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1 Introduction

The calculation of hadronic scattering processes constitutes a notoriously challenging task
in lattice quantum chromodynamics (QCD), given the complications that ensue once multi-
hadron dynamics are properly taken into account [1]. In the past years, significant im-
provement has been achieved mainly for ππ → ππ [2–13], the simplest hadronic scattering
process, with computations even at physical pion mass available [14, 15]. Meanwhile, the
computation and analysis of more complicated processes remains challenging. Already
for the generalization when a pion is replaced by an external electromagnetic current,
γ(∗)π → ππ, up to now only two results are available that correctly describe the resonant
nature of the process [16–18], both obtained at unphysically high pion masses exceeding
300 MeV. Hence, tools are needed to extrapolate the lattice-QCD results to the physical
point and confront them with or even improve upon experimental data.

In addition to defining an ideal test case to extend the lattice-QCD calculation of elas-
tic scattering to more complicated processes, phenomenological interest in γπ → ππ itself
motivates a detailed study of the extrapolation to the physical point. At low energies, its
form is dictated by the Wess-Zumino-Witten anomaly [19–23], leading to a theoretical pre-
diction that has been tested experimentally at the 10 % level [24–26], including the study
of higher-order chiral corrections [27–31] and dispersive techniques [26, 29, 32, 33] — to
be contrasted with the π0 → γγ anomaly, whose chiral prediction, Fπγγ = 1/(4π2Fπ) =
0.2745(3)GeV−1, has been confronted with experiment at sub-percent precision, Fπγγ =
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0.2754(21)GeV−1 [34]. Furthermore, the process γπ → ππ provides input to the data-
driven Standard-Model prediction of the anomalous magnetic moment of the muon aµ,
constraining both hadronic vacuum polarization and hadronic-light-by-light scattering. In
view of the current 4.2σ discrepancy between the resulting prediction [35–62]1 and exper-
iment [78–82], further constraints on the hadronic amplitudes would of course be highly
welcome. Phenomenologically, γπ → ππ is dominated by the ρ(770) resonance, thereby
providing access to the radiative coupling of the ρ to a photon and a pion [33], with the full
kinematic dependence required to improve vector-meson-dominance (VMD) approaches.
In particular, the amplitudes that enter the hadronic contributions to aµ actually depend
on the virtual process γ∗π → ππ, an extension that automatically arises in lattice QCD.
Equivalently, the process is related to the decay γ∗ → 3π via crossing symmetry, and
thus connected to the vector-meson decays ω(782) → 3π and φ(1020) → 3π when the
virtuality of the photon coincides with the respective mass. In this regard, the analysis of
lattice-QCD data in the scattering region provides a testing ground for frameworks that
aim to analyze three-particle scattering directly, a subject that is currently under intense
investigation [83–87].

Accordingly, any model used to describe the γ(∗)π → ππ lattice data needs to allow
for a controlled extrapolation in the pion mass, work in the presence of a resonance, be ac-
curate both in the low-energy region and in the complex plane where the ρ pole is located,
and, ideally, respect crossing symmetry and allow for a description of the decay region
at the same time. As such, chiral perturbation theory (ChPT) by itself is insufficient, as
unitarity is only restored perturbatively and resonances thus cannot be produced without
unitarization. Instead, here we use a dispersive approach, based on the fundamental prin-
ciples of unitarity and analyticity, which are implemented in the so-called Khuri-Treiman
(KT) equations [88]. Their solution defines a set of reliable amplitudes for γπ → ππ at
the physical point [26, 33], including the generalization to non-zero virtualities [89–91].
However, with the main input quantity the physical phase shifts for ππ scattering, this
representation alone does not constrain the chiral extrapolation of lattice data, thus re-
quiring the combination with ChPT. In particular, we use the inverse-amplitude method
(IAM) [92–99] to describe ππ scattering at unphysical pion masses, as input for the solu-
tion of the KT equations away from the physical point, based on the implementation from
ref. [100]. In fact, the single-channel SU(2) IAM can again be justified via a dispersion rela-
tion, with the only approximation regarding the chiral expansion of the left-hand cut [101].
The resulting expression can therefore not only be used to describe ππ scattering on the
real axis, but also to study the pion-mass dependence of resonance trajectories [102, 103] or
form factors [104, 105]. Following the strategy already laid out in ref. [106], the combined
KT + IAM representation for γ(∗)π → ππ is then fit to lattice-QCD data and afterwards
extrapolated to the physical point, where the observables are extracted. At non-zero pho-
ton virtualities also the quark-mass dependence of the vector mesons ω and φ starts to play
a role, see ref. [107], which can again be constrained using ChPT arguments [108–110].

1For more recent developments see, e.g., refs. [63–69] (hadronic vacuum polarization) and refs. [70–77]
(hadronic light-by-light scattering).
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This paper is organized as follows. The basic form of the γ(∗)π → ππ amplitude is
introduced in section 2. Subsequently, the dispersive framework used to analyze the lattice
data and the fit procedure are discussed in section 3 and section 4, respectively. Finally,
the fit results are presented in section 5 and conclusions drawn in section 6.

2 The process γπ → ππ

The scattering amplitudeM of the process γ(∗)(q)π+(p)→ π+(k)π0(k′) with four-momenta
q, p, k, and k′ can be expressed in terms of the electromagnetic current Jµ = e

(2
3uγ

µu −
1
3dγ

µd
)
as

M
(
s, t, q2

)
= εµ

(
q2
)〈
ππ,k,k′|Jµ(0)|π,p

〉
. (2.1)

Here e is the elementary charge, εµ is the polarization vector of the photon, s = (k+k′)2 as
well as t = (p−k)2 denote the Mandelstam variables, and the pion states are normalized in
the standard manner [111]. The pseudoscalar nature of the pions allows for decomposing
the matrix element in terms of a complex-valued function F as〈

ππ,k,k′|Jµ(0)|π,p
〉

= iεµναβp
νkαk′βF

(
s, t, q2

)
. (2.2)

At vanishing energy, the anomalous nature of the process fixes the amplitude in terms
of the pion decay constant Fπ = 92.28(10) MeV [112] as F(0, 0, 0) = eF3π with [21]

F3π = 1
4π2F 3

π

= 32.23(10) GeV−3. (2.3)

In particular, we follow the convention to absorb the class of chiral corrections that cor-
responds to the quark-mass renormalization of the decay constants of the three external
pions into the physical Fπ, and hence use eq. (2.3) as the reference point. Only chiral
corrections that go beyond the quark-mass renormalization of Fπ will thus be applied in
the matching (3.14), see refs. [26, 27].

