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Abstract: Plasma concentrations of natriuretic peptides (NP) contribute to risk stratification and man-
agement of patients undergoing non-cardiac surgery. However, genetically determined variability in
the levels of these biomarkers has been described previously. In the perioperative setting, genetic
contribution to NP plasma level variability has not yet been determined. A cohort of 427 patients
presenting for non-cardiac surgery was genotyped for single-nucleotide polymorphisms (SNPs) from
the NPPA/NPPB locus. Haplotype population frequencies were estimated and adjusted haplotype
trait associations for brain natriuretic peptide (BNP) and amino-terminal pro natriuretic peptide
(NT-proBNP) were calculated. Five SNPs were included in the analysis. Compared to the reference
haplotype TATAT (rs198358, rs5068, rs632793, rs198389, rs6676300), haplotype CACGC, with an
estimated frequency of 4%, showed elevated BNP and NT-proBNP plasma concentrations by 44%
and 94%, respectively. Haplotype CGCGC, with an estimated frequency of 9%, lowered NT-proBNP
concentrations by 28%. ASA classification status III and IV, as well as coronary artery disease, were the
strongest predictors of increased NP plasma levels. Inclusion of genetic information might improve
perioperative risk stratification of patients based on adjusted thresholds of NP plasma levels.

Keywords: natriuretic peptide; haplotypes; cardiac risk; perioperative

1. Introduction

Standardization of care and cardiovascular risk stratification have been widely imple-
mented to improve the perioperative safety of patients [1]. The natriuretic peptides (NP),
especially brain natriuretic peptide (BNP) and N-terminal prohormone of brain natriuretic
peptide (NT-proBNP), are established biomarkers for cardiac derangement, with numerous
studies demonstrating the prognostic and diagnostic value of NP [2,3] and meta-analyses
confirming the validity of NPs as biomarkers for perioperative risk stratification [2,4–10].
Some international guidelines recommend NP testing in the perioperative setting [1,11],
and the Canadian Cardiovascular Society guidelines on perioperative cardiac risk assess-
ment give clear-cut thresholds of NP plasma levels in patients at moderate to high risk of
perioperative cardiovascular complications [11]. In a large international multi-center cohort
enrolling 10,402 patients, preoperative NT-proBNP was strongly associated with vascular
death and myocardial injury within 30 days after non-cardiac surgery [12]. However,
significant individual variability in NP concentrations has been described [13]. The natri-
uretic peptide precursor B (NPPB) gene encodes BNP, and the adjacent natriuretic peptide
precursor A (NPPA) gene influences plasma concentrations. Studying a Japanese cohort,
Takeishi et al. identified two haplotypes in the NPPA/NPPB locus correlating with BNP

Cells 2022, 11, 766. https://doi.org/10.3390/cells11050766 https://www.mdpi.com/journal/cells

https://doi.org/10.3390/cells11050766
https://doi.org/10.3390/cells11050766
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cells
https://www.mdpi.com
https://orcid.org/0000-0001-8385-2249
https://orcid.org/0000-0002-9049-2584
https://orcid.org/0000-0001-6381-5782
https://doi.org/10.3390/cells11050766
https://www.mdpi.com/journal/cells
https://www.mdpi.com/article/10.3390/cells11050766?type=check_update&version=3


Cells 2022, 11, 766 2 of 12

plasma levels (TTGCAT and CCATGC for SNPs rs6676300, rs198389, rs198388, rs6668352,
rs198375, and rs632793) [14]. Furthermore, several single-nucleotide polymorphisms (SNP)
in this locus have been shown to be associated with NP plasma levels [15–18]. However,
the relevance of these genetic variants and their influence on NP plasma concentration
for preoperative risk stratification is unknown. NPPA/NPPB haplotype composition and
potential correlation with NP plasma levels has not been studied in a preoperative surgical
cohort that might differ from a random sample of the general population by underlying
factors associated with the genetic background on the one hand, and the need for surgery
on the other. In order to investigate the impact of genetic variation on the predictive value
of NPs, we hypothesized that common haplotypes in the NPPA/NPPB locus influence NP
plasma levels in a cohort of patients scheduled for non-cardiac surgery.

