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Alternative momentum concept for a quantum mechanical particle in a box
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For a particle in a box, the operator p̂ = −i∂x is not self-adjoint. We provide an alternative construction of a
momentum operator p̂R + i p̂I , which has two self-adjoint components p̂R and p̂I . This leads to a description of
momentum measurements performed on a particle that is strictly limited to the interior of a box of size L, which
yields quantized momentum values πn/L with n ∈ Z.
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I. INTRODUCTION

Momentum is one of the most important physical observ-
ables. It generates translations in space and is thus conserved
when the Hamiltonian is translation invariant. Many important
quantum systems, including ultra-cold atoms in an optical
box trap [1], quantum dots [2], and quantum billiards [3,4],
phenomenological bag models for confined quarks and glu-
ons [5–7], or regions of extra-dimensional space for domain
wall fermions [8,9], are naturally modeled by impenetrable
spatial boundaries which explicitly violate translation invari-
ance. While this idealization allows the exclusion of irrelevant
spatial regions with large potential energy, it is conceivable
that extra-dimensional space literally ends at a boundary [10].
In all these cases, the standard quantum mechanical momen-
tum does not represent a physical observable because the
corresponding operator is not self-adjoint. In this letter, we
develop an alternative concept for the quantum mechanical
momentum which is applicable to a particle that is strictly
confined inside a finite interval (see, also, Ref. [11]). The
alternative concept naturally extends to higher-dimensional
spaces with boundaries as well. As we will see, in contrast to
the standard momentum, the alternative momentum concept
leads to a discrete spectrum of allowed momenta in a finite
volume.

In quantum mechanics physical observables are described
by self-adjoint operators. The subtle differences between Her-
miticity and self-adjointness, which arise because the Hilbert
space is infinite-dimensional, were first understood by von
Neumann [12]. In particular, in addition to Hermiticity, self-
adjointness of an operator Â requires that its domain D(Â)
coincides with the domain D(Â†) of its adjoint Â† [13–15].
The domain of a differential operator is characterized by
square-integrability conditions on derivatives of the wave
functions. For a particle in a finite volume, boundary con-
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ditions (characterized by self-adjoint extension parameters)
further restrict the domain [16–18]. Only self-adjointness
(and not Hermiticity alone) guarantees a real-valued spec-
trum of eigenvalues and an orthonormal set of corresponding
eigenfunctions. This is crucial for the correct description
of measurements that return the eigenvalues of the corre-
sponding operator. It is well-known that, for a particle in
a one-dimensional box, the operator p̂ = −i∂x is not self-
adjoint [19]. In this “simple” quantum mechanical problem
[20–22], momentum measurements are thus nontrivial [23].

II. STANDARD MOMENTUM MEASUREMENTS
FOR A PARTICLE IN A BOX

Let us first consider the standard momentum operator p̂ =
−i∂x (in units where h̄ = 1) for a quantum mechanical particle
moving along the real axis, which acts in the Hilbert space
L2(R) of square-integrable functions over the entire real axis
R. The operator p̂ can act only on those wave functions �(x)
that are differentiable at least once. In addition, the resulting
wave function −i∂x�(x) should also be square integrable,
such that p̂ maps �(x) back into the Hilbert space L2(R).
These restrictions define the domain D( p̂) ⊂ L2(R) in which
p̂ acts. By definition, the Hermitean conjugate p̂† acts as
〈p̂†χ |�〉 = 〈χ | p̂�〉. By partial integration one readily shows
that p̂ is Hermitean (or symmetric in mathematical parlance),
i.e., p̂†� = p̂� for � ∈ D(p). In addition, the two domains
coincide, D( p̂†) = D( p̂), such that p̂ is indeed self-adjoint.
The eigenstates of the momentum operator are plane waves
〈x|k〉 = exp(ikx) with a continuous momentum value k ∈ R.
Since they are not square-integrable, the momentum eigen-
states do not belong to the Hilbert space, but are normalized
to δ-functions, 〈k|k′〉 = 2πδ(k − k′).

