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Abstract

Southern Africa is the region most affected by HIV globally. In South Africa, for example, the
prevalence of HIV reaches 17% among adults. In the early 2000s, the roll-out of antiretroviral
therapy (ART), a non-nucleoside reverse transcriptase inhibitor (NNRTI) and two nucleoside
reverse transcriptase inhibitors (NRTIs), had a dramatic impact on decreasing mortality
related to acquired immunodeficiency syndrome (AIDS). However, the recent emergence of
resistance to NNRTI threatens the long-term efficacy of such regimen. As a response, a new
ART first-line regimen is introduced in several countries of Southern Africa, where the NNRTI
drug is replaced by an integrase strand transfer inhibitor (InSTI) drug, called dolutegravir
(DTG). DTG has a high genetic barrier to resistance, is highly effective, well tolerated and
affordable in resource-limited settings. In this thesis, I develop mathematical models aimed
at characterizing different aspects of the dynamics of HIV drug resistance in Southern Africa.

In Chapter 1, I give a brief timeline of the HIV-epidemic in Southern Africa. I then introduce
basic concepts on HIV, ART, and HIV drug resistance. I present the different strategies that
have been implemented in Southern Africa to fight HIV. Finally, I discuss the increasing role
that mathematical models play to gain insight on the HIV-epidemic.

In Chapter 2, I run a systematic review and meta-analysis estimating the prevalence
of NRTI/NNRTI drug resistance mutations among adults failing a first-line NNRTI-based
regimen in Southern Africa. I develop a Bayesian hierarchical model that synthesizes evidence
from the collected studies. The model estimates high levels of K65 and M184 mutations
after 2 years of regimen including emtricitabine or lamivudine (FTC/3TC) and tenofovir
(TDF), the two NRTI backbones that are now commonly associated in first-line regimen. The
K65 and M184 mutations confer high levels of resistance to FTC/3TC and TDF, respectively.
Therefore, it suggests that between 43% and 55% of people failing a NNRTI-based regimen,
will switch to DTG-based regimen with substantially compromised NRTI backbones, if they
are not optimized. These results show the importance of monitoring DTG-response in this
population, as they have higher risk of DTG-failure, where resistance could develop.

In Chapter 3, I develop a compartmental model, the MARISA model, which captures both
the general HIV-epidemic and the dynamic of NNRTI drug resistance in South Africa.
Data from several sources, including cohort data on thousands of people living with HIV
(PLWH), are used to calibrate the model. The MARISA model also assesses the impact
of counterfactual scenarios reflecting alternative countrywide policies during 2005-2016,
considering either increasing ART coverage, improving management of treatment failure,
broadening ART eligibility, or implementing drug resistance testing before ART initiation. I
identify key drivers of the NNRTI resistance epidemic: large-scale ART roll-out and insufficient
monitoring of first-line treatment failure. The results also suggest that no simple measure
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could have prevented the rise of NNRTI resistance in the South African context, where NNRTIs
have been rapidly rolled out.

In Chapter 4, I adapt the MARISA model to assess the impact of different strategies of DTG
introduction on the level of NNRTI resistance in South Africa. I investigate the impact of two
scenarios of the DTG-introduction: 1) DTG as a first-line ART, or 2) DTG replacing NNRTIs for
all patients, including patients on NNRTI-based regimen. Due to safety concerns related to
DTG during pregnancy, the model also considers scenarios where DTG is prescribed to all men
and in addition to i) women beyond reproductive age, ii) women beyond reproductive age or
using contraception, and iii) all women. The simulations show that, while some strategies can
stabilize the level of NNRTI resistance, none of the different strategies introducing DTG leads
to its elimination. To halt the increase of NNRTI resistance, DTG should become accessible to
both women and people currently on NNRTI-based therapy. As some women (e.g. women
at risk of pregnancy) will continue to rely on NNRTI-based ART in the future, controlling the
resistance to NNRTI is key to provide them with an effective alternative to DTG.

The Chapter 5 discusses some important public-health questions regarding HIV drug
resistance in sub-Saharan Africa. It stresses the central role of mathematical modelling to
quantify the risk of HIV drug resistance when data is scarcely available. It also discusses the
modelling idea used in Chapters 3 and 4 and shows how mathematical models can bridge the
gap between the wide availability of HIV epidemiological data and the limited knowledge on
HIV drug resistance in the African regions.

In Chapter 6, I summarize the main findings presented in Chapters 2-4 and discuss their
implications. I also present the strengths and weaknesses of the project. Finally, I discuss
the perspective of the potential emergence of resistance to DTG. The Chapter 7 presents an
additional study, in which I was involved but which does not represent the core of my thesis.
In this study, a mathematical model reproduces the dynamics of the SARS-CoV-2 epidemics
in several regions of the world and provides estimates of the age-specific mortality related to
SARS-CoV-2.

In this thesis, I use mathematical modelling to capture the emergence of NNRTI resistance in
South Africa. I identify some factors that have driven the development of NNRTI resistance,
such as the long time spent on a failing regimen. Due to its flexibility, the MARISA model is
adapted to investigate future strategies, such as the impact of the DTG-introduction on the
levels of NNRTI resistance. This shows that processes such as the acquisition and the spread
of HIV drug resistance can be reproduced at the population-level using mathematical models
calibrated with clinical resistance data. As South Africa is currently introducing DTG-based
regimen, such modelling approach can be implemented to investigate the future risk of
emergence of DTG resistance. However, even if mathematical models could help to bridge
the gaps between clinical and real-world resource-limited settings, more real-world data
is needed to understand the actual risk of DTG resistance development in the context of a
countrywide implementation of DTG. The meta-analysis in Chapter 2 adds to the body of
evidence, as it highlights the potential threat on the long-term efficacy of DTG posed by the
switch of patients with elevated viral load. Close follow-up and resistance monitoring of these
patients are therefore key to ensure an early detection of DTG resistance and prevent it from
spreading through the population.

viii
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1.1 Origins and transmission of the human immunodeficiency
virus (HIV)

The two types of the human immunodeficiency viruses (HIV-1 and HIV-2) have evolved
from simian immunodeficiency viruses (SIV), which are retroviruses causing infections in
several species of African non-human primates [1–3]. The transfer of SIV from monkeys to
humans occurred through multiple zoonosis events [4], probably in Cameroon [5, 6]. The
first verified case of HIV has been retrospectively identified from a blood sample collected in
1959 in Kinshasa, in the Democratic Republic of the Congo (DRC), which is considered as the
epicenter of HIV-1 pandemic [7]. The virus is assumed to have then spread to the rest of DRC,
and across all sub-Saharan Africa. HIV is transmitted from person to person by three major
routes: by sexual contact, through blood (e.g. using contaminated needles) or from mother
to infant [8]. HIV-1 is more virulent and transmissible than HIV-2, which is largely confined to
West Africa.

