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Characterization of space-momentum entangled
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Abstract: Single-photon avalanche diode arrays can provide both the spatial and temporal
information of each detected photon. We present here the characterization of spatially entangled
photons with a 32× 32 pixel sensor, specifically designed for quantum imaging applications. The
sensor is time-tagging each detection event at pixel level with sub-nanosecond accuracy within
frames of 50 ns. The spatial correlations between any number of detections in a defined temporal
window can thus be directly extracted from the data.The space-momentum entanglement of
photon pairs is demonstrated by violating an EPR-type inequality directly from the measured
near-field correlations and far-field anti-correlations.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Quantum states of light are a fundamental tool to implement quantum information processing
protocols and quantum metrology methods in the optical domain, such as quantum imaging
[1]. They can be described either by discrete variables, the photons, or by continuous fields.
Correspondingly measurements of light can be mainly split into two classes: measurements
of fields, by homodyne detection for example, and intensity measurements, that correspond
fundamentally to photon counting. These are the tools of choice to characterize discrete quantum
optical states; for example to measure correlations in quantum states with few photons. An ideal
detector should be able to detect the position and time of arrival of all impinging photons. Such
universal detectors do not yet exist, but there are various types of single photon sensitive detectors
that are each optimized with respect to specific characteristics. Most of the experiments based
on correlations between photons are realized with single photon detectors with high temporal
resolution but no spatial resolution [2], including photomultipliers, single photon avalanche
diodes (SPAD) or superconducting detectors. On the other side, imaging experiments are usually
implemented, even at the single photon level, with low noise cameras as EMCCD or scientific
CMOS cameras [3,4], that are able to localize single photons among many pixels, but have low
temporal resolution. Spatial entanglement in photon pairs has been demonstrated with scanning
single pixel detectors [5], EMCCD [6] and commercial gated single photon avalanche array
sensors [7]. Correlations between photons from a pair, one detected by a single pixel detector
and the other one by an ICCD camera, have also been measured [8,9].
A way to combine high temporal and spatial resolution is fast gating of imaging sensors.

However, while gating gives access to short times, the full spatio-temporal correlations of light
across a wide temporal range cannot be measured. In addition, gating is well suited for pulsed
operations, but a continuous source of correlated photons would ideally be measured with a
non-synchronous detector. This is easily implemented with single pixel detectors, that are always
ready to trigger, up to their dead-time. However when operating many detectors in parallel, as
in detector arrays, the readout mechanism usually requires a frame-based operation. In that
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case, one of the criterion to be optimized is the sensor duty cycle defined by the product of the
frame repetition rate of the detector with the duration of each frame. For gated detectors, the
requirement to have short gates in order to achieve a good temporal discrimination of correlated
photons contradicts the need of long frames to improve the photon collection efficiency. The
solution is the ability to time-stamp with high temporal resolution each detection event within
a long frame. Combining single photon detectors and external time-stamping electronics can
be realized only for a small number of detectors [10]. This cannot, however, be extended to
imaging with thousands of pixels without the integration of light sensitive devices with digital
electronics, as offered by CMOS technology. Event based high-speed optical cameras have the
ability to time-stamp many detection events at a very high rate. Single photon sensitivity can
be achieved in combination with an image intensifier, however at the expense of the temporal
and spatial resolutions. Correlation between polarization-entangled photon pairs have been
demonstrated with such devices [11]. In this work, we demonstrate the capability of a recently
developed SPAD array sensor [12–14] to characterize spatial entanglement from spontaneous
parametric down-conversion (SPDC) by measuring both, near- and far-field correlations [5,6].
We demonstrate entanglement of the state by testing an Einstein-Podolsky-Rosen (EPR)-type
inequality. The direct access to each individual coincidence event allows to estimate the violation
of the inequality directly from the measured joint-probabilities, without a priori assumption on
the quantum state. In addition, it can be estimated from fitted data, assuming a Gaussian model
for the SPDC emission.

In section 2. we recall the quantum state of the photon pairs emitted by SPDC and the expected
joint-probability distribution that have to be measured in order to verify their spatial entanglement.
Section 3. describes the experimental setup and the processing of the data acquired with the
SPAD array, in particular the corrections of the accidental events and crosstalk. The results are
presented in section 4., with the different estimations of the violation of the inequality. Finally, in
section 5., we introduce figures of merit for the comparison of various sensor technologies in the
case of the detection of n-photon correlations in continuous sources of light.

2. Theory of spatial entanglement in SPDC

SPDC is nowadays a common source of entangled photon pairs, where a pump photon of
frequency ωp is annihilated inside a non-linear crystal (NLC) with a non-vanishing second-order
susceptibility χ(2), and two photons with frequencies ω1 and ω2 and wave-vectors k1 and k2
(historically called signal and idler) are simultaneously created [15]. Here we consider the case
of type-0 quasi-phase-matching in a periodically poled crystal of length L with poling period G
and refractive index n(ω), where all fields have the same polarization [16].

