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Modeling land-climate coupling in Europe: Impact of land
surface representation on climate variability and extremes
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[1] Land-climate coupling has been shown to be important for European summer climate
variability and extreme events. However, the sensitivity of these feedbacks to land surface
model (LSM) choice has been little investigated up to now. In this study, we assess the
impact of the LSM on the simulated climate variability in a regional climate model (RCM).
The experiments were conducted with the COSMO-CLM2 RCM. COSMO-CLM2 can be
run with two alternative LSMs, the 2nd-generation LSM TERRA_ML or the more
sophisticated 3rd-generation LSM Community Land Model (CLM3.5). The analyzed
simulations include control and sensitivity experiments with prescribed soil moisture (dry
or wet). Using CLM3.5 instead of TERRA_ML improves the simulated temperature
variability by alleviating an overestimation of temperature inter-annual variability in the
RCM. Also, the representation of the probability density functions of daily maximum
summer temperature is improved when using the more advanced LSM. The reduced
climate variability is linked to a larger ground heat flux and smaller variability in soil
moisture and short-wave radiation. The latter effect results from the coupling of the LSM to
the atmospheric module. In addition, using CLM3.5 reduces the sensitivity of COSMO-
CLM2 to extreme soil moisture conditions. An analysis assessing the relationship between
the standard precipitation index and the subsequent number of hot days in summer reveals
a better representation of this relationship using CLM3.5. Hence, we find that biases in
climate variability and extremes can be reduced and the representation of land-climate
coupling can be improved with the use of the more sophisticated LSM.

Citation: Lorenz, R., E. L. Davin, and S. I. Seneviratne (2012), Modeling land-climate coupling in Europe: Impact of land
surface representation on climate variability and extremes, J. Geophys. Res., 117, D20109, doi:10.1029/2012JD017755.

1. Introduction

[2] Human societies and ecosystems are greatly affected
by climate variability and in particular by the frequency and
intensity of extreme events [e.g., Changnon et al., 1996;
Ciais et al., 2005; Intergovernmental Panel on Climate
Change, 2012]. Hence, it is important to understand the
processes shaping these extremes and their sensitivity to
climate change. Observational studies suggest an increase in
frequency as well as intensity of hot temperature and heavy
precipitation extremes for the recent past, whereas climate
models project an amplification of this trend for the coming
decades [e.g., Meehl and Tebaldi, 2004; Alexander et al.,
2006; Fischer and Schär, 2010; Orlowsky and Seneviratne,
2012; Seneviratne et al., 2012a]. In this context, several
studies have shown that land-climate interactions, especially
soil moisture-temperature feedbacks, can play a significant

role over Europe [e.g., Seneviratne et al., 2006; Diffenbaugh
et al., 2007; Vautard et al., 2007; Haarsma et al., 2009;
Jaeger and Seneviratne, 2011]. A modeling study by Jaeger
and Seneviratne [2011] identified an asymmetric effect of
soil moisture on temperature extremes, with a stronger effect
on hot extremes. This result was recently confirmed with
observations in southeastern Europe [Hirschi et al., 2011] as
well as in a global-scale observational study [Mueller and
Seneviratne, 2012].
[3] The term “land-climate coupling” refers to the degree to

which the land surface controls the climate in a given region,
for instance through evapotranspiration. One of the most
important aspects in this context is the soil moisture-
temperature feedback. When the availability of soil moisture
limits the energy used for the latent heat flux, more energy is
used for the sensible heat flux, consequently increasing near
surface temperature [Seneviratne et al., 2010]. Land-climate
coupling is of varying strength in different regions of the
world. The variability of evapotranspiration is large enough to
influence climate only in the transitional regions between dry
and wet climates [Koster et al., 2004; Seneviratne et al., 2010].
However, the definition of these transitional regions is not
static. Regions characterized by an overall dry or wet clima-
tology can occasionally present a transitional soil moisture
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regime, too. For example, the summer 2003 in Central Europe
was so dry that the occurring heat wave was enhanced by the
lack of soil moisture [e.g., Ferranti and Viterbo, 2006; Fischer
et al., 2007; García-Herrera et al., 2010; Seneviratne et al.,
2012b]. In addition, not only soil moisture availability but
also vegetation properties determine the partitioning of net
radiation into latent and sensible heat flux [Bonan, 2008;
Teuling et al., 2010; Williams et al., 2012] and can, therefore,
impact air temperature, boundary layer stability, or precipita-
tion [Seneviratne et al., 2010]. Thus, to study land-climate
coupling with climate models, we need land surface models
(LSMs) which represent soil hydrology and vegetation pro-
cesses realistically.
[4] Regional climate models (RCMs) are useful tools to

study land-climate coupling, since many of the involved
processes are regional in nature [Giorgi, 2006]. These studies
are strongly dependent on how climate models represent the
land surface and its coupling to the atmosphere [Irannejad
et al., 2003]. Land surface models represent hydrological,
biogeophysical and biogeochemical processes which deter-
mine the exchange of radiation, heat, water and carbon
between the land surface and the atmosphere. Most current
RCMs use relatively simple 2nd-generation LSMs [Davin
et al., 2011; Subin et al., 2011] which are not optimal to
investigate biosphere-climate feedbacks, despite improve-
ments compared to even simpler earlier bucket-model schemes
[Sellers et al., 1997; Pitman, 2003]. Recently, efforts were
made to couple sophisticated 3rd-generation LSMs to RCMs
[e.g., Steiner et al., 2009; Subin et al., 2011; Davin et al.,
2011; Davin and Seneviratne, 2012].
[5] In this study, we use a coupled land-atmosphere RCM

including two alternative LSMs (a 2nd-generation and a 3rd-
generation scheme). This set-up allows us to assess the role
of land surface representation in simulating the European
climate. In previous efforts to couple sophisticated 3rd-
generation LSMs to RCMs, analyses were focused on the
evaluation of annual or seasonal mean climate [Steiner et al.,
2009; Subin et al., 2011; Davin et al., 2011; Davin and
Seneviratne, 2012]. The role of land surface parameteriza-
tion for land-atmosphere coupling has also been investigated
with a global climate model coupled to three different LSMs
[Wei et al., 2010a, 2010b] but without investigating the
effect on climate extremes. In contrast, we focus here on
inter-annual climate variability and climatic extremes. To
our knowledge, the role of land surface parameterization
choice for climate variability and extremes in RCMs has not
been studied in detail in Europe.
[6] The aim of the study is to investigate whether the

