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Abstract—Anticipating future locations of mobile users
plays a pivotal role in intelligent services supporting mobile
networks. Predicting user trajectories is a crucial task not
only from the perspective of facilitating smart cities but also
of significant importance in network management, such as
handover optimization, service migration, and the caching of
services in a mobile and edge-computing network. Convolutional
Neural Networks (CNNs) have proven to be successful to tackle
the forecasting of mobile users’ future locations. However,
designing effective CNN architectures is challenging due to
their large hyper-parameter space. Reinforcement Learning
(RL)-based Neural Architecture Search (NAS) mechanisms have
been proposed to optimize the neural network design process,
but they are computationally expensive and they have not been
used to predict user mobility. In large urban scenarios, the
rate at which mobility information is generated makes it a
challenge to optimize, train, and maintain prediction models
for individual users. However, considering that user trajectories
are not independent, a common trajectory-prediction model
can be built and shared among a set of users characterized by
similar mobility features. In the present work, we introduce
Reinforcement Convolutional Transfer Learning (RC-TL), a
CNN-based trajectory-prediction system that clusters users with
similar trajectories, dedicates a single RL agent per cluster to
optimize a CNN neural architecture, trains one model per cluster
using the data of a small user subset, and transfers it to the
other users in the cluster. Experimental results on a large-scale
dataset show that our proposed RL-based CNN achieves up
to 12% higher trajectory-prediction accuracy, with no training
speed reduction, over other state-of-the-art approaches on a
large-scale, real-world mobility dataset. Moreover, RC-TL’s
clustering strategy saves up to 90% of the computational
resources needed for training compared to single-user models,
in exchange for a 3% accuracy reduction.

Keywords: Trajectory Prediction, Convolutional Neural Net-
work, Reinforcement Learning, Clustering, Transfer Learning.

I. INTRODUCTION

Next-generation networks must be self-organized, efficient,
and cost-effective. While 5G networks are already being
deployed worldwide, Beyond 5G (B5G) and its successors
must seamlessly manage user mobility providing high Quality
of Experience (QoE) for their consumers [1]. User mobility
is a defining characteristic of modern networks, and is re-
sponsible for management events such as Handover (HO) and

service migration. While mobile networks have traditionally
adopted reactive strategies, next-generation networks must
perform mobility management in a proactive manner in order
to provide high-Quality of Service (QoS) mobility for their
users. Such proactive mobility management strategies rely on
the usage of Artificial Intelligence (AI) to forecast and handle
user mobility. Adaptive and anticipatory network management
enables the operator to allocate resources, optimize the costs
of the network, and improve user experience. For instance,
trajectory prediction enables proactive mechanisms so that
handover signaling can be done before the mobile user’s
arrival at a target base station to guarantee communication
continuity. Furthermore, based on mobility knowledge, various
heterogeneous services can be offloaded from the cloud to
servers located at the edge of the network closer to end-users.
Service migration is an integral approach for keeping services
close to users even as they move to guarantee QoS levels
for the applications they consume [2]. On the other hand,
smart cities rely on mobility information to support Intelligent
Transportation Services (ITS) such as safety technologies
for the development of fully autonomous vehicles, collision
avoidance, efficient road traffic management, navigation, and
route recommendation systems [3], [4]. Therefore, designing
an accurate, optimized, and robust mobility predictor is a
critical task for both management and consumer services.

Machine Learning (ML) and Artificial Neural Network
(ANN) models have proven to be highly effective in pre-
dicting mobility by analyzing users’ historical location data
and learning moving patterns to forecast future user locations.
In particular, Long Short Term Memory (LSTM) models are
already mature in the field of time-series prediction, and a
few recent studies show the effectiveness of CNNs to tackle
this problem. While CNNs are not commonly applied to learn
time-series data such as user mobility information, they have
shown significant potential due to their ability to encode pat-
terns in their convolutional kernels. Furthermore, CNN allows
learning parallelization and requires limited computation to
perform the prediction task.