Throughout this work, isospin symmetry is assumed to hold. In this case, only odd
partial waves contribute, leading to the expansion [113]

F
(
s, t, q2

)
=
∞∑
j=0

f2j+1
(
s, q2

)
P ′2j+1(z). (2.4)

Here fJ denotes the partial wave of total angular momentum J = 2j + 1, z = cos θ with
θ = ∠(k,k′) the scattering angle in the center-of-mass (CM) system, and P ′J the derivative
of the J-th Legendre polynomial.

Taking into account ππ intermediate states only, the P -wave fulfills the unitarity rela-
tion [89]

Im
[
f1
(
s, q2

)]
= f1

(
s, q2

)
σπ(s)

[
T (s)

]∗
, (2.5)

for s ≥ 4M2
π with

T (s) = 1
σπ(s) sin[δ(s)]eiδ(s), σπ(s) =

√
1− 4M2

π

s
, (2.6)

– 3 –
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the ππ → ππ P -wave amplitude and the ππ phase space, respectively, where δ = arg[T ] is
the P -wave phase shift, Mπ the pion mass, and the cut of the square-root is chosen along
the positive real axis, which leads to σπ(s∗) = −σπ(s)∗. The partial wave T in turn obeys
a slightly simpler unitarity relation, namely

Im[T (s)] = σπ(s)|T (s)|2, (2.7)

again for s ≥ 4M2
π . Equation (2.5) implies (modulo 2π)

arg
[
f1
(
s, q2

)]
=

δ(s), Im
[
f1
(
s, q2)] ≥ 0

δ(s)− π, Im
[
f1
(
s, q2)] < 0

, (2.8)

which is a special case of Watson’s theorem [114].
Building upon the unitarity relation (2.5), an expression for f II

1 , the P -wave on the
second Riemann sheet, can be derived. To that end, we make use of f1(s ± iε, q2) =
f II

1 (s∓ iε, q2) for s ≥ 4M2
π and ε→ 0, the Schwarz reflection principle, i.e., f1(s∗) = f1(s)∗,

as well as the uniqueness of analytic continuation to obtain

f II
1

(
s, q2

)
= f1

(
s, q2)

1 + 2iσπ(s)T (s) . (2.9)

Equation (2.9) exhibits a pole at sρ = (Mρ−iΓρ/2)2 that is associated with the ρ resonance
of massMρ and width Γρ and accompanied by a twin pole at s∗ρ. The residue at sρ factorizes
into the coupling of the ρ to the final state, gρππ, as well as to the radiative coupling gργπ
to the initial state as [33]

res
[
f II

1 , sρ
]

= −2egργπgρππ. (2.10)

Hence to determine the radiative coupling, gρππ needs to be known. The latter can be fixed
via

res
[
T II, sρ

]
= 4M2

π − sρ
48π g2

ρππ, (2.11)

where
T II(s) = T (s)

1 + 2iσπ(s)T (s) (2.12)

is the ππ P -wave on its second Riemann sheet, whose form is again dictated by unitarity,
i.e., eq. (2.7). Note that to extract this couplings it is necessary to evaluate T in the
complex plane, hence a parameterization of T is needed that goes beyond eq. (2.6), which
is valid only along the real axis above threshold.

In lattice-QCD computations, the matrix element (2.2) is usually expressed in a differ-
ent manner. To that end, the ππ final state is expanded into components |ππ, P, J,m〉 of
total angular momentum J and magnetic quantum number m. The P -wave contribution
to the matrix element is subsequently decomposed as [17]

〈ππ, P, 1,m|Jµ(0)|π,p〉 = e
2i
Mπ

εµναβp
νε∗α(m,P )P βA

(
s, q2

)
, (2.13)

where the total momentum is given as P = k + k′, ε∗(m,P ) is the polarization vector
of the two outgoing pions, i.e., the standard polarization vector of a spin 1 particle, and
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A is a complex-valued function. In ref. [17] it is shown that A(s, q2) ∝ kCMf1(s, q2).
Re-performing the computation, this time keeping track of all factors, results in∣∣∣A(s, q2

)∣∣∣ = MπkCM

2e
√

3

∣∣∣f1
(
s, q2

)∣∣∣, (2.14)

with kCM the absolute value of the momentum of a final-state pion in the CM frame, i.e.,
s = 4(M2

π + k2
CM).

For the remainder of this work, we will ignore all partial waves with J ≥ 3. The
on-shell cross section is then given as [17, 26]

σ(s) =
(
s− 4M2

π

)3/2(
s−M2

π

)
768π

√
s

|f1(s, 0)|2. (2.15)

3 Dispersive representation of γπ → ππ

In the energy region of interest, where the P -wave dominates, γ(∗)π → ππ can be accu-
rately described by the KT framework [88]. Building upon dispersion relations and elastic
unitarity (2.5), the KT equations take into account not only individual ππ rescattering
in the s-, t-, and u-channel, but also mixed rescattering, where pions rescatter, e.g., in
the t-channel and subsequently in the s-channel. The starting point is the reconstruction
theorem [29],

F
(
s, t, q2

)
= B

(
s, q2

)
+ B

(
t, q2

)
+ B

(
u, q2

)
, (3.1)

which decomposes F into functions of a single Mandelstam variable only. Here u = 3M2
π +

q2 − s− t is not a free variable. The KT equations then take the form [26, 89, 106]

B
(
s, q2

)
=

n−1∑
k=0

ck
(
q2
)
Bk
(
s, q2

)
,

Bk
(
s, q2

)
= Ω(s)

sk + sn

π

∞∫
4M2

π

σπ(x)
xn(x− s)

T (x)
Ω(x) B̂k

(
x, q2

)
dx

,
B̂k
(
s, q2

)
= 3

2

1∫
−1

(
1− z2

)
Bk
(
t
(
s, q2, z

)
, q2
)
dz.

(3.2)

Here n ∈ N is the number of subtractions that are employed in the dispersive integrals, ck
are the subtraction functions, the mappings Bk are known as basis functions, the Omnès
function is given as [115]

Ω(s) = exp

 s
π

∞∫
4M2

π

δ(x)
x(x− s)dx

, (3.3)

and
t
(
s, q2, z

)
= τ

(
s, q2

)
+ zκ

(
s, q2

)
,

τ
(
s, q2

)
= 3M2

π + q2 − s
2 ,

κ
(
s, q2

)
= 1

2σπ(s)
√
λ(s, q2,M2

π),

(3.4)

– 5 –
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is the Mandelstam variable t expressed in terms of the other kinematic variables via the
Källén function λ(a, b, c) = (a− b− c)2 − 4bc.

The basis functions subsume the ππ rescattering and are fixed as soon as the ππ phase
δ is known. While the Omnès function describes ππ scattering in one channel, the integral
in eq. (3.2) incorporates mixed rescattering. That is, the replacement Bk(s, q2) 7→ skΩ(s)
amounts to taking into account only ππ rescattering in the individual channels.

