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Abstract

Probability forecasts for binary events play a central role in many applications. Their
quality is commonly assessed with proper scoring rules, which assign forecasts a numerical
score such that a correct forecast achieves a minimal expected score. In this paper, we
construct e-values for testing the statistical significance of score differences of competing
forecasts in sequential settings. E-values have been proposed as an alternative to p-values
for hypothesis testing, and they can easily be transformed into conservative p-values by
taking the multiplicative inverse. The e-values proposed in this article are valid in finite
samples without any assumptions on the data generating processes. They also allow
optional stopping, so a forecast user may decide to interrupt evaluation taking into
account the available data at any time and still draw statistically valid inference, which
is generally not true for classical p-value based tests. In a case study on postprocessing
of precipitation forecasts, state-of-the-art forecasts dominance tests and e-values lead to
the same conclusions.

1 Introduction

Consider a forecast user who compares probability predictions pt, qt ∈ [0, 1], t ∈ N, for a
binary event Yt+h ∈ {0, 1}, where h ≥ 1 is the time lag between the forecasts and observa-
tions. At time t, the forecasts pt, qt as well as any predictions and observations before t are
known. This setting encompasses many practical situations such as probability of precipita-
tion forecasts h days ahead or predictions of negative economic growth in the next quarter.
The forecast user wants to draw conclusions on the relative performance of pt and qt, that
is, identify the better of the two forecasts.

Probability forecasts for binary events are arguably the simplest and best understood
type of probabilistic forecasts; see Winkler (1996) for an earlier overview and more recent
reviews in Gneiting and Raftery (2007), Ranjan and Gneiting (2010) and Lai et al. (2011).
The key requirements for probability forecasts are calibration, meaning that events with a
predicted probability of p should occur at a frequency of p, and sharpness, which requires the
forecast probabilities to be as informative as possible, i.e. close to 0 or 1. These properties
are simultaneously assessed with proper scoring rules (Gneiting and Raftery, 2007), which
coincide with consistent scoring functions for the mean (Gneiting, 2011) in the case of prob-
ability forecasts and will be simply referred to as scoring functions in this article. A scoring
function S = S(p, y) maps a forecast probability p and an observation y to a numerical score,
with smaller scores indicating a better forecast. More precisely, S satisfies

Eπ{S(π, Y )} ≤ Eπ{S(p, Y )} (1)
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for all p, π ∈ [0, 1], where Eπ(·) denotes the expected value under the assumption that Y = 1
with probability π. That is, the true event probability attains a minimal expected score, and
S is strictly consistent if equality in (1) only holds for p = π. Well-known examples are the
Brier score (y − p)2 and the logarithmic score −log(|1− y − p|).

For comparing the predictions pt and qt, the forecast user would therefore collect a sample
(yt+h, pt, qt), t = 1, . . . , T , and compute the empirical score difference 1

T

∑T
t=1{S(pt, yt+h) −

S(qt, yt+h)}. To take into account the sampling uncertainty, such score differences are accom-
panied with p-values indicating whether the mean score significantly differs from zero. If the
observations are not independent, as usual in sequential settings, a number of asymptotic
tests are available to compute p-values, with prominent ones being the Diebold-Mariano test
(Diebold and Mariano, 1995) and the test of conditional predictive ability by Giacomini and
White (Giacomini and White, 2006). Further examples are the martingale-based approaches
by Seillier-Moiseiwitsch and Dawid (1993) or Lai et al. (2011), and more recent tests of
forecast dominance (Ehm and Krüger, 2018; Yen and Yen, 2021).

In this article, we expand the tools for drawing inference on probability forecast per-
formance by e-values. E-values, with ‘e’ referring to ‘expectation’, have been introduced
as an alternative to p-values for testing. The term e-value was used first in the literature
by Vovk and Wang (2021), but the concept also appears in Shafer (2021), under the name
‘betting score’, and in Grünwald et al. (2020); see also the series of working papers on
http://alrw.net/e/. In brief, an e-value is a random variable E ≥ 0 satisfying E(E) ≤ 1
under a given null hypothesis. By Markov’s inequality, this implies P(E > 1/α) ≤ α for any
α ∈ (0, 1), i.e. large realizations of an e-value can be considered as evidence against the null
hypothesis, and the value 1/E is a conservative p-value. A main motivation for using e-values
instead of p-values, explained in more detail in Shafer (2021), Grünwald et al. (2020) and
Wang and Ramdas (2020), is their simple behaviour under combinations. The arithmetic
average of e-values is again an e-value, and so is the product of independent or sequential
e-values. E-values also have advantages over p-values with respect to false discovery rate
control (Wang and Ramdas, 2020), which may be beneficial for the comparison of forecasts
over many locations such as a fine latitute-longitude grid around the globe. The central
property for this article is that e-values are valid under optional stopping and continuation,
that is, the collection of data for computing an e-value may be stopped or continued based
on seeing the past observations and e-values. It is well known that p-values in general do
not satisfy these properties.

Our main contribution is the result that for any scoring rule S and forecasts p, q for Y ∈
{0, 1}, there exists an e-value which satisfies Eπ(E) ≤ 1 if and only if Eπ{S(p, Y )−S(q, Y )} ≤
0. This e-value allows one to draw inference on the relative performance of the forecasts p
and q with respect to S with only a single observation. In a sequential setting, e-values from
different time points can be merged by products into a non-negative supermartingale or test-
martingale, which are analysed in detail by Ramdas et al. (2020). This gives a statistical
test of forecast dominance which is valid in finite samples without any further assumptions
on the data generating process. Moreover, the constructed e-values are valid under optional
stopping, so a forecast user may decide to continue or stop forecast comparison based on
only a part of the data. These advantages are inherent to any e-value, but we believe that
they make e-values a particularly attractive tool in sequential forecast evaluation. The above
mentioned tests for comparing probability forecasts are all only asymptotically valid, and the
underlying assumptions are often difficult or impossible to verify. In the case of tests with
asymptotic normality, the selection of the variance estimator for the test statistic may have
a dramatic impact on the test validity (see for example Lazarus et al., 2018, Table 1). More
serious is the problem of optional stopping. In a simple but realistic simulation example in
this article, we demonstrate that commonly used tests for forecast superiority at the level of
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0.05 may yield rejection rates of up to 0.15 under optional stopping, grossly misleading and
invalidating statistical inference. Although statisticians and practitioners should know that
the sample size for classical tests must be determined in advance, we believe that optional
stopping is quite common in forecast evaluation, where data arrives sequentially and it might
be tempting to stop, or continue, an expensive or time consuming experiment upon seeing
enough, or just not enough, evidence against a hypothesis. Moreover, also in the analysis
of past datasets, optional continuation may occur implicitly, in that methods are often first
evaluated on a smaller, manageable part of the data and the analysis is continued if the
results are promising. Last but not least, even to a statistician fully aware of the problem of
optional stopping, it may be desirable to have a tool that allows stopping an evaluation when
enough evidence is collected, without having to bother about the implications for inference.