South Africa identified its first case of HIV in 1982. The number of annual new infections
rapidly increased, attaining 550,000 new infections in 2001 (Fig 1.1) [9]. The implementation
of prevention strategies in the 1980s and 1990s, such as the provision of condoms and
"safe-sex" education programs, contributed to reduce the number of new infections [10].
Despite that, the HIV prevalence outreached 20% in the end of the 1990s. During these years,
the mortality related to acquired immunodeficiency syndrome (AIDS) was still increasing,
attaining 290,000 deaths in 2006. Delivery of the first HIV treatments, called antiretroviral
(ARV) drugs, in South Africa started in 2001 but only concerned a few HIV-infected individuals
with advanced disease. In 2004, South Africa launched its first national antiretroviral
treatment (ART) programme, which rapidly helped to reduce the HIV-related mortality.
During its first years, the programme focused on individuals with advanced disease, before
gradually expanding its eligibility. In 2019, 5,2 millions of people have access to ART in South
Africa, representing 70% of the people living with HIV (PLWH) [9].
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        A. Annual number of new infections in South Africa
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        B. Annual number of deaths in South Africa

Fig 1.1: UNAIDS estimates of: A. the annual number of new infections in South Africa, B. the
annual number of AIDS-related deaths in South Africa. Source: Plots produced with data from
https://aidsinfo.unaids.org/
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1.2 Biology of HIV
1.2.1 HIV replication
HIV mainly infects T helper cells, a type of T cells that plays a vital role in the immune system.
These cells, also called CD4+ T cells, modulate the adaptive immune response. As a retrovirus,
HIV has a positive single-stranded RNA genome, located inside a capsid. This capsid also
contains several enzymes essential for HIV replication, namely the integrase, the reverse
transcriptase, and the protease. The process of producing new HIV virions occurs in several
stages. First, the virus attaches to a CD4 receptor, located on the surface of the target cell. The
HIV envelope then fuses with the cell membrane and the HIV capsid enters the cytoplasm.
Reverse transcription is then initiated, whereby the HIV RNA is converted into DNA. The
integrase then attaches itself to the end of the viral DNA, forming a complex that enters
the nucleus, where the replication machinery of the cell lies. The integrase mediates the
integration of the viral DNA into the host genome, where it is now termed as provirus. HIV
generally remains dormant and the cell is described as "latently infected". When the proviral
DNA is transcribed by the cellular machinery, viral RNA is produced, which is then exported
into the cytoplasm. There, the viral RNA is translated and the viral proteins, together with
untranslated full-length HIV-1 genomic RNA, assemble at the cell membrane, where they
bud off. Infected cells eventually die due to various cell death mechanisms. The new HIV
virion will mature, whereby the viral protease cleaves the polyproteins, and eventually form
an infectious virion (Fig 1.2).

Fig 1.2: The different stages of HIV replication. Source: Figure created by Tom Loosli.

1.2.2 HIV diversity
HIV-1 is characterized by a high genetic diversity and is classified into groups, subtypes and
sub-subtypes. HIV-1 is split in four groups: M (major), O (outlier), N (non-M, non-O) and P,
originating from four independent transmission events to the human population. Group M is
the predominant circulating HIV-1 group and has been divided into subtypes, denoted with
letters, and sub-subtypes, denoted with numbers: A1, A2, A3, A4, B, C, D, F1, F2, G, H, J, and
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K. The different subtypes are the results of the high rates of mutation, recombination and
replication of HIV-1. First, the reverse transcriptase has a relatively high error rate and lacks
proofreading activity, i.e. it cannot correct mutations originating from random transcription
error. This leads to a high mutation rate of approximatively 3.4 · 10−5 per base pair per
replication cycle [11, 12]. Since the HIV genome has 104 base pairs and 1010 virions are
produced per day, this results in a high within-host diversity, with billions of viral variants.
Even if natural selection subsequently limits the number of variants, this explains the high
within-host diversity that is usually observed. HIV-1 recombination, which occurs when a cell
is infected with two different strains of the virus, can lead to further diversity [13].

1.2.3 The course of HIV disease
Two measures are usually used to characterize the infection stage in a HIV-infected person:
the CD4 counts and the viral load (VL). The VL measures the number of HIV RNA copies in a
millilitre of blood. The CD4 counts are used to measure the immunity response towards HIV,
by estimating the number of CD4+ T cells per microlitre of blood. Even if these two measures
are different characterizations of the disease, their trajectories over time are closely related
(Fig 1.3). Acute infection refers to the first weeks after infection and is characterized by a rapid
spread of the virus and a drop in CD4 counts. Within a few weeks, the viral load already reaches
high values, over a million copies per millilitre. The timepoint when the viral load reaches
a detectable level is called seroconversion. As HIV directly attacks the CD4+ T cells, the CD4
counts quickly decrease. This activates the immune system, which leads to a partial recovery of
the CD4+ T cells. As the immune system fights the infection, the viral load quickly decreases to
reach a low level. However, if treatment is not provided to prevent the replication of the virus,
the viral load gradually rises. The period following the acute phase is referred to as the latency
(or chronic) period and usually lasts several years. At that time, the CD4 counts progressively
diminish, weakening the immune system, reducing its capability to fight the HIV infection.
Once the CD4 count is below 200 cells/µl, the risk of developing common infections such as
tuberculosis (TB) or other opportunistic infections (OI) increases dramatically. This period is
accompanied with symptoms such as rapid weight loss, recurring fever or extreme tiredness.
We refer to these late symptoms of infection as acquired immunodeficiency syndrome (AIDS).
Deaths among HIV-infected individuals usually occur at this stage.