RCM coupled to the more sophisticated LSM represents

well land-climate coupling, climate variability and extremes.
If so, this model version can be used for investigations of
biosphere-climate feedbacks in the future. To this end, we
perform control runs and prescribed extreme soil moisture
experiments with both LSMs. We investigate if the relevant
processes are correctly represented in the simulations by
putting our results into context with observations. In partic-
ular, we assess possible improvements (or lack thereof)
when this new model is compared to that with the simpler
2nd-generation scheme.
[7] The structure of this article is as follows: Section 2

describes the models and data used in this study as well as
the methodologies used in the analysis. Section 3 presents the
results for mean summer climate and land-climate coupling.
In section 4 we focus on climate variability and temperature
extremes. In addition, we investigate the connection between
heat waves and droughts. A discussion of the main results as
well as the conclusions of this study are provided in section 5.

2. Methods and Data

2.1. Model Description

[8] In this study, we perform simulations with COSMO-
CLM2 [Davin et al., 2011; Davin and Seneviratne, 2012],
an RCM based on the combination of COSMO-CLM
[Rockel et al., 2008] and CLM3.5 [Oleson et al., 2008].
COSMO-CLM is a non-hydrostatic RCM jointly used by
the COnsortium for Small-scale Modeling (COSMO) and
the Climate Limited-area Modeling Community (CLM-
Community). We use version 4.8.11 of COSMO-CLM with
a second-order leapfrog scheme for the time integration. Ver-
tical turbulent mixing is parameterized according to a level 2.5
closure using Turbulent Kinetic Energy (TKE) as a prognostic
variable [Mellor and Yamada, 1974, 1982]. For moist con-
vection, we use the mass flux scheme of Tiedtke [1989].
[9] The native LSM in COSMO-CLM, TERRA_ML

[Grasselt et al., 2008], is retained within the COSMO-CLM2

framework so that either CLM3.5 or TERRA_ML can be
used with the same atmospheric model. Table 1 summarizes
the differences between CLM3.5 and TERRA_ML, and
Davin et al. [2011] provides a more detailed description.
CLM3.5 is a state-of-the-art LSM, which is overall more
sophisticated than TERRA_ML. CLM3.5 uses a tile
approach and explicitly represents surface heterogeneity,
whereas TERRA_ML does not represent sub-grid scale het-
erogeneity. The radiation fluxes are calculated separately for
canopy and soil/snow surfaces in CLM3.5, whereas they are
derived from the simulated grid-scale surface albedo and
temperature in TERRA_ML. Both models solve the Richards

Table 1. Main Differences Between the Land Surface Models CLM3.5 and TERRA_ML

CLM3.5 TERRA_ML

Surface heterogeneity Explicit, multiple land units per grid cell
(e.g. glacier, lake, vegetated)

No explicit sub-grid scale heterogeneity

Radiation fluxes Short-wave and long-wave radiation fluxes
calculated for canopy and soil/snow
surface, two layer scheme

Derived from simulated grid-scale surface
albedo and temperature

Hydrology Richards equation 10 soil layers, prognostic
groundwater model

Richards equation 8 soil layers

Stomatal conductance and
photosynthesis

Explicit link C3 and C4 plants Empirical relation, photosynthesis not represented
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equation for hydrological processes, but CLM3.5 has a
prognostic groundwater model coupled to the lowest soil
level. In addition, CLM3.5 explicitly calculates stomatal
conductance and photosynthesis. Hence, the degree of com-
plexity of these two LSMs largely differs. On the one hand,
these differences allow us to investigate the role of land sur-
face representation in the context of land-climate coupling.
On the other hand, these differences are manifold and com-
plex, making an exhaustive cause-effect analysis difficult.

2.2. Experimental Design

[10] We perform 6 model runs with the COSMO-CLM2

RCM using the two alternative LSMs. The two control runs
(CTLTERRA and CTLCLM) have interactive soil moisture.
Additionally, we perform experiments with prescribed very
high (“WET”) or very low (“DRY”) soil moisture. Unlike the
control runs, in these experiments soil moisture evolution is
decoupled from the atmospheric state (the same method was
used, e.g., inKoster et al. [2004] and Seneviratne et al. [2006]).
In these uncoupled simulations, soil moisture is prescribed
in all soil levels at each time step for each grid point sepa-
rately according to soil type. We either prescribed soil mois-
ture to very wet conditions (field capacity) for “WETTERRA”
and “WETCLM” or to very dry conditions (0.05 vol-%) for
“DRYTERRA” and “DRYCLM .” Table 2 provides an overview
of all model experiments.
[11] All experiments are conducted over a European

domain with 0.44� (≈50 km) horizontal resolution, 32 vertical
layers, and a model time step of 240 seconds. We derived
the lateral boundary conditions from the ERA-Interim re-
analysis data (www.ecmwf.int/research/era/do/get/era-interim,
Dee et al. [2011]). ERA-Interim is the latest ECMWF global
atmospheric re-analysis which covers the recent data-rich
period and is continuing in real time. The simulations cover
the period 1989–2008. The first year is used as spin-up and
we thus analyze only data from 1990–2008 in the following.
Figure 1 shows the model domain with its topography and the
definition of the sub-regions used for the analysis.