However, LSTM and CNN models are characterized by
a large set of hyper-parameters (e.g., activation functions,
diversity in type and number of neural layers, dropout values,
and units) that are commonly determined by a human expert978-1-6654-0601-7/22/$31.00 © 2022 IEEE



heuristically [5], [6], [7]. Some works optimize the neural
architecture using RL, a self-learning model that finds the most
appropriate neural network architecture for a given dataset by
rewarding architectures that lead to high prediction accuracy.
Searching for an optimal neural network architecture for each
user using RL can be computationally expensive in large
systems. Some studies show that clustering users with similar
characteristics and training a single model for all the users in
the cluster can reduce the computation needed for training [8],
[9]. However, no studies have investigated the potential of user
clustering to reduce the computational requirements for RL-
based NAS, which is one of the goals of this study.

In this work, we propose RC-TL, an efficient CNN-based
trajectory predictor that automates and personalizes neural
network architecture design at the cluster level. RC-TL ’s
novelty is threefold. First, it applies for the first time RL-CNN
to predict user mobility. Second, it groups users with similar
trajectories and builds one RL-CNN model per cluster based
on a few representative users, reducing the computation needed
to train the model. Finally, it transfers the model trained on
the cluster’s set of representative users to the other members
of that cluster using Transfer Learning (TL).

The rest of this paper is organized as follows. Section II
presents the related works. Section III describes RC-TL’s
operation. Section IV evaluates RC-TL’s performance. Finally,
Section V concludes the paper, summarizes the contributions
of this work, and indicates some future avenues.

II. RELATED WORKS

In recent years, AI algorithms have replaced conventional
statistical models to analyze mobility data and predict future
trajectories of mobile users, e.g., pedestrians and vehicles [10],
[11], [12]. In the literature, the problem of trajectory pre-
diction has been extensively tackled with Recurrent Neural
Networks (RNNs) [5], and their variants, such as LSTM [6]
as successful Deep Learning (DL) models designed for time-
series prediction. Despite the success of RNNs and LSTMs,
they face a slow training process, as they must process the
input data in sequential order. In contrast, CNN’s are other
powerful DL tools that can concentrate on sequential data
from a hierarchical perspective processing the data as a whole
and, thus, can become a suitable alternative for RNNs. The
predictors presented by Nikhil et al. [13] and Zamboni et
al. [7] is from the limited existing works that apply CNNs
for the trajectory prediction field.

Although all aforementioned ANN-based works success-
fully predict trajectories, they design the neural architectures
following human-expert-based heuristics, which is an error-
prone and time-consuming process. Furthermore, they apply
the same neural architecture to every user dataset, assuming
everyone has similar mobility behaviors. Several search meth-
ods have been proposed to automate the neural architecture
design process given a dataset in other fields than mobility

prediction. Elsken et al. [14] surveys existing Neural Architec-
ture Search (NAS) works where hyper-parameter optimization
can be formulated within the scope of an RL algorithm as a
more efficient search technique concerning the naive search
techniques such as grid search, random search [15], and
Bayesian search [16]. Most of the Neural Architecture Search
(NAS) works leverage RL to find the best architecture for
image classification tasks, where defining well-suited search
spaces is relatively easy due to human experience and the
existence of several manually-designed models [17], [18],
[19]. However, the potential of NAS methods in less explored
domains is still unclear [14]. Therefore we propose and study
a RL-based NAS method in the field of trajectory prediction.

Computationally light NAS methods have not been studied
in the literature [14]. RL for NAS is computationally lighter
than Grid Search (GS) methods and can achieve better accu-
racy than random search methods, but is still computationally
expensive. In a real network scenario with thousands of
mobile users’ trajectories, training an RL agent per each user
dataset to optimize their neural network architecture would be
impossible. Multiple users in an urban area might partially
follow similar trajectories during a specific period of the day
by chance or by groups’ intentions [20]. Therefore, we propose
to cluster similar trajectory users and train a single RL agent
for each cluster of users instead of for each user to reduce
computational requirements in large-scale networks.