2. Materials and Methods
2.1. Study Design and Patients

We conducted a genetic association study to investigate the association between
NPPA/NPPB haplotypes and NP plasma concentrations. The Cantonal Ethics Committee
(Kantonale Ethikkommission Bern, Switzerland, Chairperson Prof C. Seiler; KEK 041/09)
provided ethics approval for this prospective single-center study. The research protocol
is registered at ClinicalTrials.gov (identifier NCT04327258). Patients undergoing elective
non-cardiac surgery at the Bern University Hospital in Switzerland over a 22 months‘period
were screened for eligibility and enrolled in the study after giving written informed consent.
The study was designed as a two-group comparison enrolling a cohort of younger and
healthy patients (age 39–50 years, ASA (American Society of Anesthesiology) physical
status classification [19] I and II), and an older cohort eventually carrying cardiac risk factors
(age 50 years and older, ASA III or IV). To assure the power of the analysis allowing for
reliable haplotype determination, the analysis combined the cohorts for a fully likelihood-
based approach, by which simultaneous estimation of haplotype frequency and haplotype-
trait associations was possible [20,21].

Exclusion criteria included cardiac surgery, language barriers, cognitive impairment,
substance use disorder, and psychiatric disease. Reasons for exclusion from the analysis
were missing NT-proBNP measurements and genotype information for any SNPs under
investigation. Participants with missing data other than NP concentrations and genotype
were not excluded listwise but for analyses involving the respective variable.

Patient characteristics (sex, age, weight), medical history (coronary artery disease,
cerebrovascular disease, insulin-dependent diabetes mellitus), serum creatinine as well as
NYHA (New York Heart Association) functional classification and ASA classification were
obtained during the patients’ preoperative anesthetic evaluation and were recorded using
a standardized form.

2.2. BNP and NT-proBNP Assay

Blood was collected during induction of anesthesia (2 EDTA tubes with a filling
volume of 2.7 mL each, one lithium-heparin tube with a filling volume of 4.7 mL) and
transferred immediately to the department of laboratory medicine. The samples were
processed and analyzed using routine diagnostics for plasma BNP (Abbott Laboratories,
Green Oaks, IL, USA) and NT-proBNP concentrations (Roche, Rotkreuz, Switzerland).
Blood cells were frozen at minus 20 ◦C for genetic analysis.

2.3. Genetic Analysis

SNPs either involved in the regulation of BNP/NT-proBNP or localized inside the
NPPA/NPPB gene locus were chosen as candidates [14–18,22]. The following SNPs were se-
lected: rs198389, rs198358, rs5063, rs5068, rs6676300, rs11079028, rs632793, and rs12562952.

DNA was extracted from whole blood using the Reliaprep™ blood gDNA miniprep kit
(Promega, Madison, WI, USA) according to the manufacturer’s instructions. In brief, cells
were homogenized and lysed, and DNA was separated using a binding column. Purified
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DNA was eluted in 200 µL water, and the concentration was measured on a Nanodrop™
2000 (ThermoFisher Scientific, Waltham, MA, USA).

Eight single-nucleotide polymorphisms were analyzed using hybridization probes
labeled with FAM and ATTO620 dyes (Microsynth, Balgach, Switzerland) and either
LightCycler® FastStart DNAMaster HybProbe or LightCycler® 480 Genotyping Master Mas-
termix (Roche, Rotkreuz, Switzerland) on a LightCycler® 480 II system (Roche, Rotkreuz,
Switzerland). Primer sequences for SNP genotyping with corresponding annealing temper-
atures are displayed in Supplementary Table S1. Primers were used at a concentration of
20 µM (Promega, Madison, WI, USA) and probes at a concentration of 2 µM. Each real-time
PCR was performed as follows: 95 ◦C for 10 min; 45 cycles of 95 ◦C for 10 s, primer-specific
annealing temperature for 10 s, 72 ◦C for 10 s. Subsequently, a melting program was run
from 40 ◦C to 80 ◦C and a cooling step to 30 ◦C. Analysis was performed using the software
LightCycler® 480 version 1.5.0 and the built-in Tm calling program for second derivative
peak analysis.