When we restrict ourselves to the finite interval [− L
2 , L

2 ],
the operator p̂ = −i∂x is not self-adjoint, unless one imposes
periodic boundary conditions on the probability density. This
is unphysical in the present context, because we are interested
in an interval with physically distinct endpoints. By partial
integration one obtains

〈p̂†χ |�〉 = 〈χ | p̂�〉 = 〈p̂χ |�〉 − i[χ (x)∗�(x)]L/2
−L/2. (1)
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Hermiticity requires χ (± L
2 )∗�(± L

2 ) = 0. This can be
achieved by restricting the domain D( p̂) to those wave func-
tions that obey �(± L

2 ) = 0 and whose derivative is square
integrable at least once. Then χ (± L

2 ) can still take arbitrary
values. As a result, the domain of the adjoint operator p̂†

(which acts on χ ) is not further restricted by a boundary
condition, such that D( p̂†) ⊃ D( p̂). Since D( p̂†) 	= D( p̂), al-
though p̂ is Hermitean, it is not self-adjoint in the Hilbert
space L2([− L

2 , L
2 ]), and hence it does not represent the physi-

cal momentum of a particle that is strictly confined inside the
box.

Let us consider a particle of mass m that is limited to
the finite interval [− L

2 , L
2 ] and subject to a regular potential

V (x). The wave function then must obey appropriate boundary
conditions, which are characterized by self-adjoint extension
parameters of the Hamiltonian Ĥ = − 1

2m ∂2
x + V (x). Perform-

ing two partial integrations one obtains

〈Ĥ†χ |�〉 = 〈χ |Ĥ�〉 = 〈Ĥχ |�〉 + 1

2m
[∂xχ (x)∗�(x)

−χ (x)∗∂x�(x)]L/2
−L/2. (2)

We choose the domain D(Ĥ ) that contains those wave func-
tions whose second derivative is square integrable and that
obey the Robin boundary conditions

γ+�

(
L

2

)
+ ∂x�

(
L

2

)
= 0, γ−�

(
−L

2

)
− ∂x�

(
−L

2

)
= 0.

(3)

Inserting these relations into the square bracket in Eq. (2), the
Hermiticity condition takes the form[

∂xχ

(
L

2

)∗
+ γ+χ

(
L

2

)∗]
�

(
L

2

)
−

[
∂xχ

(
−L

2

)∗
− γ−χ

(
−L

2

)∗]
�

(
−L

2

)
= 0. (4)

Since �(± L
2 ) can take arbitrary values, this implies

γ ∗
+χ

(
L

2

)
+ ∂xχ

(
L

2

)
= 0, γ ∗

−χ

(
−L

2

)
− ∂xχ

(
−L

2

)
= 0,

(5)

which characterizes the domain D(Ĥ†) of Ĥ† (that acts on
χ ). The two domains coincide, D(Ĥ†) = D(Ĥ ), only if γ ∗

± =
γ± ∈ R. This defines a two-parameter family of self-adjoint
extensions of Ĥ . The boundary conditions of Eq. (3) guarantee
that the probability current

j(x) = 1

2mi
[�(x)∗∂x�(x) − ∂x�(x)∗�(x)], (6)

does not leak outside the box, i.e., j(± L
2 ) = 0. Not sur-

prisingly, self-adjointness ensures probability conservation.
We conclude that self-adjointness does not require the wave
function to vanish at the boundary. Dirichlet boundary condi-
tions, �(± L

2 ) = 0, correspond to γ± → ∞, while Neumann
boundary conditions, ∂x�(± L

2 ) = 0, result from γ± = 0. As
we will see, the self-adjoint extension parameters γ± can be
interpreted as the strengths of δ-function potentials at the two
boundaries.

