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Abstract

Mass estimates of plastic pollution in the Great Lakes based on surface samples differ by orders of magnitude from
what is predicted by production and input rates. It has been theorized that a potential location of this missing plastic
is on beaches and in nearshore water. We incorporate a terrain dependent beaching model to an existing
hydrodynamic model for Lake Erie which includes three dimensional advection, turbulent mixing, density driven
sinking, and deposition into the sediment. When examining parameter choices, in all simulations the majority of
plastic in the lake is beached, potentially identifying a reservoir holding a large percentage of the lake’s plastic which
in previous studies has not been taken into account. The absolute amount of beached plastic is dependent on the
parameter choices. We also find beached plastic does not accumulate homogeneously through the lake, with eastern
regions of the lake, especially those downstream of population centers, most likely to be impacted. This effort
constitutes a step towards identifying sinks of missing plastic in large bodies of water.
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Introduction
Plastic is a ubiquitous source of pollution in various eco-
logical compartments of the world’s oceans and lakes.
Historically, researchers have focused on modeling trans-
port of plastic in the open ocean surface and lakes [1, 2].
However, mass estimates of surface plastic based on sam-
pling efforts are orders of magnitude lower than what is
predicted by input estimates [3]. Locations of this missing
plastic have been proposed, such as suspended deeper in
the water column, trapped in the sediment, or that it is fil-
tered out by rivers and does not make it to large bodies of
water [4–8] . However, one of the proposed explanations is
that this missing plastic remains trapped in coastal zones
for extended periods of time, potentially beaching and
resuspending before eventually moving to off shore waters
[9–12]. Around the world, plastic has been abundantly
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observed on coastlines, serving as another indicator of
the coastline as a proposed reservoir for plastic [13–15].
Coastal zones are also considered to be a major generator
of microplastics as the mechanisms present on shorelines
are more likely to cause fragmentation [16, 17].
In the Great Lakes, much attention has been devoted to

studying the presence of plastic transported in the water
and deposited in sediment [7, 8, 18], and these mecha-
nisms have been included in large-scale models for a more
complete representation of plastic behavior [2, 19, 20].
Like in the global oceans, plastic has been found on the
beaches of the Great Lakes, but specific beaching mech-
anisms have not been included in any large-scale hydro-
dynamic models for the lake [13, 18]. Previous modelling
efforts in Lake Erie, which include sediment deposition,
have shown significant accumulation of particles in the
shallow nearshore sediment. This underlines the need to
include near-shore processes, such as beaching, in these
models for a more accurate understanding of nearshore
plastic accumulation [19].
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Surface samples taken in the Great Lakes have shown
high plastic concentrations, which are even higher than
average concentrations in North Atlantic and South
Pacific [21–23]. Of the Great Lakes systems, Lake Erie
often reports some of the highest surface plastic concen-
trations [20, 21, 23, 24]. Lake Erie is also an important
source of fresh water for the region, and plastic has been
found in tap water originating from the lake [25].
The existing work on the beaching of plastic is dif-

ficult to compare because of the variety of approaches
taken. Beaching research began with a focus on sampling
to understand concentrations [13–15]. Hinata et al. [10]
expanded on this work to estimated residence times of
plastic items on a beach. While the study only considered
one beach, it showed various types of plastic items have
beach residence times of 69 - 273 days by marking and
tracking beached items on the beach over the course of
1 - 2 years.
Preliminary modeling work of beached plastics has not

accounted for resuspension [26, 27]. Recently, Onink et al.
[11] systematically tested parameterizations for plastic
beaching and resuspension on a global scale, identify-
ing coastlines and nearshore water as significant oceanic
plastic reservoirs. Currently, there is no modeled plastic
beaching work in the Great Lakes. While beaching mod-
eling work specific to plastics is not extensive, we can
draw from other fields of particle modeling such as oil
beaching [28]. Some observations indicate that different
beach types have an impact on beaching and retention of
various particles, where areas of more sediment accumu-
lation are more likely to trap particles compared to steep
rocky beaches which are less likely to retain plastic [14,
29]. Samaras et al. [30] modeled the behavior of beaching
oil droplets and quantified the retention behavior of nine
different beach types. However, no similar work has been
done to date for microplastic resuspension.
We include our beaching model within a large-scale

hydrodynamic model to capture the combined effect of
the beaching and open water mechanisms. In this work
we incorporate a beachingmodel from [11] to a previously
used hydrodynamic model for Lake Erie [19, 20]. The
existing Lake Erie model accounts for three-dimensional
advection, diffusion, polymer density and size, and sed-
iment deposition. Additionally, we use a high resolution
shoreline classification for the lake to assign terrain spe-
cific beaching probabilities. Together this allows us to
predict areas of plastic accumulation along the coastline
and derive a first pass estimate for the amount of plastic
on the beaches of Lake Erie.

