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Abstract

Significance: Functional near-infrared spectroscopy (fNIRS) enables the measurement of brain
activity noninvasively. Optical neuroimaging with fNIRS has been shown to be reproducible on
the group level and hence is an excellent research tool, but the reproducibility on the single-
subject level is still insufficient, challenging the use for clinical applications.

Aim: We investigated the effect of short-channel regression (SCR) as an approach to obtain
fNIRS measurements with higher reproducibility on a single-subject level. SCR simultaneously
considers contributions from long- and short-separation channels and removes confounding
physiological changes through the regression of the short-separation channel information.

Approach: We performed a test-retest study with a hand grasping task in 15 healthy subjects
using a wearable fNIRS device, optoHIVE. Relevant brain regions were localized with trans-
cranial magnetic stimulation to ensure correct placement of the optodes. Reproducibility was
assessed by intraclass correlation, correlation analysis, mixed effects modeling, and classifica-
tion accuracy of the hand grasping task. Further, we characterized the influence of SCR on
reproducibility.

Results: We found a high reproducibility of fNIRS measurements on a single-subject level
(ICCsingle ¼ 0.81 and correlation r ¼ 0.81). SCR increased the reproducibility from 0.64 to
0.81 (ICCsingle) but did not affect classification (85% overall accuracy). Significant intersubject
variability in the reproducibility was observed and was explained by Mayer wave oscillations
and low raw signal strength. The raw signal-to-noise ratio (threshold at 40 dB) allowed for
distinguishing between persons with weak and strong activations.

Conclusions: We report, for the first time, that fNIRS measurements are reproducible on a
single-subject level using our optoHIVE fNIRS system and that SCR improves reproducibility.
In addition, we give a benchmark to easily assess the ability of a subject to elicit sufficiently
strong hemodynamic responses. With these insights, we pave the way for the reliable use of
fNIRS neuroimaging in single subjects for neuroscientific research and clinical applications.
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1 Introduction

As an optical and noninvasive technology to capture concentration changes of oxyhemoglobin
(O2Hb) and deoxyhemoglobin (HHb), functional near-infrared spectroscopy (fNIRS) is an estab-
lished technique for measuring cerebral hemodynamic changes associated with brain activity.1–4

It enables the measurement of changes in cerebral hemodynamics that are associated with task-
related brain activity patterns.5 In recent years, the application of fNIRS started transitioning from
controlled research laboratories to more natural environments and real-world tasks.6–8 The wear-
able and unconstrained use of fNIRS paves the way for neuroimaging applications, for example,
for bedside and in-home monitoring of brain function9,10 or for brain–computer interface (BCI)
settings to assist neurologically impaired persons during activities of daily living when combined
with robotic devices.11–13 Such applications call for cutting-edge fNIRS systems that fulfill high
requirements regarding technology [e.g., high signal-to-noise ratio (SNR), fast signal processing,
and features to remove movement artifacts] and usability (e.g., high comfort and accurate sensor
placement) to capture small changes in brain activity in daily life settings.7,14 Further, the in-home
and clinical monitoring of brain activity places strong requirements on the robustness and
reliability/reproducibility of fNIRS measurements as these factors directly affect the ability to
sensitively capture neurological changes and to accurately control external devices with a BCI.
Although good reproducibility has been found on group level,15–17 which is sufficient to answer
many research questions, the proof of reproducible fNIRS measurements across multiple days
for individuals has not been given. Because the single-level reproducibility is of fundamental
importance for most clinical and everyday applications, thoroughly characterizing it is essential.

The main factors that are expected to affect the reproducibility of fNIRS measurements are
the signal quality of the hardware (i.e., SNR),18,19 the placement and fixation of the optodes,18,20

and the presence and variability of physiological changes.16,21,22 Although the first two points
are expected to be addressable through cutting-edge fNIRS hardware, for example, using
photodetectors23 and advanced source localization and optode placement techniques, such as
transcranial magnetic stimulation (TMS) guided fNIRS,24 addressing physiological changes
remains a major challenge. More specifically, the interfering physiological influences in fNIRS
are a multifaceted combination of different physiological signals. For example, Mayer waves
(MWs) or task-evoked hemodynamic changes due to the sympathetic activation of the auto-
nomic nervous system are present in different tissue layers that are penetrated by the near-
infrared light (i.e., scalp and brain).25–27 To attenuate the confounding effect of physiological
changes in fNIRS measurements, advanced signal processing techniques, such as short-channel
regression (SCR),28 are required. With the SCR approach, a regressor signal obtained from a
short channel (ideally <8 mm29) measurement is subtracted from a long channel (∼30 mm for
adults) measurement. The short channel predominantly contains extracerebral (i.e., scalp) infor-
mation and enables the removal of physiological changes from the long-channel measurement,
which is a combination of cerebral and extracerebral signals.28,30,31 However, systematic inves-
tigations into the effect of SCR on the reproducibility of fNIRS measurements are lacking.