Under the approximation of a monochromatic pump with a frequency ωcp, the envelope of the
pump field is given by

E+p (qp,ωp) = 2πE+p (qp)δ(ωp − ωcp), (1)
where E+p (qp) describes the amplitude in momentum space. The quantum state of the generated
signal and idler photons is then given by

|Ψ〉 = |0〉 +
∫

dq1dq2dω2 Λ(q1,q2,ω2)â†(q1,ωcp − ω2)â†(q2,ω2)|0〉, (2)

where qi = (kxi , kyi ) is the transverse component of the wave vector ki and |0〉 is the multimode
vacuum. The two-photon wave-function, or joint momentum amplitude (JMA) is

Λ(q1,q2,ω2) = −
4iε0 χ(2)Le(ωcp − ω2)e(ω2)

3~π(2π)5 n(ωcp − ω2)n(ω2)
E+p (q1 + q2)

× sinc
(
∆kzL
2

)
exp

(
−i
∆kzL
2

)
,

(3)
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with the phase matching relation

∆kz =

√(ωcp − ω2

c
n(ωcp − ω2)

)2
− q2

1 +

√(ω2
c

n(ω2)
)2
− q2

2

−

√(ωcp

c
n(ωcp)

)2
− (q1 + q2)2 +

2π
G

,

(4)

and the normalization function

e(ω) = i

√
~ω

2(2π)3ε0c
. (5)

We note that the JMAΛ(q1,q2,ω2) given by Eq. (3) cannot in general be factorized into functions
Λi(q1,ω2) and Λs(q2,ω2) and thereby the state is entangled. Assuming narrow-band frequency
filtering of the down-converted photons and thus only considering the spatial dependency, the
JMA factorizes into momentum and frequency parts [17]

Λ(q1,q2,ωs) = Λ(q1,q2)S(ω2). (6)

Equivalently, the JMA can be expressed in term of transverse positions (ρ1, ρ2) and times (t1, t2)
through spatial and temporal Fourier transforms F

Λ̃(ρ1, ρ2)S̃(τ) = F {Λ(q1,q2)}F {S(ω2)}. (7)

In the monochromatic approximation, the temporal part only depends on the time difference
τ = t1 − t2. Coincidence detections measure events around τ = 0. Therefore the temporal part of
the JMA only accounts for a proportionality factor and thus will be further omitted.
The position ρi = (xi, yi) and momentum ~qi = (~kxi , ~kyi ) operators do not commute and

therefore a criterion for EPR-type correlations between two systems 1 and 2 (that correspond in
our case to the signal and idler photons) can be established [18]. In the SPDC emission, the x and y
components are decoupled. We thus consider the one dimensional case with xi and pi = ~kxi . The
results of correlation measurements are therefore described by the joint-probabilities P(ρ1, ρ2)
and P(q1, q2), or P(x1, x2) and P(p1, p2) in the 1D case. The minimal inferred variance of
(x1, x2) is defined by

∆
2
min(x1 |x2) =

∫
dx2 P(x2)∆2(x1 |x2), (8)

where ∆2(x1 |x2) is the variance of the conditional probability P(x1 |x2) and P(x2) is the marginal
probability of system 2. Analogue definitions apply for the variables (p1, p2). According to [18],
the fulfillment of the following inequality on the product of minimum inferred variances indicates
EPR-type correlations, or entanglement

∆
2
min(x1 |x2)∆

2
min(p1 |p2)<

~2

4
, (9)

or expressed as a dimensionless inequality

∆
2
min(x1 |x2)∆

2
min(kx1 |kx2 )<

1
4
. (10)

Experimentally, the joint-probabilities are derived from correlation measurements that correspond
to second-order coherence functions of the electric field. They are given at transverse positions
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ρ1 and ρ2 and times t1 and t2 by

G(2)(ρ1, t1; ρ2, t2) = 〈Ê−(ρ1, t1)Ê−(ρ2, t2)Ê+(ρ2, t2)Ê+(ρ1, t1)Ψ〉. (11)

Correspondingly, in the monochromatic approximation the joint-probability is directly propor-
tional to the second-order coherence function

P(ρ1, ρ2) ∝ G(2)(ρ1, ρ2) (12)

and, at the crystal position, is explicitly related to the spatial JMA of the state Eq. (2) by

G(2)(ρ1, ρ2) ∝
��Λ̃(ρ1, ρ2)

��2 . (13)

In general, the imaging setup from the crystal to the sensor plane determines the field operators that
have to be introduced in Eq. (11). In the following, we performed the two types of measurements
relevant for inequality (10): near- and far-field imaging.

2.1. Second-order near-field correlations

When imaging the crystal with a magnification M, the correlation function at the image plane
using Fourier optics can be expressed as

G(2)NF(ρ1, ρ2) ∝

����∫ dq1

∫
dq2Λ(q1,q2)ei(q1ρ1+q2ρ2)/M

����2 . (14)

This is essentially the Fourier transform of the propagated two-photon JMA.