Methods
The hydrodynamicmodel was previously used in [19], and
a two dimensional version was used in [20]. We apply
to model to Lake Erie. Lake Erie is the shallowest of the

Great Lakes, with an average depth of 19 m [31]. The
persistent current in Lake Erie flows west to east with
inflow in the west from the Detroit River and outflow in
the east to the Niagara River [32]. In the x − y direc-
tion, particle positions are advected given the dynamical
system:

dx
dt

= u(x, y, z, t)

dy
dt

= v(x, y, z, t)

where u, and v, are the interpolated horizontal x-
direction, and y-direction velocities, respectively. We
assume smooth behavior of currents below grid resolu-
tion, which allow for interpolation to the particle location.
Here we use cubic interpolation in space, and third-order
Lagrange interpolation in time. We solve the system using
a Runge-Kutta 4th order numerical scheme (RK4) with
timesteps of one hour, and the code is implemented in
Matlab.
In the vertical, or z, dimension we also model diffusion

and density driven sinking in addition to advection. In the
z-direction, the surface is set to z = 0 and greater depths
have negative values. The vertical position is given by
the Milstein solution [33] to an advection diffusion PDE
model [34]. This gives z as

z(t + δt) =z(t) + (wa + wb)δt + 1
2
K ′(z(t))[�W 2 + δt]

+ �W
√
2K(z(t))

where wb is the rise velocity of the particle, wa is vertical
water velocity, K(z, t) is the vertical turbulent diffusivity,
and �W is a Gaussian random variable taken from a dis-
tribution with mean zero and standard deviation

√
δt for

timestep δt = 5 sec. If a particle moves below the depth of
the lake, we consider it deposited and remove it from the
system after recording the location.
The rise velocities, wb, were calculated using a modified

version of Stokes’ Law to allow for particles of irregular
size [35]. With this method, we have a way to calculate
sinking velocities for a range of particle sizes, densities,
and shapes and also account for changes in sinking veloc-
ity due to temperature variations in lake. This method has
also been previously used to model microplastics sink-
ing velocities by [36]. Implementing sinking velocity using
Stokes’ Equation for particles of irregular shape [35], the
velocity is given by

wb =
(ρp − ρw

ρw
gw∗ν

)1/3
,

where ρp is the density of the particle, ρf is the density of
the water, ν is the kinematic viscosity of the water, and w∗,
the dimensionless sinking velocity, is given by

w∗ = 1.71 × 10−4D2∗
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with

D∗ = (ρp − ρw)

ρwν2
gD3

n.

Here Dn is the equivalent spherical diameter, or the
diameter of a sphere of the same volume as the particle of
irregular shape. To set bounds for Dn, we first define the
Corey Shape Factor (CSF) as

φ = c√
ab

where a, b, c are the longest, intermediate, and shortest
lengths of the particle respectively. We assume b = c,
implying it is symmetric in size along two of its axes. With
this assumption,

φ =
√

c
a

(1)

Assuming the irregular particle is an ellipsoid with dimen-
sions a, b, c, and recalling Dn is the diameter of a sphere
with the same volume as the particle of irregular shape:

4
3
π

(Dn
2

)3 = 4
3
π
a
2
b
2
c
2
,

or again assuming b = c and solving for Dn.