The aim of this paper is to provide an fNIRS measurement approach that allows for capturing
cerebral hemodynamic responses with high reproducibility on an individual level. Furthermore,
we quantify the effect of SCR on the hemodynamic response and its link to measurement repro-
ducibility, brain activity estimates, and BCI classification using fNIRS. This work is important as
it addresses the fundamental challenge of single-subject reproducibility, which is a crucial point
for establishing fNIRS as a neuroimaging technique, and helps to translate fNIRS into daily life
environments.

2 Materials and Methods

2.1 Participants

Fifteen subjects (9 males and 6 females, Caucasian, mean age� SD: 27� 4.6 years) partici-
pated in our study. Only subjects that fulfilled all inclusion criteria for the use of TMS32 were
recruited. Subjects 2, 4, and 15 were left-handed, the other twelve subjects were right-handed.
The body-mass index was calculated for every subject, and hair root density, hair color. and
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hair thickness were assessed on a scale from 0 to 5 (0: no hairs, 5: dense, thick, dark hairs) upon
visual inspection by the same experimenter (LS).

The experiments were approved by the ethical commission of ETH Zurich (2018-N-22), the
Cantonal Ethics Commission of the Canton of Zurich (2018-01078), and were conducted in accor-
dance with the Declaration of Helsinki. Written informed content was provided by all subjects.

2.2 fNIRS Instrumentation

A custom-built fNIRS instrument called optoHIVE was used to detect cortical brain activity.23,33

It is a lightweight, fiber-less system designed for wearable, high-quality measurements, and each
optode includes a four-wavelength LED light source (774, 817, 865, and 892 nm) and a silicon
photomultiplier for photodetection.33 This system was preferred over commercial fNIRS instru-
ments because, in addition to wearability, it offers the advantages of modular optode placement,
a large number of short-distance channels, and high optical sensitivity.23 Each optode module
(containing a light source and detector) comprises a short-separation (SS) channel of 7.5 mm and
measures with every other optode within 30 mm distance, as shown in Fig. 1(a). In this study, eight
optode modules were fixed using a custom-built headgear made of silicone patches, three-dimen-
sional-printed parts, and elastic strings [see Fig. 1(c)]. The optodes were symmetrically placed over
the left and right primary motor cortices (M1), ventral premotor cortices, and dorsal premotor
cortices, resulting in 16 long-separation (LS) channels of 30 mm and 8 SS (7.5 mm) channels.
As always, two channels measured from the same brain location (i.e., their light-paths were over-
lapping), and the 16 channels were reduced to eight ROIs. A map of the optode configuration and

Optode module

Headgear

Support
pillow

Biosignals

EMG

Foam handles

Separation: 7.5 mm

Short separation Long separation

Separation: 30 mm

Scalp
Skull
CSF
Brain

Sensitivity

Low High

S S DD D SS: light source
D: light detector

F7

F3 FZ F4
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Fp1 Fp2

1 5
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(a)
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Fig. 1 Experimental setup. (a) Sensitivity maps of SS and long-separation measurements for two
optodes. Two-dimensional sensitivity maps were obtained from Monte Carlo simulations using
ValoMC.29,34,35 (b) Arrangement of the optoHIVE optodes (red) and ROIs (green) according to
the 10–20 system of EEG placement. Each ROI consists of two long-separation channels that
probed the same brain regions. (c) Subjects were seated with arms resting comfortably on cush-
ioned armrests and the hands grasping a foam handlebar. If desired, a support pillow was added to
additionally support the arms. OptoHIVE was placed over the left and right motor areas to record
fNIRS signals. Different biosignals were concomitantly acquired (not used in this work).
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the ROIs is shown in Fig. 1(b). Measurements performed by optoHIVE are controlled through a
LabVIEW (Version 2015, National Instruments NI, Texas) interface, and data from each channel
are collected at a sampling frequency of 8.98 Hz over an NI myRIO data acquisition device.33

2.3 Study Protocol

2.3.1 M1 localization with TMS

To minimize the influence of variations in the optode placement at different measurement days and
to maximize the sensitivity to the targeted M1 brain region, we determined the locations of the left
and right M1 via TMS at the beginning of each session and marked it with a dry marker. Single-
pulsed TMSwas performedwith a 70-mmMagstim200 stimulator (Magstim Company Ltd., Wales,
United Kingdom) and a figure-eight TMS coil. The coil was placed tangentially to the scalp with the
handle in the dorsal direction and laterally at 45 deg away from the mid-sagittal line. During the
magnetic stimulation, electromyography (EMG) activity (Bagnoli, Delsys, CH) of the contralateral
abductor pollicis brevis muscle was monitored.36 The location with the strongest motor-evoked-
potential response was determined as the “hotspot” for the hand grasping representation.