2.3. Evaluation Data Sets

2.3.1. E-OBS
[12] To evaluate the control runs, we use the E-OBS grid-

ded version 5.0 of the European Climate Assessment and
Dataset (ECA&D) [Haylock et al., 2008]. E-OBS is a daily
gridded observational data set for precipitation and temper-
ature in Europe based on ECA&D information. The full data
set covers the period 1950–2009, however, we only use data
from 1990–2008, given the length of the simulations.
2.3.2. FLUXNET
[13] We use sensible (SH) and latent heat flux (LE) mea-

surements as well as temperature from several FLUXNET

sites [e.g., Baldocchi et al., 2001; Baldocchi, 2008] to
evaluate the simulations. Auxiliary material Table S1 sum-
marizes the characteristics of the stations used.1 The same
data have been previously used by Jaeger et al. [2009] and
Davin et al. [2011]. The data were not gap-filled and cal-
culations were only done when no gaps occurred.

2.4. Analysis Methodology

2.4.1. Mean Climate
[14] We analyze the simulations over seasons, such as JJA

(June, July, August) for summer. The mean of variables such
as temperature and precipitation is calculated over the
respective months over the period 1990–2008. As a measure
for inter-annual climate variability we use the inter-annual
standard deviation (s) of the respective variable. In addition,
we use the evaporative fraction (calculated as LE/(LE + SH)
for daily data) which indicates how much of the available
energy is used for evapotranspiration. The evaporative frac-
tion is a good measure of the evaporative regime, with low
values indicating soil moisture limitation and high values
found in energy-limited regimes [e.g., Seneviratne et al.,
2010]. Another measure used in the analyses is the correla-
tion between temperature and latent heat fluxes (Corr(T, LE),
see also Table 3) as a measure for soil moisture-temperature
coupling. Again we use daily data. A negative correlation of

Table 2. Overview of Model Runs and Their Acronyms

Acronym Atmospheric Model Land Model Description

CTLCLM COSMO4.8-CLM11 CLM3.5 control run with interactive soil moisture
DRYCLM COSMO4.8-CLM11 CLM3.5 soil moisture prescribed to 0.05 vol-%
WETCLM COSMO4.8-CLM11 CLM3.5 soil moisture prescribed to field capacity
CTLTERRA COSMO4.8-CLM11 TERRA_ML control run with interactive soil moisture
DRYTERRA COSMO4.8-CLM11 TERRA_ML soil moisture prescribed to 0.05 vol-%
WETTERRA COSMO4.8-CLM11 TERRA_ML soil moisture prescribed to field capacity

Figure 1. Model domain with topography [m] and subdo-
mains used for analysis. IP: Iberian Peninsula, FR: France,
ME: Mid Europe, EA: Eastern Europe.

1Auxiliary materials are available in the HTML. doi:10.1029/
2012JD017755.

LORENZ ET AL.: LAND-CLIMATE COUPLING IN EUROPE D20109D20109

3 of 16



temperature and latent heat flux indicates moisture limitation
whereas positive correlations are found when the latent heat
flux is energy limited [Seneviratne et al., 2006; Jaeger et al.,
2009]. Also, we calculated these measures for daily summer
FLUXNET data. We did not correct for energy closure, but
the measures we analyze are unlikely to be strongly affected
by this closure, as the bowen ratio (SH/LE) can be assumed
to be approximately correct in the measurements [Foken
et al., 2012].
2.4.2. Significance and Skill Score
[15] We test if the differences between using CLM3.5 or

TERRA_ML are statistically significant. The numbers in the
lower-right corner of the difference maps indicate the area
weighted fraction of land points at which the null hypothesis
of ‘being from the same distribution’ is rejected at the 5%
level according to the two-sided Kolmogorov-Smirnov test
(as used in Jaeger and Seneviratne [2011]).
[16] Moreover, we use a skill score defined by Perkins

et al. [2007] which tests how well a model captures the
observed probability density functions (PDF). In Section 4.2
we use this metric for the PDFs of the daily maximum
temperatures. It measures the overlapping area between two
PDFs. For perfect agreement between model and observa-
tions the skill score equals one. It is calculated by summing
up the probability at each bin of a given PDF (equation (1)).

Sscore ¼
Xn

1

minimum Zm; Zoð Þ; ð1Þ

where n is the number of bins used to calculate the PDFs,
and Zm and Zo correspond to the frequency of values in a bin
from the model and the observations, respectively.
2.4.3. Climate Extremes
[17] We use several hot temperature and drought indices

to investigate climate extremes. Table 3 provides an over-
view of the employed indices. As a measure for extreme
temperatures we use the 90th-percentile of daily maximum
temperature (perc90). The number of hot days (nhd) counts

the number of days where the daily maximum temperature
(Tmax) is above perc90. The heat wave duration index
(hwdimean) is the mean length of all heat spells where Tmax is
above perc90 for at least two consecutive days [Lorenz et al.,
2010].
[18] As a measure for duration and intensity of droughts

we use the standard precipitation index (SPI). SPI is a stan-
dardized index which takes into account the accumulated
precipitation of the preceding months [McKee et al., 1993].
The SPI can be calculated for different time periods. We use
here the 3-month SPI. Consequently, precipitation deficits
are computed out of the three months preceding the current
month. Then, a Gamma function is fitted to the cumulative
precipitation separately for each ending month for the whole
time series (to take into account seasonal differences in
distributions). These cumulative distributions are then
transformed into a standard normal distribution (with mean
zero and variance of one) which gives the value of the SPI
for three months [McKee et al., 1993; Lloyd-Hughes and
Saunders, 2002]. However, since this approach is not prac-
tical for computing SPI for a large number of data points, we
use an approximative conversion (following Lloyd-Hughes
and Saunders [2002]). A main advantage of the SPI is that
it only depends on precipitation, for which relative exhaus-
tive measurement networks exist (unlike for soil moisture for
instance). A disadvantage is that it does not necessarily
capture the full range of droughts. Nevertheless, studies have
shown that SPI can be well related to soil moisture droughts
[e.g., Hirschi et al., 2011; Mueller and Seneviratne, 2012].
2.4.4. Quantile Regressions
[19] Quantile regression originates from ordinary least