2.2. Second-order far-field correlations

In a far-field imaging setup at wavelength λ = 2π/k, using a lens of focal length f , the relation
between the transverse position at the imaging plane ρ and the transverse momentum q at the
object is

q = k
f
ρ. (15)

Hence, the second-order correlation function in the far-field reads

G(2)FF(ρ1, ρ2) ∝

����Λ(kf ρ1,
k
f
ρ2)

����2 . (16)

The spatial dependency of the correlation function thus directly reflects the JMA expressed in the
momentum space.

3. Experimental evaluation of correlations

The joint-probability distribution that leads to the evaluation of Eq. (10) has to be estimated from
the raw correlations acquired with the SPAD array sensor. Ideally it should be estimated directly
from the non-processed data, in order to achieve a non-conditional violation of the inequality.
However due to the sensor imperfections, such as reduced efficiency, dark counts and crosstalk
between pixels, some assumptions have to be introduced to process and correct the raw data. In a
second step, the corrected data can be either directly used to numerically evaluate Eq. (10) or, by
introducing additional assumptions, fitted with a model of the expected correlations as it is done
for instance in [6].
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3.1. Experimental setup

The experimental setup is shown in Fig. 1. A continuous wave (CW) laser (Toptica DL PRO HP
405) with a maximal power output of 30mW at a wavelength of 405 nm and a spectral bandwidth
of 80MHz serves as the pump. It is slightly focused onto the crystal’s center plane Σ0 by a
two-lens system (f1 = f2 = 200 mm). The beam waist of the pump at this plane is w0x = 250 µm
in the x direction and and w0y = 300 µm in the y direction. Quarter and half-wave plates are used
to achieve the desired horizontal polarization in the crystal. A 1 × 2 × 12 mm3 periodically poled
KTiOPO4 (PPKTP) NLC with poling period G0 = 3.51043 µm is embedded into a temperature
controlled oven and provides the source for the down-converted photons. The oven is maintained
at a temperature of 26.0 °C for an almost collinear phase-matching, that maximizes the photon
flux onto the sensor in the far field. The down-converted photons are separated from the pump by
a bandpass filter (BP) centered at 810 nm with FWHM 10 nm. About 2 nW of entangled photons
are produced, that corresponds to about 4 × 109 photon pairs, or 200 photon per frames of 50 ns.
Given the source parameters, waists of the pump beam and the length of the SPDC crystal, we
can estimate the minimal inferred standard deviations to be

∆min(x1 |x2) = 37.3 µm ∆min(kx1 |kx2 ) = 4.0 mm−1, (17)

∆min(y1 |y2) = 37.3 µm ∆min(ky1 |ky2 ) = 3.4 mm−1, (18)
leading to the following violation of the Heisenberg-inferred inequalities

V (x)min ≡ ∆
2
min(x1 |x2)∆

2
min(kx1 |kx2 ) = 2.2 × 10−2 (19)

V (y)min ≡ ∆
2
min(y1 |y2)∆

2
min(ky1 |ky2 ) = 1.6 × 10−2. (20)

Two lenses (f3 = f4 = 50 mm) form a 4f imaging system such that the electric field at the plane
ΣNF is an exact replica of the field in the crystal at Σ0. Either the near- or far-field of this plane is
then imaged onto the sensor, depending on the selected lens. For near-field, a lens fNF = 25.4
mm images the plane ΣNF onto the sensor with a magnification factor M = 9. For far-field, a
lens fFF = 150 mm images the far-field such that the area covered by the sensor corresponds in
k-space to ±36.2 mm−1, as q = x k

fFF
.

Fig. 1. Experimental setup for spatial correlation measurements. A CW laser at 405 nm is
slightly focused by a telescope (f1 and f2) and pumps the crystal. The bandpass filter (BP)
only transmits the down-converted photons at a central frequency of 810 nm. The 4-f lens
configuration (f3 and f4) one to one images the crystal center Σ0 onto the near field plane
ΣNF . Further imaging onto the detector array occurs by either a one lens configuration fNF
for the near field or a Fourier lens fFF for the far field.

The coincidence detection is performed with a single photon avalanche detector (SPAD) array
recently developed [12,13]. It is a fully digital 32 × 32 pixel sensor array based on CMOS
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technology. The total sensitive area is 1.4 × 1.4mm2 and the pixel pitch ∆L is 44.64 µm with
an overall fill-factor of 19.48 %. A time-to-digital converter (TDC) integrated in each pixel
allows for pixel-wise time stamping the first detection event within a frame. The time resolution
(time-bin length) of the TDC is 210 ps with a depth of 8 bits, corresponding to an observation
time of 255 time-bins or about 50 ns. The mean frame observation rate is about 850 kHz, with
peaks up to 1 MHz, which corresponds to a duty cycle of 4.5 %. The total expected photon
detection efficiency, when the sensor is active, is 5 % at 400 nm and 0.8 % at 810 nm. The dark
count rate per pixel is below 1 kHz at room temperature on average, that correspond to 5 × 10−5
events/frame. The raw data from the sensor’s FPGA are transfered to a computer through a USB
3.0 interface and are then post-processed.