2.3.2 fNIRS study protocol

All 15 subjects completed a test-retest protocol consisting of two sessions on two different days
[time-span mean� SD (min–max): 5.5� 3.1 (1 to 13) days]. Subjects were seated comfortably
in front of a computer screen, with their elbows resting on cushioned armrests (if desired, pillows
were added for comfort). The left and right hands were placed in an upright position around
a custom-built handlebar surrounded with foam [see Fig. 1(c)]. The task was defined as a
self-paced, active left hand or right hand grasping task (isometric grasping) at a frequency of
∼1 Hz. The grasping task was trained with a visual display and an auditory metronome at the
beginning of each session. Each of the two sessions included two runs in which the subject
repeatedly performed either the left or the right hand grasping task. An arrow on the screen
pointing left or right indicated the hand that had to be moved (i.e., left or right hand grasping).
Each run included a block design protocol with 30 trials (15 left and 15 right) of 16 s and a
randomized interstimulus duration between 15 and 24 s. A text display announced the upcoming
task 2 s before each trial. At the beginning and end of each run, a baseline of 120 and 60 s,
respectively, was added with the subject remaining at rest. Subjects were instructed to refrain
from any movement during the run other than the instructed grasping movements.

2.4 Data Processing

Data processing was performed in MATLAB (R2017a, Mathworks Inc.). Motion artifacts were
removed using spline interpolation.37 Raw optical intensities were converted to concentration
changes ofO2Hb (½O2Hb�) and HHb ([HHb]) using the modified Beer–Lambert law. The absorp-
tion coefficients were adopted from Moaveni,38,39 and the differential pathlength factors for the
four wavelengths (6.2, 6.2, 5.9, 5.5) were from Cope.40 For the removal of drift and cardiac
pulsation of ½O2Hb� and [HHb], different methods were considered according to Pinti et al.,41

but the best results were achieved following their suggested optimal filter (finite impulse
response, order 1000) at cutoff frequencies of 0.015 and 0.35 Hz. Building on our previous
work,27 multichannel SCR based on non-negative least squares (GLMmultiSS) was applied to best
reduce the influence of physiological changes and, thus, to separate the hemodynamic changes
from the extracerebral tissue layer. With GLMmultiSS, all short-channel distances are included as
regressors in the general linear model (GLM) with the precautional measure of allowing for
only positive estimates (non-negative least squares regression). Short channel signal quality was
verified following the approach of Perdue et al.,42 which is based on the signal content (heart
rate) rather than purely on the SNR.23 It was found that 90% of the short channels were of
good quality during our measurements when considering a signal quality threshold of 12 dB.27

Amplitudes of MW oscillations were obtained from [O2Hb] by normalizing the band-power
(0.07 to 0.14 Hz) with its pulse band-power (0.6 to 2 Hz), and the median value of all long-
separation channels was extracted.27
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A GLM27,43 was applied on the time course of the long-separation channel (i.e., with and
without SCR). As an evaluation metric, t-values were obtained. The t-values give an indication
on the signal strength of a fitted hemodynamic response curve in relation to the residuals. The
used GLM consisted of a modeled hemodynamic response time course, obtained from the
convolution of the boxcar function and the canonical hemodynamic response,43 its time and
dispersion derivatives, and a constant offset, which were fitted into the fNIRS data of each
recording channel. The time and dispersion derivatives44 were included to correct for deviations
of the onset and the shape of the hemodynamic response, respectively. The t-values were stored
in a vector with 1920 entries (15 subjects × 16 channels × 2 hands × 2 runs × 2 sessions)
for [O2Hb] and [HHb]. When ROI analysis was performed, the average of the t-values of
the corresponding channels was used. GLM analysis was applied on non-regressed (NR) long-
separation measurements and on SCR data.

2.5 Statistical Analysis

Statistical analysis was performed in R (Version 3.6.3, RStudio Inc.).45 To find a threshold to
distinguish between active and inactive channels, GLM was applied on the baseline data (i.e.,
random task onsets during rest condition without systemic brain activity), and t-values were
extracted. From the obtained t-values distributed around 0, the threshold, below which the prob-
ability is >95% that the brain is in rest condition, was extracted. Consequently, the 5% signifi-
cance level to indicate if a hemodynamic response, representing brain activity above chance, was
present, was found to be t ≥ 30 for SCR data and t ≥ 22 for unregressed data.