In the form of eq. (3.2) the KT equations are valid only if q2 < (3Mπ)2, i.e., as long
as the photon cannot decay. By deformation of either one of the integration contours the
equations can be analytically continued towards q2 > (3Mπ)2 [116, 117], however, this is
not needed for the lattice data of interest. This analytic continuation reveals that the basis
functions indeed possess a three-particle cut in q2 that is associated with pairwise ππ rescat-
tering, but they do not contain any q2-dependence arising from genuine three-pion interac-
tions [118]. Such interactions are to be described by the subtraction functions ck, which are
not fixed by the KT approach. Thus, to arrive at a complete representation of γ(∗)π → ππ,
we need both a representation of δ as well as a parameterization of the subtraction functions.

For the former, we employ the IAM. In this approach, the ππ P -wave is expanded
in SU(2) ChPT, T = T2 + T4 + . . . , where T2 denotes the leading-order (LO) ChPT
expression and T4 the next-to-leading-order (NLO) one. This expansion satisfies eq. (2.7)
only perturbatively, but we can unitarize it to obtain

T = T 2
2

T2 − T4
, (3.5)

which is precisely the NLO IAM [93–95]. Equation (3.5) satisfies eq. (2.7) exactly, exhibits
the correct analytic structure, and is valid in the entire complex plane. Explicit expressions
for the ChPT amplitudes in closed analytical form are given, e.g., in ref. [100], building
upon the computations presented in refs. [119, 120]. In addition to the pion mass Mπ, the
amplitudes depend on F , the pion decay constant in the chiral limit, as well a lr = lr2−2lr1,
a single linear combination of the ordinarily renormalized low-energy constants (LECs) lr1,
lr2. It is beneficial to express the amplitudes in terms of F instead of Fπ, for the former
is pion-mass independent, see also the discussion in ref. [100]. In this work we use the
Nf = 2 + 1 FLAG average of Fπ/F [121–126], which yields F = 86.89(58) MeV when
combined with the PDG value of Fπ.

Unfortunately, the phase of the NLO IAM does not approach π, instead,
lims→∞ T (s) = −[96πlr + i + 2/(3π)]−1, which yields lims→∞ δ(s) < π for all reasonable
values of lr. However, for the numerical computation of Bk it is beneficial if δ approaches
π at a finite value Λ of Mandelstam s, since this provides a natural cutoff of the integral in
eq. (3.2) via T (Λ) = 0. For this reason, and because the NLO IAM is physically reasonable
in the elastic region only, we guide δ smoothly to π at energies far above the resonance
region. To be precise, we use the IAM below s = 270M2

π , δ(s) = π for s ≥ Λ = 310M2
π , and

a fourth-order polynomial in between such that the transition is smooth. The suppression
of the high-energy region due to the subtractions ensures that the systematic error intro-
duced in this way is negligible compared to the error of the γπ data, this suppression is

– 6 –
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particularly strong since we use not only one, but n = 2 subtractions, see section 5. The
basis functions can be computed numerically via standard methods [117].

The subtraction functions need to be holomorphic in the complex q2-plane except for a
cut along [9M2

π ,∞) that is associated with γ∗ → 3π. Hence we can write down an m-times
subtracted dispersion relation of the form

ck
(
q2
)

=
m−1∑
j=0

bkj
(
q2
)j

+
(
q2)m
2πi

∞∫
9M2

π

disc[ck(x)]
xm(x− q2)dx, (3.6)

where disc[ck(x)] = limε→0[ck(x+iε)−ck(x−iε)] denotes the discontinuity along the branch
cut. As long as q2 < 9M2

π , the Schwarz reflection principle dictates bkj ∈ R and disc[ck] =
2iIm[ck]. In the energy region that contributes most to the dispersive integral in eq. (3.6)
the three-pion physics is dominated by the ω(782) and φ(1020) resonances [112], both of
which are narrow and (at the physical point) far away from the three-pion threshold. Thus
disc[ck] inside the integral can be reasonably well described by a sum of two Breit-Wigner
functions, yielding a dispersively improved variant of a Breit-Wigner parameterization that
ensures the correct analytic properties [91, 127]. In practice, the lattice data we are going to
analyze are obtained at Mπ > 300 MeV, at which mass the ω becomes a bound state [107].
Accordingly, instead of being incorporated into the dispersive integral, it appears as a pole
at q2 = M2

ω. This can be taken into account by writing down a dispersion relation in the
form of eq. (3.6) for ck(q2)/P(q2) with P(q2) = (1 − q2/M2

ω)−1 and multiplying the result
by the pole factor P.

Since the lattice data are obtained at virtualities significantly below the 3π threshold,
eq. (3.6) can be expanded as a Taylor series, keeping the first m terms yields

ck
(
q2
)

=
m−1∑
j=0

bkj
(
q2
)j
. (3.7)

However, the convergence of the Taylor series is poor as soon as
∣∣q2∣∣ gets close to the 3π

threshold, this drawback goes hand in hand with a wrong asymptotic behavior for large∣∣q2∣∣, i.e., the expression diverges. To improve on eq. (3.7), a conformal polynomial can be
used instead [128]. That is, eq. (3.6) is approximated by

ck
(
q2
)

=
m−1∑
j=0

bkjw
(
q2
)j
, (3.8)

where the conformal variable w reads

w
(
q2
)

=
√

9M2
π − q2 − 3Mπ√

9M2
π − q2 + 3Mπ

. (3.9)

In this way, the cut along [9M2
π ,∞) is retained, moreover, the asymptotic behavior is

improved, as w is bounded.
At the 3π threshold, Im[ck] should scale like (q2 − 9M2

π)4 to be in accordance with
the three-particle phase space [129]. This is impossible to obtain with eq. (3.8), because

– 7 –
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Eq. (3.7) Eq. (3.8) Eq. (3.8) and eq. (3.10)
without P I II III
with P IP IIP IIIP

Table 1. The naming scheme of the different parameterizations of the subtraction functions. For
example, strategy IIP amounts to ck(q2) = P(q2)

∑N−k
j=0 bkjw(q2)j .

for q2 below threshold the Schwarz reflection principle needs to be fulfilled, hence bkj ∈ R.
Expanding w in powers of x :=

√
9M2

π − q2 makes it clear that only odd powers of x
contribute to Im[ck]. This problem is fundamental to the method, for the Riemann mapping
theorem implies that each biholomorphic map from the cut complex plane to the interior
of the unit disc is of conformal form. It is however easily possible to remove the leading
square-root-like scaling via fixing [42]

bk1 = −
m−1∑
j=2

jbkj . (3.10)

Altogether we have six different parameterizations of the subtraction functions: a poly-
nomial, a conformal polynomial, and a conformal polynomial with modified threshold be-
havior, each either with or without the pole factor P in front. To take into account the pion-
mass dependence ofMω appearing in P, we use the result of the analysis in ref. [107], namely

Mω

(
M2
π

)
= 0.7686(20) GeV + 0.719(9) GeV−1M2

π . (3.11)

Lastly, the number of terms m needs to be fixed. We use N − k terms with a single global
value of N for the k-th subtraction function ck, since it multiplies sk in eq. (3.2), such that
with our choice in the simple polynomial representation (3.7) the highest combined power
of Mandelstam s and q2 has mass dimension 2N . An overview of the different strategies
is given in table 1.