Adherence of genotype and allele frequencies to the Hardy-Weinberg Equilibrium
(HWE) was tested with the genetics library [23]. SNPs that did not meet the HWE were
excluded from subsequent analyses, as violation of HWE can be due to genotyping errors.

2.4. Statistical Analysis

Haplotype frequencies at the population level were estimated using an expectation–
maximization algorithm from the haplo.stats library [24], with inclusion of all allele loci
and a trimming threshold of zero. For descriptive analysis, medians and interquartile
ranges (IQR) of NP plasma concentrations across levels of categorical covariates were
calculated. BNP and NT-proBNP concentrations for single SNP genotypes were compared
with the Kruskal-Wallis test. A Bonferroni correction of the alpha level for significance was
applied for single SNP genotype effects to account for multiple testing. In case of significant
differences across genotypes, a pairwise post-hoc analysis was conducted.

To assess the proportion of carriers of a specific haplotype displaying elevated NP con-
centrations associated with an increased risk of death or myocardial infarction, cut-off values
as published in the Guidelines of the Canadian Cardiovascular Society (BNP ≥ 92 ng l−1; NT-
proNP ≥ 300 ng l−1) were used [11]. To estimate the influence of common haplotypes on risk
estimation, these cut-offs were adjusted to the modifying effect of the respective haplotype.

Haplotype-trait associations were estimated with the haplo.glm function [24], involv-
ing simultaneous estimation of haplotype frequency and haplotype-trait associations within
a generalized linear model. As the endpoint of the analysis, NP plasma concentrations were
set up as dependent variables for the regression models. BNP and NT-proBNP measures
were log-transformed to account for right-skewed distributions. An additive genetic model
was assumed. For haplotype frequencies, a cut-off >0.02 was applied for inclusion in the
model. Haplotypes with lower frequencies were combined in the rare haplotype category.
Covariates included were sex, age, weight, history of coronary artery disease, history of
cerebrovascular disease, history of insulin-dependent diabetes mellitus, plasma creatinine
levels as well as NYHA class and ASA classification. Patients with known heart failure
were classified according to the severity of their symptoms into NYHA classes I to IV.
Patients without heart failure were assigned a value of zero. The choice of covariates was
motivated by either their influence on NP plasma concentrations or their association with
perioperative cardiovascular complications.

Statistical analysis was carried out with R (R Core Team, R Foundation for Statistical
Computing, Vienna, Austria. URL https://www.R-project.org/, accessed on 1 October
2021). Statistical significance was set at a p-value < 0.05.

3. Results

Six hundred and fifty-eight patients were screened and 427 were analyzed (Figure 1).

https://www.R-project.org/
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Figure 1. Flowchart of inclusion and exclusion processes.

The number of missing observations for covariates was 77 and one for NT-proBNP. These
cases were excluded from haplotype-trait analysis, thus resulting in 349 patients for the analysis
regarding NT-proBNP and 350 patients for the analysis of BNP. Allele frequencies of the SNPs
investigated are displayed in Supplementary Table S2. The Hardy–Weinberg equilibrium was
not met for rs5063, rs11079028 and rs12562952, which were excluded from the analysis.

3.1. Descriptive Statistics
3.1.1. BNP and NT-proBNP Distributions

Values for BNP and NT-proBNP generally skewed to the right, with medians of
24 ng l−1 (IQR 12–56) for BNP and 67 ng l−1 (IQR 33–167) for NT-proBNP. Sixty-two patients
exhibited elevated BNP values (≥92 ng l−1), with three of them being preoperatively
categorized as ASA class I or II (1.5% of this group), and 59 (26.9%) were ASA III or IV. For
NT-proBNP, 65 patients exhibited elevated NT-proBNP values (≥300 ng l−1). They were all
ASA III or IV (29.7%).