In the literature, some relevant trajectory prediction works
have suggested clustering similar users. Nevertheless, their
approaches have many shortcomings and are not within the
scope of NAS. For example, the recently proposed model in [8]
clusters similar trajectory users and then feeds only parts of
complete trajectories (referred to as partial trajectories) within
a cluster to an LSTM. However, their approach faces three
problems. First, training only a part of trajectories disregards
long-term spatio-temporal dependencies information. Besides,
training partial trajectories of all users within all clusters still
requires a considerable amount of computational resources.
Moreover, Shrivastava et al. [8] apply the same heuristically-
designed LSTM architecture to all clusters, which does not
guarantee the optimal prediction performance. Alternatively,
Sung et al. [9] cluster similar users and then aggregate all
user data within a cluster by averaging them to a single data
sequence and feeding it to a Markov-based predictor. This
model also suffers from three shortcomings. Primarily, averag-
ing all users’ data discards useful spatio-temporal information.
Furthermore, their model needs access to all users’ data for
the aggregation, which is expensive in terms of communication
and computation. Finally, Markov-based predictors are much
less potent than ANNs and cannot guarantee optimal perfor-
mance. In this direction, our proposed RC-TL addresses all
the shortcomings mentioned above by bringing a combination
of NAS and TL to the cluster-level mobility prediction. RC-
TL offers an accurate yet computationally efficient trajectory



TABLE I
COMPARISON OF THE STATE-OF-THE-ART TRAJECTORY PREDICTORS

Trajectory Predictor Model ANN RL Clustering TL

Zhang et al. [5] RNN X
Phillips et al. [6] LSTM X
Nikhil et al. [13] CNN X
Shrivastava et al. [8] LSTM X X
Sung et al. [9] Markov X
RC-TL CNN X X X X

prediction without the requirement of processing all users’
data.

Table I compares our solution to existing state-of-the-art
pedestrian or vehicular trajectory predictors in terms of the
techniques used to achieve the mobility prediction. We can
observe that the majority of works use some form of ANN as
a predictor. However, RC-TL is the only compared work that
employs a Reinforcement Learning-designed ANN together
with Transfer Learning and Clustering techniques to achieve
higher accuracy at comparable or lower computation costs.

III. MOBILE USER TRAJECTORY PREDICTION

A. Scenario

In our envisioned scenario, a set U of n mobile network
users is free to move in an area in which a set S of base
stations, which make up the cellular network, are deployed.
Every time a mobile user enters a base station’s commu-
nication range, they initiate a handshake procedure, after
which the user is connected to that base station and added
to a list of connected users. Similarly, when a mobile user
exits a base station’s communication range, the base station
detects it and then disconnects the user by removing it from
the list of connected users. Each base station maintains a
list of timestamps at which each user has connected to and
disconnected from it. Periodically, each base station sends
this information to a logically centralized data repository for
information processing. The data from all base stations can
be aggregated by user, obtaining one trajectory per user in
the system. We define the trajectory of the user u as a set of
couples Tu = {(bu(1), tu(1)) , . . . , (bu(mu), tu(mu))}, where
bu is the base station ID to which the user u connected, tu
is the timestamp at which the user u connected to that base
station, and mu is the total number of data entries for user u.
We define Θ = {T1, . . . , Tn} as the set of all user trajectories.
With this information, the centralized system can compute the
trajectory-prediction models for each user and send them the
parameters via the cellular network to use them locally for
predictions.

From a design perspective, the choices in the system are
informed by the urban computing nature of the problem. Users
often follow the same trajectories given by the city’s public
transport routes and economic features.
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Fig. 1. RC-TL architecture. The circled numbers indicate the (1) clustering,
(2) RL-CNN neural architecture search, (3) CNN training, and (4) transfer
learning steps of the system.

B. Architecture

The RC-TL system is designed to optimize the prediction
accuracy and the computational resource utilization at the
same time. Many existing similar works aggregate all varieties
of user datasets within a single neural network, which is not
an optimal attitude. In this direction, to increase the average
accuracy across various users, personalizing neural networks
tailored to different user datasets can be an adequate approach.
While this provides sufficient personalization for each user to
consider different statistical features, it cannot be scaled for
a large number of users. Inspired by these shortcomings, we
design the RC-TL system taking into account clusters of users
with similar mobility features to be learned and generalized.
More precisely, RC-TL clusters similar trajectory users and
trains a single RL-CNN per cluster based on a few users’
data, significantly saving computation resources necessary to
find the optimal architecture for such users. RC-TL provides an
inter-cluster personalized yet intra-cluster generalized model.