The role of HIV treatment is to prevent the replication of the virus in order to keep the number
of CD4 cells sufficiently high to limit the risk of opportunistic infection. HIV treatment is
usually initiated during the chronic phase, characterized by reduced CD4 counts and high VL.
When HIV treatment is correctly functioning, the viral load drops quickly and the CD4 counts
rise slowly. The VL is used to monitor treatment and a low value indicates that treatment
manages to suppress the virus. Below 50 copies/ml, the viral load is undetectable and it is
assumed that the infected individuals cannot transmit the virus. While this threshold is used
in Europe to define viral suppression, sub-Saharan countries usually use a higher threshold
ranging between 200 and 1000 copies/ml [14].

1.3 HIV treatment
1.3.1 The five types of antiretroviral medications
Antiretroviral drugs are used to control HIV infection and achieve viral suppression by
preventing the replication of the virus. There are five main classes of ART drugs, taking action
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Fig 1.3: Evolution of the CD4 counts (blue) and the HIV viral load (red) over time since infection.
Source: https://i-base.info/ttfa/section-2/14-how-cd4-and-viral-load-are-related/

at different stages of the replication of the virus: nucleos(t)ide reverse transcriptase inhibitor
(NRTI), non-nucleoside reverse transcriptase inhibitor (NNRTI), protease inhibitor (PI),
integrase strand transfer inhibitor (InSTI) and entry inhibitor [15]. Aside from entry inhibitor
drugs, which are rarely used, the four other classes of ART drugs inhibit three enzymes that
are essential to replicate the virus: the reverse transcriptase (NRTI and NNRTI), the protease
(PI) and the integrase (InSTI). The NRTI drugs, by disrupting the reverse transcription of the
viral RNA genome, interrupt the generation of viral DNA, and thus, prevent the replication
of HIV within the body. The NNRTI drugs directly bind to the reverse transcriptase, which
blocks the reverse transcription process, inhibiting the generation of viral DNA. The PI drugs
stop the activity of the protease, which is normally used to cleave the polyproteins into the
functional individual proteins. As this occurs after the HIV replication stage, the PI drugs
do not prevent the virus from replicating but make it unable to mature and to infect new
cells. Finally, the InSTI drugs prevent the virus from inserting itself into the human DNA,
by blocking the integrase. Figure 1.4 summarizes the modes of action of the different ART
classes.

1.3.2 Timeline of ART discoveries
The first ARV, zidovudine, a NRTI drug, appeared in the end of the 1980s and was first
used as a monotherapy in patients with advanced disease [16]. The use of zidovudine in
patients with low CD4 counts decreased the short-term mortality risk. However, no consensus
existed at that time as to whether patients with high CD4 counts should also be treated.
The discovery of NNRTI and PI drugs in the early 1990s was a key milestone in the fight
against HIV, as it provides HIV treatment alternatives to the toxic zidovudine. At this time,
the field also understood the need of ART drug combination in order to achieve sustainable
viral suppression and limit the risk of emergence of drug resistance. First, zidovudine was
combined with another NRTI drug, which improved the efficacy compared to zidovudine
alone. For instance, several controlled trials showed that combining zidovudine with
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Fig 1.4: Mode of action of the different ART classes throughout the replication of HIV. Source:
https://link.springer.com/article/10.1007/s11481-019-09880-z

lamivudine – a NRTI drug introduced in 1995 – led to a stronger decrease in viral load and
increase in CD4 counts compared to the zidovudine monotherapy. However, most benefits
were only observed over a short period and HIV mortality rates remained high [17]. At the
end of the 1990s, two studies demonstrated the higher long-term efficacy of triple therapies,
which combined two NRTIs with either a NNRTI or a PI drug [18, 19]. Unlike NRTI dual therapy,
such triple therapy maintained immunologic function and viral suppression even after several
years of ART. This led to the construction of regimens that comprised three or more ARV
drugs in order to achieve sustained virologic suppression. The introduction of triple therapy
outside the selected patient groups included in clinical trials were also shown to reduce both
mortality and disease progression [20]. However, the high number of tablets and complicated
dosing schedule that such regimens require resulted in problems of adherence to treatment.
Combining several drugs in a single tablet helped to increase drug adherence by providing
simplified treatment options. Such co-formulations first combined the two NRTI drugs, such
as zidovudine and lamivudine in 1997 or tenofovir and emtricitabine in 2004. The first triple
combination containing two NRTIs and a NNRTI drug in a single tablet, called Atripla, was
approved in 2006. Since then, the use of two NRTI drugs, often called NRTI backbones, with
one core agent, NNRTI, PI or InSTI, has become the norm.

1.3.3 ART in South Africa
While triple therapy was available in developed countries since 1996, its high price prevented
its use in resource-limited settings such as sub-Saharan Africa. A growing international
movement fought against the high cost of treatment in the early 2000s and managed to
considerably reduce the price of ART in Africa [21]. As a result, South Africa could launch
its public sector ART programme in 2004. In view of the high number of people that were
diagnosed HIV-positive, it was clear that South Africa would have lacked qualified health
personnel who could ensure the same personalized follow-up as in developed countries. A
simplified treatment paradigm was required, in which the majority of clinical tasks could be
ensured by lower health cadres. In particular, fixed-dose combination ART was developed,
together with standardized guidelines. In South Africa, the first-line regimen consisted
of a NNRTI drug combined with two NRTI drugs. Patients failing first-line regimen were
recommended to switch to second-line regimen, where PI replaced NNRTI. In the first years
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following ART scale-up in South Africa, only people with low CD4 counts (below 200 cells/µl)
or with comorbidities were eligible for ART. With the development of treatments with less
side effects, it was then suggested that people with higher CD4 counts could also benefit
from early ART initiation. In fact, an early initiation of ART could reduce both mortality
and HIV transmission [22, 23]. Based on these findings, the World Health Organization
(WHO) first recommended to expand the ART eligibility criteria at CD4 counts below 500
cells/µl in 2013 [24]. Following WHO’s recommendation, South Africa gradually expanded
its ART eligibility criteria throughout the years. In 2016, WHO launched the "Treat-All" policy,
which recommends a rapid ART initiation after diagnosis for all PLWH, irrespective of their
CD4 counts [25], and this strategy was immediately implemented by South Africa [26]. As
a consequence of the increasing use of NNRTI-based first-line regimen in South Africa,
resistance to NNRTI drugs emerged, threatening the efficacy of such regimens. In 2020, as a
response to the increasing level of resistance to NNRTI, South Africa introduced dolutegravir
(DTG), an InSTI drug, in combination with two NRTI backbones as the new first-line regimen
[27]. In view of the low price and the high genetic barrier to resistance of DTG regimens, South
Africa also decided to transition people currently on NNRTI-based regimens to DTG-based
regimens.