squares regression and was introduced as an extension. It is
used to assess the response of a variable in all parts of its
data distribution and not only in the mean. Instead of using
conditional mean functions as in ordinary least squares
regression, conditional quantile functions are used. This
method has been often used in econometrics [Koenker and
Bassett, 1978; Koenker, 2005]. Recently, it has also been
used in geophysics [Barbosa, 2008] and climatology
[Hirschi et al., 2011; Quesada et al., 2012; Mueller and
Seneviratne, 2012] (for details see above mentioned refer-
ences). We look at the response of nhd to SPI. The calcu-
lations were done with R using the “quantreg” package. We
calculated the significance of the slopes using 1000 boot-
strapping samples and the xy-pair method, but only for nhd
in July and preceding SPI. The figures show the regression
slopes for the number of hot days in June, July and August
and the 3-month SPI in the (respective) preceding month.
Results for the 6-month SPI are similar but the region with
statistical significance is largely reduced (not shown).

3. Mean Climate and Land-Climate Coupling

[20] First, we investigate the impact of the different LSMs
on mean summer climate and land-climate coupling. Figure 2
displays mean summer temperature, precipitation, evapora-
tive fraction and the correlation between temperature and
latent heat flux (Corr(T, LE)) for CTLCLM (Figures 2a–2d),
CTLTERRA (Figures 2e–2h), and the difference between
CTLCLM and CTLTERRA (Figures 2i–2l).

Table 3. Overview of the Climate Indices Used in This Study

Acronym Definition Unit

s Standard deviation of respective variable,
measure for inter-annual variability

[�]

LE/(LE + SH) Evaporative fraction, fraction of available
energy used for evapotranspiration

[�]

Corr(T, LE) Correlation between temperature and
latent heat flux, measure for land-climate
coupling, negative correlation indicates
moisture limitation of the latent heat flux

[�]

perc90 90th-percentile of daily Tmax [K]
nhd Number of hot days with Tmax > long-term [days]

(1990–2008) 90th-percentile of CTL
hwdimean 90th-percentile-based mean heat wavelength. [days]

Mean of all spells with at least two
consecutive days with Tmax > long-term
(1990–2008) 90th-percentile of CTL

SPI Standard precipitation index, standardized
drought index taking into account
accumulated precipitation over preceding
3 months [McKee et al., 1993]

[�]
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3.1. Mean Summer Climate

[21] Differences in temperature between the two model
versions are largest in Northern Europe. Figure 2i shows that
CTLCLM is warmer than CTLTERRA in Northern Europe,
whereas it is slightly colder or similar to CTLTERRA in the
southern part of Europe. For precipitation the largest

differences are also found in the North, where CTLCLM is
drier than CTLTERRA (Figure 2j). However, this difference in
precipitation is only significant for 14% of the grid points.
[22] More pronounced differences between CTLCLM and

CTLTERRA exist for the evaporative fraction (Figure 2k).
Compared to CTLTERRA, the evaporative fraction is larger for

Figure 2. Mean summer temperatures [K] (T2m), precipitation [mm/d] (prec), evaporative fraction [�]
(LE/(LE + SH)), and correlation between T and LE [�] (Corr(T, LE), from left to right) for (a–d) CTLCLM,
(e–h) CTLTERRA and (i–l) CTLCLM-CTLTERRA. The numbers in the lower-right corner of the difference
plots give the area weighted fraction of land points at which the null hypothesis of ‘being from the same
distribution’ is rejected at the 5% level according to the two-sided Kolmogorov-Smirnov test. The colored
dots in Figures 2c, 2d, 2g, and 2h correspond to measured data from several FLUXNET sites. The size of
the dots are proportional to the number of data points which are available at a certain site.
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CTLCLM in the North and smaller in the South. Consequently,
the North–south gradient in the evaporative fraction is reduced
in CTLCLM. Nonetheless, both model versions display an
energy-limited evapotranspiration regime in Central and
Northern Europe and a soil moisture-limited evapotranspira-
tion regime in the South (Figures 2c and 2g). This is consistent
with results of several observational analyses [Teuling et al.,
2009; Seneviratne et al., 2010; Mueller and Seneviratne,
2012].
[23] We use FLUXNET data to evaluate the realism of the

simulated evaporative fraction in the two model versions.
The colored dots in Figures 2c and 2g (and Figures 2d and
2h) correspond to measured data from several FLUXNET
sites. The colorbar is the same as for the model results. The

size of the dots indicates the amount of available data for the
calculation of the evaporative fraction at the respective site.
In addition, we show scatterplots comparing model results
and observations in Figure 3, which are more quantitative.
Overall, the evaporative fraction from the FLUXNET sites is
better represented by CTLCLM (Figures 2c and 2g and
Figures 3a and 3c). CTLTERRA overestimates the evaporative
fraction in the North where too much energy is used for
evapotranspiration. Hence, the partitioning of sensible versus
latent heat flux is improved when using the more sophisti-
cated LSM. This finding is consistent with the results of
Davin et al. [2011] and Davin and Seneviratne [2012], who
showed that this better partitioning results in a decreased bias
in cloud cover when using CLM3.5 instead of TERRA_ML

Figure 3. (a and c) Summer mean evaporative fraction and (b and d) correlation of temperature and latent
heat flux (Corr(T, LE)) from CTLCLM (Figures 3a and 3b) and CTLTERRA (Figures 3c and 3d) compared to
observations from FLUXNET data. Model data are taken for the same time period as the observations are
available and for the corresponding grid point. There is one dot resulting per observation station.
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in the COSMO-CLM2 framework. The reduced cloud cover
has a positive effect on biases in simulated net short-wave
radiation, temperature and other surface variables.