3.2. Data processing

The coordinate and time of all detection events within one frame, together with the frame
identification number, constitute the acquired raw data. In the following we associate the spatial
coordinate ρi = (xi, yi) with the pixel coordinate pi = (pxi , pyi ) using ρi = ∆Lpi . An estimation
of the raw correlation G(2)raw(ρ1, ρ2) between a pair of pixels, or equivalently of G(2)raw(p1,p2), is
obtained by counting all coincidence events between those pixels that occur within a defined
temporal window. The histogram of the absolute time differences between all pairs of detection
events across the sensor is shown on Fig. 2. While the temporal jitter of each pixel is of the
order of 200 ps, in practice temporal shifts across the sensor widen the coincidence peak. In
principle, a pixel-wise temporal calibration would allow to narrow the window [13]. Here we
define the coincidence window to be ±10 TDC steps (∼ ±2 ns) in order to catch all coincidence
events. The obtained histogram is further normalized to a number of coincidences per frame
(or alternatively per million of frame, MFrame) [17]. Hence for the data of Fig. 2, 5 × 10−3
true coincidences events per frame are detected within the coincidence window for 3.7 × 10−2
accidental coincidences. The processing of those raw data includes first the subtraction of
accidental coincidences, and then a correction step for crosstalk.

Fig. 2. The temporal second-order correlation G(2)(|∆t|) accumulated over all pixels. The
raw detection event counts are shown and after removal of uncorrelated accidentals.

Before describing in detail the processing steps, we introduce various representations of the
second-order correlation. In a transverse plane it is a function of four variables G(2)(p1,p2) =
G(2)(px1 , py1 , px2 , py2 ). In order to be able to plot a 2D representation of the full correlations, we
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introduce the pixel indices numerating each pixel from 1 . . . 1024

p̃i = pxi + 32 × (pyi − 1). (21)

Fig. 3 shows the full correlation matrix between every pair of pixels after subtraction of accidental
events (see section 3.2.1) in the case of far-field measurement. The photon pairs exhibit anti-
correlation in their detection positions, that reflects into the ≈ 8 anti-diagonal lines. The nearest
neighbors correlations (separated by pixel indexes ±1 and ±32) are affected from crosstalk,
forming the four diagonal lines. The exact diagonal cancels, as the sensor cannot measure
self-correlations on one pixel.

Fig. 3. Full second-order correlations between every pixel pair in the far-field with corrected
accidentals. Each pixel is addressed with a linear pixel index p̃i = 1, . . . , 1024. The inset
shows a close up of the crosstalk correlations appearing along the diagonals.

In order to apply the inequality (10) for only one dimension, the correlation functions are
projected onto either the x or y dimension by

G(2)(x1, x2) =
∑
y1

∑
y2

G(2)(x1, y1, x2, y2), (22)

G(2)(y1, y2) =
∑
x1

∑
x2

G(2)(x1, y1, x2, y2). (23)
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Alternatively, one can use the centroid and difference coordinates to project the 4D correlation
function on 2D planes defined by fixed values of ρ1 + ρ2 or ρ1 − ρ2, respectively. The projected
correlation functions read

G(2)(ρ+) =
∑
ρ1,ρ2

ρ1+ρ2=
√
2ρ+

G(2)(ρ1, ρ2), (24)

G(2)(∆x,∆y) = G(2)(ρ−) =
∑
ρ1,ρ2

ρ1−ρ2=
√
2ρ−

G(2)(ρ1, ρ2). (25)

3.2.1. Removing accidentals

Accidental coincidences are coincidence events that occur in the defined coincidence window
but are neither temporally nor spatially correlated. They stem from detections triggered by
background light, dark counts, and mostly from SPDC photons that do not belong to the same
photon pair. The total measured raw correlation signal is thus given by the sum of the accidental
coincidences and the true temporal coincidences (as due to photons from a pair)

G(2)raw(ρ1, ρ2) = G(2)pairs(ρ1, ρ2) + G(2)acc(ρ1, ρ2) (26)

These accidental events contribute significantly to the raw signal as we can observe on Fig. 4(a).
They can be however estimated and corrected for, either by measuring the coincidence signal in a
shifted time window or by using the fact that uncorrelated light obeys

G(2)acc(ρ1, ρ2) ∝ G(1)(ρ1)G(1)(ρ2), (27)

where G(1)(ρ) is the first-order correlation function, the intensity. The proportionality factor
depends on the ratio of the coincidence window length and the frame length. A direct way
to estimate it is to compare event rates in G(2)(ρ1, ρ2) and G(1)(ρ1)G(1)(ρ2) for pixels where
no correlations are expected. Figure 4 shows the raw (a) and corrected data after removing
accidental coincidences (b). The anti-correlations from the photon pairs are clearly visible, but
also correlations due to crosstalk, that are further removed in Fig. 4(c) (see below).