1.4 HIV drug resistance
1.4.1 Biological mechanisms
As previously mentioned, HIV is a highly diverse virus: regions of the world show different HIV
subtypes. This diversity between infected individuals of different regions of the world results
from the interplay of recombination events, a high turn-over and the high error rate of reverse
transcriptase combined with the absence of proofreading mechanism. The HIV genome
contains nine genes encoding the proteins that are essential for the maturation and the
replication of the virus. We call mutation, when a nucleotide in the viral genome is altered,
e.g. by a random error made by the reverse transcriptase. Due to the error-prone nature of
reverse transcriptase, the large size of the HIV virus and the high replication rates of HIV,
such errors often occur. Most of the time, these mutations are deleterious, i.e. decrease the
fitness and replication capacity of the virus compared with the wild-type virus (i.e. the variant
without any mutation). Due to natural selection, the variants of the virus with deleterious
mutations go rapidly extinct. This nevertheless creates many HIV variants, leading to a high
within-host diversity. However, in the absence of antiretroviral drug pressure, the wild-type
variant remains the dominant strain.

Antiretroviral drugs are developed to prevent the replication of the wild-type virus. However,
some mutations in the virus can considerably decrease its susceptibility to an antiretroviral
agent [28]. These resistance mutations are located in the gene coding for the different viral
enzymes, such as the reverse transcriptase, the integrase or the protease. The presence of
these mutations causes some change in the conformation of the enzymes, which hinders or
even prevents the antiretroviral agent from achieving its task. For instance, a single mutation,
the K103N, already induces a conformational change of the reverse transcriptase, which blocks
the binding of some NNRTI drugs [29]. An antiretroviral agent will therefore confer a selective
advantage to the variants that are resistant to it. Under the drug selective pressure of ART, the
resistant variants are thus more likely to predominate than the susceptible variants.
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1.4.2 Acquisition and transmission of resistance
Acquisition of HIV drug resistance mutations to an antiretroviral regimen usually occurs
during treatment failure, as the ongoing viral replication increases the number of HIV
genome copies and therefore the probability of the emergence of a resistant strain due to
random mutations. The number of drug resistance mutations needed to confer resistance
to an antiretroviral agent largely depends on the antiretroviral class. This number is often
referred to as the genetic barrier to resistance. It is defined as the “threshold above which
ART drug resistance develops, or the ease to which resistance develops” [30]. Regimens
containing a first-generation NNRTI drug (i.e., efavirenz or nevirapine) are considered to
have a low genetic barrier to resistance, as a single mutation is sufficient to render the virus
resistant. Other regimens, e.g. those containing either PI or InSTI drugs, have a higher
barrier to resistance, as the virus requires the accumulation of several successive mutations
to acquire resistance. The drug resistance mutations develop at different rates from the time
of treatment failure, which also depend on the regimen used, as each ARV drug selects for
specific drug resistance mutations.

Individuals on ART with ongoing viral replication might potentially infect other individuals.
If they have previously acquired resistance, they might therefore transmit these resistances.
As drug pressure is usually not exerted for several years after the infection, the selective
advantage of resistance is lost, which might cause the reversion of the resistant strains to the
wild-type variant. The rates of reversion differ across the resistance mutations and can be very
low [31, 32]. For instance, the K103N mutation persists on average 10 years before reverting
to the wild-type virus, thus conferring resistance to NNRTI several years after infection.
Reversion of resistance also occurs in ART-experienced individuals in case of prolonged
treatment interruption.

1.4.3 The role of ART combination
The combination of antiretroviral drugs substantially reduces the risk of emergence of drug
resistant variants for two reasons [33]. First, as the employed drugs have multiple modes of
action, several specific mutations are required to occur concurrently to acquire resistance to all
the drugs combined in the regimen. In addition, it is highly unlikely that the resistant variants
present before treatment initiation are able to resist to the different drugs. Second, combining
drugs of different classes increases the chance of viral suppression, and thus, prevents the
generation of new resistance variants of the virus. Similarly, if there is a too low concentration
of ARV drugs in the cells, the drug selective pressure is not sufficient to select for new resistant
strains. In this case, the wild-type virus remains the dominating variant. Therefore, the risk
of development and selection of drug resistance mutations is closely related to the activity of
the antiretroviral agent. The risk of emergence of drug resistance is the highest when ART is
present at a sufficient level to exert a drug selective pressure, but not at a high enough level
that would prevent resistant variants from replicating.

Although higher drug concentration favors viral suppression and diminishes the risk of
resistance emergence, it is often accompanied with unwanted side effects caused by the
toxicity of ART drugs. These side effects differ across ART drugs but generally includes fatigue,
headache, insomnia or nausea. In addition, they can be associated with poor adherence
to ART [34]. Therefore, optimizing drug dosing is key to guarantee long-term efficacy of
ART-regimen (Fig 1.5).

8
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Fig 1.5: Drug activity over time. Source:https://i-base.info/resistance-taking-drugs-on-time-
and-missed-doses/

1.4.4 ART adherence and the risk of developing resistance
Adherence to ART plays an important role in the emergence of drug resistance, as it influences
the ART drug concentration. Suboptimal adherence reduces drug activity, potentially leading
to treatment failure and acquisition of drug resistance mutations. Adherence to ART has been
shown to be a major predictor of achieving HIV suppression and of minimizing the emergence
of drug resistance [29]. Even if bell-shaped curves are often used to represent the relationship
between the level of adherence and the risk of resistance, the impact of adherence on the
development of resistance is more complex in practice and differs across the antiretroviral
drug classes [35]. For example, clinical studies have reported a high risk of resistance even
with very low levels of adherence to NNRTI, while much higher levels of adherence to PI is
required for resistance to emerge (Fig 1.6) [36]. These differences are partly driven by the
different half-lives (i.e. the time for a drug to lose half of its original concentration) between
the antiretroviral drug classes. Due to the higher half-life of NNRTI compared with NRTI,
poor adherence to NNRTI-based ART or ART interruption of several days leads to a prolonged
NNRTI monotherapy, which favors the emergence of NNRTI resistance. Unlike NNRTI, PI
drugs have relatively short half-lives, preventing prolonged low-dose exposure to PI that
would lead to the development of resistance.