3.2. Land-Climate Coupling

[24] The correlation between temperature (T) and latent
heat flux (LE) (Figures 2d and 2h) can be used as a measure
for soil moisture-temperature coupling [Seneviratne et al.,

2006]. Negative correlations indicate soil moisture limita-
tion and a strong coupling of land and atmosphere. CTLCLM

shows a clearer limitation of the area of strong coupling to
Southern Europe (Figure 2d). Both model versions capture
the general pattern with negative correlations of Corr(T, LE)
in Southern Europe and positive correlations in Central and
Northern Europe. As for the evaporative fraction, we compare
Corr(T, LE) to FLUXNET data. Only one FLUXNET station

Figure 4. Mean summer temperature [K] for (a, b, e, f, i, and j) DRY and (c, d, g, h, k, and l) WET model
runs. Figures 4a–4d show results for COSMO-CLM2 coupled to CLM3.5, Figures 4e–4h show COSMO-
CLM2 coupled to TERRA_ML and Figures 4i–4l show the differences between the two model versions.
From left to right: DRY, DRY-CTL, WET, WET-CTL.
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on the British Islands shows a negative correlation in the
North which is not shown by either model version. Figures 3b
and 3d reveal that the root mean squared error for CTLCLM

compared to FLUXNET is smaller than the one from
CTLTERRA. On the other hand, the correlation for CTLTERRA

and FLUXNET is higher. Hence, with the available obser-
vations it is not possible to determine if one of the two model
versions performs better than the other with respect to
Corr(T, LE).

3.3. Influence of Soil Moisture State on Mean
Summer Climate

[25] To gain additional insights on how the two model
versions react to surface processes, we also perform sensitivity
experiments with extreme soil moisture conditions. In these
experiments the land surface is decoupled from the atmo-
sphere. The sensitivity of the summer mean temperature to the
soil moisture state is shown in Figure 4. In general, the extreme
soil moisture experiments show the expected results. The
DRY runs result in higher temperatures (Figures 4b and 4f)

Figure 5. Inter-annual summer temperature variability
(sT2m) for (a) CTLCLM and (c) CTLTERRA and (b and d) com-
pared to E-OBS. (e) The difference between CTLCLM and
CTLTERRA.

Figure 6. Inter-annual summer variability in (a, c, and e) sen-
sible heat flux (sSH) and (b, d, and f) latent heat flux (sLE) for
CTLCLM (Figures 6a and 6b), CTLTERRA (Figures 6c and 6d)
and CTLCLM-CTLTERRA (Figures 6e and 6f).
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and less precipitation (not shown) whereas the WET runs
result in colder temperatures (Figures 4d and 4h) and more
precipitation (not shown). The results using the more
sophisticated LSM are consistent with those using the simpler
LSM, as well as with results of Jaeger and Seneviratne [2011]
(which were also based on COSMO-CLM simulations with
the TERRA_ML LSM). However, the difference between
DRYCLM-CTLCLM and WETCLM-CTLCLM are smaller than

those using TERRA_ML (Figures 4j and 4l). This shows that
the model sensitivity to soil moisture changes is smaller when
using the more complex LSM.

4. Climate Variability and Extremes

4.1. Inter-annual Summer Climate Variability

[26] To evaluate climate variability in summer, we use
the inter-annual standard deviation. Figure 5 shows the

Figure 7. (a, c, and e) Mean summer volumetric soil water
content (SM) and (b, d, and f) inter-annual summer variabil-
ity in soil moisture (sSM) for CTLCLM (Figures 7a and 7b),
CTLTERRA (Figures 7c and 7d) and CTLCLM-CTLTERRA

(Figures 7e and 7f). Soil moisture content is calculated
for the first 7 (CLM3.5) resp. 6 (TERRA_ML) soil levels
which corresponds to the first 0.829 m (CLM3.5) resp. 0.7 m
(TERRA_ML).

Figure 8. (a, c, and e) Mean summer ground heat flux
[W/m2] (G) and (b, d, and f) inter-annual summer variability
in ground heat flux (sG) for CTLCLM (Figures 8a and 8b),
CTLTERRA (Figures 8c and 8d) and CTLCLM-CTLTERRA

(Figures 8e and 8f).
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inter-annual variability (s) in 2-meter temperature for
CTLCLM, CTLTERRA, their difference, and the corresponding
biases compared to E-OBS observations. Inter-annual tem-
perature variability is substantially overestimated in CTLTERRA
(Figure 5d). In CTLCLM this problem is largely alleviated,
with a more realistic representation of inter-annual tempera-
ture variability (Figure 5b). This difference between CTLCLM

and CTLTERRA can also be seen in the inter-annual variability
of the sensible and latent heat fluxes (Figure 6). Also for

the heat fluxes, the variability in CTLTERRA is much larger
than in CTLCLM (Figures 6e and 6f).
[27] The overestimation of summer climate variability is a

common feature of most RCMs [e.g., Vidale et al., 2007;
Jacob et al., 2007; Lenderink et al., 2007] and has been
attributed to combined effects of downward long-wave radi-
ation, net short-wave radiation and evaporation [Lenderink
et al., 2007]. It seems to have no unique cause for all
RCMs, but previous COSMO-CLM versions have been
shown to have a large sensitivity to soil drying, leading
to decreased evaporation and enhanced summer tempera-
ture variability [Lenderink et al., 2007]. Thus, we investi-
gated possible causes for the better performance in CTLCLM,
namely differences in the representation of soil moisture,
ground heat flux, downward long-wave and incoming short-
wave radiation.
[28] Soil moisture is expressed as volumetric water con-

