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Abstract. The Land Use and Climate Across Scales Flagship Pilot Study (LUCAS FPS) is a coordinated com-
munity effort to improve the integration of land use change (LUC) in regional climate models (RCMs) and to
quantify the biogeophysical effects of LUC on local to regional climate in Europe. In the first phase of LUCAS,
nine RCMs are used to explore the biogeophysical impacts of re-/afforestation over Europe: two idealized ex-
periments representing respectively a non-forested and a maximally forested Europe are compared in order to
quantify spatial and temporal variations in the regional climate sensitivity to forestation. We find some robust
features in the simulated response to forestation. In particular, all models indicate a year-round decrease in sur-
face albedo, which is most pronounced in winter and spring at high latitudes. This results in a winter warming
effect, with values ranging from + 0.2 to +1 K on average over Scandinavia depending on models. However,
there are also a number of strongly diverging responses. For instance, there is no agreement on the sign of tem-
perature changes in summer with some RCMs predicting a widespread cooling from forestation (well below
−2 K in most regions), a widespread warming (around +2 K or above in most regions) or a mixed response.
A large part of the inter-model spread is attributed to the representation of land processes. In particular, dif-
ferences in the partitioning of sensible and latent heat are identified as a key source of uncertainty in summer.
Atmospheric processes, such as changes in incoming radiation due to cloud cover feedbacks, also influence the
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simulated response in most seasons. In conclusion, the multi-model approach we use here has the potential to
deliver more robust and reliable information to stakeholders involved in land use planning, as compared to results
based on single models. However, given the contradictory responses identified, our results also show that there
are still fundamental uncertainties that need to be tackled to better anticipate the possible intended or unintended
consequences of LUC on regional climates.

1 Introduction

Land use change (LUC) affects climate through biogeophys-
ical processes influencing surface albedo, evapotranspiration
and surface roughness (Bonan, 2008; Davin and de Noblet-
Ducoudré, 2010). The quantification of these effects is still
subject to particularly large uncertainties, but there is grow-
ing evidence that LUC is an important driver of climate
change at local to regional scales. For instance, the Land-
Use and Climate, IDentification of robust impacts (LUCID)
model intercomparison indicated that while LUC likely had
a modest biogeophysical impact on global temperature since
the pre-industrial era, it may have affected temperature in a
similar proportion to greenhouse gas forcing in some regions
(de Noblet-Ducoudré et al., 2012). Results from the Coupled
Model Intercomparison Project Phase 5 (CMIP5) confirmed
the importance of LUC for regional climate trends and for
temperature extremes (Kumar et al., 2013; Lejeune et al.,
2017, 2018).

In this light, it is particularly important to represent LUC
forcings not only in global climate models but also in re-
gional climate simulations. Yet, LUC forcings were not in-
cluded in previous regional climate model (RCM) intercom-
parisons (Christensen and Christensen, 2007; Jacob et al.,
2014; Mearns et al., 2012; Solman et al., 2013), which are
the basis for numerous regional climate change assessments
providing information for impact studies and the design of
adaptation plans (Gutowski Jr. et al., 2016). RCMs have been
applied individually to explore different aspects of land use
impacts on regional climates (Davin et al., 2014; Gálos et al.,
2013; Lejeune et al., 2015; Tölle et al., 2018; Wulfmeyer et
al., 2014), but the robustness of such results is difficult to as-
sess due to their reliance on single RCMs and due to the lack
of a common protocol. There is therefore a need for a coor-
dinated effort to better integrate LUC effects in RCM pro-
jections. The Land Use and Climate Across Scales (LUCAS)
initiative (https://www.hzg.de/ms/cordex_fps_lucas/, last ac-
cess: 10 February 2020) has been designed with this goal in
mind. LUCAS is endorsed as a Flagship Pilot Study (FPS) by
the World Climate Research Program-Coordinated Regional
Climate Downscaling Experiment (WCRP-CORDEX) and
was initiated by the European branch of CORDEX (EURO-
CORDEX) (Rechid et al., 2017). The objectives of the LU-
CAS FPS are to promote the inclusion of the missing LUC
forcing in RCM multi-model experiments and to identify the
associated impacts with a focus on regional to local scales

and considering timescales from extreme events to seasonal
and multi-decadal trends and variability. LUCAS is designed
in successive phases that will go from idealized to realis-
tic high-resolution scenarios and intends to cover both land
cover changes and land management impacts.