A B

Fig 1.6: Relationship between adherence and the risk of developping resistance, represented
schematically (Panel A) and observed in practice (Panel B). Source: https://www.ncbi.nlm.nih.
gov/pmc/articles/PMC5072419/ [35]
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1.4.5 Impact of resistance on ART efficacy
The level of resistance conferred by a resistance mutation is measured by in-vitro studies,
which determine the decrease in ARV susceptibility caused by the mutation. To assess
the actual impact of resistance on the efficacy of ART regimen, the presence of baseline
resistances in ART-initators is retrospectively determined and suppression rates between
patients with and without resistance are compared. Wittkop and colleagues show that the
presence of high-level resistance increases the risk of failure after 12 months from less than
5% to almost 25%, corresponding to an adjusted hazard ratio of 3.13 [37]. Even if the presence
of resistance prior to ART initiation increases the risk of ART failure, this study stressed the
fact that individuals starting ART with high resistance level keep a good chance of viral
suppression. Indeed, the combination of drugs from different classes in the ART regimen,
together with the residual activity of the compromised drugs, help to maintain high activity
levels of ART even in the presence of resistance. Disentangling the respective effects of NNRTI
and NRTI resistance on the risk of failure is however difficult, due to the limited power of such
studies (as only few participants have pre-existing resistance) and to the fact that occurrence
of NNRTI and NRTI resistances are associated.

1.4.6 Monitoring resistance
The prevalence of transmitted drug resistance (TDR) is used as an indicator of the transmission
potential of a resistance to a specific antiretroviral agent or class. This prevalence is usually
measured among newly diagnosed individuals who intend to initiate ART. The term
"pretreatment drug resistance" (PDR) is sometimes preferred over TDR, as some individuals
might have undisclosed past-exposure to ARV drugs, which could have driven previous
development of resistance. In these patients, it is therefore impossible to know whether
resistances have been acquired or transmitted. Levels of NRTI and NNRTI PDR are usually
reported in South Africa, as they inform about the proportion of ART-initiators who have
reduced susceptibility to first-line NNRTI-based ART.

The prevalence of drug resistance mutations among people failing first-line ART is another
widely used measure, as it shows at which rates drug resistance mutations are acquired. It
is referred to as the prevalence "acquired drug resistance" (ADR), although some resistance
mutations might have been transmitted. Knowing the level of ADR is also key to estimate the
proportion of patients that are on a non-fully working ART regimen. As second-line regimens
also comprise two NRTI backbones, the prevalence of NRTI ADR is an important indicator
of the proportion of patients that will switch to second-line regimen with pre-existing NRTI
resistance.

The 2017 WHO HIV drug resistance report warns about the increasing levels of NNRTI PDR in
Southern Africa [38]. From less than 1% at the beginning of ART scale-up in 2004, this level
reached 10% in 2017, which threatens the long-term efficacy of NNRTI-based regimens (Fig
1.7). As stated by the WHO, reaching this 10% threshold calls for a change of the first-line
regimen. Unlike NNRTI, the level of NRTI PDR remained at a low level in Southern Africa,
below 5%. The WHO also reported high levels of ADR to both NRTI and NNRTI, thus showing
rapid development of NNRTI and NRTI resistance during failure. The contrast between
high level of NRTI ADR and low level of NRTI PDR indicates that NRTI resistance is rarely
transmitted. As second-line regimens also comprise two NRTI backbones, the high level of
NRTI ADR raises concerns on a potentially reduced efficacy of second-line regimen due to
pre-existing NRTI resistances.
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Fig. 8: Prevalence of NRTI pretreatment resistance by calendar year across included in the systematic review
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Overall, the findings of this systematic literature review suggest 
a significant increase in the prevalence of NNRTI PDR over time. 
Predicted prevalence estimates of NNRTI PDR in 2016 were 
around 10% or higher in all regions except Asia, with estimated 
annual incremental increases in NNRTI PDR of around 20% or 
higher per year across sub-Saharan Africa.

2.4 Systematic literature review of pretreatment 
HIV drug resistance in children in LMIC

Use of ARV drugs for PMTCT of HIV has led to significant 
reductions in paediatric HIV infections over the last decade. 
However, a substantial number of infections continue to occur, 
with about 160 000 new paediatric infections estimated in 2016 
(11). Due to exposure to maternal ARV drugs during pregnancy 
and breastfeeding, and use of infant ARV drug prophylaxis, 
children with perinatal infection despite PMTCT interventions 
are at an increased risk of PDR. PDR is associated with a poor 
response to first-line ART, and results in further accumulation 
of DRMs. As with adults, the prevalence of PDR among infants 
is expected to increase with increasing coverage and uptake of 
PMTCT with a triple-drug NNRTI-containing regimen. Due to 
higher prevalence of NNRTI resistance in perinatally infected 
children, WHO has recommended PI-based ART for children 
younger than 3 years of age (12) since 2010. However, limited 
options for paediatric formulations have resulted in slow uptake 
and implementation in resource-limited settings. 

Studies published during the period 1 January 2014 to 30 April 
2017 were systematically reviewed to assess the prevalence 
of HIVDR in children starting ART in LMIC. Systematic review 
methods are presented in Section 4 of Annex 1.

Key findings

A total of seven studies were identified, describing resistance 
in 1128 HIV-infected children aged 4–114 months; no 
studies included data on younger adolescents (13–15 years 
old). Overall, 31.3% (354/1128) of children had detectable 
DRMs to any drug. Four studies found more than 50% of 
PMTCT-exposed children with NNRTI PDR. High levels of HIVDR 
were also detected in infants not exposed to ART through 
PMTCT. A 2016 study from Nigeria found PDR in 15.9% of 
PMTCT-naive children; all harboured NNRTI mutations (13). 
A 2016 Ugandan study found PDR prevalence of 10% in 
children younger than 12 years of age, with most (83.5%) 
having no reported prior PMTCT exposure; PDR prevalence was 
higher (15.2%) in children aged under 3 years (14). General 
characteristics of study participants are found in Table 12.