The advantages of e-values for forecast comparison relative to the currently available
methods come at a price, namely, lower power. This is well known not only for e-values, but
a general phenomenon when tools for anytime-valid inference are compared to methods for
inference with a fixed sample size; see for example Figure 1 in Waudby-Smith and Ramdas
(2021) displaying the widths of time uniform and fixed time confidence intervals for a mean.
However, in the case study in this article, p-values from classical tests and e-values lead to
qualitatively the same results.

2 Preliminaries

2.1 Scoring functions for probabilities

Throughout the article, EQ(·) denotes the expected value of the quantity in parentheses
under the probability distribution Q. If the measure Q is the probability π ∈ [0, 1] of a
binary event, we simply write Eπ(·).

When comparing probability forecasts with scoring functions, the choice of the scoring
function plays a crucial role. While (1) guarantees that the true event probability always
achieves a minimal expected score, different scoring functions may yield different rankings
when misspecified forecasts are compared (Patton, 2020). This problem can be avoided by
basing forecast comparison on several or all scoring rules simultaneously. For probabilities
of binary events, under mild regularity conditions stated in Gneiting et al. (2007, Theorem
2.3), all consistent scoring functions are of the form

S(p, y) =

∫
(0,1)

Sθ(p, y) dν(θ), (2)

where ν is a locally finite Borel measure on (0, 1) and

Sθ(p, y) = (θ − y){1(p > θ)− 1(y > θ)} =


θ, y = 0, p > θ,

1− θ, y = 1, p ≤ θ,
0, otherwise.

(3)

In the equation above, 1 denotes the indicator function. This representation originally dates
back to Schervish (1989); see also Ehm et al. (2016). The scoring function S is strictly
consistent if and only if ν assigns positive mass to all non-degenerate intervals in (0, 1).

2.2 Forecast dominance and hypotheses

Let (Ω,F ,Q) be a probability space with a filtration Ft, t ∈ N. We assume that the
competing forecasts pt, qt and the observation Yt are a random vector (Yt, pt, qt) adapted to
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Ft, and (pt, qt) are forecasts for Yt+h for some integer lag h ≥ 1. The measure Q describes
the joint dynamics of the forecasts and the observations.

When comparing forecasts using a given scoring function S, the quantity of interest is
often not the unconditional expected score difference EQ{S(pt, Yt+h) − S(qt, Yt+h)}, which
describes the average relative performance of pt and qt. More interesting is the question
whether given the information at the time of forecasting, Ft, the conditional event probability
is closer to pt than to qt, i.e. EQ{S(pt, Yt+h) − S(qt, Yt+h) | Ft} ≤ 0. This notion of forecast
dominance is called conditional forecast dominance and has been introduced by Giacomini
and White (2006).

The definition of forecast dominance used here does not require knowledge about the
processes generating (Yt, pt, qt), which are often unknown or not well enough understood
to formulate a suitable stochastic model. The relative performance of the forecasts pt, qt
is governed by the underlying distribution Q, and hypotheses about forecast dominance are
hypotheses about the data generating process. Denoting by P the set of probability measures
on (Ω,F), we will construct tests for the following hypotheses:

HS;c = [P ∈ P : ctEP{S(pt, Yt+h)− S(qt, Yt+h) | Ft} ≤ 0 a.s., t ∈ N] (4)

Hc =

[
P ∈ P : sup

θ∈[0,1]
ctEP{Sθ(pt, Yt+h)− Sθ(qt, Yt+h) | Ft} ≤ 0 a.s., t ∈ N

]
(5)

Here, (ct)t∈N is a sequence of Ft-measurable random variables ct ∈ {0, 1}. If ct = 1 for all
t, we write HS;c = HS and Hc = H. In this case, Hypothesis (4) states that at all times t,
forecast pt is at least as good as qt under the scoring rule S, given the information available
at the time of forecasting. Hypothesis (5) is stronger and states that pt is preferred over qt
under all elementary scores (3), and it corresponds to what is denoted by Hs

− in Ehm and
Krüger (2018, formula (2.5)). Recently, hypotheses of the type of H or HS have been put
in question by Zhu and Timmermann (2020), who demonstrate that the null hypothesis of
equal conditional predictive accuracy is basically never satisfied in realistic settings. Their
criticism does not directly apply to one-sided hypotheses, but we emphasize that the null
hypotheses HS or H are rather strong in that they require conditional dominance at all
time points. Tests for these hypotheses are therefore most suitable for the comparison of
a new method to an established benchmark or state-of-the-art method, where rejecting the
null means that the new method outperforms the benchmark at least in some situations – a
minimal requirement.

The classical example for a situation with P ∈ H is pt = P(Yt+h = 1 | Ft), i.e. pt is the
ideal forecast in the sense of Gneiting and Ranjan (2013). For the hypotheses HS, one may
easily construct situations with dominance relations also among non-calibrated forecasts; see
the simulation examples in Section 4.

In many practical situations, it cannot be expected that a forecast method always out-
performs another one, and forecast users are rather interested in the question under what
conditions a particular forecast should be preferred. Choosing the sequence (ct)t∈N such that
ct = 1 if the condition holds and ct = 0 otherwise allows to formalize this question. Here the
variables ct must be Ft-measurable, that is, known at the time of forecasting. In practice
this is not a severe limitation, since the information that one forecast is more accurate than
another one under a given condition is only useful if this condition is known at the time of
forecasting, and not ex post. But also from a theoretical point of view, forecast evaluation
should only be conditioned on the forecasts themselves, and not on the observations or on
information not available at the time of forecasting; see Lerch et al. (2017) for a detailed
analysis of this issue in the case of extreme events.
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3 E-values for testing forecast dominance

3.1 One-period setting

We first construct e-values for the comparison of probability forecasts in a one-period setting
where Y = 1 with probability π and the forecasts p, q are assumed to be fixed numbers in
(0, 1). These e-values give an absolute and valid interpretation of predictive performance with
only a single observation, e.g. for a single time point in the sequential setting of Section 2.2,
or in binary classification problems with independent forecast-observation pairs, where the
competing forecasts are based on covariates and π is the probability that Y = 1 conditional
on the covariate values. The null hypotheses that p is a better forecast than q with respect
to a given score S, or with respect to all scoring functions simultaneously, here correspond
to

HS = [π ∈ [0, 1] : Eπ{S(p, Y )− S(q, Y )} ≤ 0],

H =

[
π ∈ [0, 1] : sup

θ∈[0,1]
Eπ{Sθ(p, Y )− Sθ(q, Y )} ≤ 0

]
.

For p < q, a direct computation shows that HS is the interval [0, κν{[p, q)}] with

κν{[a, b)} =

∫
[a,b) θ dν(θ)

ν{[a, b)}
, 0 < a < b < 1.

The stronger null hypothesis H is the intersection of these intervals for all mixing measures ν,
that is, [0, p]. In the case q > p, the intervals take the form [κν{[q, p)}, 1] or [p, 1], respectively.

For a set P of probability measures and disjoint H,H ′ ⊂ P, we say that an e-value E
has null hypothesis H and alternative H ′ if EP(E) ≤ 1 for all P ∈ H and EQ(E) > 1 for all
Q ∈ H ′. The following theorem characterizes e-values for testing HS.