In the absence of a potential (V (x) = 0) it is easy to derive
the energy spectrum, Ĥψl (x) = Elψl (x), l ∈ N. The states
with El > 0 are given by ψl (x) = A exp(ikx) + B exp(−ikx),
with the energy quantization condition

exp(2ikL) = (γ+ − ik)(γ− − ik)

(γ+ + ik)(γ− + ik)
, El = k2

2m
. (7)

For negative values of γ± there are, in addition, negative
energy states localized on the boundaries [18]. With general
Robin boundary conditions, parity symmetry requires γ− =
γ+ in addition to V (−x) = V (x).

Since the operator p̂ is not self-adjoint in L2([− L
2 , L

2 ]),
one way to proceed is to enlarge the Hilbert space to L2(R)
and to still use the standard momentum operator [24]. For
this purpose, one regularizes the problem in the infrared by
turning the infinite square-well potential into a finite one, with
V (x) = V0 for |x| > L

2 , and finally taking the limit V0 → ∞
[23]. When applied to a particle in a box, a measurement of
the standard momentum operator projects its wave function
on a momentum eigenstate 〈x|k〉 = exp(ikx) and thus ejects
the particle outside of the box. In the limit V0 → ∞ one has
〈k|V |k〉 → ∞, i.e., the idealized projective momentum mea-
surement transfers an infinite amount of energy to the particle.
This is even the case for an idealized measurement with fi-
nite resolution. Obviously, actual experimental measurements
consume only a finite amount of energy and are thus not com-
pletely adequately described by their idealized counterpart.
The Fourier transform �̃(k) = ∫ L/2

−L/2 dx �(x) exp(−ikx) of

the wave function yields the probability density 1
2π

|�̃(k)|2 for
measuring the standard unquantized momentum value k ∈ R.

III. A SELF-ADJOINT MOMENTUM OPERATOR
FOR THE INTERVAL

We will now develop an alternative concept for the mo-
mentum of a particle in a box, which limits itself strictly to the
interior of the box, even after a momentum measurement. The
question is not whether the alternative or the standard concept
is the correct one, but rather which concept is appropriate in
a particular physical situation. If a concrete momentum mea-
surement ejects the particle outside of the box and yields an
unquantized momentum value, the standard concept applies.
If, on the other hand, the measured momentum is quantized
and the particle remains inside the box after the measurement,
the alternative concept is appropriate.

In contrast to the standard approach, we now regularize the
problem in the ultraviolet by introducing a lattice with spacing
a, and we finally send a → 0. This will naturally lead to the
doubled Hilbert space L2([− L

2 , L
2 ]) × C2 as the key to the

solution of this long-standing problem. The subtleties asso-
ciated with Hermiticity versus self-adjointness arise because
the Hilbert space is infinite-dimensional. In order to gain a
better understanding of the problem, we discretize it onto a
finite lattice of N points, such that the Hilbert space becomes
N-dimensional [25–28]. As illustrated in Fig. 1, we divide
the interval [− L

2 , L
2 ] into N = L/a segments of size a, and

introduce a lattice point in the middle of each segment, such
that x = na, n ∈ {−N−1

2 ,−N−3
2 , . . . , N−3

2 , N−1
2 }. We choose

N to be odd, such that n ∈ Z. The kinetic energy is then

L042008-2
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FIG. 1. Lattice with N = 9 points in the interval [− L
2 , L

2 ].

given by a discretized second derivative, such that the N × N
Hermitean matrix Ĥ takes the form

Ĥ = − 1

2ma2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 . . . 0 0 0
1 −2 1 . . . 0 0 0
0 1 −2 . . . 0 0 0
. . . . . . . . .

. . . . . . . . .