Table 13 shows key results from the studies reviewed.
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Table 9: Baseline characteristics of studies and surveys included in the pretreatment HIV drug resistance systematic 
review in adults1

Geographical 
region

Number of 
studies

Total 
number of 
genotypes

Median number 
of genotypes per 

study (range)

Median sampling 
year (range)

Studies in urban 
populations, n/N2 (%)

Eastern Africa 53 7 169 92 (11-517) 2007.5 (1993.5–2016) 32/44 (72.7%)

Southern Africa 61 11 855 102 (21–1 719) 2007 (1998.5–2016) 41/47 (87.2%)

Western/Central Africa 56 4 924 78.5 (18–271) 2007 (1998–2015) 48/50 (96.0%)

Latin America 90 16 008 97.5 (16–1 655) 2007.5 (1995.5–2016) 67/69 (97.1%)

Asia 98 16 088 97 (12–306) 2008.5 (1999.5–2016) 89/89 (100.0%)

Overall 358 56 044 94.5 (11–1719) 2007.5 (1993.5-2016) 277/299 (92.6%)

1For this systematic literature review, countries in the South-East Asia region, Western Pacific region, Eastern Mediterranean region 
and Turkey (Europe region) are grouped under the regional heading of ‘Asia’; 2Data for urban rural classification of populations was 
missing for 59 studies.

Key findings

Overall, analysis of trends over time show that NNRTI resistance was significantly higher in more recent studies in all regions 
(P<0.05 in each region). Statistically significant increases in the prevalence of NNRTI PDR were observed over time across all LMIC 
regions studied by year of sampling (Fig. 7). The estimated annual incremental increase of NNRTI PDR was 23% (95% CI 16–29) in 
Southern Africa; 29% (95% CI 17–42) in Eastern Africa; 17% (95% CI 6–29) in Western and Central Africa; 15% (95% CI 10–20) in 
Latin America; and 11% (95% CI 2–20) in Asia. 

Fig. 7: Prevalence of NNRTI pretreatment resistance by calendar year across studies included in the systematic review
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Fig 1.7: Prevalence of PDR to NRTI (panel A) and NNRTI (panel B) measured in studies from
Southern Africa. Source: WHO HIV Drug Resistance Report 2017 [38]

1.5 HIV strategies in South Africa
In this section, I present the different HIV interventions that South Africa has implemented
in addition to the ART roll-out. Their implications in terms of HIV drug resistance are also
discussed.

1.5.1 Fast-Track strategy
In 2014, UNAIDS communicated its goal of ending the AIDS epidemic as a public health threat
by 2030. The Fast-Track strategy aims to achieve this goal, by stepping up HIV response in low
and middle-income countries [39]. This strategy gathers several targets for prevention and
treatment that needed to be reached by 2020. The "90-90-90" target states that in 2020, 90%
of PLWH should be diagnosed, 90% of diagnosed individuals should be on ART and that 90%
of people on ART should be virologically suppressed [40]. In South Africa, several innovations
in testing strategies (e.g. community-based testing) expanded HIV testing coverage and
helped achieve the first 90 target. WHO estimates that 92% of PLWH know their status in
2020 [9]. Despite the national scale-up of ART and the expansion of ART-eligibility criteria,
only 75% of the HIV-diagnosed people are on ART. Several challenges regarding the retention
in care, such as drug toxicity or risk of loss to follow-up, undermined the progress towards
achieving the second 90 target. Finally, 92% of people on ART are estimated to have achieved
viral suppression. The recent emergence of NNRTI resistance is nevertheless threatening the
long-term achievement of this target.

1.5.2 Treatment as prevention (TasP)
Treatment as Prevention (TasP) is a concept that promotes the use of ART to reduce the risk
of HIV transmission. By starting ART at an earlier stage, HIV-positive individuals increase
their chance of viral suppression and reduce the time during which they are infectious.
The public-health policy that reflects this concept is called universal test-and-treat (UTT),
which offers counselling and testing to an entire population, followed by immediate ART
initiation for all PLWH. The UTT approach is sometimes referred to as the “Treat-All” policy, as
it recommends expanding ART for all HIV-positive people, abandoning the policies restricting
ART to individuals with low CD4 counts. Four randomized population-based trials have
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evaluated the UTT approach in Southern Africa. Two of them showed a reduction of 20% and
31% in HIV-incidence due to UTT implementation, while the two other studies did not find
significant differences between the control arm(s) and the arm implementing UTT [41–44].
In addition, some concerns were raised on the risk of emergence of drug resistance caused
by the UTT implementation [45]. The implementation of UTT implies a rapid increase of
the number of patients on ART, all potentially at risk of acquiring and transmitting HIV drug
resistance. As patients starting ART with high CD4 might have lower adherence and lower
retention in care [46], this could favor the development of HIV drug resistance [47]. However,
as showed by a South African cohort study [48], the higher viral suppression achieved by
individuals initiating ART early reduces the risk of development of resistance.

1.5.3 Introduction of Dolutegravir
As a response to the increasing levels of NNRTI TDR in Southern Africa, WHO recommended
the use of DTG as an alternative option for first-line regimen from 2016 [25]. DTG has many
advantages. It has a higher barrier to resistance and is well tolerated [49]. DTG also has a
higher potency, i.e. lower concentration of the drug is needed to prevent the replication of
HIV. Due to the low dosage required, DTG can be combined with its two NRTI backbones
into a single tablet. The generic fixed-dose combination includes tenofovir, lamivudine and
dolutegravir (TLD). Finally, thanks to a pricing agreement between the manufacturer and
several low- and middle-income countries including South Africa, TLD costs 75 dollars per
person per year [50]. In view of all these advantages, not only will DTG-based regimen be used
as first-line regimen in South Africa, but also to transition patients currently on NNRTI-based
first-line regimen to DTG-based regimen.