In the first phase of LUCAS, which is the focus of this
study, idealized experiments over Europe are performed in
order to benchmark the RCM sensitivity to extreme LUC.
Two experiments (FOREST and GRASS) are performed us-
ing a set of nine RCMs. The FOREST experiment represents
a maximally forested Europe, while in the GRASS experi-
ment trees are replaced by grassland. Comparing FOREST
to GRASS therefore indicates the theoretical potential of a
maximum-forestation (encompassing both reforestation and
afforestation) scenario over Europe. Given that forestation is
one of the most prominent land-based mitigation strategies
put forward in scenarios compatible with the Paris Agree-
ment goals (Grassi et al., 2017; Griscom et al., 2017; Harper
et al., 2018), it is essential to understand its full consequences
beyond CO2 mitigation. These experiments are not meant
to represent realistic scenarios, but they enable a system-
atic assessment and mapping of the biogeophysical impact
of forestation across regions and seasons. Experiments of
this type have already been performed using single regional
or global climate models (Cherubini et al., 2018; Claussen
et al., 2001; Davin and de Noblet-Ducoudré, 2010; Strand-
berg et al., 2018), but here they are performed for the first
time using a multi-model ensemble approach, thus providing
an unprecedented opportunity to assess uncertainties in the
climate response to vegetation perturbations. In the follow-
ing, we focus on the analysis of the surface energy balance
and temperature response at the seasonal timescale, while fu-
ture studies within LUCAS will explore further aspects (sub-
daily timescale and extreme events, land–atmosphere cou-
pling, etc.). We aim to quantify the potential effect of foresta-
tion over Europe, identify robust model responses, and in-
vestigate the possible sources of uncertainty in the simulated
impacts.

2 Methods

2.1 RCM ensemble

Two experiments (GRASS and FOREST) were performed
with an ensemble of nine RCMs, whose names and char-
acteristics are presented in Table 1. All experiments were
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performed at 0.44◦ (∼ 50 km) horizontal resolution on the
EURO-CORDEX domain (Jacob et al., 2014) with lateral
boundary conditions and sea surface temperatures prescribed
based on 6-hourly ERA-Interim reanalysis (Dee et al., 2011).
The simulations are analysed over the period 1986–2015, and
the earlier years (1979–1985 or a subset of these years de-
pending on models; see Table 1) were used as spin-up period.
The model outputs were aggregated to monthly values for use
in this study. When showing results averaged across all nine
RCMs, we refer to it as the multi-model mean (MMM).

A notable characteristic of the multi-model ensemble is
that some RCMs share the same atmospheric scheme (i.e.
same version and configuration) but are coupled to different
land surface models (LSMs) or share the same LSM in com-
bination with different atmospheric schemes (see Table 1).
This allows us to evaluate the respective influence of atmo-
spheric versus land process representation. For instance, the
same version of COSMO-CLM (CCLM) is used in com-
bination with three different LSMs (TERRA_ML, VEG3D
and CLM4.5). Comparing results from these three CCLM-
based configurations enables us to isolate the role of land
process representation in this particular model. Conversely,
CLM4.5 is used in combination with two different RCMs
(CCLM and RegCM), which allows us to diagnose the in-
fluence of atmospheric processes on the results. Different
configurations of WRF (Weather Research and Forecasting)
are also used: WRFa-NoahMP and WRFb-NoahMP differ
only in their atmospheric set-up, while WRFb-NoahMP and
WRFb-CLM4.0 share the same atmospheric set-up but with
different LSMs.

While the simulations we present are not suitable for
model evaluation because of the idealized land cover char-
acteristics, it is worthwhile to note that the RCMs included
here have been part of previous evaluation studies over Eu-
rope (e.g. Kotlarski et al., 2014; Davin et al., 2016). Although
for a given RCM the model version and configuration may
differ from previously evaluated configurations, the system-
atic biases highlighted in these previous studies are likely still
relevant here. In particular, a majority of RCMs suffer from
predominantly cold and wet biases in most European regions,
while the opposite is true in summer in Mediterranean re-
gions (Kotlarski et al., 2014). The conditions that are too dry
over southern Europe have been related in particular to land
surface process representation including evapotranspiration
(Davin et al., 2016).