0 0 0 . . . −2 1 0
0 0 0 . . . 1 −2 1
0 0 0 . . . 0 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ diag

(
V−(L−a)/2 + γ−

2ma
,V−(L−3a)/2,V−(L−5a)/2,

. . . ,V(L−5a)/2,V(L−3a)/2,V(L−a)/2 + γ+
2ma

)
. (8)

On the lattice, the self-adjoint extension parameters γ± are
directly incorporated into the Hamiltonian as additional terms
on the diagonal, which are equivalent to δ-function poten-
tials at the boundary in the continuum limit a → 0. In the
absence of a potential (Vx = 0) it is straightforward to solve
the Schrödinger equation Ĥψl,x = Elψl,x by the same ansatz
as in the continuum, ψl,x = A exp(ikx) + B exp(−ikx). The

quantization condition for El = 1
2m ( 2

a sin ka
2 )

2
takes the form

exp(2ik(L − a)) = γ+ + 1
a [1 − exp(ika)] − 2mEl a

γ+ + 1
a [1 − exp(−ika)] − 2mEl a

× γ− + 1
a [1 − exp(ika)] − 2mEl a

γ− + 1
a [1 − exp(−ika)] − 2mEl a

.

(9)

Indeed, this reduces to Eq. (7) in the continuum limit. Similar
expressions exist for negative values of γ±.

On the lattice the momentum operator should be repre-
sented by a discretized first derivative. It is necessary to
distinguish forward and backward derivatives [29–31]

p̂F = − i

a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0
0 0 −1 . . . 0 0 0
. . . . . . . . .

. . . . . . . . .

0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1
0 0 0 . . . 0 0 λ+

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

p̂B = − i

a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ− 0 0 . . . 0 0 0
−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0
. . . . . . . . .

. . . . . . . . .

0 0 0 . . . 1 0 0
0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (10)

Just as γ±, the parameters λ± ∈ iR will turn into two self-
adjoint extension parameters in the continuum limit. Since
neither p̂F nor p̂B is Hermitean, we construct the Hermitean
and anti-Hermitean combinations

p̂R = 1

4
( p̂F + p̂†

F + p̂B + p̂†
B)

= − i

2a

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ− 1 0 . . . 0 0 0
−1 0 1 . . . 0 0 0
0 −1 0 . . . 0 0 0
. . . . . . . . .

. . . . . . . . .

0 0 0 . . . 0 1 0
0 0 0 . . . −1 0 1
0 0 0 . . . 0 −1 λ+

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

i p̂I = 1

4
( p̂F − p̂†

F + p̂B − p̂†
B)

= i

2a
diag(1, 0, 0, . . . , 0, 0,−1) . (11)

The total momentum operator 1
2 ( p̂F + p̂B) = p̂R + i p̂I is not

Hermitean, but has a Hermitean component p̂R and an anti-
Hermitean component p̂I , which is diagonal in the position
basis. In the continuum limit, it reduces to δ-functions at
the boundary [32,33]. The Hermitean component p̂R results
from a symmetrized forward-backward next-to-nearest neigh-
bor derivative, which extends over two lattice spacings.

A characteristic feature of momentum is that it changes
sign under parity. Hence, the operator p̂R + i p̂I should anti-
commute with the unitary transformation UP, with UP�x =
�−x, that represents parity in Hilbert space. For λ+ = λ− one
indeed obtains UP p̂FU †

P = −p̂B, UP p̂BU †
P = −p̂F , UP p̂RU †

P =
−p̂R, UP p̂IU

†
P = −p̂I . It is straightforward to solve the

eigenvalue problem p̂Rφk,x = 1
a sin(ka)φk,x = k̂φk,x. The cor-

responding eigenstates φk,x (with x = na) take the form

φk,x = A exp(ikx) + B exp(−ikx), for n even,

φk,x = A exp(ikx) − B exp(−ikx), for n odd, (12)

and the momentum quantization condition is given by

exp(2ikL) = (1 + λ+ exp(ika))(1 − λ− exp(ika))

(exp(ika) − λ+)(exp(ika) + λ−)
. (13)

For λ+ = λ− = ±i this implies

k = πn

L
, n ∈

{
−N − 1

2
,−N − 3

2
, . . . ,

N − 3

2
,

N − 1

2

}
.