Fig. 4. Second-order far-field correlations. Measured raw data (a), after removing
accidentals (b) and after crosstalk correction (c)

3.2.2. Crosstalk corrections

A single detection event, triggered by a dark count or a photon, can trigger nearby pixels. This
leads to undesirable detection events that are an artifact intrinsic to the detector. The physical
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process behind optical crosstalk are photons, created by the charge avalanche of the first triggering
SPAD. These photons may reach and trigger neighboring pixels in a very short time-scale.
Crosstalk is especially undesired in the near-field correlations, as it overlays the real signal. The
crosstalk probability should be estimated for every pixel pair. However, as a first approximation,
we assume it to only depend on the distance between two pixels. Thus an average crosstalk
value over all pixels can be extracted from the projected correlation function in the far-field
G(2)FF(∆x,∆y), as in that case only anti-correlations are expected. Hence, the mean probability that
a pixel at distance (∆x,∆y) is triggered from crosstalk is given by

Pxtalk(∆x,∆y) =
1
2

G(2)FF(∆x,∆y)∑
x
∑

y G(1)FF(x, y)
, (28)

where the sum overG(1)FF normalizes with the total number of counts. Any second-order correlation
measurements G(2)pairs can then be corrected [19] according to

G(2)corr(x1, y1, x2, y2) =G(2)pairs(x1, y1, x2, y2)

− Pxtalk(x2 − x1, y2 − y1)G(1)(x1, y1)

− Pxtalk(x1 − x2, y1 − y2)G(1)(x2, y2),

(29)

Figure 5 shows the anti-correlation peak of the far-field signal (a) with corresponding crosstalk
probability map (b) estimated from Eq. (28), which is point-symmetric with respect to (∆x,∆y) =
(0, 0). We notice an asymmetry between the vertical and horizontal crosstalk, due to the geometry
of the sensor and that is compatible with measurements realized with classical pulsed light [13].

Fig. 5. (a) Correlation peak due to crosstalk of the second-order correlation measurement
in the far-field. (b) Crosstalk probability extracted from the correlation peak. The pixel at
(∆x,∆y) = 0 is the emitter of the crosstalk.

4. Measurement results

The full correlation map for far-field measurements is shown on Fig. 4. The same data can then
be represented in the other coordinates previously introduced. Figure 6 shows the anti-correlation
(a) and correlation (b) peaks in the far-field after crosstalk removal. As far-field measurements
map the momentum space onto the sensor, the plots are labeled with the coordinates q+ and q−,



Research Article Vol. 28, No. 21 / 12 October 2020 / Optics Express 31562

but still in units of pixel. We clearly observe the presence of an anti-correlation peak and the
almost disappearance of the correlation peak.

Fig. 6. Anti-correlation (a) and correlation (b) peaks of the second-order far-field correlation
after removing crosstalk.

The same processing can be applied for the near-field measurements. The full correlation
matrix is shown in Fig. 7 without (a) and with (b) crosstalk correction. We observe that the
crosstalk along the diagonal overlays the actual signal, even after correction. As the crosstalk
contribution is of the same order as the signal, its correction is very sensitive to the estimation of
the crosstalk probabilities. A calibration at the pixel level would allow for a full correction in
future experiments. This is why in the present work, the next neighbor correlations will not be
taken into account for the quantitative estimation of the correlations. The partial suppression
of the crosstalk can also be seen in the correlation peaks of Fig. 7(c) and (d), where the bright
central peak is due to crosstalk, while the broad peak indicates correlation between photons. The
magnification factor of the optical system has been chosen in order to obtain a correlation peak
broader than the crosstalk.
Figure 8 shows the second-order correlations projected onto the x and y coordinates after

removing crosstalk in the far- (a) and (c) and near-field (b) and (d). The correlations affected by
crosstalk are set to zero on those plots. The anti-correlations in momentum and correlations in
position space are clearly visible. Those data are further used to evaluate the EPR-type inequality.

While the identification of EPR-type correlations should be ideally done on the raw correlations
G(2)raw(p1,p2), usually some additional assumptions are applied to correct for the imperfections
of the sensor. Because the detector sensitivity is limited at the SPDC photons wavelength, the
accidental and crosstalk are not negligible and have to be corrected as described. In a second
step, the corrected data from the second-order correlations in the near-field G(2)NF,corr(p1,p2) and
far-field G(2)FF,corr(p1,p2) can be either directly numerically evaluated, or, introducing further
assumption, fitted with a model of the SPDC emission. The results of the various evaluations are
summarized in Table 1. The uncertainties are derived from the confidence intervals of the fits
from which probability distributions were obtained.