Dn = 3√ac2

Lastly, substituting Equation 1 into the above, we have
Dn = aφ4/3.
An irregular particle presents a worst case scenario for

Dn, as for a perfectly spherical particle Dn is simply the
diameter, so we assume an irregularly shaped particle to
calculate a lower bound on Dn. To find this lower bound,
we use values for CSF from literature, specifically φ = 0.6
which was estimated as the mean CSF for a fragment [37].
Fragments make up 31% of microplastics found in water
sampling, the second most common shape after fibers,
which represent 48.5% of sampled shapes by count [38].
We do not model fibers because the shape is too irregular
to calculate sinking velocity or model as a passive tracer.
Additionally, while fibers are common by count, they have
a low mass compared to particles are unlikely to account
for a significant portion of missing plastic mass [37].
Plastic sample sizes are typically reported as the length

of the longest dimension, which here is equivalent to a.
To generate a range of values for Dn, we randomly gen-
erate numbers uniformly distributed between Dn(min) =
amin(.6)4/3 and Dn(max) = amax for whatever range parti-
cle size (amin to amax) we wish to model. Here we model
particles with longest dimension from 1.00 mm to 4.75
mm. It is possible that uniform may not be the best dis-
tribution for particle size, as sampling efforts tend to find

higher quantities of particles at smaller sizes [37]. Investi-
gating different distributions for size could be a potential
improvement in future work.
To include beaching, we follow the approach of [11]. We

first identify all particles within a 2x2 km grid cell that bor-
ders the coastline of the lake as nearshore. The probability
of beaching for any nearshore particle is given as

Pib = 1 − exp (−dt/Ti
b),

where dt is the time step and Ti
b is the characteristic

beaching time at that shore point i. Once a particle is
beached, the probability of resuspension is given by

Pir = 1 − exp (−dt/Ti
r),

where Ti
r is the characteristic residence time for plastic on

the beach for that beach type.
We expand the beaching model to include beach type

dependence. To classify beach types, we interpolate a
beach type data set to our model grid (Fig. 1).We clas-
sify seven different beach types of sand beach, artificial,
coarse grain flat coast, coastal wetland/riparian zone, N/A
– mixed beach, rocky cliffs/bluffs, and sediment scarp
(Table 1). These beach types were selected because they
were the classification types in the data set, taken from
[39]. To include the beach type dependence in the model,
we choose Ti

b and Ti
r values based on that beach type at

shore point i. The beaching probability does not depend
on changes in the local hydrodynamics, but the stochas-
tic nature of the parametrization is intended to account
for this.
There is a lack of research on beaching behavior for

plastics specifically, so we use ratios, γ i
r , of the residence

time of oil droplets on sand beaches to the residence times
for other beach types in the Mediterranean Sea [30]. The
beach types in this paper do not directly correspond to
the classifications in our data set, so they were paired as
accurately as possible, in some cases using satellite images
of shorelines to identify characteristics (Table 1). We then
use the characteristic residence time, Tsand

r for plastics on
a sand beach from [10] to predict residence times, Ti

r =
γ i
r ∗Tsand

r , for all other shore types. We make the assump-
tion for all beach types that the characteristic beaching
time is dependent on the reciprocal of the residence time
ratio, where Ti

b = γ i
b∗Tsand

b with γ i
b = 1/γ i

r . This assump-
tion is made because if a certain beach type has a high
probability of beaching, it is also likely to trap the plastic
leading to a long residence time. Conversely, beach types
with a low probability of beaching are expected to have a
low residence time. This is similar to the approach by [11],
where resuspension times were varied using a ratio for the
sandiness of a coastline.
To examine the sensitivity of the model we also run a

version with no beach type dependence (NBD), meaning
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Fig. 1 Beach type classifications interpolated to model grid for Lake Erie

a particle has the same probability of beaching or resus-
pending at any shore point. In the NBD model, the values
for Tb and Tr are fixed for the entire lake, so Ti

b is either
1, 2, or 5 days depending on the run, and Ti

r = 69 days.
These values are constant for all i. This was the lower
range of observed residence time for plastics on a beach
based on field observations [10], and was also a value used
in previous modeling work [11]. The choices for Ti

b are the
lower range of values used in modeling work in the worlds
oceans [11]. They were chosen to reflect the lower overall

Table 1 Beaching time and residence time ratios to sand beach
for beach type classifications

Erie
Classification
[39]

Samaras
Classification
[30]

Beaching
time ratio
to sand
beach γ i

b

Residence
time ratio
to sand
beach γ i

r

Sand beach Sand beach 1 1

Artificial Rocky shore 4/3 3/4

Coarse grain flat
coast

Sand and gravel 1 1

Coastal wetland/
riparian zone

Sheltered marsh/
mudflat

1/5 5

N/A – Mixed
beach

Sand and gravel 1 1

Rocky cliffs/ bluffs Seawall,
concrete, ect.