2.2 FOREST and GRASS vegetation maps

Two vegetation maps have been created for use in the Phase
1 LUCAS experiments (Fig. S1 in the Supplement). The veg-
etation map used in the experiment FOREST is meant to rep-
resent a theoretical maximum of tree coverage, while in the
vegetation map used in the experiment GRASS, trees are en-
tirely replaced by grassland.

The starting point for both maps is a MODIS-based
present-day land cover map at 0.5◦ resolution (Lawrence and
Chase, 2007) providing the global distribution of 17 plant
functional types (PFTs). Crops and shrubs which are present
in the original map are not considered in the FOREST and
GRASS experiments and are set to zero. To create the FOR-
EST map, the fractional coverage of trees is expanded until
trees occupy 100 % of the non-bare soil area. The proportion
of various tree types (i.e. broadleaf to needleleaf and decidu-
ous to evergreen) is conserved as in the original map as well
as the fractional coverage of bare soil, which prevents ex-
panding vegetation on land areas where it could not realisti-
cally grow (e.g. in deserts). If no trees are present in a given
grid cell with less than 100 % bare soil, the zonal mean forest
composition is taken as a representative value. This results in
a map with only tree PFTs (PFT names) and bare soil, all
other vegetation types being shrunk to zero. It is important
to note that this FOREST map does not represent a poten-
tial vegetation map, which would imply a more conservative
assumption in terms of forest expansion potential. Indeed,
trees can grow even in regions where they would not natu-
rally occur because of various human interventions (assisted
afforestation, forest management, fire suppression, etc.). This
FOREST map is therefore in line with the idea of consider-
ing both reforestation and afforestation potential, while still
excluding forest expansion over dryland regions where irri-
gation measures would likely be necessary.

The GRASS map is then derived from the FOREST map
by converting all tree PFTs into grassland PFTs, the C3-to-C4
ratio being conserved as in the original MODIS-based map
as well as the bare soil fraction.

Since the various RCMs use different land use classifi-
cation schemes (see Table 1), the PFT-based FOREST and
GRASS maps were converted into model-specific land use
classes for implementation into the respective RCMs. The
specific conversion rules used in each RCM are summarized
in Table 1 (note that for three out of the nine RCMs, no con-
version was required). Urban areas, inland water and glacier,
if included in a given RCM, were conserved as in the stan-
dard dataset of the respective RCM.

3 Results

3.1 Temperature response

The effect of forestation (FOREST minus GRASS) on sea-
sonal mean winter 2 m temperature is shown in Fig. 1. All
RCMs simulate a warming pattern which is strongest in
the northeast of Europe. This warming effect weakens to-
ward the southwest of the domain even changing sign for in-
stance in the Iberian Peninsula (except for REMO-iMOVE).
In summer (Fig. 2), there is a very large spread of model re-
sponses with some RCMs predicting a widespread cooling
from forestation (CCLM-TERRA and RCA), a widespread
warming (RegCM-CLM4.5, REMO-iMOVE and the WRF
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Figure 1. Seasonally averaged 2 m temperature (FOREST minus
GRASS) for winter (DJF).

models) or a mixed response (CCLM-VEG3D and CCLM-
CLM4.5). Overall this highlights the strong seasonal con-
trasts in the temperature effect of forestation and the larger
uncertainties associated with the summer response.

Looking separately at the response for daytime and
nighttime 2 m temperatures also indicates important diur-
nal contrasts. The winter warming effect is stronger and
more widespread for daily maximum temperature (Fig. 3),
while daily minimum temperature shows a more contrasted
cooling–warming dipole across the domain (Fig. 5). In sum-
mer, diurnal contrasts are even more pronounced with a ma-
jority of models showing an opposite sign of change for daily
maximum and minimum temperatures over most of Europe
(Figs. 4 and 6), namely a daytime warming effect and a
nighttime cooling effect. Exceptions are RCA and CCLM-
TERRA, which indicate a cooling for both daily maximum
and minimum temperatures and REMO-iMOVE exhibiting a
warming for both daytime and nighttime.