Reproducibility between sessions was assessed using linear correlation analysis and intra-
class correlation coefficient (ICC) analysis applied to the t-values provided by the GLM. Linear
correlation between sessions 1 and 2 on a group level was calculated based on Pearson corre-
lation coefficients applied on the t-values of the M1. For this purpose, the t-values for left M1
(right hand task) and right M1 (left hand task) were extracted, averaged for the two runs per
session, and correlated between sessions for the 15 subjects. Test-retest reliability was deter-
mined using ICC based on an absolute agreement, two-way random effects model with repeated
measures.17,46 Single (ICC(2,1)) and average (ICC(2,k)) measures and their 95% confidence
intervals were calculated as suggested by Li et al.17 The ICC gives an indication of the reliability
of measurements by comparing the variability of different tests of the same individuals with
the total variation across all ratings and all individuals. A high ICC (close to 1) indicates low
intrasubject variability relative to the intersubject variability, whereas a low ICC (close to 0)
means that values from the same group are not similar.46 Thresholds for interpreting ICCs
vary in literature; we used the definition according to Li et al.:17 poor (ICC < 0.40), fair
(0.40 ≤ ICC < 0.60), good (0.60 ≤ 0.75), and excellent (0.75 ≤ ICC < 1.00). To estimate the
change in t-values across measurement sessions, the mean absolute scaled error (MAE%) between
sessions 2 and 1 was calculated and normalized with respect to the range of observed values.

A linear mixed effects model with restricted maximum likelihood estimation (lmer in R) was
applied on the t-values to investigate the statistical significance of factors that could affect the
estimation of brain activation. Two mixed effects models were established, one for [O2Hb] and
one for [HHb]. The dependent variable consisted of the 1920 t-values (channelwise). The fixed
effects were selected as (1) the interaction between hand and channel hand*channel, (2) run,
(3) raw signal strength, and (4) MWamplitude. As random variables, an intercept for subject and
a nested random effect of channel per subject were considered to allow levels of t-value to vary
across channels and subjects. Square-root transformation was applied to ensure that the model
residuals were normally distributed. The goodness of fit was verified from a normal distribution
and homoscedasticity of the model residuals. After model fitting, the estimates were backtrans-
formed, and their effect was investigated by multiple comparisons with Tukey contrasts.47,48

2.6 Classification

A classifier was trained and tested on the obtained fNIRS data to link the aspect of reproduc-
ibility with a potential application such as a BCI. Therefore, pseudo-online classification (i.e.,
continuous samplewise processing of data) was performed using a support vector machine
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(SVM) with L1-norm regularization49 to classify between right and left hand grasping. First,
[O2Hb] and [HHb] were bandpass-filtered with a forward filter between the cutoff frequencies
0.005 Hz (Chebyshev type II, order 2) and 0.35 Hz (Butterworth, order 4). Second, adaptive
filtering based on non-negative weight estimation was used for the samplewise regression
(i.e., SCR) of the SS channels from the long-separation channels. Third, feature extraction was
performed by extracting three feature types from [O2Hb] and [HHb]: amplitude, slope, and cor-
relation-based signal improvement.50 Fourth, an L1-norm SVM was used for joint training of
the classifier and feature selection.51 Its regularization parameter was found with fivefold cross-
validation on the training data. The classifier was trained on the first run and tested on the second
run of the same session. The intrasession accuracy was calculated over the 30 trials per testing
run for sessions 1 and 2, separately. The entire 16 s trial window was used for classification, and
a decision was obtained at the end of each trial. Although other window sizes or features could be
considered, we selected the entire duration to keep the processing pipeline simple as similar
results would be expected with a shorter window and delay until a decision is made was not
deemed critical during this study. Three classifier scenarios were trained to investigate the effect
of the selected dataset (i.e., SS signals only, long-separation only, or SCR signals) on classifi-
cation accuracy.

3 Results

3.1 Spatial Activation Patterns

On a group level, spatially specific patterns of brain activity were detected for the left and right
grasping tasks, shown in Fig. 2. The strongest hemodynamic response for the right hand task was
observed over the contralateral (left) M1 and vice versa for the left hand task. In particular,
ROI 1 showed the strongest magnitude for the right hand task with an average change of
0.26∕ − 0.12 μM for [O2Hb] and [HHb], whereas for the left hand task, ROI 5 changed the
strongest with 0.21∕ − 0.09 μM ([½O2Hb�∕½HHb�). Weaker activation was observed at the adja-
cent frontal brain areas (ROI 2+3 for the right hand and ROI 6+7 for the left hand) and the
ipsilateral M1 (ROI 5 for the right hand and ROI 1 for the left hand). The remaining ROI
(ROI 4+6+7+8 for the right hand task and ROI 2+3+4+8 for the left hand task) did not exhibit
significant activation. The hemodynamic responses for the NR signals had slightly larger mag-
nitudes mainly for [O2Hb] than for the SCR signals with 0.33∕ − 0.13 μM versus 0.26∕0.12 μM
for the right hand task and 0.27∕ − 0.10μM versus 0.26∕0.09 μM for the left hand task.
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Fig. 2 Group average of [O2Hb] and [HHb]. The hemodynamic responses of the 15 subjects were
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This observation was accompanied by a smaller standard deviation of the signal. In comparison
with the NR signal, the SCR signal did not exhibit an oscillatory response after task onset.