3.1.2. BNP and NT-proBNP Concentrations by Level of Covariates

Plasma concentrations of BNP and NT-proBNP across levels of categorical covariates
are shown in Table 1.

Higher BNP and NT-proBNP concentrations were seen in patients with higher ASA
classification, higher NYHA class, in females compared to males, and in patients with
comorbidities (coronary artery disease, cerebrovascular disease, and insulin-dependent
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diabetes mellitus). Supplementary Table S3 provides p-values for univariate testing between
levels of categorical variables.

Table 1. Distribution of BNP and NT-proBNP across subgroups of categorical covariates.

Covariate Subgroup n (%) BNP [ng l−1] NT-proBNP [ng l−1]

Sex Female 187 (44) 26.0 (14.0, 55.0) 72.0 (43.5, 155.5)
Male 239 (56) 22.0 (10.0, 56.0) 58.0 (25.0, 195.0)

Coronary artery disease No 383 (90) 21.0 (12.0, 48.0) 58.0 (30.0, 129.5)
Yes 42 (10) 101.5 (40.0, 202.5) 331.0 (107.2, 597.2)

Cerebrovascular disease No 410 (96) 22.5 (12.0, 52.5) 65.0 (31.25, 147.5)
Yes 15 (4) 97.0 (59.5, 154.0) 478.0 (218.5, 958.5)

Diabetes mellitus No 407 (96) 24.0 (12.0, 54.0) 65.0 (32.0, 151.0)
Yes 17 (4) 48.0 (15.0, 84.0) 236.0 (67.0, 466.0)

ASA physical classification 1 60 (14) 15.5 (9.0, 22.0) 33.5 (21.8, 53.3)
2 147 (35) 15.0 (9.0, 26.0) 41.0 (21.0, 69.0)
3 205 (48) 44.0 (21.0, 90.0) 132.0 (66.0, 335.0)
4 14 (3) 98.0 (78.5, 163.0) 446.0 (189.2, 874.2)

NYHA class 0 375 (89) 22.0 (12.0, 51.0) 60.0 (31.0, 141.5)
1 18 (4) 26.0 (15.0, 76.0) 81.5 (36.0, 176.8)
2 25 (6) 37.0 (25.0, 102.0) 132.0 (82.0, 289.0)
3 5 (1) 126.0 (38.0, 174.0) 248.0 (161.0, 466.0)

Plasma concentrations of BNP (brain natriuretic peptide) and NT-proBNP (N-terminal pro natriuretic peptide)
are displayed as median (IQR); ASA = American Society of Anesthesiologists; NYHA = New York Heart Asso-
ciation; bold type for median values above the cut-off values as used by the Canadian Cardiovascular Society
(BNP ≥ 92 ng l−1, NT-proBNP ≥ 300 ng l−1). No patients classified as NYHA class 4.

3.2. Genetic Effects on Natriuretic Peptides
3.2.1. Single-SNP Effects on NP Plasma Levels

Effects of single SNP genotypes on BNP and NT-proBNP levels are displayed in
Table 2.

Table 2. Effects of single SNP genotypes on plasma levels of BNP and NT-proBNP.