Inf 0

Sediment scarp Exposed
headland

24 1/24

time scales in the smaller system of the lake, as compared
to the ocean.
For all models, we prevent nearshore particles from

being deposited. This is done to isolate the effect of beach-
ing because as depth goes to zero, we cannot differentiate
between beaching and deposition, and deposition is per-
manent in the model. If model dynamics cause particles to
move below the depth in a nearshore cell, they are reset to
above the lake floor by a distance of 5% of the lake depth
in that spot. We do not anticipate near shore deposi-
tion would dramatically impact results, because we model
floating polymers that are less likely to sink in the lake.
To input plastic into the model, we release a particle

from every nearshore grid point, for a total of 492 par-
ticles, and assign each particle a weight representative of
the nearshore population at the release point. Nearshore
population data comes from [2], and this was also the
same method used in [19, 20]. The nearshore population
is calculated using US and Canadian census data of postal
regions along the lake. We release particles every 12 hours
for the first two months of each run. This is done because
the modeled distribution of coastal and beached plastic is
sensitive to input, and this way we can track the evolution
of the distribution without the influence of continuously
released plastic. This was also the same approach taken by
[11]. These simulations are run with particles of polyethy-
lene (PE) which is positively buoyant, with initial densities,
ρp, randomly sampled from a uniform distribution from
917 to 965 kg/m3 [40]. We choose to model polyethylene
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because it is positively buoyant, meaning unlike a nega-
tively buoyant particle, it will not sink shortly after enter-
ing the lake. Floating particles have the opportunity to
experience beaching and nearshore dynamics. Polyethy-
lene is also very common; it makes up about 32% of all
produced plastic, more than any other single polymer [41].
We use interpolated temperature, diffusivity, and cur-

rent output from NOAA’s Lake Erie FVCOM hydrody-
namic model ran using forcing files from 2012-2014 [42].
FVCOM uses an unstructured grid to fit smoothly to
shoreline. For our use, the FVCOM output was linearly
interpolated to a regular 2 km spaced grid to reduce com-
putational cost of interpolation within the model. A 2
km grid has been previously used for plastic transport
mesh size in Lake Erie [19, 20]. FVCOM is the opera-
tional hydrodynamic model used by NOAA Great Lakes
Environmental Research Laboratory (GLERL). The den-
sity and viscosity of the water, ρw and ν, are calculated
using the state equations for water with salinity zero and
temperature output from FVCOM [43].

Results and discussion
We first ran model simulations with no beach type depen-
dence (NBD) for a year each, over three runs comparing
different parameters. The simulation length was chosen to
balance long termmodel behavior and computational cost
while comparing parameter choice. The three choices of 1
day, 2 days, and 5 days for the parameter Tb in the NBD
model had a significant effect on the number of beached
particles (Fig. 2). With each choice of beaching parame-
ter, the beached fraction increased linearly over the first
two months, and then after the particle input ended the
beached fraction slowly decreased over time. Lower Tb
values reduce the total beached fraction, but the gen-
eral qualitative behavior remained the same. Because the

general behavior is the same for all values of Tb, we choose
Tsand
b = 2 days for the beach type dependence model runs

as it is a intermediate choice. The model with beach type
dependence is run for three years to capture more long
term beaching behavior. We chose three years for the run
length because Lake Erie has a hydraulic residence time of
2.7 years [44]. One choice was used for Tsand

b in the three
year run to limit computational cost.
We define four reservoirs particles can be in. These

reservoirs are beached, deposited, offshore, and
nearshore, where nearshore are particles in the adjacent
2 km x 2 km grid cell to shore (Fig. 3). Beached particles
make up a majority of all particles after a year long simula-
tion, 62.7% for the model with beach type dependence and
71.9% without beach type dependence. As for differences
between the two models, there are slightly fewer beached
particles in the beach dependence model because there
is, on average, a lower probability of beaching across the
lake of .058 versus .061 per three-hour timestep. There
is no accumulation of nearshore deposited particles that
has been seen in other modeling work because there is no
deposition in nearshore grid cells [19]. However, of the
reservoirs, the number of deposited particles is the only
one with monotonic growth, as it is the only reservoir
particles cannot move out of. In this model, deposition is
permanent, while in reality particles may have the chance
to resuspend. This is a deficiency of the model both as it
does not reflect lake dynamics, and if the model were to
run indefinitely, all the particles would eventually be in
this reservoir.
Additional motivation for a more sophisticated sed-