tent over several soil levels. The volumetric water content
(over the first 0.829 meter of CTLCLM compared to the first
0.7 meter of CTLTERRA) is mainly increased in CTLCLM

compared to CTLTERRA (Figures 7a, 7c, and 7e), indicating
less summer drying in CTLCLM. However, since the soil
levels of CLM3.5 and TERRA_ML are very different, an
exact comparison between CLM3.5 and TERRA_ML is not
possible. If we consider only the levels down to 0.1656 m
(CLM3.5) resp. 0.16 m (TERRA_ML), the levels which are
closest to each other, CTLCLM has a lower soil moisture
content than CTLTERRA in summer (not shown). Therefore,
we cannot definitely confirm that less summer drying is the
cause for the improved temperature variability in CTLCLM.
[29] Nevertheless, we obtain a clear decrease of soil

moisture variability in CTLCLM compared to CTLTERRA

(Figures 7b, 7d, and 7f; results for other soil levels are
similar, not shown). The region where soil moisture vari-
ability is smaller in CTLCLM is more extended than the
region where climate variability is smaller (Figures 5e, 6e,
and 6f and Figure 7f ). Nonetheless, the reduced soil mois-
ture variability is likely one of the causes for the decreased
climate variability in CTLCLM.
[30] Part of the available energy at the surface is used to

heat the ground (ground heat flux) during the day. The
ground heat flux is up to 10 W/m2 larger for CTLCLM than
CTLTERRA during summer (Figure 8e). In addition, the var-
iability in the ground heat flux is also enhanced in CTLCLM

for large areas in Southern and Central Europe (Figure 8f).
The fact that more heat can be stored in the ground in
CTLCLM can also explain the reduced climate variability due
to an increased buffering effect of the soil column.
[31] Lenderink et al. [2007] also proposed incoming long-

wave and net short-wave radiation as possible causes for
the overestimation of inter-annual temperature variability.
Figure 9 shows the standard deviation of incoming long-
wave and incoming short-wave radiation. We prefer to look
at incoming short-wave radiation instead of net short-wave
radiation because incoming short-wave radiation is actually
forcing the land surface, however, the results are compara-
ble. There is no consistent decrease in incoming long-wave
radiation from CTLCLM to CTLTERRA and some regions
show even an increase (Figure 9e). On the other hand,
incoming short-wave radiation displays clearly smaller var-
iability in CTLCLM compared to CTLTERRA in most parts of
Europe (Figure 9f ). This suggests that a large fraction of the

Figure 9. (a, c, and e) Inter-annual summer variability in
downward long-wave radiation [W/m2] (sLWin) and (b, d,
and f) inter-annual summer variability in downward short-
wave radiation [W/m2] (sSWin) for CTLCLM (Figures 9a
and 9b), CTLTERRA (Figures 9c and 9d) and CTLCLM-
CTLTERRA (Figures 9e and 9f).
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reduced (and more realistic) summer temperature variability
in CTLCLM is due to a reduced incoming short-wave radia-
tion variability in the coupled model, and is thus due to
feedbacks between the more sophisticated LSM and the
atmospheric module.

4.2. Temperature Extremes

[32] To investigate temperature extremes in the control
runs we analyze several indices listed in Table 3. The patterns
of perc90 agree with those of summer mean temperature
(Figures 2a and 2e and Figures 10a and 10e). Compared to
E-OBS, CTLCLM has a smaller bias in perc90 than CTLTERRA,
which underestimates perc90 in the North and overestimates
it in the South (Figures 10b and 10f). The better representa-
tion of perc90 in CTLCLM is consistent with the more realistic
representation of climate variability as well as the improved
simulation of mean summer temperature in this model ver-
sion [Davin and Seneviratne, 2012].
[33] Heat wave duration indices show a less distinctive

pattern. There is no well-defined pattern in the differences
between the two model versions (Figures 10c, 10d, 10g, and
10h). CTLCLM rather underestimates the mean heat wave
duration compared to E-OBS (Figure 10d). CTLTERRA rather
overestimates the mean heat wave duration in Northern and
Western Europe, whereas it underestimates hwdimean in

Northern Italy, Southeast Spain and some other regions
(Figure 10h).
[34] Figure 11 displays the PDFs of Tmax for 4 different

regions (Iberian Peninsula (IP), France (FR), Mid Europe
(ME), and Eastern Europe (EA), as defined, e.g., in
Christensen and Christensen [2007] and shown in Figure 1)
for the different experiments compared to E-OBS. For all four
regions, the Tmax distribution in CTLCLM is more similar to
E-OBS than in CTLTERRA (the exact values of several statistics
are shown in auxiliary material Table S2). Sscore is a skill score
measuring the common area of two PDFs (section 2.4). It is
computed for the control runs compared to observations and
confirms that CTLCLM displays more realistic PDFs for
Tmax. In total, CTLCLM captures more than 80% of the
observed PDF in all regions except the Mediterranean (MD,
values for all PRUDENCE subdomains are shown in auxiliary
material Figure S1a). In contrast, in all regions, CTLTERRA
always captures less than 80% of the observed distributions
(Figure S1b). Thus, not only perc90 itself has a smaller bias
in CTLCLM , but also the whole PDF is more realistic with
the more sophisticated LSM.
[35] In line with previous studies [Zhang et al., 2009;

Jaeger and Seneviratne, 2011; Hirschi et al., 2011; Mueller
and Seneviratne, 2012] the extreme soil moisture experi-
ments show that the effect of soil moisture on Tmax is mostly