The RC-TL system operates in a set of sequential steps,
briefly described hereafter and detailed in the following sub-
sections. Figure 1 represents the system architecture and data
flow. The system’s input is the database containing the user
trajectories, and the system’s output is one trained CNN model
for each user in the scenario. The RC-TL ’s goal is to reduce
the computational resources required to provide a CNN model
for each user while keeping high prediction accuracy.

The first step of the RC-TL architecture is the clustering,
which retrieves user mobility information from a logically
centralized database and groups users with similar trajectories
in a set of disjoint clusters according to the Longest Common
Sub-Sequence (LCSS) similarity measure. For each cluster,
this step also selects a subset of representative users who are
associated with high-quality data by evaluating their data’s



coherence. The second step of the RC-TL architecture is the
RL-CNN neural network architecture search, which can be
run in parallel for each cluster. This step takes in input the
trajectories of the cluster’s representative users and uses an
RL agent to find a set of hyper-parameters defining a CNN
architecture that maximizes the trajectory-prediction accuracy
for the representative users. After the agent selects the best
CNN architecture, RC-TL trains it using the representative
users’ data and obtains the model’s parameters in output. The
fourth and last step of the RC-TL architecture is transfer
learning, which takes into input the trained model’s parameters
and uses them to build a model for each of the other non-
representative users of the cluster.

C. User Trajectory Clustering and Reference Users Selection

In real-world scenarios, the number of mobile network users
can be so large that training an individual RL-CNN trajectory
predictor for each user is unfeasible due to the infrastructure’s
limited computing and storage resources. For this reason, we
designed RC-TL to cluster users with similar trajectories using
the LCSS algorithm [21]. Contrary to traditional Euclidean
distance, the LCSS-based distance can be computed between
trajectories made of a different number of data points (ti, bi).
RC-TL computes the LCSS distance γi,j ∈ [0, 1] between
every pair of trajectories (Ti, Tj) ∈ Θ2 in the dataset, and pop-
ulates a symmetric distance matrix Γ = (1− γi,j) ∈ [0, 1]n×n

that represents how different the trajectories are to one another.
At this point, the system applies an unsupervised clustering
algorithm to group the trajectories in a set C = {c1, . . . , cq}
of disjoint clusters ci ∈ Θ,∀i ∈ {1, . . . , q}, where ci ∩ cj =
∅,∀i, j ∈ {1, . . . , q}, i 6= j. Clustering algorithms are designed
to determine the optimal number of clusters and their members
to minimize the average intra-cluster distance and maximize
the inter-cluster distance. In other words, a suitable clustering
algorithm must be designed so that all trajectories in a cluster
have a small distance, whereas the trajectories belonging to
different clusters have considerable distance. Therefore, any
clustering algorithm whose geometry is based on distances
between points, to compare pairwise the distances between
locations within trajectories, can be a proper candidate, e.g.,
Birch, DBSCAN, K-Means, Mean-Shift, Ward, and Optics.
Our proposed RC-TL system uses the Birch clustering algo-
rithm, but any other clustering algorithm, such as K-means
and Ward, can be used at this step [22]. The three clustering
algorithms (K-Means, Ward, and Birch) are suggested as the
design choices due to their out-performance concerning the
other clustering methods in terms of accuracy and resource
utilization.

For each user cluster, the system selects a set of reference
users that produced highly-descriptive mobility data, evaluated
through a trajectory-regularity metric detailed hereafter. Let us
define |Tj | as the length of trajectory Tj . Let us define Dj as
the number of unique base stations that appear in trajectory Tj .
Experience shows that users who produce more data samples

Fig. 2. Structure of the generic 1D-CNN built and trained by RC-TL.

while connecting to fewer base stations display more regular
mobility patterns and hence allow RC-TL to achieve better
trajectory-prediction accuracy. Therefore, we propose the reg-
ularity ratio for the j-th user as ρj = |Tj |/Dj ∈ [1,+∞),
which is used as a score to estimate the quality of the data
associated with each user. Users with a higher regularity ratio
have visited a limited set of base stations multiple times,
meaning that it is easier for a neural network to infer a
periodic behavior from such users compared to users with a
low regularity ratio. The set Rc of reference users for a generic
cluster c is selected as the set of the k = |Rc| << |c| users in
the cluster with the highest regularity ratios k is determined
by a grid search that optimizes prediction accuracy.