Given the basis functions, the P -wave can be expressed as

f1
(
s, q2

)
=

n−1∑
k=0

ck
(
q2
)[
Bk
(
s, q2

)
+ B̂k

(
s, q2

)]
. (3.12)

Hence it requires the computation of B̂k. Doing so directly from its definition in eq. (3.2)
is in this context inconvenient for two reasons. First, the lattice data contain several
data points at q2 > M2

π . At these virtualities, Mandelstam t develops a non-vanishing
imaginary part due to the square root of the Källén function in eq. (3.4). Thus Bk needs to
be evaluated at different lines in the complex plane, one for each q2 > M2

π . Second, we aim
for an evaluation of f1 at the resonance pole to extract the radiative coupling by means of
eq. (2.10). Again, this requires the computation of Bk at complex values of Mandelstam t,
where care needs to be taken to avoid collisions with the branch cut of Bk. To circumvent
these issues, we resort to the kernel method [33], which allows for evaluation of B̂k at
arbitrary values of Mandelstam s by computing Bk along the real axis only. The details
are given in appendix A.

– 8 –
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Altogether, the free parameters of our dispersive representation are lr as well as the
variables bkj appearing in eq. (3.7) or eq. (3.8). While the former is pion-mass independent,
the latter depend on Mπ. Since there are only lattice data sets at two different pion masses
available, only very simple parameterizations of the pion-mass dependence of each bkj can
presently be constrained. For that reason, we opt for the simplest ansatz

bkj
(
M2
π

)
= αkj + βkjM

2
π , αkj , βkj ∈ R. (3.13)

Here the fact that the variables are linear in M2
π instead of Mπ is motivated by ChPT,

for otherwise the bkj would possess branch points in the quark mass. As soon as more
data sets at different pion masses become available, it will be possible to test more refined
prescriptions.

With the subtraction functions extrapolated to the physical point, defined by the PDG
value of the mass of the charged pion [112], the anomaly (2.3) can be determined via match-
ing the dispersive representation to ChPT. For n = 2 subtractions the matching yields [26]

eF3π(1 +G) = 3
{
c0(0)

[
1 + dΩ

ds (0)M2
π

]
+ c1(0)M2

π

}
, (3.14)

with
G = 3

2
M2
π

M2
ρ

− 1
32π2

M2
π

F 2

[
1 + log M

2
π

M2
ρ

]
(3.15)

determined via one-loop ChPT and a new LEC has been fixed via resonance saturation [27].

4 Fit to lattice data

The lattice-QCD computations of γ(∗)π → ππ are based on the formalism presented in
ref. [130], which describes a two-step approach. First, Nππ different ππ CM energy levels
Elat
k , k = 1, . . . , Nππ are computed in the finite volume, which are related to the phase shift

δ via Lüscher’s quantization condition [1, 131],

0 = [δ(s)− Z(s)]√s=Elat
k
. (4.1)

Here Z is a known expression that depends on the kinematics and the characteristics of
the lattice. Second, a finite-volume version of the matrix element (2.13) is computed, from
which one can extract AFV, the finite-volume analog of A in eq. (2.13). The latter is related
to its finite-volume counterpart by [17, 130]∣∣∣A(s, q2

)∣∣∣2 = L(s)
∣∣∣AFV

(
s, q2

)∣∣∣2, (4.2)

where the Lellouch-Lüscher factors are given as2

L(s) = 4π
kCM

∂

∂
√
s

[δ(s)− Z(s)]. (4.3)

2These factors yield the γ(∗)π+ → π+π0 amplitude [130]. They differ from the ones in refs. [17, 18] by
a factor 2, because the formulae given in both references apply to the isospin-projected γ(∗)π → ππ(I = 1)
amplitude [132]. We thank Raúl Briceño and Marcus Petschlies for extensive discussions on this point.
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These factors are uniquely defined only on the energies that are solutions of eq. (4.1), that
is, they are not defined as functions of arbitrary values of s [133]. Notably, the computation
of L requires the computation of the derivative of the phase shift. Since the lattice data
points are too sparse, it is not feasible to compute the derivative by an interpolation of the
data. Instead, a continuous parameterization is needed, we use the NLO IAM as given in
eq. (3.5). Accordingly, the fit to the data works as follows.

First, the NLO IAM is fit to the ππ energy levels by minimizing

χ2
ππ(lr) =

Nππ∑
j,k=1

[
Elat
j − EIAM

j (lr)
][
C−1
ππ

]
jk

[
Elat
k − EIAM

k (lr)
]

(4.4)

with respect to the fit parameter lr. Here Cππ is the covariance matrix of the lattice ππ
energies Elat

k , and EIAM
k (lr) is obtained by substituting δ in eq. (4.1) with the IAM phase

shift and solving the equation for
√
s = EIAM

k , with the kinematics of the kth lattice energy
level, as explained in detail in ref. [100].

Second, the derivative of the IAM phase for the resulting value of lr is used to compute
the Lellouch-Lüscher factors. To be consistent, the factors are evaluated at the energies
EIAM
k , for these are the solutions of Lüscher’s quantization condition with the IAM phase

shift. Inserting the factors obtained this way into eq. (4.2) and combining it with eq. (2.14)
allows us to compute∣∣∣f lat

1

(
slat
k , q2 lat

a

)∣∣∣ = 2e
√

3
MπkCMk

√
L
(
sIAM
k

)∣∣∣AFV
(
slat
k , q2 lat

a

)∣∣∣, (4.5)

the absolute value of the partial wave, with slat
k = (Elat

k )2, sIAM
k = (EIAM

k )2, and q2 lat
a the

virtuality of the corresponding lattice data point. The difference
∣∣∣EIAM

k − Elat
k

∣∣∣ is small,
but the IAM energies do not agree perfectly with the lattice ones. While at a first sight
the appearance of two different energies in eq. (4.5) might seem problematic, at the current
level of precision of the data it is irrelevant.