On a single-subject level (see A), task-evoked brain activation became visible for nine out of
15 subjects, whereas six subjects showed only minimal or no activation (subjects 5, 6, 7, 8, 14,
and 15). These qualitative results can be put into relation with the individual t-values (visible in
Fig. 3 or 5), which were the lowest for the six subjects with weak activation. More specifically,
the t-values for subjects with weak hemodynamic responses were in the range of 14 to 24 after
SCR, which is below the threshold of 30 (as determined from baseline measurements). The
lowest t-value of the other subjects was 31. Subsequently, the nine subjects with distinct spatial
activation and t-values >30 are denoted “strong responders,” and the other six subjects with
t-values ≤30 are “weak responders.”

3.2 Reproducibility

In the correlation plots in Fig. 3, the agreement between the test (session 1) and retest (session 2)
sessions among all subjects is presented, taking into account t-values from single subjects. The
test-retest agreement changed depending on the chromophore (O2Hb or HHb, respectively) and
signal processing step. The lowest agreement with correlations of 0.71/0.51 (left/right hand) was
observed for [O2Hb] when no regression was applied and increased after SCR to 0.81/0.54.
Correlation for [HHb] was only slightly higher for SCR over NR with 0.81/0.70 to 0.81/0.64.
A distinct difference between right and left hand grasping was observed, with the left hand task
always scoring more than 0.1 points less in correlation coefficients. The MAE% in Table 1 sup-
ports this observation, as the MAE% was generally lower for the right hand grasping task than
the left hand grasping task (20.1% versus 13.4% for SCR O2Hb).

Test-retest reliability based on ICC is presented in Table 1. The contralateral fNIRS channel
above M1 was investigated for each task, i.e., left M1 for the right hand task and right M1 for
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Fig. 3 Correlation between test and retest sessions. Reproducibility of t -values between the two
sessions was assessed for [O2Hb] and [HHb] of the right and left hand grasping tasks. t -values
give an indication of the quality of the measured hemodynamic response. For each task, the cor-
relation plots for the ROIs over the contralateral M1 (i.e., left M1 for right hand grasping and right
M1 for left hand grasping) are shown. (a) Results for NR t -values. (b) Results for regressed (after
SCR). Bright and dark gray areas indicate that the t -values exceed baseline noise (i.e., 22 for no
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the left hand task. The ICC values ranged between 0.58 and 0.81 for the single measurements
and 0.85 and 0.94 for the averaged metric. It was found that the ICCs depend on the chromo-
phore ([O2Hb] and [HHb]) and processing steps (NR and SCR). There was a trend that ICCs
were higher after SCR in comparison with NR, as the ICCsingle values were fair–good for NR and
increased to fair–excellent for SCR. The ICCaverage was excellent for all investigated combina-
tions. The ICCs were higher for the right hand than the left hand grasping task.

3.3 Linear Mixed Effects Model

The influence of different variables on t-value estimation was determined by two linear-mixed
effects models applied on [O2Hb] and [HHb].

Analysis of variance of [O2Hb] revealed a strong significant main effect of the hand*channel
interaction (Fð7;827Þ ¼ 21.78, p < :001). Also, signal strength (Fð1;235Þ ¼ 19.88, p < :001), run
(Fð3;843Þ ¼ 3.04, p < :05), and MW amplitude (Fð1;925Þ ¼ 5.80, p < :05) were found to have a
significant effect on t-values. For the right hand grasping (O2Hb), the highest activation was
found in left M1, and the lowest activity was detected in right M1. The left hand condition
(O2Hb) had the highest activity in right M1 and the lowest in left M1.

The results for HHb were similar to O2Hb. A strong significant main effect of hand*channel
interaction was found (Fð7;827Þ ¼ 15.52, p < :001). Signal strength (Fð1;239Þ ¼ 13.47, p < :001),
run (Fð3;842Þ ¼ 6.23, p < :001) and MW amplitude (Fð1;921Þ ¼ 17.68, p < :001) had a highly
significant effect on t-values. The highest activity for the right hand (HHb) was found in left
M1, and the lowest activity was detected in right M1. For the left hand grasping (HHb), the
highest activity was in right M1 and the lowest in left M1.

3.4 Confounding Factors

The effect of signal strength and MW amplitude on t-values is visualized in Fig. 4. In Fig. 4(a),
the raw signal magnitudes are plotted against t-values, with the maximal values for all runs
averaged per subject. For better visibility, log-transformation was applied on the signal strength.
A trend can be observed that smaller signal strength correlates with smaller t-values. In particu-
lar, four out of six weak responders (subjects 6, 7, 14, and 15) had low signal strength. An outlier
was subject 5, which had low t-values but high signal strength. In Fig. 4(b), MW amplitude is
compared with t-values. When ignoring the subjects with low signal strength (subjects 6, 7, 14,
and 15), a negative correlation between t-values and MW amplitude is observed.