(14)

It is important to point out that the eigenvalues k̂ = 1
a sin(ka)

are in one-to-one correspondence with the values of k from
Eq. (14), and are hence not degenerate.

L042008-3
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At this stage, we have reached a completely satisfactory
description of the momentum operator in the N-dimensional
Hilbert space of the N-point lattice. However, it is not en-
tirely trivial to obtain an equivalent continuum description
that agrees with the lattice results in the limit a → 0. In this
context, it is important to note that the eigenfunctions φk,x of
Eq. (12) depend explicitly on whether the lattice point x = na
has an even or odd value of n. In fact, this is the crucial insight
that leads to the appropriate mathematical description also
directly in the continuum. In order to describe the operator
p̂R in the continuum, it is necessary to maintain the concept of
even and odd degrees of freedom. Obviously, the points x ∈ R
cannot be divided into an even and an odd subset. However,
it is natural to introduce a two-component wave function on
which pR acts as a 2 × 2 matrix

p̂R = −i

(
0 ∂x

∂x 0

)
= −iσ1∂x, �(x) =

(
�e(x)
�o(x)

)
. (15)

This includes additional ultraviolet degrees of freedom which
are necessary for the self-adjointness of the momentum op-
erator, but not of the Hamiltonian. By partial integration we
obtain

〈p̂†
Rχ |�〉 = 〈χ | p̂R�〉

= 〈p̂Rχ |�〉 − i[χe(x)∗�o(x) + χo(x)∗�e(x)]L/2
−L/2.

(16)

We now impose the boundary conditions

�o

(
L

2

)
= λ+�e

(
L

2

)
, �o

(
−L

2

)
= λ−�e

(
−L

2

)
, (17)

which define the domain D( p̂R). Inserting these relations in
the square bracket in Eq. (16), the Hermiticity condition takes
the form[

χe

(
L

2

)∗
λ+ + χo

(
L

2

)∗]
�e

(
L

2

)
−

[
χe

(
−L

2

)∗
λ− + χo

(
−L

2

)∗]
�e

(
−L

2

)
= 0. (18)

Since �e(± L
2 ) can take arbitrary values, this implies

χo

(
L

2

)
= −λ∗

+χe

(
L

2

)
, χo

(
−L

2

)
= −λ∗

−χe

(
−L

2

)
.

(19)

Self-adjointness of p̂R requires D( p̂†
R) = D( p̂R), which im-

plies λ± = −λ∗
± such that λ± ∈ iR. Hence, there is a

two-parameter family of self-adjoint extensions, characterized
by the purely imaginary parameters λ+ and λ−. Parity sym-
metry maps the two boundaries onto each other and implies
λ+ = λ−.

Let us now consider the eigenvalue problem of the self-
adjoint operator p̂R. In analogy to Eq. (12) on the lattice, we
make the ansatz

φk (x) =
(

A exp(ikx) + B exp(−ikx)
A exp(ikx) − B exp(−ikx)

)
. (20)

Imposing the boundary conditions implies(
(1 − λ+) exp(ikL) −(1 + λ+)

(1 − λ−) exp(−ikL) −(1 + λ−)

)(
A
B

)
= 0. (21)

A nontrivial solution arises only when the determinant of the
matrix vanishes

exp(2ikL) = (1 + λ+)(1 − λ−)

(1 − λ+)(1 + λ−)
. (22)

This agrees with the lattice momentum quantization condi-
tion of Eq. (13) in the continuum limit a → 0. Hence, the
two-component formulation of Eq. (15) indeed provides the
correct continuum description of the momentum operator p̂R

that was constructed on the lattice in Eq. (11).