Launched in 2020 in South Africa, the implementation of DTG-based regimen was initially
delayed by safety concerns on the use of DTG among pregnant women. Preliminary results
of the Tsepamo study in Botswana in 2018 showed a higher risk of neural tube defect (NTD)
among infants born of women using DTG than when using other ART (4/426=0.94% vs
14/11,300=0.12% respectively) [51]. An update from the Tsepamo study in 2020 showed a
lower estimated risk of NTD in women using DTG at conception (2/1,908=0.1%), suggesting
that the higher preliminary estimates of NTD risks were mainly due to the low sample size
[52]. This early safety signal has nevertheless influenced the implementation of guidelines
regarding the use of DTG. South Africa recommends the use of NNRTI rather than DTG
in women wanting to conceive and in women initiating ART within the first six weeks of
pregnancy [27].

Some uncertainty also subsists on how to transition to DTG-based regimen. Both suppressed
patients on NNRTI-based regimen and patients failing NNRTI-based regimen are supposed
to transition to DTG. Discussions have been raised about patients switching to DTG with
unsuppressed VL, as they are at higher risk of DTG-failure. Because of the ongoing virus
replication, resistances are more likely to develop in these individuals. In addition, these
patients might start DTG with preexisting NRTI resistance accumulated during NNRTI failure.
This is of particular concern as the presence of NRTI resistance among patients switching to
DTG could leave them on a functional DTG-monotherapy. In the absence of drug resistance
testing, South Africa recommends to replace tenofovir, usually present in the NNRTI-based
drug, by stavudine when starting DTG-based regimen, in order to have at least one working
NRTI [27]. The higher toxicity of stavudine compared with tenofovir might however be a
barrier to the wide use of such optimized regimen.
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1.5.4 Resistance testing
Genotype resistance testing at diagnosis establishes the resistance profile of an individual
initiating ART. Some countries recommend it in order to guide the selection of initial
ART and optimize viral suppression. As suggested by a modelling study [53], baseline
resistance testing is not cost-effective, as it only brings clinical benefit to a small fraction of
ART-initiators. Resistance testing can also be performed in individuals failing ART to identify
the development of potential resistance to ART and assess whether a switch to other ART
combinations is needed. However, due to its high cost, low and middle-income countries do
not systematically test for resistance.

1.5.5 PrEP, PEP and PMTCT, and their contribution to HIV drug resistance
Pre-exposure prophylaxis (PrEP), post-exposure prophylaxis (PEP) and prevention of
mother-to-child transmission (PMTCT) are three different interventions involving
antiretroviral agents used to prevent the transmission of HIV. PrEP provides ART to
HIV-negative individuals to protect them from contracting HIV. PrEP usually contains
two NRTI agents (tenofovir and emtricitabine). South Africa has been implementing it since
2016, but only in some clinics across the country. PrEP users can only develop resistance if they
are on PrEP after having been infected, making PrEP an unlikely contributor of resistance.
PEP is used as a short-term treatment for individuals having been exposed to HIV. It aims
to reduce the risk of HIV infection after a risky behavior. PEP regimen contains two NRTI
backbones generally combined with an InSTI drug. Due to its marginal use and its low
duration, PEP is not considered as a driver of resistance in South Africa. Finally, PMTCT has
been widely used since 2004 in South Africa to decrease mother-to-child transmission of HIV.
It usually comprises a single NRTI drugs such as zidovudine, given to pregnant HIV-positive
women. More recently, South Africa implemented the "Option B" PMTCT regimen, which
consists of three ART drugs. PMTCT considerably reduced perinatal HIV transmission risk.
However, PMTCT failure might result in the emergence of HIV drug resistance in the infants,
either directly transmitted by the mother or acquired due to the selective pressure of PMTCT
drugs. Poppe and colleagues have reported a higher prevalence of drug resistance in children
exposed to PMTCT [54]. As HIV is essentially transmitted through sexual contact in South
Africa, PMTCT is not considered to have played a major role yet in the spread of HIV resistance.

1.6 Mathematical modelling
1.6.1 History
Infectious diseases have played an important role in human history. The first mathematical
model used in epidemiology is the work of Daniel Bernoulli on the effect of inoculation
against smallpox in the 18th century [55, 56]. Breakthrough on the transmission of disease
helped epidemiologist to make assumptions about the means of spreading infections. The
first models representing the dynamic of an infectious disease over time were developed in
the early 1900s. Kermack and McKendrick in three articles published between 1927 and 1933
set the theoretical basis of the compartmental model used in infectious disease modelling
[57–59].

Such compartmental models divide a population in different groups (or compartments)
according to some characteristics such as the exposure to a disease. For instance, the SIR
model splits the population in three groups representing the number of susceptible (S),
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infected (I) and recovered (R) individuals. It is represented mathematically by a system of
differential equations, where each equation determines how many people enter and leave a
given compartment as time passes. A compartmental model makes two main assumptions
[60]. First, it assumes the homogeneity of the population, i.e. that all individuals behave the
same manner. Second, it relies on the law of mass action, which states that the number of
new infections in a given period is proportional to the product of the number of susceptible
and infected individuals [61]. These two assumptions imply a homogeneous mixing of the
population, which has been the source of many criticisms. The heterogeneity between
individuals can be taken into account by stratifying the compartmental model by some
characteristics driving this heterogeneity. For instance, when modelling sexually transmitted
diseases, we usually differentiate the population across age groups and sex to model
differences in transmission between these groups. Despite this assumption of homogeneous
mixing, compartmental models are still widely used, as they have been proved to be robust
and predictive [61, 62]. As they are based on simple differential equations, compartmental
models can be solved by basic numerical approximation methods. The simplicity of such
models also allows to produce closed-form formula of important epidemiological indicators.

These last decades, a new class of models – the agent-based models (ABMs) - has emerged,
spurred by the recent advances in computer performance that allow to simulate more
complex models [63]. ABMs reject the homogeneous-mixing assumption and simulate the
dynamic of an infectious disease at an individual level. Their higher flexibility is used to
model more complex behaviours, such as the dynamic of an infectious disease in a given
network. However, ABMs have several limitations. First, their too high complexity can lead
to unexpected results that are often difficult to interpret. Second, even if their simulation
time has considerably decreased in the recent years, their complexity often hampers the
calibration of a large number of parameters.