Theorem 3.1. Let S be a consistent scoring function and p, q ∈ (0, 1), p 6= q. Assume
that the mixing measure ν of S satisfies ν

{
[min(p, q),max(p, q))

}
> 0. Then a function

E = E(y) is an e-value with null hypothesis HS and alternative [0, 1] \HS, if and only if for
some λ ∈ (0, 1],

E(y) = Ep,q;λ(y) = 1 + λ
S(p, y)− S(q, y)

|S(p,1{p > q})− S(q,1{p > q})|
. (6)

Theorem 3.1 gives a family of e-values for testing forecast dominance with a given score
S, and in a next step, we tune the parameter λ in (6) such that the corresponding e-value has
maximal ‘power’ against a given alternative. The notion of power for e-values differs from the
classical power of p-values, and it is motivated in detail by Shafer (2021) and Grünwald et al.
(2020). An e-value can be interpreted as a bet against the null hypothesis, and a product∏T
t=1Et of e-values represents the accumulated capital at time if T the initial capital is 1

and all money is invested in the bet at each step. Maximizing the gains is equivalent to
maximizing the ‘growth rate’ (1/T ) log

∏T
t=1Et = (1/T )

∑T
t=1 log(Et), a strategy which is

sometimes called Kelly betting, in reference to Kelly Jr (1956). If an e-value maximizes
EP{log(E)} under a measure P representing an alternative hypothesis, it is called growth
rate optimal or simply GROW (Grünwald et al., 2020). One such alternative could be that
Y = 1 with probability q, but one can maximize the power under any other alternative
π1 6∈ HS.
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Table 1: Commonly used scoring rules and the corresponding denominator in the GROW
e-value under the assumption p < q. The case p > q is obtained by interchanging the roles of
p and q. The mixing measure ν is given in the form of its Lebesgue density h(θ), θ ∈ (0, 1).
For the spherical score, ‖p‖ := (2p2 − 2p + 1)1/2 denotes the Euclidean norm of the vector
(p, 1− p).

Score S(p, y) Mixing density ν κν{[p, q)}

Brier (p− y)2 2 (p+ q)/2

Logarithmic − log(|1− y − p|) θ−1(1− θ)−1 log
(
1−p
1−q

)/
log
(
q(1−p)
p(1−q)

)
Spherical 1− |1− y − p|/‖p‖ (2θ2 − 2θ + 1)−3/2 (q−1)‖p‖−(p−1)‖q‖

(2q−1)‖p‖−(2p−1)‖q‖

Theorem 3.2. Under the assumptions of Theorem 3.1, for any π1 6∈ HS, Eπ1{log(Ep,q;λ)}
is maximal in λ if and only if

λ =


(1− π1) + π1

S(p, 1)− S(q, 1)

S(p, 0)− S(q, 0)
, p > q,

π1 + (1− π1)
S(p, 0)− S(q, 0)

S(p, 1)− S(q, 1)
, p < q.

The corresponding e-value equals

Eπ1p,q(y) =


1− π1

1− κν{[min(p, q),max(p, q))}
, y = 0,

π1

κν{[min(p, q),max(p, q))
} , y = 1.

Theorem 3.2 shows that the GROW e-values for the comparison of probability forecasts
take the form of likelihood ratios with the alternative probability in the numerator and the
integral of the mixing measure ν (suitably normalized) over the interval [min(p, q),max(p, q))
in the denominator. It is possible to obtain this result directly by applying Theorem 1 in
Grünwald et al. (2020), since κν{[min(p, q),max(p, q))} is the boundary of the null-hypothesis
HS. We chose the indirect but more instructive approach via Theorem 3.1 since to the best
of our knowledge, this is the first application of e-values to forecast comparison, and similar
approaches might be used to construct e-values for score differences in more general settings
than the evaluation of binary event forecasts. In fact, Waudby-Smith and Ramdas (2021,
Proposition 2) have a similar representation as in (6) for e-values for testing hypotheses
about a constant mean.

For the test of the null hypothesis H, applying Grünwald et al. (2020, Theorem 1) shows
that the GROW e-value is the likelihood ratio.

Theorem 3.3. Let p, q ∈ (0, 1). Then the GROW e-value with null hypothesis H and
alternative hypothesis that Y = 1 with probability π1 6∈ H is given by

Eπ1∗p,q (y) =

{
(1− π1)/(1− p), y = 0,

π1/p, y = 1.

In testing with e-values, the GROW e-value for testing the point null hypothesis {p}
against the alternative π1 is exactly the likelihood ratio, and Theorem 3.3 states that this
is equivalent to testing forecast dominance with respect to all scoring functions. Dominance
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with respect to all scoring functions is a very strong requirement on p, since the null hypoth-
esis is false as soon as the true probability π is on the same side of p as q, that is, in (p, 1]
for p < q or in [0, p) for q < p, and the choice of π1 is restricted to these sets. Unlike the
e-values Eπ1p,q, E

π1∗
p,q does not depend directly on q, but indirectly via the admissible values

for π1.

3.2 Sequential inference

We now turn to the sequential model with observations Yt and forecasts pt, qt defined on a
probability space (Ω,F ,Q) with a filtration Ft, t ∈ N. In the case h = 1, for any Q ∈ HS;c

and any adapted sequence λt ∈ [0, 1], t ∈ N, with Ept,qt;λt as defined in (6),

EQ

{
T∏
t=1

Ept,qt;λt(Yt+1)

}
= EQ

[
EQ

{
T∏
t=1

Ept,qt;λt(Yt+1) | FT

}]

= EQ

[
T−1∏
t=1

Ept,qt;λt(Yt+1)EQ {EpT ,qT ;λT (YT+1) | FT }

]
.

If ct = 0, then there is no hypothesis about pt and qt. For these cases, the definition at (6)
may be extended to λ = 0, so that Ept,qt;0 ≡ 1 if ct = 0. Then, if λT = 0 when cT = 0,

EQ {EpT ,qT ;λT (YT+1) | FT } = (1− cT ) + cTEQ {EpT ,qT ;λT (YT+1) | FT } ≤ 1

almost surely for Q ∈ HS;c, so

EQ

{
T∏
t=1

Ept,qt;λt(Yt+1)

}
≤ EQ

{
T−1∏
t=1

Ept,qt;λt(Yt+1)

}
.

Iterating this argument shows that the product
∏T
t=1Ept,qt;λt(Yt+1) is an e-value for HS;c;

more precisely, the process
∏t
j=1Epj ,qj ;λj (Yj+1), t = 2, 3, . . . , is a non-negative supermartin-

gale with respect to (Ft)t∈N. For general lag h, sequential conditioning at time steps of 1 is
not possible, and one option is to average the products of all e-values with time difference
of h, in the spirit of the U-statistics merging functions suggested by Vovk and Wang (2021).
We summarize this in the following proposition.

Proposition 3.4. Let (Yt, ct, pt, qt, λt) ∈ {0, 1}2 × (0, 1)2 × [0, 1] be defined on a measurable
space (Ω,F) and adapted to the filtration Ft, t ∈ N, and assume λt = 0 if ct = 0. Let further
S be a strictly consistent scoring function. Then for all T ≥ h+ 1, with Ik = {k + hs : s =
0, . . . , b(T − k)/hc − 1},

eT =
1

h

h∑
k=1

∏
l∈Ik

Epl,ql;λl(Yl+h)

are FT -measurable and are e-values under HS;c.