Genotype (n) BNP [ng l−1] p NT-proBNP [ng l−1] p

rs198358 TT (256) 24.5 (12.0, 56.0) 69.5 (34.0, 196.0)
CT (142) 24.0 (11.0, 59.5) 67.5 (28.3, 158.3)
CC (28) 21.5 (16.8, 40.8) 0.879 66.0 (44.0, 123.8) 0.562

rs5068 AA (283) 25.0 (13.0, 62.0) 73.0 (35.5, 206.5)
AG (126) 22.0 (11.0, 51.0) 58.0 (27.3, 148.0)
GG (17) 21.0 (16.0, 32.0) 0.565 66.0 (44.0, 77.0) 0.110

rs632793 TT (152) 21.5 (11.8, 44.3) 62.0 (33.0, 123.8)
TC (210) 22.0 (11.3, 62.5) 65.5 (29.0, 166.0)
CC (64) 40.5 (19.0, 103.3) <0.001 * 99.5 (54.8, 346.0) 0.010

rs198389 AA (143) 21.0 (12.0, 43.0) 60.0 (33.5, 125.5)
GA (215) 21.0 (11.0, 63.5) 65.0 (27.5, 174.0)
GG (68) 40.5 (19.8, 92.6) <0.001 * 83.5 (56.5, 273.5) 0.015

rs6676300 TT (176) 20.0 (12.0, 45.3) 57.0 (31.8, 123.8)
CT (189) 26.0 (11.0, 65.0) 71.0 (29.0, 176.0)
CC (61) 40.0 (19.0, 84.0) 0.003 * 82.0 (54.0, 338.0) 0.022

Plasma concentrations of BNP and NT-proBNP are shown as medians (IQR). rs Reference SNP number; SNP = single
nucleotide polymorphism; G = guanine; A = adenine; C = cytosine; T = thymine. *: significance level for p values
is corrected for multiple testing (Bonferroni correction, 10 tests, alpha = 0.005).

Three SNPs were shown to influence BNP, but not NT-proBNP plasma concentrations.
Variant homozygotes for rs198389, rs6676300 and rs632793 had higher median BNP plasma
concentrations than heterozygotes and wild types (Figure 2). p-values for post-hoc tests are
available in Table S4.
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Figure 2. Effect of single SNP genotypes on BNP plasma concentrations for rs198389, rs6676300
and rs632793. Abbreviations: A = adenine; G = guanine; T = thymine; C = cytosine; BNP = brain
natriuretic peptide. A Kruskal–Wallis test was used for assessment of significance, with Bonferroni
correction (10 tests, level of significance 0.005). Box and whiskers represent medians, IQR and
Q1 − 1.5 × IQR and Q3 + 1.5 × IQR.

3.2.2. Haplotype Organization in the NPPA/NPPB Locus

Haplotype estimation yielded ten haplotypes with inferred population level frequen-
cies of at least 0.01. Three haplotypes covered 80% of haplotype variability (Table 3).
Haplotype 9 (TATAT rs198358, rs5068, rs632793, rs198389, rs6676300) was estimated to be
present in 53% of the population, haplotype 7 (TACGC) in 18%, and haplotype 2 (CGCGC)
in 9%.

Table 3. Haplotype organization and frequencies in the NPPA/NPPB locus.

Haplotype rs198358 rs5068 rs632793 rs198389 rs6676300 Frequency

1 C A C G C 0.04
2 C G C G C 0.09
3 C G C G T 0.05
4 C G T A C 0.02
5 C G T A T 0.01
6 C G T G C 0.01
7 T A C G C 0.18
8 T A C G T 0.02
9 T A T A T 0.53

10 T A T G C 0.01
Likelihood ratio statistic for no linkage disequilibrium = 1398.215, df = 15, p = 0. rs reference SNP number;
G = guanine; A = adenine; C = cytosine; T = thymine.

3.2.3. Common Haplotypes in the NPPA/NPPB Locus Influence NP Plasma Levels

Two generalized linear models were developed to model haplotype effects on logarith-
mized BNP and NT-proBNP. Haplotype 1 (CACGC for rs198358, rs5068, rs632793, rs198389,
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rs6676300) was shown to elevate BNP plasma levels by 44% (p = 0.022) (Supplementary
Table S5) and plasma levels of NT-proBNP by 94% (p = 0.000) (Supplementary Table S6).
Haplotype 2 (CGCGC for rs198358, rs5068, rs632793, rs198389, rs6676300) had a lowering
effect of 28% on NT-proBNP plasma levels (p = 0.013) (Supplementary Table S6). Expo-
nentiated regression coefficients with corresponding 95% confidence intervals are shown
in Figures 3 and 4. Next to the haplotype effects, which were the subject of this analysis,
both models showed ASA class III and IV corresponding to the largest effect on NP plasma
levels. The influence of other variables and their magnitude in relation to the haplotype
effects can be obtained from Figures 3 and 4.