D. One-dimensional Convolutional Neural Networks

A 1D-CNN is a sparse feed-forward ANN that can “learn”
the associations between a one-dimensional input x and an
output y. In the present work, we convert a time-series problem
into a supervised learning problem, defining the input as two
one-dimensional arrays (i.e., the user trajectories) and the
output as the sequence of visited base stations. The process
through which a CNN learns the associations between input
and output is called training, and could be time-consuming.
For this reason, we impose a limit on the number of training
epochs and employ an early stopping training method to
allow the training to end sooner if no significant accuracy
improvement is made. In particular, we define ∆ as the accu-
racy improvement threshold and the patience as the number
of epochs that can elapse without an accuracy improvement
higher than the threshold.

A CNN is composed of layers, each with a different
purpose. In this work, we consider CNNs that can contain
convolutional, max-pooling, flatten, dense, and dropout layers.
Figure 2 shows the generic CNN considered in this work. A
convolutional layer applies the convolution operator between
the input data x and a set of kernels κi ∈ Rs, producing
a set of feature maps fi = x ∗ κi, where s is a fixed
kernel size. The goal of the convolutional layers is to detect
the presence of spatio-temporal patterns in the input data.
The size and the number of the different used kernels are
decided at design time, whereas the numerical values of the
kernels κi are computed during the model training process.
The max-pooling layer reduces a feature map’s dimension
by partitioning it into same-size neighborhoods (strides) and



generating a smaller feature map replacing each neighborhood
of the original feature map with the maximum value of each
neighborhood. A flattening layer converts a feature map to a
one-dimensional array of features. A dense layer comprises
a set of perceptrons that are fully connected to the previous
and following layers. Finally, a dropout layer is used to reduce
over-fitting by setting each element of an input array to 0 with
a fixed probability called dropout ratio during the training.
We assume that the CNN can contain at most one flatten
layer, which divides the CNN in two subsequent sections with
different purposes: feature extraction and classification. The
feature extraction section can contain only convolutional and
max-pooling layers, whereas the classification section can only
contain dense and dropout layers.

E. Reinforcement Learning for CNN Architecture Design

In RL, an agent is able to take an action that has an impact
on an environment, then observe the environment’s state, and
finally receive a reward from the environment. The sequence
of such steps is called an episode. The agent’s goal is to
maximize the reward obtained from a series of episodes.

RC-TL uses RL to select the optimal architecture for a
CNN (i.e., the environment) from a finite and fixed space of
admissible architectures, which we call state space. The state
space is a subset of all the possible combinations of the values
that the CNN hyper-parameters can assume. Namely, the state-
space dimensions are: (i) The number of layers that make up
the CNN; (ii) The type of each layer among convolutional,
max-pooling, flatten, dense, and dropout; (iii) The number and
size of different kernels applied to each convolutional layer;
(iv) The stride of each max-pooling layer; (v) The number
of perceptrons in each dense layer; (vi) The dropout ratio of
each dropout layer. This state-space can become considerably
large depending on the values of the mentioned parameters,
making it impossible to test the performance of every CNN
architecture in the space. RL provides a method to search for
the optimal architecture avoiding an exhaustive grid search.

At the beginning of an episode, the agent can take action a
from a subset A(s) of the action space, where A(s) depends
on the currently observed state s. Every action always adds
one layer to the current CNN and fixes the added layer’s type
and parameter values so that the action leads the environment
(i.e., the CNN) into a new admissible state (i.e., architecture).
In order to guarantee the arrival state is admissible, the new
layer’s type is constrained by a set of rules: (i) First and last
CNN ’s layers must be a convolutional and a dense layer,
respectively; (ii) Convolutional and max-pooling layers can
be followed only by another convolutional and max-pooling
layer, or by a flatten layer; (iii) A flatten layer can be followed
only by a dense layer; (iv) Dense layers can be followed only
by other dense and dropout layers; (v) Dropout layers can
be followed only by dense layers. After the agent has taken
action, the corresponding reward is unknown and must be
computed by training the resulting CNN with the cluster’s

representative users’ data for a limited amount of epochs
(exploration training). The model’s accuracy is the reward
associated with taking that action in that state.