4.1. Numerical evaluation of the EPR inequality

We present in detail the numerical evaluation for the x coordinates, i.e. G(2)(x1, x2) and
G(2)(qx1 , qx2 ). The treatment for the y coordinate is identical.
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Fig. 7. Second-order near-field correlation with accidentals removed, (a) full correlation
matrix and (c) correlation peak. After crosstalk correction, (b) full correlation matrix and
correlation peak (d).

Table 1. Results of the evaluation of the conditional variances

∆min (qx1 |qx2) ∆min
(
qy1 |qy2

)
∆min (x1 |x2) ∆min (y1 |y2) V(x)min V(y)min

/mm−1 /mm−1 /µm−1 /µm−1 ×10−2 ×10−2

numerical 6.3 6.6 37.2 36.2 5.5 5.8

1D fit 3.9 4.1 32.8 30.5 1.6 1.5

2D fit 3.90(3) 4.10(5) 34.4(13) 31.1(9) 1.8(2) 1.6(2)

correlation peak 3.82(5) 3.95(5) 34.3(13) 30.3(11) 1.7(2) 1.4(2)

expected 4.0 3.4 37.3 37.3 2.2 1.6
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Fig. 8. Second-order correlations in the far-field (a,c) and near-field (b, d) for the x (a,b)
and y (c,d) coordinates.

The conditional and unconditional probability density functions are estimated from the
corrected experimental data

P(x1 |x2) =
G(2)NF,corr(x1 |x2)∑
x1 G(2)NF,corr(x1 |x2)

, (30)

P(qx1 |qx2 ) =
G(2)FF,corr(qx1 |qx2 )∑

qx1
G(2)FF,corr(qx1 |qx2 )

, (31)

P(x2) =
∑

x1 G(2)NF,corr(x1, x2)∑
x1

∑
x2 G(2)NF,corr(x1, x2)

, (32)

P(qx2 ) =

∑
qx1

G(2)FF,corr(qx1 , qx2 )∑
qx1

∑
qx2

G(2)FF,corr(qx1 , qx2 )
. (33)

Examples of experimentally obtained probability distributions are shown on Fig. 9. Next, the
expectation values are given by

µx1 =
∑
x1

x1 P(x1 |x2), (34)



Research Article Vol. 28, No. 21 / 12 October 2020 / Optics Express 31565

µqx1 =
∑
qx1

qx1 P(qx1 |qx2 ), (35)

and the conditional variances are

∆
2(x1 |x2) =

∑
x1

(x1 − µx1)
2 P(x1 |x2), (36)

∆
2(qx1 |qx2 ) =

∑
qx1

(qx1 − µqx1 )
2 P(qx1 |qx2 ). (37)

Finally, the minimum inferred variances are computed by

∆
2
min(x1 |x2) =

∑
x2

P(x2) ∆2(x1 |x2), (38)

∆
2
min(qx1 |qx2 ) =

∑
qx2

P(qx2 ) ∆
2(qx1 |qx2 ). (39)

Fig. 9. Example of measured conditional probabilities for the x variable in the far-field
P(qx1 |qx2 ) (a) and near-field P(x1 |x2) (b). The variance is either extracted numerically or
using a Gaussian fit (continuous red line). The pixels affected from crosstalk are skipped
(indicated by the red asterisks)

The EPR-type correlations are identified by violating the inequality

V (x)min ≡ ∆
2
min(x1 |x2)∆

2
min(qx1 |qx2 )>

1
4
. (40)

The same procedure is applied for the y coordinate and the result is denoted as

V (y)min ≡ ∆
2
min(y1 |y2) × ∆

2
min(qy1 |qy2 )>

1
4
. (41)

The direct numerical evaluation of Vmin from the corrected measured data is sensitive to the noise
of the experiment (mainly shot-noise) but also to the accidental and crosstalk corrections. The
measured conditional probability distributions take non-zero values even far away from their
expected peak value, as can be seen in Fig. 9. This effect shifts the expectation value µx1,qx1 away
from the true one and also increases the conditional variances. Setting to zero the pixels affected
by crosstalk in the near-field correlations increases the variance of the conditional probability
distributions. As a consequence, the numerically determined values of Vmin given in the first
line of Table 1 are overestimated and the violation of the inequality is weaker. While the value
Vmin cannot be used anymore to quantitatively determine the amount of entanglement, it can
provide an upper bound on the violation. And therefore, this could not lead to a violation of the
inequality with non-entangled light.
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4.2. 1D Gaussian fitting

An alternative approach to direct numerical evaluation is to constrain the data into a set of
"reasonable" data, compatible with the expected characteristics of the light source. The shape of
the JMA from SPDC emission can be, in some conditions, approximated by Gaussian functions.
Therefore P(qx2 ), P(x2), P(qx1 |qx2 ) and P(x1 |x2) can be estimated by fitting the data with
Gaussian functions. Figures 9 and 10 show examples of fitted data. One can then extract the
variances directly from these fitted probability density functions and calculate the EPR-criterion
according to the definition of Eqs. (8) and (10). The results are shown in the second line of
Table 1 and are in agreement with the expected values derived from the experimental parameters.