Figure 5 further presents influencing factors in relation to t-values on a single-subject level.
It again becomes visible that the subjects with high t-values often have high signal strength and
low Mayer-wave amplitudes. High t-values are closely linked to high signal strength, which is
dependent on hair characteristics: subjects with dense and dark hair tend to have lower signal
strength than those with blonde and thin hair. A correlation between classification accuracy and
t-values is observed, with subjects having high t-values also scoring high classification accuracy.

Table 1 ICC and MAE% single and average ICCs are given for ROIs above contralateral M1 for
right (ROI 1) and left (ROI 5) hand grasping.17 Results for NR and SCR data are shown. The
t -values of the runs per session were averaged. In brackets, the 95% confidence intervals are
given. MAE% indicates the mean absolute scaled error relative to the range of the data.

Right hand Left hand

ICCsingle ICCaverage

MAE%
(%) ICCsingle ICCaverage

MAE%
(%)

NR O2Hb 0.64 [0.43, 0.82] 0.88 [0.75, 0.95] 15.4 0.58 [0.37, 0.77] 0.85 [0.70, 0.93] 18.3

HHb 0.80 [0.67, 0.90] 0.94 [0.89, 0.97] 13.2 0.65 [0.46, 0.82] 0.88 [0.77, 0.95] 19.7

SCR O2Hb 0.79 [0.65, 0.90] 0.94 [0.88, 0.97] 13.4 0.62 [0.42, 0.80] 0.87 [0.74, 0.94] 20.1

HHb 0.81 [0.68, 0.91] 0.94 [0.89, 0.98] 13.3 0.73 [0.57, 0.87] 0.92 [0.84, 0.96] 16.8
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3.5 Classification

Classification accuracies were in good agreement with the results from the previous analyses:
strong responders had high accuracies and weak responders had low accuracies. In the bottom
line of Fig. 5, the single-subject classification accuracy graphically presents this trend as a
dependency of t-values. There were seven subjects with accuracies >95% (subjects 1, 2, 3,
4, 9, 12, and 13). When separating the subjects into strong and weak responders, a significant
difference between the two groups is observed [95% versus 69%, Fig. 6(a)]. No significant
difference was observed between the classification accuracies of the test and retest sessions
[Fig. 6(b)]. When feeding different input data to the classifier, there was no significant advantage
of using SCR over NR data in terms of classification accuracy. When only SS data were used as
input for the classifier, as a way to validate the absence of brain activity in the SS measurements,
the accuracy was close to 50%, which corresponds to chance level and confirms the assumption
that no brain activity is present in SS channels.

4 Discussion

In this work, we examined the reproducibility of fNIRS measurements during an active grasping
task and the influence of SCR on it. We specifically investigated reproducibility on a single-
subject level, which has not been presented yet in fNIRS. Furthermore, we linked reproducibility
with BCI classification and factors affecting the estimation of brain activity.

On a group level, we successfully detected task-evoked cerebral activation and demonstrated
the canonical hemispheric dominance, with the ROIs above the contralateral M1 (ROI 1 and 5)
exhibiting the strongest hemodynamic responses for the right and left hand grasping tasks.
In contrast, the more frontal (ROI 4 and 8) and ipsilateral (ROI 5+6+7+8 or 1+2+3+4)
regions showed no or much reduced activation depending on the moved hand (left and right).
These observed activity patterns are as expected and aligned with the fNIRS literature,16,53–56 in
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which similarly highest activation was observed over the contralateral M1, weaker activation
over the ipsilateral M1, and weakest activation in frontal regions. Applying SCR was found
to improve signal variability and to increase the spatial specificity of the hemodynamic
response. Although more localized brain activation after reducing systemic activity has been
reported,16,55–57 we demonstrated a high degree of reproducibility on a single-subject level for
the first time. Hence, we provide crucial additional evidence for the efficacy of SCR. The change
in t-values was more distinct for O2Hb than for HHb, which is consistent with previous studies
and a consequence of the stronger influence of systemic activity on O2Hb.
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We thoroughly characterized the reproducibility of fNIRS measurements after minimizing
factors that could affect them. Specifically, we set up a simple hand grasping task to reduce
physiological changes (e.g., blood pressure changes from the task execution) and obtained
a well-localized and distinct brain activity pattern. We placed the fNIRS optodes over
the M1-hotspots as identified by TMS, which reduced the influence of inconsistent optode
placement.60 The used hardware was designed for measurements over the motor areas and the
simultaneous capturing of physiological changes from very short source–detector separations
(7.5 mm). Due to these technical features, our results indicate a high reproducibility at both
the single-subject level and the group level. This is expressed not only by high correlation coef-
ficients of t-values between the test and retest sessions but also by high ICCs. Although we
showed that a high reproducibility in fNIRS signals can be achieved, it also becomes visible
that other factors can lead to an unexplained variability in the brain activity estimates. More
specifically, for the left hand grasping task, the ICCsingle were distinctly smaller than for the
right hand grasping task. The origin of these differences should be further investigated, but
it is assumed to be a consequence of the dominance of right-handed subjects (i.e., 12 out of
15 subjects) leading to a more diffuse response in the left hemisphere.61–63 Similarly, the larger
MAE% observed during the left-hand grasping task is expected to originate from the major part
of the subjects being right-handed.