iment resuspension model comes from examining the
distribution of particle sizes remaining in the system. Par-
ticle density and size begin with uniform distributions.
When considering floating, non-beached particles, we see

Fig. 2 Comparison of influence of three values of Tb on the fraction of beached particles for the model run with no beach type dependence (NBD). Residence
time for plastic on the beach was fixed at Tb = 69 days for all three runs
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Fig. 3 Particle locations over one year for both beach type dependence (BD) and no dependence (NBD) with Tb = 2 days

after the three-year run a distinct preference for larger
particles to remain in the system (Fig. 4). This is likely
due to smaller particles being closer to neutrally buoyant,
and thus more likely to move down the water column and
ultimately be deposited. This is also consistent with obser-
vations by [45], who found fewer smaller microplastics
than expected in surface samples, which could be due to
increased susceptibility to vertical transport mechanisms.
This skew towards larger particles is less noticeable among
the beached particles, where the distribution of the diam-
eters is closer to uniform. This is likely because particles

can accumulate on the beach where their size and rise
velocity becomes meaningless in the scope of our model,
and they can not be deposited. Within our model, being
beached protects particles from the mechanisms that can
introduce a bias towards larger particles. It is possible that
if deposition was not an ultimate fate, the size distribution
would not be as skewed at the end of the run.
In nearshore water we have removed deposition and

replaced it with beaching. However, in the rest of the lake
as it is currently implemented, particles are permanently
deposited if they hit the lake bed. We also do not account

Fig. 4 Distributions of particle equivalent spherical diameter, or the diameter of a sphere of the same volume as the particle of irregular shape (left) and calculated
rise velocities (right) in the system for beached and floating particles after a three year run. A floating particle has a positive rise velocity
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for resuspension from the sediment, which causes the
number of deposited particles to increase monotonically.
This reduces the number of particles active in the system
over time. In a real lake, plastic may resuspend, or move
along the lake floor. Amore sophisticated model for depo-
sition would ideally incorporate strategies used in this
beaching model such as lake bed type specific chances of
deposition and resuspension, or consider near-bed veloc-
ities and particle transport along the lake bed [46, 47].
However, such data is currently not available and would
require additional laboratory and field experiments.
Our model does not account for mechanisms that can

remove positively buoyant plastic from the surface, but
these mechanisms would also increase depositions. In our
model, this would likely have the effect of increasing depo-
sition and reducing the amount of beached plastic. Posi-
tively buoyant plastics have been found in samples in both
nearshore and deep sea sediment [48]. This is potentially
because of biofouling, or the buildup of organic matter
and organisms [49]. Biofouling can increase the density
of a particle, causing it to sink over time [36, 49, 50].

The role of biofouling could be studied in a future model
iteration by combining the current hydrodynamic model
with a marine ecosystem model, such as with [51]. The
amount of beached plastic could also be influenced by
fragmentation, which we do not account for in our model.
Fragmentation is the breakdown of the size of plastic par-
ticles, often caused by photo-degradation and abrasion
[52]. The mechanisms that cause fragmentation can be
stronger in shallow, nearshore water, potentially causing
fragmentation to have an increased impact on beached
plastic [9].
Initially when implementing the beach type dependent

model, we hypothesized that beach type would be the pre-
dominant factor impacting plastic accumulation. It does
have an undeniable impact, especially in regions with a
high probability of beaching, such as wetlands. However,
we still see many similarities between accumulation pat-
terns for both the beach dependence and no dependence
models (Fig. 5). These similarities can likely be explained
by shore geometry and advection patterns, which are con-
stant through both models. Additionally, some impact

