Hydrological and biogeochemical constraints on terrestrial carbon cycle feedbacks

Mystakidis, Stefanos; Seneviratne, Sonia I; Gruber, Nicolas; Davin, Edouard L (2017). Hydrological and biogeochemical constraints on terrestrial carbon cycle feedbacks. Environmental Research Letters, 12(1), 014009. IOP Publishing 10.1088/1748-9326/12/1/014009

[img]
Preview
Text
Mystakidis_2017_Environ._Res._Lett._12_014009.pdf - Published Version
Available under License Creative Commons: Attribution (CC-BY).

Download (2MB) | Preview

The feedbacks between climate, atmospheric CO2 concentration and the terrestrial carbon cycle are a major source of uncertainty in future climate projections with Earth systems models. Here, we use observation-based estimates of the interannual variations in evapotranspiration (ET), net biome productivity (NBP), as well as the present-day sensitivity of NBP to climate variations, to constrain globally the terrestrial carbon cycle feedbacks as simulated by models that participated in the fifth phase of the coupled model intercomparison project (CMIP5). The constraints result in a ca. 40% lower response of NBP to climate change and a ca. 30% reduction in the strength of the CO2 fertilization effect relative to the unconstrained multi-model mean. While the unconstrained CMIP5 models suggest an increase in the cumulative terrestrial carbon storage (477 PgC) in response to an idealized scenario of 1%/year atmospheric CO2 increase, the constraints imply a ca. 19% smaller change. Overall, the applied emerging constraint approach offers a possibility to reduce uncertainties in the projections of the terrestrial carbon cycle, which is a key determinant of the future trajectory of atmospheric CO2 concentration and resulting climate change.

Item Type:

Journal Article (Original Article)

UniBE Contributor:

Davin, Édouard Léopold

ISSN:

1748-9326

Publisher:

IOP Publishing

Language:

English

Submitter:

�douard Léopold Davin

Date Deposited:

25 Apr 2022 16:23

Last Modified:

05 Dec 2022 16:14

Publisher DOI:

10.1088/1748-9326/12/1/014009

BORIS DOI:

10.48350/167133

URI:

https://boris.unibe.ch/id/eprint/167133

Actions (login required)

Edit item Edit item
Provide Feedback