Proposition 3.4 is an analogous result to Theorem 3.1 in the sense that it only char-
acterizes possible e-values for testing forecast dominance, but the parameters λt could be
any adapted sequence (λt)t∈N ⊂ [0, 1]. E-values for dominance testing under the conditions
(ct)t∈N are obtained by setting all e-values where the condition is not satisfied to 1. The
forecast user may, and in fact, has to, tune the (λt)t∈N in order to attain a good power against
a given alternative. Recall that at any t, the λt may be a function of all the forecasts and
observations before time t. Instead of the parameters λt, it is usually more intuitive to think
about an alternative probability ηt for the event Yt+h = 1, and then directly use the GROW
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e-values Eηtpt,qt constructed in Theorem 3.2. In that respect, testing forecast dominance with
e-values differs from p-value based tests of a zero score difference, which do not require the
user to explicitly specify an alternative hypothesis. In the applications in Sections 4 and 5,
we will give guidance on the selection of alternative hypotheses, and show that reasonable
power may be attained with simple heuristic methods.

As a side remark, choosing an alternative hypothesis for e-values in sequential forecast
dominance testing is similar to the conditional predictive ability tests by Giacomini and
White (2006), where Ft-measurable test functions are used to weight score differences and
improve power. While the selection of the test functions in the Giacomini-White test is
delicate, because they may have an impact on the variance estimates and the finite-sample
validity of the tests, e-values remain valid under any choice of adapted weights (λt)t∈N.

Our last theoretical result states that the e-values eT constructed above are also valid
when T is replaced by a stopping time τ . This is a consequence of the fact that (et)t≥h+1 is
a non-negative supermartingale (see Ramdas et al., 2020, Section 3).

Proposition 3.5. Let τ ∈ N be a stopping time. Then under the assumptions of Proposition
3.4,

EQ(eτ ) ≤ 1, Q ∈ HS.

To understand validity under optional stopping intuitively, recall that at time t, the
forecast user has to determine the parameter λt in the e-value Ept,qt;λt(Yt+h). Optional
stopping at t0 corresponds to setting λt ≡ 0, or equivalently Ept,qt;λt(Yt+h) ≡ 1, for t ≥ t0,
i.e. ignoring all observations starting from time t0 + h. In the case h = 1, this allows the
forecast user to stop evaluation at any time, since λt in Ept,qt;λt(Yt+1) is defined at the
same time as Yt is observed. However, when h > 1, the coefficients λt in Ept,qt;λt(Yt+h) for
t = t0−h+1, . . . , t0−1 have already been determined in the past and may not be set to zero
at t0, since they must be (Ft)t∈N-adapted. This implies that the stopped e-value depends on
the unknown, future observations Yt0+1, . . . , Yt0+h−1, so it is not deterministic at time t0.

In the case h = 1, optional stopping is a powerful strategy when the goal is to assess
forecast superiority at a significance level α ∈ (0, 1), since the stopping time

τα = min{T, inf(t ≥ 2 : et ≥ 1/α)} (7)

allows to reject the null hypothesis as soon as the sequential e-value et exceeds 1/α. If h > 1,
one may similarly define

τα,h = min
(
T, inf

[
t ≥ h+ 1 : et ≥ max

j=t−h+1,...,t−1
Epj ,qj ;λj{1(pj > qj)}−1/α

])
,

which guarantees that when stopping at t0, the level 1/α is exceeded no matter what values
Yt0+1, . . . , Yt0+h−1 take; see Section 1 in the Supplementary Material. Instead of specifying a
significance level α in advance, one may as well transform the sequence (et)t∈N into so-called
anytime valid p-values pt0 = min{1, infs=1,...,t0 1/es}, which are valid simultaneously for all
t0 ≥ h+ 1 (see Ramdas et al., 2020, Section 3.1).

4 Simulation examples

4.1 Basic properties

For the simulation examples in this and in the next subsection, we will transform e-values
E into p-values by taking their inverse 1/E, so that direct comparisons with p-values are
possible. Further variations of these simulation examples are presented in Appendix C. An

8



R package for the proposed methods and replication material for all results in this article are
available on GitHub (https://github.com/AlexanderHenzi/eprob).

In the first example, for varying µ ∈ (0, 1), we simulate independent forecasts pt, qt ∼
Unif(0, 1), define πt = µqt + (1−µ)pt, and generate independent Bernoulli observations Yt+1

with mean πt conditional on pt, qt. This represents a situation where forecasters only have
access to partial information and both forecasts are not calibrated, i.e. P(Yt+1 = 1 | pt) 6= pt
and P(Yt+1 = 1 | qt) 6= qt. We choose S to be the Brier score, so that pt outperforms qt if
and only if πt ∈ [0, (pt + qt)/2] if pt < qt or πt ∈ [(pt + qt)/2, 1] if pt > qt, i.e. if and only
if µ ≤ 0.5. When µ > 0.5, the GROW e-value is obtained by choosing πt as alternative
hypothesis probability, but in practice, πt is not known. The forecast user might assume
that the true probability of Yt+1 = 1 lies somewhere in between (pt + qt)/2 and qt, and
choose a convex mixture ηt(ξ) = ξ(pt + qt)/2 + (1− ξ)qt with some ξ ∈ (0, 1) as alternative.
Proposition 3.4 implies that for k ∈ N and ξ1, . . . , ξk ∈ (0, 1),

et;ξj =

t∏
i=1

E
ηi(ξj)
pi,qi (Yi+1), et =

1

k

k∑
j=1

et;ξj

are e-values under HS. In Figure 1, we compare the rejection rates at the 5% level, corre-
sponding to e-values greater or equal to 20, when the ξj are k equispaced weights in (0, 1)
for k = 1 and k = 5, i.e. ξ1 = 0.5 if k = 1 and ξl = l/6, l = 1, . . . , 5, in the case k = 5. We
computed both the unstopped e-value eT and the stopped variant eτ0.05 , and the e-values un-
der alternatives ηt = πt and ηt = qt. The rejection rates are compared to those of one-sided
t-tests of the null hypothesis that the mean Brier score difference is non-positive. Addition-
ally, we show the rejection rates when the p-value is used for optional stopping at given time
points upon seeing a significant difference.

Our simulations illustrate the known fact that classical statistical tests are not valid
under stopping. At the boundary of the null hypothesis, the rejection rate of the t-test
amounts to 0.12 for T = 600 and optional stops at times 150, 300 and 450; given the number
of optional stops, this phenomenon occurs independently of the sample size. As for the e-
values, stopping (eτ0.05) is always a more powerful but valid strategy compared to the e-value
eT . While the heuristic alternatives achieve a power close to the power under the correct
alternative hypothesis, the misspecified hypothesis ηt = qt is clearly weaker. Interestingly,
the correct alternative ηt = πt has a lower power than the heuristic alternatives close to the
boundary of the null hypothesis. This is not an error: Specifying ηt = πt yields the optimal
growth rate for the e-value, but this does not necessarily mean that it gives optimal power
for the stopped e-value at the threshold 1/α = 20 in finite samples. The t-test generally
achieves a higher power than the e-values, which has to be expected given the absence of
assumptions on the data generating process and the validity under optional stopping; see
also Waudby-Smith and Ramdas (2021).