Fig. 5 Number of particles beached on the North and South shores for the model with and without beach type dependence. For the model with beach type
dependence, probability of beaching is shown on the x-axis. For themodel with no beach type dependence, probability of beaching per three hour timestep is .058
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from beach type may indirectly be included in the no
dependence model. Regions of high sediment accumula-
tion (i.e. sandy beaches or wetlands) have high probabil-
ities of beaching in the model, but also the lake has the
physical properties that made this specific beach type in
the first place over a much longer timescale, which could
also allow for plastic accumulation.
The predominantly west to east currents, caused by the

prevailing wind and outflow on the east side of the lake,
have a large impact on patterns of accumulation and areas
with the highest concentrations of beached plastic in the
lake. Plastic tends to be pulled towards the eastern side
of the lake, which causes plastic in this region to come
from all over the lake. Plastic beached at the western side
of the lake tends to originate almost entirely from within
that region of the lake. When we consider the amount
of particles beached by count, this behavior is fairly uni-
form across the lake, i.e. as we move east, the percentage
of beached plastic that originated within that same region
drops (Fig. 6). Specifically, in the western most region

of the lake (Region 1 in Fig. 6), 100% of beached plastic
comes from within that region. Contrasting with this, the
eastern most region containing Buffalo, NY (Region 10 in
Fig. 6) produced only 41% of the plastic by particle count
beached there.
However, the impact of population centers on the lake

can disrupt this trend. If we weight the particles by the
nearshore population where they originated, the percent-
age of plastic in the Buffalo, NY (Population 1.1 million)
area that originated internally rises to 74% (Fig. 7) [53].
Additionally, after weighting particles by population, the
percentage of plastic in the Buffalo region originating
from Cleveland, OH (Population 2.0 million) rises from
2% to 8%. Within the Cleveland region itself (Region 4 in
Fig. 6), the percentage of internally produced plastic rises
from 63% to 91% after weighting by population. The effect
of population centers and prevailing currents can work
together to impact regions down current from population
centers. In the region immediately to the east of Cleveland
(Region 6 in Fig. 6), 54% of the beached plastic originated

Fig. 6 Percentage of beached plastic in a region that originated internally. Top: percentage by particle count, bottom: percentage with particles weighted by
population at origin point. Numbers in top figure correspond to region number
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Fig. 7 Origins of beached particles in Cleveland (Region 4) and Buffalo (Region 10). Left: percentages by particle count, Right: percentages weighted by
population at particle origin point

in the Cleveland region when weighted by population. It
is also possible that the beach types across these regions
could impact accumulation patterns (Table 2). The coastal
wetland beach type only account for 8% of the shoreline in
the lake, but holds 29% of beached plastic. These regions
likely trap plastic that would otherwise be transported

Table 2 Portion of the shoreline each classification makes up
and what portion of beached plastic is beached in that type
across the lake

Beach type Portion of
shoreline

Portion of
beached plastic

Sand beach .15 .09

Artificial .38 .33

Coarse grain flat coast .11 .21

Coastal wetland/
riparian zone

.08 .29

N/A – Mixed beach .04 .06

Rocky cliffs/ bluffs .05 0

Sediment scarp .17 .004

out of that region, and may drive accumulation in the
regions they are located such as the western end of the lake
(Region 1) or the north east coast (Region 9). Conversely,
sediment scarp makes up 17% of the shoreline, but only
holds .4% of beached plastic. This may prevent regions
with sediment scarp from accumulating self produced
plastic, and instead offload it to other regions.
We compare our three year run results, ending in 2013,

to the one published beach sample data for Lake Erie that
is available in the literature with samples from 2008 [13].
To compare, we normalize our model concentrations and
sample concentrations by dividing each by the sum of con-
centrations of that type (Fig. 8). When considering our
model ran with beach type dependence, we see both the
highest sample concentration (Presque Isle) and the low-
est sample concentration (Port Stanley) agree with the
locations of the highest and lowest model concentrations.
However, there are some faults with this comparison.
The sample locations were all classified as sandy when
reported, however the model only classifies shore type
down to the grid cell, which is 2 km by 2 km, and does
not allow for high enough resolution to capture the full
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Fig. 8 Comparison to 2008 samples [13] for 2012 with no beach type dependence (NBD) and 2012-2014 with beach type dependence (BD). Model classifications
of beach type and sample locations shown on the inlaid map