Third, the resulting values of
∣∣∣f lat

1

∣∣∣ are used to fit the P -wave as computed via KT
equations. The lattice-QCD computation yields Nγπ values of AFV, corresponding to Nγπ

different virtualities q2 lat
a , a = 1, . . . , Nγπ, at Nππ different energies, all of which have

errors. For the data sets at hand, Nππ < Nγπ, i.e., several data points are obtained at the
same energy. To take into account the errors of the energies and virtualities, we follow the
standard approach and introduce an auxiliary fit parameter for each kinematic variable,
see, e.g., ref. [8], leading to

χ2
γπ =

(
vlat − vKT

)
C−1
γπ

(
vlat − vKT

)T
(4.6)

with

vlat =
(∣∣∣f lat

1

(
slat

1 , q2 lat
1

)∣∣∣, . . . , ∣∣∣f lat
1

(
slat
Nππ

, q2 lat
Nγπ

)∣∣∣, q2 lat
1 , . . . , q2 lat

Nγπ
, Elat

1 , . . . , Elat
Nππ

)
,

vKT =
(∣∣f1

(
s1, q

2
1
)∣∣, . . . , ∣∣∣f1

(
sNππ , q

2
Nγπ

)∣∣∣, q2
1, . . . , q

2
Nγπ

, E1, . . . , ENππ

)
, (4.7)

the auxiliary fit parameters q2
1, . . . , q

2
Nγπ

, E1, . . . , ENππ , as well as sk = E2
k , and covariance

matrix Cγπ. The error of the IAM phase leads to an error of the Lellouch-Lüscher factors.
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fit Ref. [134] FLAG [121] Ref. [135]
χ2/dof 31.7/(27− 1) = 1.22
p-value 0.20
lr × 103 12.79(11)(10)(12) 9.9(1.3) 19(17)
Mρ/MeV 747.2(2.7)(2.8)(1.0) 763.7+1.7

−1.5

Γρ/MeV 145.0(1.9)(1.9)(1.0) 146.4+2.0
−2.2

Re(gρππ) 5.960(22)(21)(25) 5.98+0.04
−0.07

−Im(gρππ) 0.7175(82)(79)(94) 0.56+0.07
−0.10

Table 2. The outcomes of the IAM fit to the ππ data. The first error arises due to the statistical
error of the ππ data, the second due to the error of the lattice spacings, and the third due to the
error of the literature value of F . The third and fourth column contain reference values for the LEC
from ChPT and lattice QCD [121–126], respectively, while the fifth column lists the ρ properties as
determined via Roy-like equations.

The corresponding covariance matrix is added to the appropriate entries of Cγπ. Equa-
tion (4.6) is minimized with respect to the auxiliary fit parameters and the variables bkj
appearing in the parameterization of the subtraction functions. Since only the absolute
value of the partial wave is fit and f1 is linear in the fit parameters bkj , the latter are fixed
by the fit only up to a global phase ±1. To fix this, we impose the upper case of eq. (2.8),
i.e., arg[f1(s, q2)] = δ(s).

There are different sources of error that need to be taken into account. The ππ energy
levels Elat

k carry an error due to the statistical nature of the lattice computation, this error
is taken into account by jackknife resampling. Furthermore, on the lattice everything is
computed in units of the lattice spacing a. The translation into physical units requires the
determination of a, the so-called scale setting. The resulting value of a carries a statistical
uncertainty, moreover, a systematic error arises for the scale setting is not unique away
from the physical point. To keep the impact of the scale setting and the associated error
of a as small as possible, we phrase both eq. (4.4) and eq. (4.6) in lattice units. However,
in one place at the χ2-level the lattice spacing enters, namely via the decay constant F ,
whose literature value is required for the evaluation of the IAM amplitudes and needs to
be translated into lattice units. To assess the impact of the statistical error of the lattice
spacing on the ππ fit, we perform a parametric bootstrap, see ref. [100] for further details.
We do not attempt to estimate the uncertainty associated with the systematic error of the
lattice spacing. To determine the error of the fit parameters of the γπ fit, we simply use
the Hessian. In principle, the error of the IAM phase impacts the γπ fit not only via the
covariance matrix Cγπ, but also via the KT equations. In practice, the error of the phase
is negligible compared to the error of |AFV|.
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Figure 1. The fit IAM in comparison to the 2π lattice data. The top (bottom) plots correspond to
the lattice data of ref. [8] (ref. [136]). On the left-hand side, the phase is depicted. Here the markers
encode the irreducible representations (irreps) of the residual rotational symmetry on the lattice,
while the colors encode the square of the boost momentum d = L

2πP with L3 the spatial volume of
the lattice. On the right-hand side, the comparison is shown on the energy level, with the statistical
uncertainty of the lattice data indicated by the light red boxes. All energies are given in lattice units.

5 Results

5.1 Fits to ππ data

As already stressed, currently there are only two γπ data sets available, one at Mπ ≈
317 MeV [18], the other one at Mπ ≈ 391 MeV [16, 17]. Hence, to fix the pion-mass
dependence, we need to analyze these two data sets simultaneously. To that end, we
perform a combined fit of the NLO IAM to the ππ lattice data of ref. [8] and ref. [136], the
former being associated with the 317 MeV γπ data and the latter with the 391 MeV ones.
Since the two sets were independently generated, the χ2 is the sum of two terms in the form
of eq. (4.4), one for each data set. A graphical comparison of the fit result with the data is
shown in figure 1, while the goodness of the fit is shown in table 2 together with the obtained
value of lr, the resulting p-value of 20 % being reasonable. There is a 2σ tension with the
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Ref. [18] Refs. [16, 17] combined
I χ2

dof
57.8
48−5 = 1.34 67.0

37−5 = 2.09 57.8+67.0
85−10 = 1.66

p-value 6.54× 10−2 2.81× 10−4 2.70× 10−4

IP χ2

dof
61.1
48−5 = 1.42 44.0

37−5 = 1.37 61.1+44.0
85−10 = 1.40

p-value 3.61× 10−2 7.70× 10−2 1.26× 10−2

II χ2

dof
59.2
48−5 = 1.38 53.9

37−5 = 1.69 59.2+53.9
85−10 = 1.51

p-value 5.13× 10−2 8.99× 10−3 2.96× 10−3

IIP χ2

dof
57.9
48−5 = 1.35 43.6

37−5 = 1.36 57.9+43.6
85−10 = 1.35

p-value 6.43× 10−2 8.31× 10−2 2.26× 10−2

III χ2

dof
59.5
48−5 = 1.38 51.9

37−5 = 1.62 59.5+51.9
85−10 = 1.49

p-value 4.83× 10−2 1.44× 10−2 4.04× 10−3

IIIP χ2

dof
57.2
48−5 = 1.33 43.6

37−5 = 1.36 57.2+43.6
85−10 = 1.34

p-value 7.20× 10−2 8.32× 10−2 2.51× 10−2

Table 3. The quality of the fit to the γπ data for the different parameterizations of the subtraction
functions.