4.2 Time series example

We simulate Zt from a moving average process Zt = εt + θ
∑4

j=1 εt−j , and define

Yt = 1{Zt > 0}, πt;h = P(Zt > 0 | Zt−j , j = h, . . . , 4), h = 1, . . . , 4. (8)

The probability πt;h corresponds to the ideal forecast at lag h. We compare qt;h = πt;h and
pt;h = πt;h+1 for lags h = 1, . . . , 3, so that qt;h always outperforms pt;h. With decreasing
parameter θ, serial dependence decreases and the forecast skill of pt;h and qt;h becomes
similar. The alternative hypothesis for the e-values is the correct alternative ηt;h = qt;h, so
that the effect of a higher lag can be analyzed isolated from the question how to choose
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Figure 1: Rejection rates of e-values and Student’s t-test for the hypothesis that pt dominates
qt with respect to the Brier score in the simulation of Section 4.1. Sample size is T = 600
for the panels (a)-(c) and the significance level is α = 0.05 for all panels. (a) Rejection rate
of t-test under optional stopping at 1, 3, and 5 equispaced time points (triangles, squares,
crosses) in between 1 and T = 600, and without optional stopping (dots). (b) Rejection
rates of stopped (dots) and unstopped (triangles) e-value with k = 1. (c) Rejection rates of
e-values with different alternative hypotheses (qt: triangles, πt: dots, k = 1: crosses, k = 5:
squares). (d) Rejection rates of e-value (k = 5; normal lines) and t-test (without stopping;
dot-dashed lines) for varying sample size T (dots: 300, triangles: 600, squares: 1200).

the alternative hypothesis. Rejection rates are compared to the Diebold-Mariano test at the
5%-level.

Figure 2 shows the rejection rates depending on the parameter θ for different sample sizes
T . The e-values use the stopping time τ0.05 for lag 1 and τ0.05;h for lags h = 2 and h = 3.
As in the previous simulations, the power of the e-values is below the p-values for the lag 1
forecasts, where the Diebold-Mariano test essentially coincides with the t-test. For lags 2 and
3, this difference increases, since the combination method for e-values becomes less powerful.
With increasing lag, the rejection rates of both methods decrease, but the difference to lag
1 is smaller for the Diebold-Mariano test compared to the e-value. In this example, the
Diebold-Mariano test is valid because the forecasts are ideal and the data generating process
is stationary. For the e-values, validity is guaranteed without such assumptions, which may
be of great advantage in applications.

5 Case study

5.1 Data and methods

Henzi et al. (2021) have compared postprocessing methods for precipitation forecasts with
lag 1 to 5 days at the airports Brussels (BRU), Frankfurt (FRA), London Heathrow (LHR)
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Figure 2: Rejection rates of e-value (dots) and Diebold-Mariano test (triangles) in Example
(8) at the 5% level for different sample sizes (panel rows) and lags h (panel columns).
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and Zurich (ZRH). In their case study, probability of precipitation (PoP) forecasts have
been evaluated with the Brier score, but no tests for significance of score differences have
been performed. We will illustrate here how to apply e-values for probability forecasts, and
compare the results to state-of-the-art forecast dominance tests.

A detailed description of the dataset and methods is given in Section 5 of Henzi et al.
(2021), and we only summarise the key information here. The dataset covers the period
from January 06, 2007 to January 01, 2017, and accounting for missing values, the numbers
of available observations are 3406 for Brussels, 3617 for Frankfurt, 2256 for London and
3241 for Zurich airport. Postprocessing is applied to the ensemble forecasts of the European
Centre for Medium-Range Weather Forecasts (ECMWF; Molteni et al., 1996; Buizza et al.,
2005), which are issued on a latitude-longitude grid and consist of a high resolution forecast,
50 perturbed ensemble forecasts at a lower resolution, and the control run for the perturbed
forecasts. In simple words, ensemble forecasts account for uncertainty by running a numer-
ical weather prediction (NWP) model several times, each time under slightly perturbated
initial conditions, and each run of the model yields a different forecast, which together form
a so-called ensemble (Leutbecher and Palmer, 2008). Ensemble forecasts are usually subject
to biases and dispersion errors, which can be corrected by estimating the conditional distri-
bution of the weather variable given the NWP ensemble. This statistical procedure is known
as postprocessing of ensemble forecasts (Vannitsem et al., 2018).

Henzi et al. (2021) propose isotonic distributional regression (IDR) as a benchmark for
such postprocessing methods. IDR estimates conditional distributions nonparametrically
and without any tuning parameters. The method is not specifically tailored to forecasting
precipitation, and one would expect that a parametric model designed for this purpose
gives more precise forecasts. One such method is heteroscedastic censored logistic regression
(HCLR; Messner et al., 2014), which assumes that the square root of the precipitation follows
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a logistic distribution censored at zero. The implementation is as in Henzi et al. (2021).
While the covariates in IDR are only the high resolution forecast, the control forecast, and
the ensemble mean, the HCLR model additionally includes a scale parameter depending on
the ensemble standard deviation.

Different from the study in Henzi et al. (2021), who use an expanding window for the
postprocessing, we estimate both postprocessed forecasts on half of the data for each airport
for simplicity, and keep the remaining half for validation.

5.2 Hypothesis tests

We illustrate the usage of e-values in the following hypothesis tests. Firstly, we try to reject
the null hypothesis that IDR probability of precipitation forecasts are better than the HCLR
PoP forecasts with respect to the Brier score. Secondly, we modify HCLR by dropping
the scale parameter. It is expected that this variant, denoted by HCLR− subsequently,
is outperformed by HCLR including the ensemble-dependent scale parameter, and also by
IDR, since the models are based since both IDR and HCLR− assume a monotone relationship
between the covariates and the PoP, but the nonparametric IDR can estimate a broader class
of functions. And finally, we further investigate the effect of the scale parameter on HCLR
predictions for high precipitation. Suppose a weather forecaster issues a warning if the
probability that the precipitation exceeds a high threshold is more than 50%. As thresholds,
we chose the empirical 90% quantile of precipitation in the training data for each airport.
Intuitively, the HCLR model should yield more accurate warnings than HCLR−, because it
includes the ensemble standard deviation as an uncertainty measure.