The agent uses the Q-learning algorithm with an ε-greedy
strategy to learn the policy for selecting actions and stops
searching the state space for better CNN architectures when
it has reached either a target accuracy or a maximum number
of episodes. The reward for taking each action in each state
is computed using the Bellman equation. RC-TL sets ε = 1
at the beginning of the exploration phase as the probability of
taking a random action. When the agent has taken a number of
actions equal to the maximum number of layers allowed by the
state space, it starts over from a state with a single layer and
linearly decreases ε. The process is repeated until ε reaches
a minimum value ε0 to complete the exploitation phase. In
this way, the agent prefers randomly exploring the space
during the first phase of the learning to identify promising
architectures and gradually changes its policy to select actions
that guarantee higher reward to identify higher-performing
architectures. Finally, RC-TL selects the CNN architecture
with the highest accuracy among all those explored by the RL
agent and trains it, allowing a much larger number of epochs
compared to the exploration epochs.

F. Transfer Learning between Cluster Members

After building the RL-CNN trajectory predictor associated
with the cluster c, RC-TL transfers the pre-trained reference
model from the k reference users to the remaining |c|−k users
in the cluster c. Let the layers of the pre-trained reference
model for cluster c be L = {l1, l2, . . . , lh}, where the layers
l1 and lh represent input and output layers, respectively.
The system transfers the learned knowledge of the reference
model’s neural architecture and weights of the first h − 1
layers ω(lj),∀j ∈ {1, . . . , h − 1}, to the remaining |c| − k
users in the cluster c. RC-TL transfers the knowledge of the
first h − 1 layers because the CNN’s output layer requires a
different number of classes (neurons) for each user. The h-th
layer’s number of neurons for the j-th user is determined from
its mobility data, i.e., set equal to the j-th user’s number Dj

of different base stations appearing in its trajectory. In this
way, the remaining |c|−k users initialize their neural network
with the transferred reference model and do not require to be
trained from scratch. Algorithm 1 shows the overall RC-TL
operation.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

We tested RC-TL ’s performance on a large-scale real-
world mobility dataset provided by Orange S.A., France. This
dataset contains data from nearly 1.3 million mobile users,
each of which records the time at which a user connected
to and disconnected from one of 131 different cellular base
stations deployed in the Paris area between July and September



Algorithm 1: RC-TL Trajectory Predictor
Input: Set of clusters C
Output: Trained CNN Models

1 for each cluster c ∈ C do
2 for each user j ∈ c do
3 Compute regularity ratio ρj ← |Tj |/Dj ;

4 Rc ← {k users with highest ρj};
5 RL agent searches CNN architecture using Rc;
6 Train CNN using Rc;
7 Return prediction accuracy;
8 for each user j ∈ c do
9 if user j 6∈ Rc then

10 Load pre-trained RL-CNN;
11 user j ← RL-CNN;
12 Return prediction accuracy;

13 Compute cluster’s average prediction accuracy;

14 Compute overall average prediction accuracy over all
clusters;

TABLE II
FIXED PARAMETERS

Parameter Values
Representative users per cluster 10%

Batch size 200
Learning rate decay 0.002
Maximum training duration 200 epochs
Early stopping patience 10 epochs
Early stopping accuracy improvement
threshold

0.1

Activation function in dense hidden layer ReLU
Activation function in dense output layer SoftMax

Discount factor γ 1
Learning rate α 0.01
Early stopping threshold 80%
Exploration training duration 20 epochs
Exploration training validation 10-fold cross-validation

70% data, 30% test
Exploration training target accuracy 80%
Exploration training max episodes number 500
ε0 0.01

2019 (63 days). For privacy reasons, the base stations’ exact
locations and IDs and the user identities are anonymized.

In our experimental setup, we fix some learning parameters
for CNN and RL (see Table II) and we define sets of CNN
hyper-parameters as the RL search space (see Table III).
We selected such parameters and searched space because
of their popularity in the literature [18]. We implemented
RC-TL using Keras1, an open-source python library for ML.
We trained and tested the suggested predictor on UBELIX2,
a High-Performance Computing Cluster at the University of

1https://keras.io/
2https://docs.id.unibe.ch/ubelix

TABLE III
CNN HYPER-PARAMETER SEARCH SPACE. EACH ROW CORRESPONDS TO

ONE OF ITS DIMENSIONS.