Figure 3. Estimates of exponentiated generalized linear model coefficients to model haplotype effects
on logarithmized BNP. Abbreviations: ASA = American Society of Anesthesiologists; CAD = coronary
artery disease; NYHA = New York Heart Association; CVD = cerebrovascular disease. * p < 0.05,
** p < 0.01, *** p < 0.001. Reference levels of factors are: Haplotype TATAT, CAD no, NYHA 0 (no
heart failure), CVD no, Diabetes no, female sex.
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Figure 4. Estimates of exponentiated generalized linear model coefficients to model haplotype
effects on logarithmized NT-proBNP. Abbreviations: ASA = American Society of Anesthesiologists;
CAD = coronary artery disease; NYHA = New York Heart Association; CVD = cerebrovascular
disease. * p < 0.05, *** p < 0.001. Reference levels of factors are: Haplotype TATAT, CAD no, NYHA 0
(no heart failure), CVD no, Diabetes no, female sex.

3.3. Influence of Common Haplotypes on Risk Estimation

Thirty-four patients were carriers of at least one CACGC haplotype as part of the
haplotype pair with the highest estimated posterior probability. Of these, six patients
showed elevated BNP levels exceeding the 92 ng l−1 recommended by the Canadian guide-
lines on preoperative risk evaluation, and 10 patients showed NT-proBNP concentrations
exceeding the 300 ng l−1. Accounting for the effect of the CACGC haplotype, six patients
might have been mistakenly classified to be at increased perioperative cardiovascular
risk if only considering their elevated NP values (one patient with BNP and five with
NT-proBNP concentrations above the cut-off values) and not counting the effect of the
underlying genotype.

Seventy-four patients had at least one CGCGC haplotype as part of the haplotype
pair with the highest estimated posterior probability. Of these, 63 patients showed NT-
proBNP levels below the threshold of 300 ng l−1. Accounting for the effect of the CGCGC
haplotype, one patient might have been incorrectly classified as low risk for perioperative
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cardiovsascular events due to the effect of his underlying genotype resulting in decreased
NT-proBNP concentrations.

The cut-off values corrected for the haplotype effect were 133 ng l−1 for BNP and
585 ng l−1 for NT-proBNP for the CACGC haplotype and 216 ng l−1 for NT-proBNP for
the CGCGC haplotype.

4. Discussion

In this cohort comprising 349 preoperative patients, we showed that two common
haplotypes in the NPPA/NPPB locus, with population-level frequencies estimated as 4%
and 9%, respectively, were associated with BNP (Haplotype 1) and NT-proBNP (Haplotypes
1 and 2) concentrations. Furthermore, NP plasma concentrations were associated with
known confounders in generalized linear models. ASA class III and IV, as well as coronary
artery disease, were shown to have the largest effect. To our knowledge, this is the first
study to investigate genetic variability in NP plasma levels and NPPA/NPPB haplotypes
in a Swiss cohort presenting for non-cardiac surgery.

In a Japanese cohort, Takeishi and coworkers found two risk haplotypes in the
NPPA/NPPB locus to be associated with BNP plasma levels [14]. Although the haplo-
types differ from those in the present trial with regard to included SNPs, there is overlap
by three SNPs: rs632793, rs198389 and rs6676300. Haplotype 1 from the present cohort
aligns with haplotype 2 from the Japanese cohort. The haplotype effect is positive for BNP
plasma concentrations in both studies, whereas the association with NT-proBNP plasma
concentrations was only investigated in the present trial.