The first and second set of hypotheses are tested with the Brier score and the correspond-
ing e-values. As alternative probability, we take the convex mixtures ηt = 0.25pt + 0.75qt,
which have been explored in Section 4, denoting by pt the forecasting method that is ex-
pected to have a better performance than qt under the null hypothesis. The hypothesis
about the extreme precipitation warnings is a conditional comparison with the conditions
ct = 1{max(pt, qt) ≥ 0.5}. For this hypothesis, instead of dominance with respect to the
Brier score, we test the stronger hypothesis of forecast dominance with respect to all scoring
rules. The rationale is that the forecast dominance hypothesis should be easily rejected if the
HCLR model truly issues the better tail forecasts, and on the other hand, failing to reject
may indicate that either even with data of 10 years it is not possible to clearly discriminate
the quality of such warnings, or that the ensemble standard deviation does not bring a ben-
efit. For this hypothesis we define ηt = qt, assuming that the conditional event probabilities
should be much closer to the ones issued by HCLR than by HCLR−. No optional stopping
is applied in all e-values.

For comparison, we also compute p-values for the significance of score differences. The
first two hypotheses are tested with one-sided Diebold-Mariano tests (Diebold and Mariano,
1995; see also Giacomini and White, 2006). To estimate the variance of the test statistics,
we use the heteroskedasticity and autocorrelation consistent estimator with Bartlett weights,
see Lerch et al. (2017, Equation 2.18). For testing dominance of the tail probability forecasts,
the test by Yen and Yen (2021) would allow arbitrary forecast lags, but it assumes strict
stationarity. Since the sequence ct selects only particular instances, with possibly strongly
varying time gaps in between, stationarity is highly questionable. We therefore apply the
dominance test by Ehm and Krüger (2018), which is valid under weaker assumptions but
limited to lag 1. Strictly speaking, both the Diebold-Mariano test and the forecast dominance
test are valid under larger null hypotheses than the e-values, as they only require the average
score difference between pt and qt to be non-positive, whereas the null hypothesis for the
e-values asks for conditional superiority at each time point. A comparison is nevertheless
interesting, since these two tests represent commonly used methods that are applied to test
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Table 2: Brier scores for different probability of precipitation forecasting methods, and
e-values (E) and p-values (p) for testing significance of score differences. The columns
HCLR/IDR show e-values and p-values for tests of the null hypothesis that IDR probability
of precipitation forecasts achieve a lower Brier score the HCLR forecasts; the interpretation
is analogous for the other forecast pairs.

Average Brier score HCLR/IDR IDR/HCLR− HCLR/HCLR−

Lag IDR HCLR HCLR− E p E p E p

BRU 1 0.107 0.117 0.118 0 0.9998 > 100 < 10−4 > 100 0.0702
2 0.119 0.123 0.125 0.01 0.9471 > 100 0.0101 13.602 0.0294
3 0.134 0.133 0.136 0.425 0.4405 > 100 0.1916 15.185 0.0019
4 0.152 0.145 0.148 4.804 0.0138 1.943 0.9358 5.165 0.0074
5 0.171 0.161 0.164 16.969 0.0002 0.415 0.9965 3.436 0.0003

FRA 1 0.109 0.111 0.114 0 0.7784 > 100 0.0213 > 100 < 10−4

2 0.114 0.119 0.122 0.054 0.9643 > 100 0.0002 > 100 0.0004
3 0.123 0.127 0.132 0.078 0.9352 > 100 0.0001 26.569 < 10−4

4 0.147 0.144 0.147 2.291 0.0966 9.618 0.5245 5.54 0.0001
5 0.166 0.161 0.163 1.526 0.0305 2.362 0.8871 3.227 0.0051

LHR 1 0.135 0.138 0.139 0.029 0.8136 14.979 0.1314 2.845 0.3721
2 0.138 0.143 0.143 0.188 0.9189 > 100 0.0509 2.868 0.4369
3 0.152 0.154 0.155 0.734 0.7549 40.905 0.1394 2.488 0.3400
4 0.169 0.167 0.169 1.429 0.2455 1.7 0.5442 1.744 0.0785
5 0.186 0.181 0.182 1.577 0.0753 0.379 0.9288 1.118 0.3216

ZRH 1 0.104 0.108 0.110 0.003 0.9306 > 100 0.0055 61.747 0.0003
2 0.110 0.112 0.114 0.116 0.7219 36.891 0.0304 10.276 0.0001
3 0.121 0.118 0.121 1.516 0.0892 31.924 0.4410 5.098 0.0001
4 0.138 0.132 0.134 4.069 0.0027 1.276 0.9588 2.771 0.0015
5 0.165 0.156 0.159 15.151 < 10−4 0.842 0.9978 2.383 0.0002
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Figure 3: E-values for the hypotheses tests at lag 1 for Brussels (dots), Frankfurt (triangles),
London (squares), and Zurich (crosses). The abbreviation of the hypotheses is as in Table
2.
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the significance of score differences.
Tables 2 and 3 show the e-values and one-sided p-values for the hypotheses described

above, computed separately for each airport and forecast lag. The e-values are not trans-
formed to p-values here. For interpretation, Vovk and Wang (2020, Section 3) suggest
the discrete scale such that e-values in (0, 1], (1, 3.16], (3.16, 10], (10, 31.6], (31.6, 100], and
(100,∞) represent no, poor, substantial, strong, very strong, and decisive evidence against
the null hypothesis, respectively. E-values larger than 100 are not displayed to improve read-
ability, but an untruncated variant of Table 2 is contained in Appendix D so that it is possible
to update the e-values with more recent data. For all hypotheses, the p-values and e-values
largely lead to the same conclusions. HCLR does not outperform IDR for PoP forecasts at
lags 1 to 3, but for the airports Brussels and Zurich there is substantial to strong evidence
that it achieves lower Brier scores at the lags 4 and 5. HCLR− is clearly outperformed by the
more complex variant with the ensemble-dependent scale parameter at short lags, and also
for the longer lead times there is some evidence that including the scale parameter improves
the forecasts, except for London airport. As for the difference between IDR and HCLR−,
both the e-values and the p-values suggest that IDR yields the better forecasts at lags 1 to
3, but at lags 4 and 5, there are no rejections of the null hypothesis. Figure 3 shows how the
cumulative products of the e-values for the hypotheses tests at lag 1 evolve over time. If the
goal was to accumulate strong evidence against the hypotheses, say exceeding the level 10,
then the hypothesis that IDR outperforms HCLR− could already be rejected with only 9%
or 27% of the data, respectively, which is where the corresponding lines first cross the level
10. For Zurich airport, rejection happens at 85% of the total sample size.

Interestingly, in the comparison of HCLR and HCLR− for Brussels, lag 1, the p-value
is non-significant (0.07) but the e-value gives decisive evidence (> 100). We attribute this
to the different null hypotheses of the tests: The mean difference in Brier score is only
0.001 with an estimated standard deviation of 0.03, giving only little evidence against the
null hypothesis of the Diebold-Mariano test. However, the null hypothesis for the e-value
is smaller, requiring that HCLR− outperforms HCLR at all time points. Even if the score
differences are only small, evidence eventually accumulates over the whole time period; see
the rightmost panel of Figure 3. The fact the e-values in the comparison HCLR/HCLR−
decrease with the forecast lag is an effect of the less powerful merging method for e-values
with higher lag.
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Table 3: Sample sizes, e-values and p-values for the comparison of tail probability forecasts.
The sample size is the number of observations where the condition min(pt, qt) ≥ 0.5 holds.