In terms of magnitude, the temperature signal is substan-
tial. In all RCMs, there is at least one season with abso-
lute temperature changes above 2◦ in some regions, for in-
stance in winter and spring over northern Europe (Fig. S2).
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Figure 2. Seasonally averaged 2 m temperature (FOREST minus
GRASS) for summer (JJA).

The magnitude of changes is even more pronounced for daily
maximum temperature.

3.2 Surface energy balance

Changes in surface energy fluxes over land are summa-
rized for eight European regions (the Alps, the British Isles,
eastern Europe, France, the Iberian Peninsula, the Mediter-
ranean, mid-Europe and Scandinavia) as defined in the PRU-
DENCE project (Christensen et al., 2007). Here we discuss
results for two selected regions representative of northern Eu-
rope (Scandinavia; Fig. 9) and southern Europe (the Mediter-
ranean; Fig. 10), while results for the full set of regions are
provided in the Supplement (Figs. S11 to S18). One of the
most robust features across models and seasons is an increase
in surface net shortwave radiation. This increase is a direct
consequence of the impact of forestation on surface albedo.
Indeed all RCMs consistently simulate a year-round decrease
in surface albedo due to the lower albedo of forest compared
to grassland (Fig. S7). This decrease is strongest in winter
and at high latitudes owing to the snow-masking effect of
forest. However, the strongest increase in net shortwave ra-
diation occurs in spring and summer in both regions because

Figure 3. Seasonally averaged daily maximum 2 m temperature
(FOREST minus GRASS) for winter (DJF).

incoming radiation is higher in these seasons, thus imply-
ing a larger surface radiation gain despite the smaller abso-
lute change in albedo. Notable outliers are REMO-iMOVE,
exhibiting a smaller albedo decrease across all seasons and
thus a less pronounced increase in net shortwave radiation,
and CCLM-TERRA and RCA, which despite the albedo in-
crease simulate a net shortwave radiation decrease in sum-
mer (only over Scandinavia in the case of RCA). In the lat-
ter two models, an increase in evapotranspiration triggers an
increase in cloud cover and a subsequent decrease in incom-
ing shortwave radiation (not shown) offsetting the change in
surface albedo. The spatial pattern of surface net shortwave
radiation change is relatively consistent across RCMs in win-
ter with maximum net shortwave radiation increases well
above 10 W m−2 in high-elevation regions and the northeast
of Europe (Fig. 7). In summer, the magnitude of net short-
wave radiation changes is overall larger as is the inter-model
spread (Fig. 8). CCLM-TERRA is the only RCM to simu-
late a widespread decrease in net shortwave radiation, while
RCA and CCLM-VEG3 also simulate net shortwave radia-
tion decreases in some areas in particular in northern Europe.
All other RCMs simulate a widespread increase in net short-
wave radiation over land, with WRFa-NoahMP and WRFb-
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Figure 4. Seasonally averaged daily maximum 2 m temperature
(FOREST minus GRASS) for summer (JJA).

NoahMP exhibiting the strongest increase with values well
above 20 W m−2 in most regions.

To a large extent, sensible heat flux follows shortwave ra-
diation changes (i.e. a majority of models suggest an increase
in sensible heat). This is also largely the case for ground
heat flux (calculated here indirectly as the residual of the
surface energy balance), which increases in autumn, winter
and spring in most models due to the overall increase in ab-
sorbed radiation. Changes in the latent heat flux exhibit a
higher degree of disagreement across models and seasons.
For instance in spring, latent heat flux increases together with
sensible heat over Scandinavia (Fig. 9), while it decreases
in most models over the Mediterranean (Fig. 10). In sum-
mer, the agreement is low over Scandinavia, and there is
a tendency for decreasing latent heat in the Mediterranean.
At the European scale, there is a clear tendency of increas-
ing latent heat flux in spring particularly over northern Eu-
rope, whereas in summer most RCMs (with the exception of
CCLM-TERRA) indicate both increasing and decreasing la-
tent heat depending on regions (Fig. S10).

Figure 5. Seasonally averaged daily minimum 2 m temperature
(FOREST minus GRASS) for winter (DJF).