It is still unclear whether elevated NP levels are indicators of physiological derange-
ment, or if individuals who are genetically prone to a stronger release of NP actually
compensate more efficiently for cardiac stress. Several studies have reported on SNPs that
were associated both with elevated NP plasma levels and with decreased blood pressure,
indicating a protective effect [25–28]. Nevertheless, there is conflicting evidence of diag-
nostically meaningful association of genotype with outcome. In some studies, associations
between genetic variants in the NPPA/NPPB locus and various cardiovascular outcomes
(rs5063 with blood pressure progression [29], rs198389 with risk of diabetes mellitus type
2 [18], cardiovascular mortality and lifespan [28]) have been reported. In contrast, other
working groups did not find associations of rs198389 with a composite outcome of myocar-
dial infarction, stroke, or cardiovascular death [30], of rs5063, rs198358 and rs632793 with
the prognosis of kidney damage [16], and of rs198389, rs5063 and 198358 with a relevant
risk of heart failure [31].

Fox and co-authors reported on a decreased incidence in postoperative ventricular
failure after coronary artery bypass grafting in patients carrying minor alleles of rs6676300
and rs198389 [32]. In general, previous investigations on the predictive value of pre-
and postoperative NP plasma concentrations have not included genetic information so
far [2,4,6–10,33].

In the preoperative setting, the negative predictive value of non-elevated plasma
concentrations of NPs is pointed out [7]. Therefore, the association of haplotype 2 with
lower plasma concentrations of NT-proBNP—if proven to be replicable—could result in
misclassifying patients as at low risk due to their haplotype. This is especially relevant for
asymptomatic patients with no known underlying cardiac condition. In these patients, NP
concentrations are an important tool to detect possible, previously unknown cardiovascular
co-morbidity during the patients’ preoperative anesthesia evaluation.

The importance of NP for perioperative risk stratification is low in guidelines from
Europe [1] and the United States [34] compared to those from Canada [11]. If the present
results can be replicated, the next step would be to investigate the predictive power
of genetic information in preoperative risk models. Rethinking the thresholds for NP
plasma concentrations might be worth considering, as genetic testing becomes increasingly
cheaper and even small improvements in the overall performance of risk evaluation could
be cost-effective.
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5. Limitations

We analyzed a mixed Swiss surgical cohort. However, results are limited by the
inherent shortcomings of a single-cohort study. NP plasma levels were measured only once
during induction of anesthesia, which might not reflect underlying physiological variability.
However, this would result in non-differential misclassification, with a more conservative
estimate of the genetic contribution to variability in NP plasma concentrations (bias towards
the null). A future strategy of serial measurements could easily be implemented in clinical
practice. Patients’ cardiovascular medication was not included in the analysis, which could
have introduced confounding.

Regarding the assays used for NP plasma level measurements: there is a large diversity
of available assays with a lack of harmonization across specific products [35]. Therefore,
replication with assays other than those used in the present trial could also result in non-
differential misclassification. It is worth mentioning that neither a universal approach
to standardized assays for NP measurements nor a validation of cut-off values has been
established up to now [33]. Additionally, the study was not powered to uncover small
effect sizes. For example, we observed a reverse but insignificant single SNP effect of
rs5068 compared to other studies [17,25]. Finally, the mixed surgical cohort investigated
corresponds to a low cardiovascular risk setting, whereas the implementation of NP-based
risk stratification is most powerful in a high cardiovascular risk setting (major abdominal,
thoracic or vascular surgery) [1]. Nevertheless, it seems unlikely that the association of
genotype and NP plasma levels, if depicting real underlying physiology, would alter based
on the type of surgery.

6. Conclusions

Two haplotypes in the NPPA/NPPB locus appear to be associated with altered levels of
NP. If the modulating effects of NPPA/NPPB haplotypes on NP plasma concentrations can
be confirmed, future approaches to preoperative stratification of cardiac risk can potentially
be improved.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
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