Fig. 10. Example of measured unconditional probabilities for the x variable in the far-field
(a) and near-field (b).

4.3. 2D Gaussian fitting

Instead of fitting multiple Gaussians by slicing the data sets G(2), one can also directly fit
G(2)NF,corr(x1, x2) and G(2)FF,corr(qx1 , qx2 ) with 2D Gaussian functions (and similarly for y), as shown
on Fig. 11. It is to be observed that we only assume the correlations to be well-approximated by
2D Gaussians with variances ∆2x+,x− and ∆2qy+,qx− as fitting parameters, but we don’t impose the
quantum state to follow the double Gaussian model [20]. The conditional variances are then
related to the fitting parameters by [21]

∆
2(x1 |x2) =

2∆2x+∆2x−
∆2x+ + ∆

2
x−
, (42)

∆
2(qx1 |qx2) =

2∆2qx+∆
2
qx−

∆2qx+ + ∆
2
qx−

. (43)

The uncertainties on the values of Vmin can then be derived from the fits confidence intervals.

4.4. (Anti-) Correlation peaks

Finally, a quick way to estimate the strength of the (anti-) correlations is to consider the projections
onto x and y of the (anti-) correlation peaks G(2)FF(q+) and G(2)NF(ρ−) that are shown on Fig. 12. The
width of the fitted Gaussian are respectively σx+,σy+ and σqx+,σqy+. They can be related to the
conditional variances under the assumption that the correlations, respectively anti-correlations,
appear only along the − and + coordinates. Equivalently, the correlations in the near-field are
assumed to be expanded very far along the + coordinate (i.e. σx+,σy+ →∞) and similarly in the
far-field for the − coordinate (σqx+,σqy+ → ∞). Graphically in Fig. 8, the diagonals (b and d)
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Fig. 11. The second-order correlations in the far-field (a) and near-field (b) are directly
fitted with 2D Gaussian distributions and the variances are extracted from the fits.

and anti-diagonals (b and d) would thus extend to infinity. The conditional variances are then
related to the width of the peaks G(2)(x−) and G(2)(qx+) by

∆(x1 |x2) ≈
√
2σx−, (44)

∆(qx1 |qx2) ≈
√
2σqx+ (45)

and similarly for the y coordinate.

Fig. 12. Anti-correlations peaks (a) of the second-order correlations in the far-field and
correlation peaks (b) from near-field measurements alon x and y directions.

5. Sensors comparison

The previous results show the capacity of SPAD array sensors to detect spatio-temporal
coincidences between correlated photon pairs. Hence they provide an alternative technology to
ICCD and EMCCD cameras. Comparing different technologies is strongly dependent on the
targeted applications. This is why we introduce here figures of merit for selected applications,
in order to infer the potential of various sensors. For this purpose we estimate the relative
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effective efficiencies for detecting coincidences, including PDE and duty cycle, for the following
detectors: the SPAD array used in this work, a commercial gated SPAD array (MPD SPC3), a
state-of-the-art ICCD (Andor iStar sCMOS 18∗ -A3) in full frame or binning modes and high
efficiency scanning superconductor single photon detectors (Single Quantum EOS).
We specifically consider the detection of spatio-temporal correlations between n photons

emitted from a continuous source of light and we assume a regime of sparse photon detections.
The first relevant criteria are the spatial and temporal resolutions. The spatial resolution is
determined by the number of pixel Np. The size of the pixels, or pixel pitch ∆p, is here of
secondary importance, as the pixel can be fit to arbitrary dimensions by optical magnification
(within the restrictions of the optical setup). The temporal resolution is determined by the smallest
accessible time-bin ∆t, usually given by the detector jitter or the gating time. The number of
accessible time-bins is Nt. In contrary to the spatial resolution, the temporal resolution cannot be
changed by a stationary linear optical setup. For single (or few pixel detectors), spatial scanning
is required, while for gated detectors, temporal scanning is needed. In general, sensors with
both spatial and temporal resolution have access to a pixelized volume of space-time of size
Nst = Np × Nt, the spatio-temporal resolution. The measurements are repeated at a frame rate ν
and each frame gives access to the volume Nst. An important additional parameter is the photon
detection efficiency PDE including fill factor. The PDE is wavelength dependent, but we only
consider the peak PDE across the spectral range. In order to concentrate on the fundamental
limitations of different technologies, other characteristics, as noise or crosstalk will not be taken
into account in the following estimations. Also we assume a negligible time for the scanning, in
order to investigate the intrinsic limitation of the sensors only.
The accessible volume Nst is a subset of the total space-time volume of interest that has to

be measured, and thus both, spatial and temporal scanning may be required in general. The
acquisition time is hence inversely proportional to Nst or to an equivalent quantity for high-order
correlations.