IV. EMBEDDING THE HAMILTONIAN

Next we consider the Hamiltonian

Ĥ (μ) =
(

− 1
2m ∂2

x + V (x) 0

0 − 1
2m ∂2

x + V (x)

)
+ μP̂−. (23)

Here P̂− is a projection operator on states �−(x) with
�−

o (x) = −�−
e (x). On the lattice, such states have energies at

the cutoff scale 1/a. For μ → ∞ the corresponding ultraviolet
degrees of freedom are removed from the energy spectrum of
the continuum theory as well. The operator P̂+ projects on the
remaining finite-energy states �+(x) with �+

o (x) = �+
e (x),

i.e.,

P̂± = 1

2

(
1 ±1

±1 1

)
, P̂2

± = P̂±, P̂+P̂− = P̂−P̂+ = 0,

P̂+ + P̂− = 1, �±(x) = P±�(x). (24)

Next we introduce the boundary conditions(
�o

( ± L
2

)
∂x�o

( ± L
2

)) = eiθ±

(
a± ±b±

±c± d±

)(
�e

( ± L
2

)
∂x�e

( ± L
2

)). (25)

Again demanding that j(± L
2 ) = 0, it is easy to derive the

conditions a±, b±, c±, d± ∈ R and a±d± − b±c± = −1. To-
gether with θ±, this defines a family of self-adjoint extensions
with eight independent parameters [34]. However, we are not
interested in the most general Hamiltonian in this class. We
just need to find an appropriate continuum formulation for the
original Hamiltonian in the Hilbert space of two-component
wave functions, which is essential for describing the mo-
mentum operator p̂R. Since the boundary conditions should
support the finite-energy states with �+

o (x) = �+
e (x), this

implies

eiθ± = 1, a± = 1, b± = 0, d± = −1. (26)

Using the parameters of Eq. (26), Eq. (25) reduces to

−c±
2

�+
(

±L

2

)
± ∂x�

+
(

±L

2

)
= 0, �−

(
±L

2

)
= 0.

(27)

When we identify �+(x) with the wave functions in the orig-
inal Hilbert space and set γ± = −c±/2, this is equivalent to
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the Robin boundary conditions of Eq. (3). Interestingly, the
wave functions �−(x) obey Dirichlet boundary conditions. It
is important to note that the Hamiltonian Ĥ (μ) and the mo-
mentum operator p̂R are not defined in the same domains, i.e.,
D(Ĥ (μ)) 	= D( p̂R). Since λ± ∈ iR, Eq. (17) is indeed incom-
patible with the boundary conditions associated with Eq. (26).
This implies that an energy eigenstate is a superposition of in-
finitely many momentum eigenstates. Furthermore, although
at the formal level of differential expressions the kinetic en-
ergy T̂ = − 1

2m ∂2
x and the momentum p̂R = −iσ1∂x seem to

commute, in fact [T̂ , p̂R] 	= 0 due to domain incompatibilities
[11]. An exception are Dirichlet boundary conditions, −c± →
∞, since for them �e(± L

2 ) = �o(± L
2 ) = 0.

V. ALTERNATIVE MOMENTUM MEASUREMENTS
FOR A PARTICLE IN A BOX

Let us apply the alternative concept to the question of mo-
mentum measurements for a particle that is confined inside a
box. We assume parity symmetry such that λ+ = λ− = λ. The
corresponding momentum eigenvalues and eigenfunctions are

p̂Rφk (x) = kφk (x), k = πn

L
, n ∈ Z, σ = 1 − λ

1 + λ
∈ U (1),

φk (x) = 1

2
√

L

(
exp(ikx) + σ exp(−ikx)
exp(ikx) − σ exp(−ikx)

)
, n even,

φk (x) = 1

2
√

L

(
exp(ikx) − σ exp(−ikx)
exp(ikx) + σ exp(−ikx)

)
, n odd. (28)

After a momentum measurement, the particle is in an eigen-
state φk (x), with both a φ+

k (x) and φ−
k (x) component. The

energy of the φ−
k (x) component diverges for μ → ∞. This

implies that a momentum measurement transfers an infinite
amount of energy to the particle. The same happens in a
standard momentum measurement on a particle that moves
along the entire real axis in a potential that diverges at infinity,
V (±∞) → ∞.