Brussels Frankfurt London Zurich

Lag n E (p) n E (p) n E (p) n E (p)

1 116 > 100 (0.050) 79 0.175 (0.814) 72 0.45 (0.724) 92 0.047 (0.892)
2 88 23.409 87 3.327 69 1.332 99 2.961
3 68 10.704 62 3.542 60 1.429 75 0.567
4 49 2.338 53 1.166 39 0.868 52 0.773
5 28 1.029 26 1.033 30 1.077 36 1.073

In the comparisons of extreme precipitation warnings, the p-value gives some evidence
against the null hypothesis for Brussels airport, and the corresponding e-value is decisive,
E = 3703. For the other lag 1 forecasts, both p-values and e-values do not indicate that
including the ensemble standard deviation brings a benefit. As for the higher lags, for London
and Zurich airport there is no evidence that HCLR outperforms HCLR−, and for Brussels
and Frankfurt airport there is only evidence at lags 2 and 3. Overall, the evidence in favour
of the HCLR model for issuing extreme precipitation warnings as compared to HCLR− is
surprisingly weak.
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A Proofs in Section 3

Proof of Theorem 3.1. If E(y) is of the stated form, then E(y) ≥ E{1(p > q)} = 1− λ ≥ 0,
and one can easily verify that E has the given null hypothesis. Assume that p < q; the case
p > q is analogous. Define dp,q(y) = S(p, y)− S(q, y) and, for π ∈ [0, 1],

f(π) = Eπ{dp,q(Y )} = (1− π)dp,q(0) + πdp,q(1). (9)

The elementary score representation (2) and ν{[p, q)} > 0 imply that dp,q(0) < 0 < dp,q(1),
so f(π) is strictly increasing in π and equal to zero for some π0 ∈ (0, 1). Let E = E(y) be
an e-value under HS with alternative Hc

S, i.e. E(y) ≥ 0 and

Eπ{E(Y )} = (1− π)E(0) + πE(1) ≤ 1 ⇐⇒ f(π) ≤ 0. (10)

Condition (10) implies that Eπ{E(Y )} = 1 if and only if f(π) = 0, which yields

dp,q(0)

dp,q(1)− dp,q(0)
=

E(0)− 1

E(1)− E(0)
. (11)

Rearranging this equation gives E(1) = 1− {1−E(0)} · dp,q(1)/dp,q(0). It follows from (10)
and (11) that E(0) ∈ (0, 1), so with λ = 1 − E(0), we obtain E(y) = 1 + λdp,q(y)/|dp,q(0)|.
Similar arguments for the case p > q show that in general,

E(y) = 1 + λ
dp,q(y)

|dp,q{1(p > q)}|
.

Proof of Theorem 3.2. All e-values for the given null hypothesis are of the form (6). To
find the GROW e-value under the alternative that Y = 1 with probability π1, we have to
maximize

Eπ1 [log{Ep,q;λ(Y )}] = (1− π1) log

[
1− λ dp,q(0)

dp,q{1(p > q)}

]
+ π1 log

[
1− λ dp,q(1)

dp,q{1(p > q)}

]
,

where again dp,q(y) = S(p, y) − S(q, y). Let p < q; the case p > q is analogous. Under this
assumption dp,q(0) < 0 < dp,q(1), and g(λ) = Eπ1 [log{Ep,q;λ(Y )}] is continuous in λ with
g(0) = 0 and limλ→1 g(λ) = −∞, so a maximum is attained at some λ ∈ [0, 1). Define
h = dp,q(1)/dp,q(0) < 0, so that

g(λ) = (1− π1) log(1− λ) + π1 log(1− λh), g′(λ) = −1− π1
1− λ

− π1
h

1− λh
,

and g′(λ0) = 0 is equivalent to λ0 = π1 + (1− π1)/h. By definition of HS, π1 6∈ HS holds if
and only if Eπ1{dp,q(Y )} > 0, which is equivalent to π1 + (1 − π1)/h > 0, so indeed λ0 > 0
for all π1 6∈ HS, and

Ep,q;λ0(0) = 1− λ0 = (1− π1)
(

1− 1

h

)
= (1− π1)

dp,q(1)− dp,q(0)

dp,q(1)
,

Ep,q;λ0(1) = 1− λ0
dp,q(1)

dp,q(0)
= π1

dp,q(0)− dp,q(1)

dp,q(0)
.

With dp,q(y) =
∫
1{p ≤ θ < q}(θ − y) dν(θ), it now follows that

dp,q(1)− dp,q(0)

dp,q(1)
=

−ν{[p, q)}
−ν{[p, q)}+

∫
[p,q) θ dν(θ)

=
1

1− κν{[p, q)}}

and 1− h = (dp,q(0)− dp,q(1))/dp,q(0) = κν{[p, q)}−1 > π−11 , which gives the desired result.
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Proof of Theorem 3.3. A direct computation shows that H = [0, p] if p < q and H = [p, 1] if
p > q, and that Eπ{Eπ1∗p,q (Y )} ≤ 1 for all π ∈ H and Eπ{Eπ1∗p,q (Y )} > 1 for π 6∈ H. The result
then follows by Theorem 1 of Grünwald et al. (2020), with W1 being the Dirac measure of
the point {π1}.

Proof of Proposition 3.4. Follows as in the case h = 1 with sequential conditioning on Fk+hl,
l = 1, . . . , b(T − k)/hc, for each of the h products

∏
l∈Ik Epl,ql;λl(Yl+h).

B Optional stopping for lags h > 1

In Section 3.2 of the article, the stopping rule

τα,h = min
(
T, inf

[
t ≥ h+ 1 : et ≥ max

j=t−h+1,...,t−1
Epj ,qj ;λj{1(pj > qj)}−1/α

])
,

is defined for e-values of the form

eT =
1

h

h∑
k=1

∏
l∈Ik(T )

Epl,ql;λl(Yl+h),

where Ik(T ) = {k + hs : s = 0, . . . , b(T − k)/hc − 1}. Assume that at time t, it is observed
that et ≥ maxj=t−h+1,...,t−1Epj ,qj ;λj{1(pj > qj)}−1/α, and that optional stopping is applied,
i.e. Eps,qs;λs(Yt+s) ≡ 1 for s ≥ t. The claim is that then et+h−1 ≥ 1/α no matter what values
Yt+1, . . . , Yt+h−1 take. Because Ept,qt;λt(Yt+h) ≡ 1, we have et+h−1 = et+h. For k = 1, . . . , h,
let sk = k + hb(t − k)/hc, so that {s1, . . . , sh} = {t − h + 1, . . . , t}. Then, using that
Ik(t+ h) \ {sk} = Ik(t),

et+h−1 = et+h =
1

h

h∑
k=1

Epsk ,qsk ;λsk (Ysk+h)
∏

l∈Ik(t+h)\{sk}

Epl,ql;λl(Yl+h)


≥ 1

h

h∑
k=1

Epsk ,qsk ;λsk{1(psk > qsk)}
∏

l∈Ik(t)

Epl,ql;λl(Yl+h)


≥ min

j=t−h+1,...,t−1
Epj ,qj ;λj{1(pj > qj)} ·

1

h

h∑
k=1

∏
l∈Ik(t)

Epl,ql;λl(Yl+h)

=

[
max

j=t−h+1,...,t−1
Epj ,qj ;λj{1(pj > qj)}−1

]−1
et ≥ 1/α.