ChPT value of lr, however, this deviation comes at no surprise, given the unitarization via
the IAM [95–98]. With lr fixed, we continue the ππ P -wave via eq. (2.12) to the second
Riemann sheet to determine the ρ characteristics at the physical point as listed in table 2.
Comparing with the literature values given ibidem, we note a 4σ discrepancy in Mρ and
a 2σ tension in Im(gρππ), while both the width and the real part of the coupling agree
well. This is explained by the fact that the NLO IAM has only a single free parameter,
leading to a trade-off between the different ρ properties. To improve on this, the next-to-
next-to-leading-order (NNLO) IAM can be employed [100], however, with data at only two
different pion masses both exceeding 300 MeV, we find that stable fits are not feasible.

5.2 Fits to γπ data

Next, we fit the γπ data. Since the pion-mass dependence of each fit parameter bkj is
described by two free parameters, compare eq. (3.13), we can perform the fits to the two
γπ data sets independently, the fit parameters being the values of bkj at the two different
pion masses. Hence at this stage we can work in lattice units, with different units for each
data set. We use n = 2 subtractions in eq. (3.12), for once subtracted KT equations fail to
describe the energy dependence of the data correctly and thus do not allow for statistically
acceptable fits. Note that increasing the number of subtractions to n = 3 does not provide
additional flexibility, since the reconstruction theorem (3.1) is invariant under the shift
B(s, q2) 7→ B(s, q2)+λ(q2)(3s−3M2

π−q2) with λ an arbitrary function, hence one subtrac-
tion function can be eliminated. This shift is forbidden for n = 2 due to the high-energy
behavior of B, but becomes possible for n = 3. In addition, we pick N = 2, that is, we have
three fit parameters bkj in c0 and two in c1. If instead N = 1 is used, the fit quality becomes
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Figure 2. The results of two fit strategies in comparison with the γπ lattice data of ref. [18] at
Mπ ≈ 317 MeV. Shown are slices of constant energy. For convenience, the results are displayed in
physical units, but the fit is carried out in lattice units, thus the error bands represent the statistical
error only.

poor, while at N = 3 the fit stability deteriorates. The exception are the strategies III and
IIIP, where we pick N = 3, which again amounts to five fit parameters due to eq. (3.10).

To obtain statistically acceptable fits to the data at Mπ ≈ 391 MeV, we need to
exclude the six data points at the highest energy, Elat ≈ 1096 MeV. These points
lie far above the resonance region, for although at this pion mass the ρ is heavy, i.e.,
Mρ = 846.1(3.1)(3.2)(0.1) MeV (errors as in table 2), its width Γρ = 10.8(8)(9)(1) MeV is
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Figure 3. As figure 2, but for the lattice data of refs. [16, 17] at Mπ ≈ 391 MeV.

tiny. Moreover, several of the data points with the smallest absolute errors of |AFV| are lo-
cated at this energy. Hence the six excluded data points provide rather strong constraints
on the asymptotic high-energy behavior of the KT equations instead of the resonance
physics in which we are primarily interested.

We carry out fits for each strategy enumerated in table 1, with an overview of the fit
qualities given in table 3. While the goodness of the fit at the lower pion mass is rather
insensitive to the parameterization of the subtraction functions, the data at the higher
pion mass is more selective, because the relative error of |AFV| at the higher pion mass is
smaller than the error at lower mass. Notably, we observe improvement when including a
pole factor, this is true for all strategies, with the overall p-value improving by at least an
order of magnitude in each case, and even by two orders of magnitude when going from
strategy I to IP. As soon as a pole factor is included, it does not matter much if the
remaining q2-dependence is parameterized by a plain polynomial, a conformal one, or a
conformal one with modified threshold behavior, the overall p-values of strategy IP, IIP,
and IIIP are similar, with a slight improvement when using conformal parameterizations.
Hence in the following we group the results of the three parameterizations including a pole
together. If no pole is used, at higher pion mass the fit clearly disfavors a plain polynomial
and instead prefers a conformal one, with only a very slight further improvement when
modifying the threshold scaling. Thus we exclude strategy I and combine strategy II and
III. As a representative of each group, we pick strategy II and IIP. The corresponding
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Figure 4. The pion-mass dependence of the fit parameters for two different fit strategies. The
dashed gray lines mark the physical pion mass and the ones of the two lattice data sets, the dashed
error bands correspond to the error of the lattice spacings, while the filled ones are associated with
the statistical error.

partial waves are compared with the two lattice data sets in figure 2 and figure 3. As can
be observed, independently of the presence of a pole factor, the magnitude of f1 increases
with growing q2, in accordance with phenomenology [91].

To check if we are sensitive to the mixed rescattering effects included in the KT equa-
tions, we re-perform the fits with the replacement Bk(s, q2) 7→ skΩ(s). At Mπ ≈ 317 MeV
we obtain a p-value of 4.97× 10−2 with strategy II and 6.26× 10−2 with strategy IIP,
while at Mπ ≈ 391 MeV we obtain 8.77× 10−3 and 8.49× 10−2, respectively. Comparing
with the corresponding entries of table 3, the observed difference is insignificant, thus we
conclude that mixed rescattering does not need to be taken into account to describe the
data at the present level of precision.
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Figure 5. The cross section at the physical point for two different fit strategies. The error bands
are as in figure 4.

5.3 Chiral extrapolation

Equipped with the KT fit results, we can determine the pion-mass dependence of the fit
parameters via eq. (3.13). To that end, we need to translate the fit parameters associated
with the two different data sets to a common set of units, hence the errors of the lattice
spacings enter the picture. Since the scale of the two data sets is set in different ways (via
the Υ(1S)-Υ(2S) splitting atMπ ≈ 317 MeV and via the Ω baryon mass atMπ ≈ 391 MeV),
an additional systematic error arises, which is difficult to quantify (this also applies to the
fit of the ππ data). However, compared to the sizable statistical uncertainty of the data
and the systematic error of the chiral extrapolation to be discussed in section 5.4, the
systematic error associated with the scale setting is likely irrelevant at present. Therefore,
the uncertainty associated with the lattice spacing given in the remainder of this work will
always refer to its statistical error only.3

The pion-mass dependence of the fit parameters is depicted in figure 4. While the
leading parameters in the series expansion (3.8), b00 and b10, are constrained more strongly
by the data at lower pion mass than the one at higher pion mass, the opposite is true for
the highest-order term associated with b02. The latter comes at no surprise, for the data at
higher mass contain much larger virtualities in the spacelike region, exceeding in absolute
value the timelike virtualities of both data sets significantly, giving thus more weight to
the b02 term. With decreasing pion mass, the ω pole moves from the real axis below the
3π threshold on the first Riemann sheet into the complex plane on the second sheet. Since
the pole factor P that is present in strategies IP, IIP, and IIIP describes a bound state,
naturally the question arises if the change in the nature of the pole needs to be reflected in

3There is also a systematic error from the continuum extrapolation, since the calculation in ref. [18]
was performed at a single lattice spacing of a ≈ 0.11 fm, while the one in ref. [17] was performed on an
anisotropic lattice with temporal spacing at ≈ 0.03 fm and spatial spacing as ≈ 0.12 fm.
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the extrapolation in the pion mass for these strategies. A resonant ω could be implemented
via a dispersively-improved Breit-Wigner parameterization, which, in practice, is almost
indistinguishable from a pole ansatz unless very close to the singularities. Given the large
uncertainties of bjk at the physical point, this change is thus immaterial, especially, since
for the extraction of the observables the subtraction functions need to be evaluated at
vanishing virtuality only, and for every strategy ck(0) = bk0 holds.