shore complexity. Thus, we see that our model only clas-
sifies two of the sample locations as sandy. Additionally,
it is especially difficult to compare beached plastic sam-
ple data to model results. The beach samples used here,
and in general, are normally only taken on sandy beaches.
As this is only one beach type, we do not receive data on
concentrations for other types to examine model behav-
ior compared to samples in other terrain. Additionally,
sand beaches are most likely to be used for recreation,
and consequentially more likely to be the site of grooming
or trash pickup efforts, which can skew samples collected
there. Ideally, the model could be improved by validating
with more, taken at regular spacial intervals around the
lake to account for all beach types, rather than just sandy.
In addition, regularly revisiting beach sites would provide
greater insight into the temporal variability of samples
concentrations.

Conclusions
In the world’s lakes and oceans plastic mass estimates
based off surface sampling differ by multiple orders of
magnitude from what is predicted by input estimates,
indicating large quantities of missing plastic that are not
present at the surface. In the oceans, it has recently been
proposed that nearshore beaching plastic is the predomi-
nant location of this missing plastic [11, 54–57]. Addition-
ally, previous modeling work for Lake Erie has shown high

accumulation of plastic in the sediment in grid cells along
the coast, further motivating the inclusion of beaching in
the model [19].
Here we model particle beaching within the scope of

a three dimensional hydrodynamic model, as the first
work for the Great Lakes to do so. Additionally, this is
the first large-scale beaching model to include specific
plastic beaching probabilities for multiple beach types
from broad morphological typologies. The total amount
of beached plastic is sensitive to parameter choice for
characteristic beaching time, Tb, so it is difficult to draw
any definitive conclusions about what percentage of plas-
tic litter we expect to be beached in the lake. However, the
general accumulation behavior did not show a high depen-
dency on parameters, at least for the parameters tested
here. For all the parameter choices we considered, the
majority of plastic in the system is beached.We also found
that besides shore type, other factors such as advection
and shoreline geometry impact accumulation patterns in
the lake. We also found that as one moves east across the
lake, there is more impact from input from all over the
lake, while at the western most side of the lake, 100% of
beached plastic is internally produced. We did find that
population centers disrupt this general west to east accu-
mulation pattern by causing higher accumulation in their
regions, or regions downstream. We would expect com-
parable results for a similar body of water such as Lake
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Ontario which has similar size, shape, and prevailing cur-
rents as Lake Erie [31]. However, local flow and beach
characteristics along with the distribution of population
centers can influence beached plastic accumulation.
The parameters used in our model could be improved

by additional experimental research on plastic beaching.
Additionally, model beaching results are difficult to vali-
date because beach samples often do not reflect the true
amount of plastic that is likely to have accumulated. As is
the case for Lake Erie, beach samples tend to be taken on
sandy beaches [13]. In addition to being unable to com-
pare across beach types, sandy beaches are often used
for recreation, and litter is typically routinely removed by
grooming or pickup efforts, skewing down the amount
of plastic reported in these locations [18]. A sampling
effort that took regularly spaced samples around the lake,
regardless of beach type, could provide better data for
model validation [14].
Beaching plastic results are also heavily dependent

on input data, as compared to other plastic modeling,
because land-based plastic enters the system directly at
the beaching location. In the worlds oceans, land-based
plastic is considered the dominant source of plastic pollu-
tion [58]. Additionally, while we include population based
plastic input from around rivers, we do not specifically
model river input as a point source, but rather distribute
this input along the coastline near the river mouth. This
has the potential to impact accumulation patterns near the
river mouth. Wastewater treatment plants (WWTP) are
also understood to be a source of microplastics [60, 61].
Additionally, we do not account for plastic released within
the lake from fishing or shipping [18]. With a more
encompassing input data set, we could likely improve
our beaching model and further understand the most
impacted areas.
While future work can expand on our findings here,

this serves as preliminary model of beached microplastics
in Lake Erie. We find that while our parameter choices
were uncertain, for the parameters we tested the general
behavior of the plastic was similar, with a majority of plas-
tic being beached. The model used here indicates that
accumulation in the lake is very dependent on advection
patterns, with some impact from shoreline geometry and
population centers. In future work we hope to be able
to refine parameter choices and include a more complex
deposition model.
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