We adopted the concept of “strong” and “weak” responders from Saager et al.64 (denoted
there as “good” and “poor” activators) and grouped the subjects according to their maximal
t-values, with a threshold of t ≥ 30 (after SCR) for the strong activators. This threshold was
substantiated by the visual inspection of the spatial patterns of the hemodynamic responses and
the statistically significant difference in classification accuracies when removing weak respond-
ers (69% versus 95%). Similarly, other works reported the inability to recover a hemodynamic
response in some subjects during similar motor execution tasks. Yücel et al.65 anecdotally
mentioned that they were not able to recover a hemodynamic response in 10% of the subjects.
Franceschini et al.66 did not manage to detect a significant activation for 3/8, 6/10, and
8/11 subjects for visual stimulation, cognitive stimulation, and finger-tapping, respectively.
Zimmermann et al.67 did not observe a significant activation in 1/7 subjects for an active grasping
task. In electroencephalography (EEG), the notion of “BCI illiterates” or “nonresponders”68 is
well known, also addressing the issue of persons for which insufficiently strong brain signals are
captured. We suggest considering the concept of strong and weak responders in future fNIRS
studies and reporting (maximal) t-values as a marker for the inherent presence of brain activation.

As the main driver for the separation into strong or weak responders, we observed two critical
factors. First, five of the six weak responders had a low raw signal intensity below 0.06 V, which
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corresponds to an SNR below 40 dB and which is often suggested as a threshold for reliable
fNIRS measurements.23,33,69 Thus, it can be claimed that high optical sensitivity is a crucial
premise for detecting brain activation reliably. This is an essential finding for fNIRS instrumen-
tation in general, which implies that the optical signal strength should be determined at the
beginning of each measurement. We suggest using the optical signal strength as an exclusion
criterion when performing applied research (e.g., robot control by a BCI and clinical studies) and
reporting the level of raw signal strength in future publications. Performing screening prior to
a neuroscientific study has been proposed,70–72 and metrics related to signal quality, such as
the scalp coupling index,73 the light-tissue coupling index,74 or the signal quality index,75 could
be adapted. Second, MWs showed a significant effect on t-values, with all subjects with low
MW amplitudes exhibiting high t-values, thereby confirming the relevant literature.76,77 We
showed that the t-values increased strongly when SCR was applied. The applied SCR method
(nnGLMmultiSS) specifically considered MW oscillations27 and therefore reduced the effect of
MW oscillations on the detection of brain activity.

For the future use of fNIRS for (out-of-the-lab) BCI applications, we trained a classifier on
the first run and tested it on the unseen second run for each session. A relatively high classi-
fication accuracy of 85% was obtained over all subjects and sessions, which is in a similar range
as other fNIRS studies investigating motor execution.12,50,78–82 Three out of the 15 subjects (20%
of the subjects) did not exceed the 70% significance threshold on a binary classification task.52

When separating subjects into strong and weak responders, the former group achieved an aver-
age accuracy of 95%. Because the t-values and the classifier accuracies were directly related in
our dataset, it should be considered to determine a suitable threshold with a 5% significance level
above chance and implement screening sessions at the beginning of fNIRS studies to detect
subjects with low t-values. These subjects are expected to be unsuitable for neuroscience studies
or BCI applications. It was surprising to observe no significant difference in classification accu-
racy between not-regressed or SCR input signals for the classifier. This finding indicates that, for
robust BCI settings, the additional use of SS channels may not be of fundamental importance.
Although this finding requires further research, it must be remembered that, for applications that
assess origin, patterns, or magnitudes of brain activity, the inclusion of SS channels is essential.27

The TMS localization was performed to investigate the reproducibility of measurements and
ensure that the M1-hotspot was precisely determined for each subject. Although performing
TMS localization in real-world applications would be impractical, it was important in the context
of this study to maximize signal response and quality. As possible alternatives to TMS,
approaches such as unguided optode placement should be considered. Because the hair char-
acteristics (density and color) had a strong influence on the ability to extract strong brain acti-
vation in the statistical analysis, it is especially important to make sure that the fNIRS instrument
optimally copes with hair12,83—in addition to a careful experimental design.84,85 A simple and
optimal optode placement with minimal hair obstructing the light propagation is crucial to
achieving a high SNR.84 This is a general challenge of wearable fNIRS systems due to larger
diameters of the lightguides compared with laser-based systems and the modular optode struc-
ture to facilitate multidistance measurements. One strength of optoHIVE is that it uses highly
sensitive detectors, which promises to better cope with hair.