C Simulation examples: Additional figures

The simulation example in Section 4.1 in the article has been tested for robustness with
respect to various parameters: significance levels (α = 0.001, 0.01, 0.05), scoring functions
(Brier score, spherical score, logarithmic score), sample sizes (150, 300, 600, 1200, 2400),
tests for computing p-values (Student’s t-test, Wilcoxon’s signed rank test), and alternative
hypotheses for constructing the e-values (parameter k as explained in Section 4.1 in the
article).

For the spherical and the logarithmic score, the probability πt was computed in such a
way that µ = 0.5 corresponds to a score difference of zero, namely, with rt = Eν

{
θ | θ ∈

[min(pt, qt),max(pt, qt))
}

, we set πt = pt for µ = 0, πt = rt for µ = 0.5, πt = qt for µ = 1,
and interpolate linearly in between these three points for the other µ.
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Figure 4 demonstrates that the rejection rates of the e-values are almost the same for all
scoring functions.

Figure 5 shows how the rejection rates vary with the alternative hypothesis for the e-value.
In particular, it can be seen that the alternative πt is superior and qt is inferior for all sample
sizes and significance levels. As for the alternatives with the parameter k, smaller k give
higher rejection rates for small sample sizes and lower rejection rates for larger samples.

Figure 6 shows that also the rejection rates of Student’s t-test are essentially equal for the
different scoring functions.

In Figure 7, it can be seen that the rejection rates of Student’s t-test and Wilcoxon’s signed
rank test for this simulation are almost equal.

Figure 8 shows that close to µ = 0.05, Student’s t-test under optional stopping has too high
rejection rates independent of the significance level and the sample size.

The simulation example in Section 4.2 was tested with different significance levels and scoring
functions.

Figure 9 shows that the choice of the scoring function has a minor influence on the rejection
rates for the sample sizes 300 and 600, and almost no effect for 1200 and 2400.

Figure 10 compares the rejection rates of the Diebold-Mariano test and the e-values for
different significance levels.
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Figure 4: Rejection rate of stopped e-value (alternative hypothesis with k = 1 as explained
in the article) for Brier score (dots), spherical score (squares), logarithmic score (triangles),
and different significance levels (columns) and sample sizes (rows).
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Figure 5: Rejection of stopped e-values based on Brier score for different alternative hy-
potheses and different sample sizes and significance levels. The alternatives are πt (dots), qt
(triangles), k = 1 (filled squares), k = 3 (crosses), k = 5 (squares with cross).

D Case study: Additional material

Table 4 contains the e-vales and p-values of Table 2 in scientific digit notation.
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Table 4: Brier scores for different probability of precipitation forecasting methods, and
e-values (E) and p-values (p) for testing significance of score differences. The columns
HCLR/IDR show e-values and p-values for tests tests of the null hypothesis that IDR
probability of precipitation forecasts achieve a lower Brier score the HCLR forecasts; the
interpretation is analogous for the other forecast pairs.

Average Brier score HCLR/IDR IDR/HCLR− HCLR/HCLR−

Lag IDR HCLR HCLR− E p E p E p

BRU 1 0.107 0.117 0.118 5.6e−08 1.0e+00 5.0e+09 1.3e−05 1.3e+02 7.0e−02
2 0.119 0.123 0.125 9.5e−03 9.5e−01 2.2e+02 1.0e−02 1.4e+01 2.9e−02
3 0.134 0.133 0.136 4.3e−01 4.4e−01 5.4e+02 1.9e−01 1.5e+01 1.9e−03
4 0.152 0.145 0.148 4.8e+00 1.4e−02 1.9e+00 9.4e−01 5.2e+00 7.4e−03
5 0.171 0.161 0.164 1.7e+01 2.3e−04 4.1e−01 1.0e+00 3.4e+00 3.3e−04

FRA 1 0.109 0.111 0.114 1.4e−06 7.8e−01 1.6e+11 2.1e−02 2.4e+03 2.8e−06
2 0.114 0.119 0.122 5.4e−02 9.6e−01 1.3e+06 2.3e−04 2.5e+02 4.2e−04
3 0.123 0.127 0.132 7.8e−02 9.4e−01 3.8e+04 1.3e−04 2.7e+01 5.4e−06
4 0.147 0.144 0.147 2.3e+00 9.7e−02 9.6e+00 5.2e−01 5.5e+00 5.9e−05
5 0.166 0.161 0.163 1.5e+00 3.0e−02 2.4e+00 8.9e−01 3.2e+00 5.1e−03

LHR 1 0.135 0.138 0.139 2.9e−02 8.1e−01 1.5e+01 1.3e−01 2.8e+00 3.7e−01
2 0.138 0.143 0.143 1.9e−01 9.2e−01 1.2e+02 5.1e−02 2.9e+00 4.4e−01
3 0.152 0.154 0.155 7.3e−01 7.5e−01 4.1e+01 1.4e−01 2.5e+00 3.4e−01
4 0.169 0.167 0.169 1.4e+00 2.5e−01 1.7e+00 5.4e−01 1.7e+00 7.8e−02
5 0.186 0.181 0.182 1.6e+00 7.5e−02 3.8e−01 9.3e−01 1.1e+00 3.2e−01

ZRH 1 0.104 0.108 0.110 3.0e−03 9.3e−01 3.0e+04 5.5e−03 6.2e+01 3.2e−04
2 0.110 0.112 0.114 1.2e−01 7.2e−01 3.7e+01 3.0e−02 1.0e+01 5.0e−05
3 0.121 0.118 0.121 1.5e+00 8.9e−02 3.2e+01 4.4e−01 5.1e+00 1.0e−04
4 0.138 0.132 0.134 4.1e+00 2.7e−03 1.3e+00 9.6e−01 2.8e+00 1.5e−03
5 0.165 0.156 0.159 1.5e+01 2.3e−05 8.4e−01 1.0e+00 2.4e+00 1.7e−04
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Figure 6: Rejection rate of Student’s t-test for Brier score (dots), spherical score (squares),
and logarithmic score (triangles) differences, for different significance levels and sample sizes.
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Figure 7: Rejection rates of Student’s t-test (circles) and Wilcoxon’s signed rank test (tri-
angles) for Brier score differences, for different significance levels and sample sizes.
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Figure 8: Rejection rates of Student’s t-test under optional stopping, for different significance
levels and sample sizes. Optional stops are included at 1 (triangles), 3 (squares) and 5
equispaced time points in between 1 and the sample size T . Dots show the rejection rates
without optional stopping.
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Figure 9: Rejection rates of Diebold-Mariano test (dashed lines) and e-values (normal lines)
for the Brier score (dots), spherical score (squares), and the logarithmic score (triangles),
and for different lags (columns) and sample sizes (rows).
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Figure 10: Rejection rates of the Diebold-Mariano test and E-values for the significance
levels 0.005 (dots), 0.01 (triangles), and 0.05 (squares), based on Brier score differences and
a sample size of 600.
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