Taking care of the pion-mass dependence of the fit parameters, the IAM, and the KT
equations, we can extrapolate the partial wave to the physical point. Computing the cross
section via eq. (2.15) yields the line shape shown in figure 5 exhibiting the characteristic
resonance peak. In both fit strategies, the error increases when moving beyond the reso-
nance, which reflects the fact that most data points lie around the resonance region. In
principle, the omitted data points at the highest energy could provide further constraints,
but since no acceptable fits could be found when including these points, we conclude that
with the currently available lattice data the asymptotic form of the cross section remains
largely unconstrained. In this regard, we remark that the KT basis functions with n = 2
subtractions increase too fast asymptotically compared to expectations from the Froissart
bound [137], so that a proper high-energy completion needs to be imposed [33]. However,
these considerations become relevant only well beyond 1GeV and thus do not affect the
current fit, for which the n = 2 subtraction scheme provides the adequate number of free
parameters to be able to describe both the chiral anomaly and the ρ-meson properties [33].

5.4 Chiral anomaly and radiative coupling

Finally, we can determine the anomaly F3π and the radiative coupling at the physical
point via eq. (3.14) and eq. (2.10), respectively. The values are listed for the different fit
strategies in table 4. Since the outcomes of the different fit variants are highly correlated
with only minor differences in fit quality and very similar statistical errors, we do not
compute weighted averages, but instead only perform plain averages to determine the
central values. Doing so for the acceptable fits without a pole factor, i.e., averaging over
strategy II and III, results in

F3π = 24(13)(1) GeV−3,

gργπ = [0.51(6)(4) + i0.03(13)(2)] GeV−1,

|gργπ| = 0.51+0.08
−0.05(4) GeV−1,

(5.1)

with errors as in table 4, while the strategies including an ω pole, i.e., IP, IIP, and IIIP,
yield

F3π = 47(18)(1) GeV−3,

gργπ = [0.60(8)(4) + i0.26(18)(3)] GeV−1,

|gργπ| = 0.66+0.15
−0.12(3) GeV−1.

(5.2)

Both values of F3π are compatible with the prediction (2.3), albeit only due to their large
errors. Fits including the pole ansatz do display a better fit quality, but not at a level
that would conclusively demonstrate the necessity of the pole. Since, further, both fit
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F3π ×GeV3 Re(gργπ)×GeV Im(gργπ)×GeV
I 13(11)(0) 0.50(6)(4) 0.09(11)(2)
IP 46(18)(1) 0.59(8)(4) 0.26(18)(3)
II 23(13)(1) 0.51(6)(4) 0.02(13)(2)
IIP 48(18)(1) 0.61(8)(4) 0.27(18)(3)
III 26(13)(1) 0.52(6)(4) 0.05(13)(2)
IIIP 48(18)(1) 0.61(8)(4) 0.27(18)(3)

Table 4. The anomaly and the radiative coupling at the physical point. The fit uncertainty gives
the first error, the second error corresponds to the error of the lattice spacings.

variants agree within statistical uncertainties, we conclude that the current lattice data
cannot discriminate between eq. (5.1) and eq. (5.2) and quote the resulting spread as an
additional systematic error. This error also arises due to the absence of lattice data at
several different pion masses by one collaboration, forcing us to fit our representation to
two data sets by two different collaborations at only two different pion masses, which
makes it impossible to fix the pion-mass dependence of the subtraction functions beyond
the simple ansatz (3.13). Averaging over all fit results except for strategy I, we finally quote

F3π = 38(16)(1)(11) GeV−3,

gργπ = [0.57(7)(4)(4) + i0.17(16)(3)(12)] GeV−1,

|gργπ| = 0.60+0.12
−0.09(3)(7) GeV−1,

(5.3)

where the last error is our estimate of the systematic uncertainty associated with the
parameterization of the subtraction functions.

The resulting value of F3π is perfectly consistent with the chiral prediction (2.3), but
carries a large uncertainty. This is the first extraction of this low-energy parameter from
lattice-QCD calculations, and will improve accordingly once better data become available.
The residue gργπ is currently not known better than from an SU(3) VMD estimate [138],
which suggests |gργπ| = 0.79(8)GeV−1 [33], again compatible with eq. (5.3) (within 1.2σ).4

The difference to the VMD estimate increases to 2.3σ for eq. (5.1), while there is full agree-
ment with eq. (5.2). This provides a-posteriori evidence for the presence of an ω pole in the
subtraction functions, as does the final result for the cross section shown in figure 5 when
compared to the expected peak cross section around 20µb [144]. The radiative coupling
has also been extracted in ref. [18] under the assumption that the pion-mass dependence
of |Gργπ| = |gργπ|Mπ/2 is weak, leading to |gργπ|[18] = 1.15(5)(3) GeV−1. This value differs
from the VMD estimate by 3.6σ, a discrepancy that went unnoticed in ref. [18] because it is
mitigated by a missing factor 2 in eq. (17) for Γ(ρ→ πγ) therein [145]. Moreover, our anal-
ysis shows that the uncertainties especially from the chiral extrapolations are substantially

4The branching fractions cited in ref. [112] imply |gργπ| = 0.72(4) GeV−1 for the charged channel and
|gργπ| = 0.73(6) GeV−1 for the neutral one. However, these values derive from high-energy Primakoff
measurements [139–141] and VMD fits to e+e− → π0γ data [142, 143], respectively, and thus involve a
substantial model dependence.
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larger. In particular, a pion-mass independent |Gργπ| renders the residue divergent in the
chiral limit, while at Mπ = 317 MeV one has |gργπ|Mπ=317 MeV

[18] = 0.507(20)(13) GeV−1 as
well as |gργπ|Mπ=317 MeV = 0.552(18)(18)(0), the latter being the average (5.3) at this pion
mass. We conclude that |gργπ| instead of |Gργπ| is approximately pion-mass independent,
thus avoiding the divergence in the chiral limit.

