	the	
thinner	lines	representing	the	IDRcw	CDFs	of	direct	successors	and	predecessors.	In	this	exam-
ple,	the	constraints	are	mostly	hard,	except	for	threshold	values	between	4	and	11 mm.

We	now	use	the	mean	CRPS	over	the	test	period	as	an	overall	measure	of	out-	of-	sample	pre-
dictive	performance.	Figure	5	shows	the	CRPS	of	the	raw	and	post-	processed	forecasts	for	all	sta-
tions	and	lead	times,	with	the	raw	forecast	denoted	as	ENS.	While	HCLR	performs	best	in	terms	
of	the	CRPS,	the	IDR	variants	show	scores	of	a	similar	magnitude	and	outperform	BMA	in	many	
instances.	Figure	S1	in	Supplementary	Section	S5	shows	the	difference	of	the	empirical	cumula-
tive	distribution	function	(ECDF)	of	the	PIT	defined	at	(8)	to	the	bisector	for	the	distributional	
forecasts.	All	three	IDR	variants	show	a	PIT-	distribution	close	to	uniform,	and	so	do	BMA,	EMOS	
and	HCLR,	as	opposed	to	the	raw	ensemble,	which	is	underdispersed.

In	 Figure	 6,	 we	 evaluate	 probability	 of	 precipitation	 forecasts	 by	 means	 of	 the	 Brier	 score	
(Gneiting	 &	 Raftery,	 2007),	 and	 Figure	 S2	 in	 Supplementary	 Section	 S5	 shows	 reliability	 dia-
grams	(Dimitriadis	et al.,	2021;	Wilks,	2019).	As	opposed	to	the	raw	ensemble	forecast,	all	distri-
butional	regression	methods	yield	reliable	probability	forecasts.	BMA,	IDRcw,	IDRsbg	and	IDRicx	
separate	the	estimation	of	the	point	mass	at	zero,	and	of	the	distribution	for	positive	accumula-
tions,	and	the	four	methods	perform	ahead	of	EMOS.	HCLR	is	outperformed	by	BMA	and	the	
IDR	variants	at	lead	times	of	one	or	two	days,	but	achieves	a	lower	Brier	score	at	the	longest	lead	
time	of	5	days.

Interestingly,	IDR	tends	to	outperform	EMOS	and	HCLR	for	probability	of	precipitation	fore-
casts,	but	not	for	precipitation	accumulations.	We	attribute	this	to	the	fact	that	parametric	tech-
niques	are	capable	of	extrapolating	beyond	the	range	of	the	training	responses,	whereas	IDR	is	
not:	The	highest	precipitation	amount	judged	feasible	by	IDR	equals	the	largest	observation	in	
the	training	set.	Furthermore,	unlike	EMOS	and	HCLR,	IDR	does	not	use	information	about	the	

F I G U R E  5 	 Mean	CRPS	over	the	test	period	for	raw	and	post-	processed	ensemble	forecasts	of	24 h	
accumulated	precipitation	at	prediction	horizons	of	1,	2,	3,	4	and	5	days.	The	lowest	mean	score	for	a	given	lead	
time	and	station	is	indicated	in	green	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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spread	of	the	raw	ensemble,	which	is	inconsequential	for	probability	of	precipitation	forecasts,	
but	may	impede	distributional	forecasts	of	precipitation	accumulations.

In	all	comparisons,	the	forecast	performance	of	IDRcw	and	IDRsbg	is	similar.	However,	in	our	
implementation,	the	simple	subagging	method	used	in	IDRsbg	reduced	the	computation	time	by	
up	to	one	half.

To	 summarize,	 our	 results	 underscore	 the	 suitability	 of	 IDR	 as	 a	 benchmark	 technique	 in	
probabilistic	forecasting	problems.	Despite	being	generic	as	well	as	fully	automated,	IDR	is	re-
markably	competitive	relative	to	state	of	the	art	techniques	that	have	been	developed	specifically	
for	 the	purpose.	 In	 fact,	 in	a	wide	range	of	applied	problems	 that	 lack	sophisticated,	custom-	
made	distributional	regresssion	solutions,	IDR	might	well	serve	as	a	ready-	to-	use,	top-	performing	
method	of	choice.

6 |  DISCUSSION

Stigler	(1975)	gives	a	lucid	historical	account	of	the	19th	century	transition	from	point	estimation	
to	distribution	estimation.	In	regression	analysis,	we	may	be	witnessing	what	future	generations	
might	 refer	 to	 as	 the	 transition	 from	 conditional	 mean	 estimation	 to	 conditional	 distribution	
estimation,	accompanied	by	a	simultaneous	transition	from	point	forecasts	to	distributional	fore-
casts	(Gneiting	&	Katzfuss,	2014).

IDR	 is	 a	 non-	parametric	 technique	 for	 estimating	 conditional	 distributions	 that	 takes	 ad-
vantage	of	partial	order	relations	within	the	covariate	space.	It	can	be	viewed	as	a	far-	reaching	
generalization	of	pool	adjacent	violators	(PAV)	algorithm	based	classical	approaches	to	isotonic	
(non-	distributional)	regression,	is	entirely	generic	and	fully	automated,	and	provides	for	a	unified	

F I G U R E  6 	 Mean	Brier	score	over	the	test	period	for	probability	of	precipitation	forecasts	at	prediction	
horizons	of	1,	2,	3,	4	and	5	days.	The	lowest	mean	score	for	a	given	lead	time	and	station	is	indicated	in	green	
[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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treatment	of	continuous,	discrete	and	mixed	discrete-	continuous	real-	valued	response	variables.	
Code	for	the	implementation	of	IDR	within	R	(R	Core	Team,	2020)	and	Python	(https://www.
python.org/)	is	available	via	the	isodistrreg	package	at	CRAN	(https://CRAN.R-	proje	ct.org/
packa	ge=isodi	strreg)	 and	 on	 github	 (https://github.com/Alexa	nderH	enzi/isodi	strreg;	 https://
github.com/evwal	z/isodi	sreg),	with	user-	friendly	functions	for	partial	orders,	estimation,	predic-
tion	and	evaluation.