In this study, we did not obtain spatial-dependent values of scalp thickness, bone density, or
skull thickness, which could influence the O2Hb and HHb estimates or the statistical analysis.
We expect a correlation between these parameters and t-value in the statistical analysis as has
been shown in the relevant literature,29,86,87 giving a possible explanation for residuals in the
GLM. However, in terms of detecting an activation, which is the target of a BCI, we consider
that variations of these parameters lead only to a moderate deviation from the correct differential
pathlength factor and have a negligible influence on the results. The simplicity of the hand grasp-
ing task could have introduced occasional delays or variations in the hemodynamic responses
due to momentary inattention of the subject. Furthermore, classification was performed only
sessionwise and based on the entire trial of 16 s. The latter is practicable for pseudo-online
classification in the frame of this work, but for a real-time BCI, the decision window should
be reduced to a few seconds after the task onset.88 As an ultimate goal, transfer learning from
one session to another,89,90 as well as asynchronous BCI settings (i.e., the task onset is not
known),91 should be addressed to make the step toward in-home applications.
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5 Conclusion

In this work, we demonstrated that fNIRS measurements are reproducible on a single-subject
level when fulfilling certain prerequisites (i.e., localization of M1 with TMS, careful selection of
study protocol, and optimized hardware). We separated the measured subjects into strong and
weak responders based on the quality of the hemodynamic response and showed that higher test-
retest reliability and classification accuracy are obtained for the strong responders without and
more distinctly with SCR applied. Raw optical signal strength and MWs were found to be the
major determinants of reproducibility. Therefore, to ensure robustness in fNIRS applications and
that sufficient brain activity is captured, we suggest screening each subject once with regard to
raw optical signal strength and t-values prior to the first experiment. Based on optoHIVE, a
wearable and highly sensitive fNIRS instrument with the integrated ability to perform effective
SCR, this work opens a new dimension of fNIRS, i.e., its reliable application in single subjects in
everyday environment and consequently in the clinical and BCI fields.

6 Appendices

6.1 A Appendix

In Fig. 7, correlation between the test and retest sessions is shown on the group level with the
average t-values over all subjects per ROI. This plot confirms the findings from Plichta et al.60

that fNIRS are highly reproducible across sessions for group-averaged optode locations.
In Figs. 8–10, the block averages of each subjects are shown for the right and left hand

grasping tasks. Individual patterns for individual subjects become apparent. For example, there
were subjects (e.g., S2, S3, and S4) exhibiting strong and easily visible hemodynamic responses,
others (e.g., S1, S5, S15) having strong task-evoked systemic activity, and some (e.g., S7, S8,
S14) showing no to minimal activation.
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of t -values between the two sessions was assessed for [O2Hb] and [HHb] of the right and left hand
grasping tasks. t -values give an indication of the quality of the measured hemodynamic response.
For each task, the correlation plots for the eight ROIs averaged over all subjects are shown.
(a) Results for NR t -values. (b) Results for regressed (after SCR). Gray areas indicate the t -value
range of statistical significance (i.e., 22 for no regression and 30 for SCR). Pearson’s correlation
coefficient, its confidence bounds, and p-values between days are displayed in the upper left cor-
ner of each scatter plot. Data points are labeled with the ROI number, and the red dashed line
indicates the confidence bounds.
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Fig. 8 Block average of [O2Hb] and [HHb] for subjects 1 to 5. The hemodynamic responses of the
four runs per subject were averaged (mean� SD) for each ROI. The spatial patterns for the right
and left hand grasping tasks are shown. The gray bars indicate the task period when grasping with
either the left or right hands was conducted. Units are in μM.
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Fig. 9 Block average of [O2Hb] and [HHb] for subjects 6 to 10. The hemodynamic responses of
the four runs per subject were averaged (mean� SD) for each ROI. The spatial patterns for the
right and left hand grasping tasks are shown. The gray bars indicate the task period when grasping
with either the left or the right hand was conducted. Units are in μM.
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Fig. 10 Block average of [O2Hb] and [HHb] for subjects 11 to 15. The hemodynamic responses of
the four runs per subject were averaged (mean� SD) for each ROI. The spatial patterns for the
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with either the left or the right hand was conducted. Units are in μM.
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