6 Conclusions

In this work we analyzed state-of-the-art γπ → ππ lattice-QCD data using a combination
of dispersion relations and ChPT, to be able to describe both the momentum and the pion-
mass dependence in a reliable manner. Extrapolating to the physical point, we determined
the cross section, extracted the radiative coupling of the ρ meson, and, for the first time,
the chiral anomaly F3π, see eq. (5.3) for the final results, and eq. (5.2) for a variant that
imposes the ω pole in the subtraction functions. These results agree with expectations from
ChPT and phenomenology, albeit within large uncertainties. By combining KT equations
with the pion-mass dependence as described by the IAM, we could thus confront predictions
from the KT framework with lattice QCD, emphasizing the role of the reaction γπ → ππ to
develop methods that could subsequently be applied to more complicated processes. While
the current lattice data are not yet sensitive to the mixed rescattering effects included in KT
equations, this work demonstrates that the framework is not only a valuable tool for the de-
scription of experimental data, but that it also applies to the analysis of lattice calculations.

Future lattice-QCD computations are expected to reduce the statistical uncertainties,
hence the data will be able to differentiate between parameterizations of the pion-mass
dependence of the subtraction functions, which currently represents the largest source of
systematic uncertainties, e.g., with the presence of an ω pole in the subtraction functions
preferred by comparison to phenomenology, but not resolved within the lattice calculations.
Moreover, once data at more different pion masses become available, more refined param-
eterizations can be employed, and if such data are analyzed with a single scale-setting
strategy, this will remove the systematic error stemming from the simultaneous use of dif-
ferent ways to set the scale. Such refined lattice-QCD calculations, in combination with the
analysis tools developed in this work, have the potential to improve several important low-
energy parameters of QCD, most notably the chiral anomaly F3π, complementary to future
experimental determinations, e.g., from the COMPASS Primakoff program [144]. We also
expect that the strategy pursued here, combining dispersion relations with effective-field-
theory methods for the pion-mass dependence, will have broad applications in particular
to other processes dominated by ππ dynamics.
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A Kernel method

Here we describe a way to facilitate the computation of the hat function B̂k as defined in
eq. (3.2) and needed in the evaluation of the partial wave via eq. (3.12). To that end, we
extend the discussion given in refs. [33, 146] to non-vanishing virtualities. The starting
point is the simple dispersive representation

Bk
(
s, q2

)
= Pk(s) + sd

π

∞∫
4M2

π

Im
[
Bk
(
x, q2)]

(x− s)xd dx, (A.1)

with d the number of subtractions and Pk =
∑d−1
j=0 hkjs

j the subtraction polynomial whose
real coefficients hkj can be determined via matching to eq. (3.2). For instance, in the case
of interest δ = π for large values of s, hence Ω(s) = O(1/s), accordingly, eq. (3.2) implies
Bk(s, q2) = O(sn−2). Given n = 2 it is thus more than sufficient to use d = 2. Equating
the Taylor expansions around s = 0 of both eq. (A.1) and the definition of Bk in eq. (3.2)
we obtain

h00 = 1, h01 = dΩ
ds (0), h10 = 0, h11 = 1, (A.2)

where we used Ω(0) = 1.
Coming back to the general case, inserting eq. (A.1) into the definition of B̂k in eq. (3.2)

yields

B̂k
(
s, q2

)
=

d−1∑
j=0

hkjGj
(
s, q2

)
+ 1
π

∞∫
4M2

π

Wd

(
s, q2, x

)
Im
[
Bk
(
x, q2

)]
dx, (A.3)

with

Gj
(
s, q2

)
= 6

bj/2c∑
i=0

(
j

2i

)
τ
(
s, q2)j−2i

κ
(
s, q2)2i

(2i+ 1)(2i+ 3) ,

Wd

(
s, q2, x

)
= 3

2xd
d∑

k=0

(
d

k

)
τ
(
s, q2

)d−k
κ
(
s, q2

)k−1
1∫
−1

zk
(
1− z2)

ξ(s, q2, x)− zdz,
(A.4)

where we decomposed Mandelstam t according to eq. (3.4) and introduced

ξ
(
s, q2, x

)
= x− τ

(
s, q2)

κ(s, q2) . (A.5)

For low d the kernel Wd simplifies to [33, 146]

W1
(
s, q2, x

)
=W

(
s, q2, x

)
− 2
x
, W2

(
s, q2, x

)
= W1

(
s, q2, x

)
− 2τ

(
s, q2)
x2 , (A.6)
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with

W
(
s, q2, x

)
= 3

2κ(s, q2)

1∫
−1

1− y2

ξ(s, q2, x)− ydy

= 3
κ(s, q2)

[(
1− ξ

(
s, q2, x

)2
)
Q0
(
ξ
(
s, q2, x

))
+ ξ

(
s, q2, x

)]
,

(A.7)

where

Q0(ξ) = 1
2

1∫
−1

1
ξ − y

dy = 1
2

[
log
(1 + ξ

1− ξ

)
− iπ sgn(Im(ξ))

]
(A.8)

is the lowest Legendre function of the second kind. Here we use the principal branch of
the logarithm with a cut along the negative real axis.

If s = 4M2
π or, in case of timelike virtualities, s = (

√
q2 + Mπ)2, κ(s, q2) vanishes.

Equation (A.7) implies thatW has singularities whenever this happens. To prove that these
are removable and to derive a representation that is suitable for numerical implementation,
we note that κ→ 0 implies ξ →∞, hence we expand Q0 around ξ−1 = 0, arriving at

W
(
s, q2, x

)
= 6
x− τ(s)

∞∑
j=0

1
(2j + 1)(2j + 3)

( 1
ξ(s, q2, x)

)2j
. (A.9)

According to the ratio test, eq. (A.9) converges absolutely as long as |ξ| > 1. In par-
ticular, we see that limξ→∞W is manifestly finite. In passing, we note that the terms
subtracted from W in eq. (A.6) precisely cancel out the leading terms in eq. (A.9) such
thatWd(s, q2, x) = O(xd+1), as it needs to be the case to ensure convergence of the integral
in eq. (A.3).

Applying eq. (A.3) in the case of interest we obtain

B̂k
(
s, q2

)
= 2hk0 + 2τ

(
s, q2

)
hk1 + 1

π

∞∫
4M2

π

W2
(
s, q2, x

)
Im
[
Bk
(
x, q2

)]
dx, (A.10)

with the coefficients hkj given in eq. (A.2) and W2 to be computed via eqs. (A.6), (A.7),
and (A.9). Clearly, eq. (A.10) allows for evaluation of the hat function at arbitrary complex
values of s requiring the imaginary part of Bk along the physical scattering region only.
Because the high-energy region in the integral in eq. (A.10) is strongly suppressed by the
asymptotic behavior of W2, the integral can be cut off at high energies.
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