3.3 Origin of the inter-model spread

Changes in albedo and in the partitioning of turbulent heat
fluxes are essential in determining the temperature effect of
forestation. The dominant influence of albedo decrease is ev-
ident in winter and spring over northern Europe as illustrated
for instance by the quasilinear inter-model relationship be-
tween the magnitude of changes in albedo and in 2 m temper-
ature over Scandinavia in spring (Fig. 11a). The role of turbu-
lent heat fluxes partitioning can be illustrated by examining
changes in evaporative fraction (EF), calculated as the ratio
between latent heat and the sum of latent and sensible heat.
The advantage of using EF instead of latent heat flux is that
the former provides a metric relatively independent of albedo
change (since albedo change does influence the magnitude
of turbulent heat fluxes through changes in available energy).
Taking the example of Scandinavia in summer (Fig. 11b), it
appears that there is a relatively linear relationship between
changes in temperature and in EF. In other words, models
showing a decrease in EF following forestation tend to sim-
ulate a warming and models showing an increase in EF sim-
ulate a cooling.

In order to assess more systematically the role of individ-
ual drivers across regions and seasons, we perform a regres-
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Figure 6. Seasonally averaged daily minimum 2 m temperature
(FOREST minus GRASS) for summer (JJA).

sion analysis using changes in albedo, EF and incoming sur-
face shortwave radiation as explanatory variables and 2 m
temperature as the variable to be explained. The rationale
for using albedo, EF and incoming surface shortwave radi-
ation as explaining factors is that the first two capture the
intrinsic LUC-induced changes in land surface characteris-
tics representing respectively the radiative and non-radiative
impacts of LUC, whereas incoming surface shortwave radi-
ation captures some of the potential subsequent atmospheric
feedbacks (e.g. through cloud cover changes). Here we dis-
cuss the results of the regression analysis for Scandinavia and
the Mediterranean (Fig. 12), while results for the full set of
regions are provided in the Supplement (Figs. S19 and S20).
Combining albedo, EF and incoming surface shortwave ra-
diation into a multiple linear regression effectively explains
a large fraction of the inter-model variance of the simulated
temperature response (around 80 % of variance explained for
both regions and all seasons except winter where the ex-
plained variance is much lower). Albedo change alone ex-
plains the largest part of the inter-model variance in spring
over Scandinavia and in winter over the Mediterranean, indi-
cating a dominance of radiative processes during these sea-
sons. EF change alone explains the largest part of the inter-

Figure 7. Seasonally averaged net surface shortwave radiation
(FOREST minus GRASS) for winter (DJF).

model variance in summer over Scandinavia and in spring,
summer and autumn over the Mediterranean. Finally, incom-
ing surface shortwave radiation explains a substantial part
of the inter-model variance across most seasons although it
is not a dominating factor. It is important to note the two
main caveats of this simplified approach: (1) the explanatory
variables are likely not fully independent due to the tightly
coupled processes in the models; (2) other factors not in-
cluded as explanatory variables may contribute to the tem-
perature response (e.g. changes in surface roughness, other
atmospheric feedbacks). Nevertheless, the fact that a large
part of the variance can be explained by this simple linear
model is an indication of the essential role of these selected
processes. An exception is the winter season during which a
very limited part of the inter-model spread can be explained,
suggesting that other processes may play a dominant role.
One potential process that could explain differences across
RCMs is the occurrence of precipitation feedbacks. We note
however that precipitation changes are small in all RCMs
with no clear consensus among models (Fig. S5). One possi-
ble exception is the summer precipitation decrease in WRFa-
NoahMP, which could be related to the use of the Grell–
Freitas convection scheme (Table 1), while precipitation is
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Figure 8. Seasonally averaged net surface shortwave radiation
(FOREST minus GRASS) for summer (JJA).

less affected in WRFb-NoahMP and WRFb-CLM4.0, which
use the Kain–Fritsch scheme. The stronger summer tem-
perature increase in WRFa-NoahMP compared to WRFb-
NoahMP and WRFb-CLM4.0 may therefore be linked to this
precipitation feedback.