Figure 10. Maps of 90-percentile [K] (perc90) and mean heat wave duration index [days] (hwdimean) in
summer for (a and c) CTLCLM and (e and g) CTLTERRA and (b, d, f, and h) difference to E-OBS (2nd and
4th column).
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asymmetric (Figure 11). Except for IP, the change in PDF for
DRY is larger than for WET (Figures 11b–11d and 11f–11h).
The influence of dry soil moisture conditions on hot extremes
is, therefore, larger than the influence of wet anomalies. For
IP both effects are similar in magnitude (Figures 11a and
11e). This is also true for MD (not shown). Hence, in regions
which are rather soil moisture limited (IP, MD, Figure 2c),
the influence of wet and dry anomalies on hot extremes has a
similar magnitude. In regions where energy limitation is
predominant (FR,ME, EA), only dry anomalies influence hot
extremes in a noticeable way. The influence of soil moisture
on minimum daily temperatures is very small (not shown).

4.3. Quantile Regressions for Number of Hot Days
and Standard Precipitation Index

[36] To study soil moisture-temperature feedbacks during
climatic extremes, we study the relationship between the
number of hot days (nhd) and the standard precipitation
index (SPI, indicates wet or dry conditions). We use quantile
regressions to investigate this relationship (see section 2.4 for
details on the methodology). The advantage of this analysis is
that it uses only widely measured data, i.e. temperature and
precipitation. Hence, the influence of wet and dry conditions
on hot extremes in the models can be compared to observa-
tions [see also Hirschi et al., 2011].
[37] Figure 12 shows the regression slopes for nhd and SPI

for the two different control runs and the observations for the
90% quantile for the European domain. The lower quantiles
(not shown) show almost no relation between nhd and SPI,

whereas higher quantiles display mostly negative slopes.
Negative slopes mean a widening of the nhd distributions
with drier conditions. Hence, in regions with negative
slopes, hot days occur more often with drier conditions.
Regions with no or positive slopes do not show this behav-
ior. From the studies of Hirschi et al. [2011] and Mueller
and Seneviratne [2012], we expect negative slopes in
Southern Europe (transitional soil moisture regime) and no
or positive slopes in Central and Northern Europe (wet
regime). This is shown by both models as well as E-OBS.
Note that we use the 3-month SPI and not the 6-month SPI
as in Hirschi et al. [2011], because the results are more
pronounced for the 3-month SPI (not shown).
[38] The highest quantile (90%) is most important for cli-

mate extremes. CTLCLM displays negative slopes in Southern
Europe and positive slopes in some areas of Central, North-
ern and Eastern Europe (Figure 12a) for the 90% quantile.
This appears similar for CTLTERRA (Figure 12c), yet, the
absolute values of the slopes are higher in CTLTERRA

(Figure 12e). Negative slopes in E-OBS are often under-
estimated in CTLCLM (Figure 12b). The largest disagreement
between CTLCLM and E-OBS occurs in a region over France,
Switzerland, Austria and Northern Italy where slopes are
strongly negative in E-OBS (Figure 12f ) and only slightly
negative or even positive in CTLCLM (Figure 12a). This
region also shows too small negative slopes in CTLTERRA.
The too small negative slopes could be related to the under-
estimation of hwdimean in Northern Italy (Figures 10d and
10h). Besides, the region in the East where slopes are

Figure 11. Probability density functions for daily maximum summer temperature [K] in E-OBS, CTL,
DRY and WET runs. For COSMO-CLM2 (a–d) coupled to CLM3.5 and (e–h) coupled to TERRA_ML.
Sscore is the corresponding skill score (used in Perkins et al. [2007]; see section 2.4) for CTLCLM and
CTLTERRA compared to E-OBS.
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negative is too large in CTLTERRA (Figure 12d). The regions
where the two CTLs do not agree (Figure 12e) partially
overlap with regions where they show the largest difference
in Corr(T, LE) (Figure 2l). Furthermore, the difference pat-
terns in Figure 12e are also similar to the differences in sT2m,
sSH, and sLE (Figures 5e and Figures 6e and 6f). This
indicates a connection between the disagreement in land-
climate coupling and climate variability in CTLCLM and
CTLTERRA.

[39] Auxiliary material Figure S2 shows the significance
levels for the 90% quantile slopes for nhd in July and SPI in
June. In most cases, regions where the 90% slopes are sig-
nificant correspond to regions with negative slopes and
where soil moisture-temperature coupling is high (Figures 2d
and 2h). CTLTERRA shows the largest significant regions
(auxiliary material Figure S2).
[40] The regression slopes for several quantiles averaged

over regions such as IP, FR, ME, or EA show the widening
of the hot day distribution with decreasing SPI (not shown).
Altogether, models and observations agree well on the main
behavior. The direct comparison of the slopes at all quantiles
between models and observations (Figure 13) shows that
CTLCLM and CTLTERRA agree quite well with E-OBS in FR
(Figure 13b). CTLTERRA represents well the whole shape of
the curve and CTLCLM agrees very well with observations
for all quantiles except the 90th percentile for which it
underestimates the slope. Both model versions underesti-
mate the negative slope over IP (Figure 13a) and overesti-
mate it in ME (Figure 13c), whereas this overestimation is
larger in CTLTERRA. In EA (Figure 13d), CTLCLM agrees
well with E-OBS (except for the 90% quantile which is
again underestimated), whereas CTLTERRA overestimates the
negative slope (the same is true for the Alps, not shown).
In summary, CTLCLM agrees overall better with observa-
tions than CTLTERRA, but nonetheless underestimates the
slope of the highest quantiles. Generally, CTLTERRA over-
estimates the effect of dry conditions on temperature extremes.
In regions where this relationship should be most pronounced
(IP, MD), both models underestimate the effect of dry condi-
tions on hot extremes.