Parameter Values

Number of layers 4, 5, . . . , 20
Number of convolutional kernels 48, 64, 128
Convolutional kernel size 3, 6, 9
Max-pooling layer stride 10, 20, 30
Number of perceptrons in dense layer 20, 40, 60, 80, 100, 150
Dropout ratio 0.1, 0.3, 0.5, 0.7, 0.9

Bern, Switzerland. UBELIX supports the parallel execution
of multiple predictions on a set of machines provided with an
AMD EPYC 7742 CPU and 4 GB RAM per process.

First, we evaluate the performance of the proposed RL-
CNN against other state-of-the-art ML approaches without
clustering, meaning that each neural network is built and
trained for a single user. In this way, we focus on studying our
proposed RL-CNN regarding the tradeoff between prediction
accuracy and network build time. The competing predictors
we implemented are: (i) GS-LSTM and RL-LSTM, which
are LSTM-based trajectory predictors whose architecture is
determined through GS and RL, respectively; (ii) J48 and
Random Forest (RF), which are non-neural decision-tree-based
models.

Afterward, we evaluate RC-TL ’s performance employing
three different clustering algorithms (k-means, Ward, and
Birch) against the non-clustered RL-CNN approach. In this
way, we can evaluate the impact of clustering on prediction
accuracy and the computational load required for training and
study their tradeoff. Each predictor’s performance is evaluated
and averaged on 100 random users.

B. Evaluation Metrics

We define a set of metrics to evaluate the performance of
RC-TL compared to other mobility predictors, namely: (i) The
accuracy of the prediction as to the ratio between correctly
forecasted next locations and the total number of predictions
made; (ii) The build time as the sum of the time needed to
search the model’s architecture and the time needed to train the
model for ANN-based predictors (for non-neural predictors,
the build time coincides with the training time only); (iii) The
resource consumption as the ratio between the computation
required to build one model for each cluster and one model
for each user.

C. Experimental Results

The first experimental results show the impact of the neural
network and neural architecture search on prediction accuracy
and build time.

We firstly compare all models on an individual, i.e., user-
wise mobility prediction in which each algorithm predicts the
user trajectory, and the accuracy is given in terms of the
fraction of correctly predicted data points. Figure 3 shows that
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Fig. 3. Accuracy and build time of mobility predictors trained on a single
user’s data. Results averaged on 100 random users.
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RL-CNN achieves similar accuracy to RL-LSTM and around
10% higher than RF and J48. Meanwhile, RL-CNN saves 69%
of the build time compared to RL-LSTM and is comparable
with the RF’s build time. Figure 3 also shows that RL reduces
the build time by 72% compared to grid-search neural network
architecture search, with minimal difference inaccuracy. This
behavior can be explained by the relatively short duration
of the data collection for the dataset, spanning two months
during summer holidays, incurring a more significant degree
of exploration in the dataset, as users visit several new
places to predict such features challenging. We expect our
solution and its accuracy to improve for datasets with a more
comprehensive data collection, as it will learn the statistical
features of such data points.

We sample the learning curve over the episodes of transfer
learning both in the case of applying CNN and LSTM net-
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Fig. 6. Performance of the non-clustered RL-CNN predictor, trained on a
single user’s data, compared with the performance of the clustered RC-TL
system using Birch, k-means, and Ward as clustering algorithms, and 10% of
the cluster size as the k representative users. Results are averaged over 100
random users.

TABLE IV
IMPACT OF THE NUMBER OF REPRESENTATIVE USERS k ON THE

ACCURACY AND COMPUTATIONAL REQUIREMENTS OF RC-TL WITH
BIRCH CLUSTERING

k Accuracy Computation

5% of users 60.1% 0.05%
10% of users 65.7% 0.1%
20% of users 65.9% 0.15%

works in order to compare the convergence of both algorithms.
Figure 4 shows that the RL agent can find CNN and LSTM
architectures that achieve a 69% accuracy in both cases, even
though the RL agent can converge to the best architecture for
a CNN in fewer episodes than for an LSTM. This means less
computation is necessary by the transfer learning step to find
and evaluate NN architecture in order to converge to similar
accuracy levels, as shown in Figure 3.