5.1. Single photon detection

At first we address the problem of building the spatio-temporal histogram of single photon
detection N(®r, t) that corresponds to the intensity distribution I(®r, t), or in other terms the first
order correlation function of the field 〈Ê−(®r, t)Ê+(®r, t)〉. This is the case for wide-field LIDAR or
fluorescence lifetime imaging microscopy for instance.

In order to compare various detectors we estimate the time needed to scan through a targeted
space-time volume Ntarget

st = Ntarget
p Ntarget

t , defined by a spatial resolution of Ntarget
p and a temporal

resolution, in the nanosecond range, of Ntarget
t time-bins. The time required to scan this volume

is hence proportional to Ntarget
st /Nst/ν, or furthermore, by taking into account the PDE to

Ntarget
st /Nst/ν/PDE. Thus, two figures of merit are relevant for spatio-temporal single photon

detection, a quantity proportional to the acquisition time

M1 =
1

NstνPDE
(46)

that should be minimal and ∆t that defines the smallest detectable time interval.

5.2. n photons in coincidence

We extend the previous reasoning to the case where n photons are expected to reach the sensor
simultaneously (within a time window smaller than the sensor’s temporal resolution). The
relevant events are therefore given by n spatial positions and one time coordinate only. This
reflects a n-order correlation function 〈Ê−( ®r1, t) · · · Ê−( ®rn, t)Ê+( ®rn, t) · · · Ê+( ®r1, t)〉. Here, the
targeted volume is given by Ntarget

st = (Ntarget
p )nNtarget

t and the accessible volume is Nst = (Np)
nNt.
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Hence the figures of merit are
M∗n =

1
(NpPDE)nNtν

(47)

and ∆t.

5.3. n photons at arbitrary times

In the most general case, any possible n-fold coincidence between any position and time, should
be registered. This is formaly given by the full nth order correlation function

Gn (
®r1, t1, . . . , ®rn, tn

)
= 〈Ê−( ®r1, t1) · · · Ê−( ®rn, tn)Ê+( ®rn, tn) · · · Ê+( ®r1, t1)〉. (48)

The figures of merit are here
Mn =

1
(NstPDE)nν

(49)

and ∆t.
Table 2 shows the characteristics of the selected sensors together with the estimated figures of

merit for one-photon detection (M1), two-photon detection at arbitrary times (M2), two photons
in coincidence (M∗2) and three photons at arbitrary times (M3). The values are normalized to the
values for the SPAD used in the present work that are M0

1 = 5.7× 10−11,M0
2 = 2.8× 10−15,M0∗

2 =

7.3 × 10−13 and M0
3 = 1.4 × 10−19. Hence they are proportional to the ratio of acquisition times

and therefore smaller is better.

Table 2. Figures of merit of selected single photon sensors.

Sensor Np Nt ν/Hz ∆t/ns PDE/% M1 M2 M∗2 M3

This work, SPAD 32 × 32 256 106 0.21 8 1 1 1 1

ICCD, full 2560 × 2160 1 50 2 40 152 1.4 6 × 10−3 0.01

ICCD, binning 512 × 512 1 4008 2 40 788 158 0.6 32

Gated SPAD array 64 × 32 1 96000 1.5 1.5 5430 3 × 106 1 × 104 2 × 109

Single pixel 1 833 8 × 107 0.015 90 0.3 8 25 219

We can observe that SPAD arrays and single pixel detector trade the high number of pixels of
ICCD for high acquisition rates. In all the cases, the present SPAD array is much faster than a
gated SPAD, thanks to its higher speed and high number of time-bins, while offering a higher
temporal resolution. It also competes quite favorably with scanning single photon detectors, that
are of advantage only when very high temporal resolution is required. The comparison with
ICCD is less clear. For high spatial resolution, the high number of pixels of the ICCD gives
it a clear advantage to measure higher order correlation measurements. For moderate spatial
resolution however, the present sensor competes favorably, thanks to its high space-time volume
Nst.

6. Conclusion

In this work we exploit the capacity of a recently developed 32x32 pixel CMOS SPAD array
sensor to time-tag each individual photon with high temporal resolution. This allows us to
measure the emission of spatially entangled photon pairs from SPDC in the near- and far-field.
Anti-correlations in the far-field and correlations in the near-field are observed. From the
experimentally measured probability distributions, the violation of an EPR-type inequality is
demonstrated. Interestingly the inequality is violated even without fitting the data with a specific
model. When assuming Gaussian shape for the probability distributions, the obtained value
for the variances are in good agreement with the expected ones derived from the parameters of
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the photon source. Those results demonstrate the ability of CMOS SPAD arrays to effectively
measure simultaneously spatial and temporal correlations between photons. Estimated figures of
merit show that SPAD arrays compare favorably with other technologies. Future developments
will aim at increasing the number of pixels on the one side, and at achieving higher acquisition
speed, for instance by event-based technology. SPAD arrays then could become an effective tool
for practical implementations of quantum imaging schemes.
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