Comparing results from different RCMs sharing either the
same LSM or the same atmospheric model can help pro-
vide additional insights into the respective role of land versus
atmospheric processes. By comparing for instance the tem-
perature response across RCMs (Figs. 1 to 6), it appears, in
summer particularly, that the three RCMs based on CCLM
(i.e. same atmospheric model with three different LSMs)
span almost the full range of RCM responses while CCLM-
CLM4.5 and RegCM-CLM4.5 (i.e. same LSM and differ-
ent atmospheric models) have generally similar patterns of
change. This suggests that the summer temperature response
to forestation is conditioned primarily by land process repre-
sentation more than by atmospheric processes. To quantify
objectively the level of similarity or dissimilarity between
different RCMs, we compute the Euclidean distance across
latitude and longitude between each RCM pairs for each sea-
son for differences in 2 m temperature and precipitation. This
distance matrix is then used as a basis for a hierarchical clus-

tering applying the Ward’s clustering criterion (Ward, 1963).
For the 2 m temperature response, the cluster analysis in-
dicates a relatively high degree of similarity in winter be-
tween RCMs sharing the same atmospheric scheme, as il-
lustrated in particular by the clustering of CCLM-TERRA
and CCLM-CLM4.5 and of WRFb-NoahMP and WRFb-
CLM4.0 (Fig. 13). In contrast, CCLM-TERRA and CCLM-
CLM4.5 are relatively far apart in summer suggesting a
stronger influence of land processes during this season. This
tendency, however, does not arise in the WRF-based RCMs,
with WRFb-NoahMP and WRFb-CLM4.0 showing a high
degree of similarity even in summer. A possible explanation
could be that NoahMP and CLM4.0 are structurally less dif-
ferent than TERRA and CLM4.5.

4 Discussion and conclusions

Results from nine RCMs show that, compared to grassland,
forests imply warmer temperatures in winter and spring over
northern Europe. This result is robust across RCMs and is
a direct consequence of the lower albedo of forests, which
is the dominating factor during these seasons. In summer
and autumn, however, the RCMs disagree on the direction
of changes, with responses ranging from a widespread cool-
ing to a widespread warming above 2◦ in both cases. Al-
though albedo change plays an important role in all seasons
by increasing absorbed surface radiation, in summer inter-
model differences in the temperature response are to a large
extent induced by differences in EF. These conclusions are
overall consistent with previous studies based on global cli-
mate models. Results from the LUCID and the CMIP5 model
intercomparisons have indeed highlighted a robust, albedo-
induced, winter cooling effect due to past deforestation at
mid-latitudes (Lejeune et al., 2017), in other words implying
a winter warming effect of forestation. On the other hand,
no robust summer response has been identified in these inter-
comparisons, mainly attributed to a lack of agreement across
models concerning evapotranspiration changes (Lejeune et
al., 2017, 2018; de Noblet-Ducoudré et al., 2012).

Resolving this lack of consensus will require intensified
efforts to confront models and observations and identify pos-
sible model deficiencies (Boisier et al., 2013, 2014; Duveiller
et al., 2018a; Meier et al., 2018). For instance, a key feature
emerging from observation-based studies is the fact that mid-
latitude forests are colder during the day and warmer dur-
ing the night compared to grassland (Duveiller et al., 2018b;
Lee et al., 2011; Li et al., 2015). It is striking that none of
the LUCID and CMIP5 models reflect this diurnal behaviour
(Lejeune et al., 2017), nor do the RCMs analysed in this
study (i.e. a majority of RCMs have a diurnal signal op-
posite to observations, two other RCMs indicate a cooling
effect of forests for both day and night, and one exhibits a
warming effect for both day and night). It is however im-
portant to note that this apparent contradiction may not be
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Figure 9. Changes in temperature and in surface energy balance components (FOREST minus GRASS) averaged over Scandinavia for DJF,
MAM, JJA and SON. Results for other regions are shown in the Supplement.