We also sample the individual behavior of the learning
process after an architecture has been defined. In Figure 5
we can see the accuracy of the Neural Network (NN) by
training epoch in both a CNN and an LSTM network. Figure 5
shows that, between the best CNN and LSTM architectures
selected by the RL agent, the CNN learns faster than the
LSTM, meaning that it can reach higher accuracy on the test
set in fewer epochs. This shows that in this particular case,
the CNN architecture can learn the statistical features of the
user mobility faster and to a better degree than an equivalently
chosen LSTM model. Thus, incurring a lower computational
cost to train the architecture and, on a larger scale, better
overall scalability of the network. We can conclude that CNNs
whose architecture is searched by an RL agent achieve similar
prediction accuracy to other state-of-the-art models and can be
built in a fraction of the time required by other LSTM-based
methods.

The results of the second experiment highlight the impact of
clustering on the reduction of computational resource require-
ments for training. Figure 6 shows that the clustered RC-TL



system achieves an almost identical prediction accuracy to
the non-clustered RL-CNN predictor, with the Birch algorithm
providing the best accuracy among the three tested clustering
algorithms. RC-TL trains the model associated with the cluster
using the data of 10% of users in the cluster with the highest
regularity (representative users). This saves 90% of computa-
tional resources compared to training a dedicated model per
user. It is worth noting that the Birch clustering algorithm
detects half of the clusters detected by the k-means algorithm
and 25% fewer clusters than the Ward algorithm, according
to the normalized number of clusters metric (i.e., the ratio
between the number of clusters detected by the considered
algorithm and the highest number of clusters detected by all
algorithms). The number k of reference users per cluster can
be heuristically chosen by testing which values among 5%,
10%, and 20% of the cluster user leads to best accuracy and
least computational requirements. Table IV shows the impact
of the possible values of k on RC-TL’s prediction accuracy
and computational requirements. Training a single model per
cluster with the data of 10% of users in the cluster and
transferring the trained model’s parameters to the other 90% of
users in the cluster achieves much higher accuracy compared
to training on 5% of cluster users and saves around a third of
computational requirements compared to training the model
on 20% of cluster users.

As indicated earlier, the dataset used in the present work
contains mobility information of only two months for over a
million users. Due to the limited size of the dataset and the
huge variety in sparsity of users’ data samples, the achieved
accuracy of the suggested predictor is limited by the available
dataset’s quality. Nonetheless, we proved the superiority of
RC-TL in improving accuracy, decreasing training time, and
decreasing computational resource consumption with respect
to state-of-the-art solutions through case-studying the Orange
dataset.

V. CONCLUSIONS

Providing a personalized mobility prediction model con-
siderably improves the performance and quality of mobility
predictors, but an optimized design of these predictors is a
costly task and cannot be feasibly performed for each user
in a network. This paper proposes RC-TL, an automated
neural network hyper-parameter optimizer. RC-TL leverages
the similarities in users’ trajectories to build specialized neural
networks for entire clusters of users, thus decreasing the
resource utilization in terms of CPU time to optimize neural
networks for individual users. A Reinforcement Learning
agent is used to discover the highest-performance neural archi-
tecture for the CNN trajectory predictor within a given search
space. Transfer learning is applied to specialize a cluster’s
neural network for a given user after the best architecture for
their cluster is found. We validated the proposed model on
Orange’s real-world, large-scale mobility dataset. Results show
that RL-CNN improves the prediction accuracy by almost

10% on average over the state-of-the-art approaches while its
convergence is much faster than other approaches. Moreover,
results of clustering-level trajectory prediction through the
RC-TL framework illustrate that the system can save up to
90% of computational resources while losing only 3% of the
average accuracy.

These preliminary results obtained with the Orange dataset
show the potential of the RC-TL model but limit the robustness
of the predictor to this specific case study due to the dataset’s
limited size on users’ mobility information. As higher-quality
datasets will become available in the future, we will expand
the present work to confirm the generalization features of
our proposed model. Furthermore, we plan to extend our
work in the presence of attention mechanisms, which have
attained impressive success in Natural Language Processing
and other sequential modeling areas. Finally, we intend to
validate the impacts of RC-TL in network and application
mobility management, such as handover optimization and
service migration.
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