Independent of λ, when projected onto the finite-energy
sector, the momentum eigenstates are just φ+

k,e(x) = φ+
k,o(x) =

1
2
√

L
exp(ikx). The amplitude to measure the discrete value

k = πn/L of the alternative momentum in a general low-

energy state 1√
2
(�(x)
�(x)

) is

1√
2L

∫ L/2

−L/2
dx �(x) exp(−ikx) = 1√

2L
�̃(k). (29)

This is exactly
√

π/L times the probability amplitude
1√
2π

�̃(k) to measure the standard unquantized momentum
k ∈ R. Hence the results of both types of momentum mea-
surements are closely related (cf. Fig. 2), despite the fact that
the states after the measurement are radically different. In
particular, a standard momentum measurement ejects the par-
ticle from the box, while the alternative measurement leaves
it inside.

Putting V (x) = 0, we finally consider the standard text-
book case with Dirichlet boundary conditions, �(± L

2 ) = 0,

FIG. 2. Probability to measure the quantized momentum k =
πn/L in the energy eigenstate ψl (x) with l = 7, as a function of n,
compared to π/L times the probability density 1

2π
|ψ̃l (k)|2 to measure

the unquantized standard momentum k ∈ R.

which correspond to γ+ = γ− → ∞, and

Ĥ (μ)ψl (x) = Elψl (x), El = π2l2

2mL2
, l ∈ N>0

ψl (x) = 1√
L

(
cos(π lx/L)
cos(π lx/L)

)
, l odd,

ψl (x) = 1√
L

(
sin(π lx/L)
sin(π lx/L)

)
, l even. (30)

In this case, one obtains 〈ψl | p̂R|ψl〉 = 〈ψl | p̂I |ψl〉 = 0. As
illustrated in Fig. 2, when one measures the momentum p̂R in
an energy eigenstate ψl (x), one obtains k = ±π l/L each with
probability 1/4. The probability to measure k = πn/L for
n 	= ±l is |〈φk|ψl〉|2 = 4l2/(π (l2 − n2))2 if (−1)n = −(−1)l

and zero otherwise.

VI. CONCLUSIONS

Complementary to the operator p̂ = −i∂x that acts in
L2(R), the alternative concept for the momentum p̂R + i p̂I

of a particle that is strictly confined inside a box, operates
in the doubled Hilbert space L2([− L

2 , L
2 ]) × C2. Both ide-

alized momentum measurements transfer an infinite energy
to the particle, the former in the infrared and the latter in
the ultraviolet. The two alternative momentum concepts are
both mathematically well founded because they are associ-
ated with self-adjoint operators acting in two different Hilbert
spaces. The physical conditions of a particular experimental
momentum measurement must decide which concept of an
idealized projective momentum measurement is appropriate.
For example, if one switches off an optical box potential
that confined an ultracold atomic gas before a momentum
measurement is performed, all of space becomes available to
the atoms after the measurement, and the standard momentum
concept with unquantized momentum values applies. If, on
the other hand, the confining potential is maintained during
a momentum measurement, momentum is quantized and the
alternative concept applies.

It is easy to generalize p̂R to higher dimensions ̂pR =
−iσ1 ∇, �o(x) = λ(x)�e(x), λ(x) ∈ iR, x ∈ ∂,  ∈ Rd . The
alternative momentum concept enables canonical quantization
in a bounded region of space [11], it provides a physical

L042008-5
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interpretation for the uncertainty relation [35–39] in a finite
volume [18], and, in contrast to the standard momentum
[40,41], it satisfies the Ehrenfest theorem [42] in a box [43].
Indeed, the alternative momentum concept has far-reaching
consequences and promising applications in different areas of
physics.
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