only attributable to model deficiencies and could be in part
related to discrepancies on the scale of processes considered
in models and observations. Indeed, observation-based esti-
mates capture mainly local changes in surface energy balance
and temperature due to land cover and are unlikely to reflect
the type of large-scale atmospheric feedbacks triggered in
coupled climate models (especially given the large-scale na-
ture of the forest expansion considered in our experiments).
Similarly, the fact that a majority of RCMs simulate a sum-
mer decrease in evapotranspiration over many regions fol-
lowing forestation is at odds with current observational evi-
dence (Chen et al., 2018; Duveiller et al., 2018b; Meier et al.,
2018) and might play a role in the simulated summer daytime
warming in most RCMs. Although the reasons behind this
behaviour may be model-specific, some recent work based on
the CLM4.5 model, which is used in two of the RCMs here,
sheds some light on the possible processes involved (Meier
et al., 2018). It was found that while evapotranspiration is
higher in spring under forested conditions in CLM4.5, trees
become more water stressed than grassland in summer (even

under equivalent soil moisture conditions) in particular due
to unrealistic choices of root distribution, photosynthetic pa-
rameters and water uptake formulation. After improvement
of these aspects in CLM4.5, evapotranspiration was found to
be more realistically simulated, also resulting in an improved
daytime temperature difference between grassland and for-
est (Meier et al., 2018). An important insight from this first
phase of RCM experiments is therefore that particular atten-
tion should be given to model evaluation and benchmarking
in future phases of the LUCAS initiative.

An additional insight from this study concerns the role
of land versus atmospheric processes. Some of the partici-
pating RCMs share the same atmospheric scheme (i.e. the
same version and configuration) but are coupled to different
land surface models or share the same land surface model in
combination with different atmospheric schemes. This repre-
sents a unique opportunity to objectively determine the origin
of uncertainties in the simulated response. For instance, we
find that land process representation is heavily involved in
the large model spread in summer temperature response. The
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Figure 10. Changes in temperature and in surface energy balance components (FOREST minus GRASS) averaged over the Mediterranean
for DJF, MAM, JJA and SON. Results for other regions are shown in the Supplement.

Figure 11. Illustrative relationships between changes (FOREST minus GRASS) in 2 m temperature and albedo in spring (a) and between
changes in 2 m temperature and EF (evaporative fraction) in summer (b) for Scandinavia.
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Figure 12. Fraction of inter-model variance in 2 m temperature change (FOREST minus GRASS) explained by changes in albedo, evapora-
tive fraction, incoming surface shortwave radiation or the three combined. Alb: inter-model correlation (Rsquared) between changes in albedo
and 2 m temperature. EF: inter-model correlation (Rsquared) between changes in evaporative fraction and 2 m temperature. SWin: inter-
model correlation (Rsquared) between changes in incoming surface shortwave radiation and 2 m temperature. Alb+EF+SWin: Rsquared
of a multi-linear regression combining the three predictors. Results for other regions are shown in the Supplement.

Figure 13. Dendrogram of the clustering analysis based on the 2 m temperature response (FOREST minus GRASS) for DJF and JJA. The
underlying distance matrix between RCM pairs is based on the Euclidean distance across latitude and longitude for the given season.

range of responses generated by using three different LSMs
within the same atmospheric scheme (CCLM) is almost as
large as the full model range in summer. Supporting this con-
clusion, a simple regression-based analysis shows that, ex-
cept in winter, changes in albedo and EF can explain most
of the inter-model spread in temperature sensitivity, in other
words indicating that land processes primarily determine the
simulated temperature response. Atmospheric processes can

nevertheless also play a substantial or even dominant role for
example in winter or for other variables such as precipitation.

In this first phase of LUCAS, we relied on idealized exper-
iments at relatively low resolution (50 km) to gain insights
into the biogeophysical role of forests across a range of Eu-
ropean climates. Future phases of LUCAS will evolve to-
ward increasing realism for instance by (1) investigating tran-
sient historical LUC forcing as well as RCP (representative
concentration pathways)-based LUC scenarios, (2) consider-
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ing a range of land use transitions beyond grassland to for-
est conversion and (3) assessing the added-value of higher
(kilometre-scale) resolution when assessing local LUC im-
pacts. Finally, the most societally relevant adverse effects or
benefits from land management strategies may become ap-
parent only when addressing changes in extreme events such
as heatwaves or droughts (Davin et al., 2014; Lejeune et al.,
2018), an aspect which will receive more attention in future
analyses based on LUCAS simulations.
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