5. Discussion and Conclusions

[41] This study evaluates the performance of the COSMO-
CLM2 RCM using two alternative LSMs with respect to
land-climate coupling, climate variability, and extremes. A
state-of-the-art 3rd-generation LSM (CLM3.5) is compared
to a simpler 2nd-generation model (TERRA_ML).
[42] When TERRA_ML is used a very pronounced over-

estimation of inter-annual summer temperature variability is
found. This feature is a common problem in most current
RCMs [e.g., Lenderink et al., 2007]. When using the more
sophisticated LSM, this issue is substantially alleviated as
inter-annual variability is decreased. We also found that the
distribution of daily maximum temperature is better captured
in CTLCLM. The pattern of the 90%-percentile over Europe
is improved, as well as the whole probability density func-
tions for maximum daily temperatures over various regions
(improvement from 56–79% to 70–84% agreement to
observations). Even though the PDFs of Tmax are better
captured in CTLCLM, the persistence of heat waves is rather
underestimated in CTLCLM. The relationship between the
number of hot days (nhd) and the standard precipitation
index (SPI) is overall well captured in both model versions.
Nonetheless, it is underestimated in Southern Europe and
overestimated in Mid Europe. In the transitional zone from
strong to weak land-climate coupling, CTLTERRA also over-
estimates this relationship. This is an indicator for the better
(spatial) representation of land-climate coupling in CTLCLM.
[43] Based on extreme soil moisture experiments, we also

confirm the asymmetric effect of soil moisture on maximum

Figure 12. The 90% quantile regression slopes for (a and b)
CTLCLM and (c and d) CTLTERRA. Figures 12a and 12c show
absolute values and Figures 12b and 12d show the differ-
ences to E-OBS. Also shown is (e) the difference between
CTLCLM and CTLTERRA and (f) absolute values for E-OBS.
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daily temperatures reported by e.g. Zhang et al. [2009],
Jaeger and Seneviratne [2011], Hirschi et al. [2011], and
Mueller and Seneviratne [2012]. The overall smaller climate
variability in CTLCLM is also associated with decreased
sensitivity to extreme soil moisture changes.
[44] The decreased temperature variability when using

CLM3.5 can be explained by a larger ground heat flux and a
smaller variability in soil moisture and incoming short-wave
radiation. It is difficult to affirm if the larger ground heat flux
in CLM3.5 is realistic, since not many observations are
available to evaluate this flux. Generally, the ground heat
flux is relatively small, about 10% of net radiation during
daytime and over vegetated areas. During nighttime and over
sparsely and non-vegetated areas it becomes more important
[Ronda and Bosveld, 2009]. The models simulate a mean
summer net radiation in Europe between 70–150W/m2, thus,
a first estimate of the ground heat flux is about 7–15 W/m2.
Tsuang [2005] estimates the ground heat flux to be between
6–12 W/m2 for summer between 30�N–60�N. Results from
TERRA_ML are smaller (3–9 W/m2, see Figure 8c) and the
ground heat flux in CLM3.5 is rather higher (9–18W/m2, see
Figure 8a). Nevertheless, the values simulated by CLM3.5

seem to be in a realistic range and the larger ground heat flux
in CLM3.5 appears thus reasonable.
[45] The decrease in incoming short-wave radiation vari-

ability is another reason for the smaller temperature variability
in CTLCLM. Davin et al. [2011] and Davin and Seneviratne
[2012] have shown that biases in net short-wave radiation,
net long-wave and net radiation are smaller when using
CLM3.5 compared to TERRA_ML, suggesting a better rep-
resentation of radiative fluxes in general. The reduced bias in
net short-wave radiation is caused by a better representation of
cloud cover, which is itself the result of a better partitioning of
the surface fluxes [Davin et al., 2011]. Figure 3 of the present
study confirms the better partitioning of latent and sensible
heat fluxes.
[46] We also found that soil moisture variability is lower

in CLM3.5 resulting in a decrease in the variability of the
surface fluxes as well as temperature. We note that Oleson
et al. [2008] state that soil moisture variability in CLM3.5
is rather underestimated. Therefore, some of the decrease in
temperature variability may occur for the wrong reason. One
of the main differences between CLM3.5 and TERRA_ML
is that in CLM3.5 the lowest soil level is coupled to a simple

Figure 13. Slopes for all quantiles for domains (a) Iberian Peninsula, (b) France, (c) Mid Europe, and
(d) Eastern Europe for E-OBS, CTLCLM, and CTLTERRA.
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prognostic groundwater model [Niu et al., 2007]. Compen-
sating effects from the groundwater model could be a reason
for the low soil water variability in CTLCLM.
[47] Lorenz et al. [2010] have shown that the persistence

of heat waves is influenced by soil moisture variability.
Thus, the low soil moisture variability in CLM3.5 could be
the reason for the underestimation of heat wave persistence
in CTLCLM. In some regions CTLCLM also underestimates
the relationship between SPI and nhd for the highest quan-
tile, so, land-climate coupling may be at the lower end in this
model version. This, in turn, could be linked to the under-
estimation of heat wave persistence in CTLCLM.
[48] In conclusion, COSMO-CLM2 coupled to the

Community Land Model provides a good tool for regional
scale investigations of land-climate coupling, despite a pos-
sible underestimation of soil moisture variability. Overall, the
model coupled to CLM3.5 is found to have a more realistic
coupling between the land and the atmosphere compared to
that coupled to TERRA_ML, which also results in a better
representation of climate variability in Europe. Soil moisture
experiments in combination with vegetation experiments can
be used in the future to investigate soil moisture- versus
vegetation-climate feedbacks in COSMO-CLM2 given the
detailed representation of vegetation processes in the
CLM3.5 land surface model and its overall good perfor-
mance in coupled mode.
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