IDR	relies	on	information	supplied	by	order	constraints,	and	the	choice	of	the	partial	order	on	
the	covariate	space	is	a	critical	decision	prior	to	the	analysis.	Only	variables	that	contribute	to	the	
partial	order	need	to	be	retained,	and	the	order	constraints	serve	to	regularize	the	IDR	solution.	
Weak	orders	lead	to	increased	numbers	of	comparable	pairs	of	training	instances	and	predictive	
distributions	 that	are	more	regular.	The	choice	of	 the	partial	order	 is	 typically	guided	and	 in-
formed	by	substantive	expertise,	as	illustrated	in	our	case	study,	and	it	is	a	challenge	for	future	
research	to	investigate	whether	the	selection	of	the	partial	order	could	be	automated.	Given	that	
IDR	gains	information	through	order	constraints,	it	is	a	valid	concern	whether	it	is	robust	under	
misspecifications	of	the	partial	order.	There	is	evidence	that	this	is	indeed	the	case:	IDR	has	guar-
anteed	in-	sample	threshold	calibration	(Theorem	2)	and	therefore	satisfies	a	minimal	require-
ment	for	reliable	probabilistic	forecasts	under	any	(even	misspecified)	partial	order.	Moreover,	El	
Barmi	&	Mukerjee	(2005,	Theorem	7)	show	that	in	the	special	case	of	a	discrete,	totally	ordered	
covariate,	isotonic	regression	asymptotically	has	smaller	estimation	error	than	non-	isotonic	al-
ternatives	even	under	mild	violations	of	the	monotonicity	assumptions,	akin	to	the	performance	
of	IDR	in	the	non-	isotonic	setting	(25)	in	our	simulation	study.

Unlike	other	methods	for	distributional	regression,	which	require	implementation	decisions,	
such	as	the	specification	of	parametric	distributions,	link	functions,	estimation	procedures	and	
convergence	criteria,	 to	be	undertaken	by	users,	 IDR	is	 fully	automatic	once	the	partial	order	
and	 the	 training	set	have	been	 identified.	 In	 this	 light,	we	recommend	 that	 IDR	be	used	as	a	
benchmark	technique	in	distributional	regression	and	probabilistic	forecasting	problems.	With	
both	computational	efficiency	and	the	avoidance	of	overfitting	in	mind,	IDR	can	be	combined	
with	subsample	aggregation	 (subagging)	 in	 the	 spirit	of	 random	forests.	 In	our	case	 study	on	
quantitative	precipitation	forecasts,	we	used	simplistic	ad	hoc	choices	for	the	size	and	number	of	
subsamples.	Future	research	on	computationally	efficient	algorithmic	implementations	of	IDR	
as	well	as	optimal	and	automated	choices	of	subsampling	settings	is	highly	desirable.

A	limitation	of	IDR	in	its	present	form	is	that	we	only	consider	the	usual	stochastic	order	on	
the	space		of	the	conditional	distributions.	Hence,	IDR	is	unable	to	distinguish	situations	where	
the	conditional	distributions	agree	in	location	but	differ	in	spread,	shape	or	other	regards.	This	
restriction	 is	 of	 limited	 concern	 for	 response	 variables	 such	 as	 precipitation	 accumulation	 or	
income,	which	are	bounded	below	and	right	skewed,	but	may	impact	the	application	of	IDR	to	
variables	with	symmetric	distributions.	In	this	light,	we	encourage	future	work	on	ramifications	
of	IDR,	in	which		is	equipped	with	partial	orders	other	than	the	stochastic	order,	including	but	
not	limited	to	the	likelihood	ratio	order	(Mösching	&	Dümbgen,	2020a).	Similarly,	the	‘spiking’	
problem	of	 traditional	 isotonic	regression,	which	refers	 to	unwarranted	 jumps	of	estimates	at	
boundaries,	arguably	did	not	have	adverse	effects	in	our	simulation	and	case	studies.	However,	
it	might	be	of	concern	in	other	applications,	where	remedies	of	the	type	proposed	by	Wu	et al.	
(2015)	might	yield	improvement	and	warrant	study.

Another	 promising	 direction	 for	 further	 research	 is	 generalizations	 of	 IDR	 to	 multivariate	
response	variables.	In	weather	prediction,	this	would	allow	simultaneous	post-	processing	of	fore-
casts	for	several	variables,	and	an	open	question	is	for	suitable	notions	of	multivariate	stochastic	
dominance	that	allow	efficient	estimation	in	such	settings.

https://www.python.org/
https://www.python.org/
https://CRAN.R-project.org/package=isodistrreg
https://CRAN.R-project.org/package=isodistrreg
https://github.com/AlexanderHenzi/isodistrreg
https://github.com/evwalz/isodisreg
https://github.com/evwalz/isodisreg
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