The comparison between compartmental models and ABMs highlights a recurrent challenge
when modelling infectious disease dynamics: the trade-off between complexity and realism.
Too simple models often fail to accurately reproduce the dynamic of an infectious disease,
while calibrating complex models requires precise data that are often unavailable. Following
Occam’s razor, a principle stating that complexity should never be chosen without necessity,
we should thus reject a more complex model as soon as the limited data resource prevents the
model from identifying its parameters.

1.6.2 Modelling HIV epidemic in South Africa
Mathematical models have been widely used to describe the HIV epidemic in South Africa
[64]. The first model representing the dynamic of the HIV epidemic in South Africa, the
so-called Actuarial Society of South Africa (ASSA) model, was developed in the early 1990s
[65]. It provided estimates on several HIV-indicators such as the total number of new
infections or the number of AIDS-related deaths. The complexity of such models has evolved
together with the accumulation of data. The ASSA models were superseded by the Thembisa
model, a demographic projection model on which UNAIDS estimates are based [66]. In
addition to providing estimates on key HIV-indicators, some mathematical models were
also developed to assess the impact of different HIV interventions. Johnson and colleagues
quantified the number of AIDS-related deaths and HIV-infections averted with the national
ART roll-out in South Africa [67]. Finally, some mathematical models were also built for
the purpose of predicting the evolution of the epidemic under different scenarios. In 2009,
Granich and colleagues investigated the future impact of universal testing coupled with
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immediate ART start for adults and found that this strategy could eventually eliminate HIV
[68]. Such predictions inevitably contains high uncertainty, especially on the long-term
efficacy of newly implemented ART regimen. The recent increase of NNRTI resistance has
questioned the long-term sustainability of NNRTI-based regimen and has thus belied many
model projections. This highlighted the need of considering the risk of emergence of HIV
drug resistance when modelling the long-term effectiveness of HIV interventions.

Recent modelling works have integrated the effect of drug resistance on treatment outcome
in different ways. The HIV Synthesis model, developed by Philips and colleagues, capture
the effect of every drug resistance mutation relative to the different ARV classes [53]. Such
agent-based models have the advantage to be able to represent complex mechanisms, such
as the acquisition of specific drug resistance mutations. However, such models often make
assumptions on the rate of acquiring and transmitting drug resistance mutations that are
difficult to verify. Simpler compartmental models have also been used to capture the dynamic
of HIV drug resistance in sub-Saharan Africa [69, 70]. To limit the number of compartments,
these models either have a dichotomized representation of HIV drug resistance (i.e. with
two layers representing the presence/absence of resistance) or only represent some specific
resistance mutations (e.g. the K65R and M184V for NRTI drugs).

1.6.3 Data availability
Several sources of data cover different aspects of the HIV epidemic. First, general
HIV-indicators (e.g. number of new-infections, ART-coverage, mortality) inform about
the progresses done over time in the fight against AIDS. Second, epidemiological data
have been longitudinally collected from several observational cohorts in South Africa. The
International epidemiological Databases to Evaluate AIDS in sub-Saharan Africa (IeDEA-SA)
collaboration gathers individual cohort data on treatment response on thousands of patients
[71].

Third, randomized clinical trials (RTCs) give high-quality information on HIV drug resistance
parameters, such as the risk of acquiring resistance mutations to the different ART drugs.
However, the particular characteristics of the patients included in RCTs limit the applicability
of such data. Their strict inclusion criteria often select patients with high levels of adherence
and the monitoring frequency is considerably higher than in real-world settings. The
particular settings of RCTs thus prevent them from observing development of HIV drug
resistance as it would have occurred in real-world settings. To overcome this issue, resistance
data collected from cohorts studies (e.g. studies that test for resistance a group of individuals
failing ART-regimen) can be used instead. However, the majority of these cohorts are located
in North America or Europe. In view of the many differences between South Africa and North
America or Europe (e.g. HIV subtype, quality of care, regimens used), their results cannot be
directly extrapolated to resource-limited settings.

The scarcity of data on resistance in South Africa is thus a major challenge to predict the
impact of HIV drug resistance in such settings. Mathematical models can overcome this issue
by integrating knowledge from different levels of evidence. They could therefore bridge the
gap between good epidemiological data and scarce resistance data from resource-limited
settings [72].
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1.7 Aims and outline of the thesis
The overall aim of this project is to explore the past and future dynamics of HIV drug resistance
in Southern Africa, using mathematical models.

In Chapter 2, I assess the prevalences of acquired drug resistance mutations against first-line
regimens in Southern Africa. To do so, I perform a systematic review, searching studies
that report the proportion of single NRTI/NNRTI resistance mutations among adults failing
first-line regimens in this region. I then develop a hierarchical Bayesian model to synthesize
evidence from the collected studies.

In Chapter 3, I reproduce the past dynamics of the general HIV-epidemic and NNRTI resistance
among adults in South Africa, using a compartmental model. Epidemiological cohort data
are used together with clinical data on resistance to calibrate the model. Observed levels of
TDR and ADR in South Africa are compared with model outputs to validate the calibration
procedure. I then run several counterfactual scenarios to identify some factors that have
driven the spread of NNRTI resistance in South Africa.

In Chapter 4, I explore the potential impact of the introduction of DTG-based regimen on the
future dynamic of NNRTI resistance in South Africa. To do so, I adapt the compartmental
model developed in Chapter 3. I investigate several prospective scenarios representing
different strategies of DTG introduction and various levels of DTG uptake among women.

The Chapter 5 discusses the future issues that HIV drug resistance raises and explain how
real-world data and mathematical models could be combined to provide some answers.

In Chapter 6, I provide a summary of the main findings and discuss their implications. I then
describe the current state of knowledge about the future risk of resistance to DTG and discuss
how mathematical models could be used to fill the knowledge gaps.

In Chapter 7, I present an additional work, in which I was involved but which does not form
the core of my PhD project. In this work, a mathematical model was developed to estimate
the SARS-CoV-2 mortality in different regions. This project emerged at the very beginning
of the SARS-CoV-2 epidemic as an attempt to address our earlier inability to provide reliable
age-specific estimates on SARS-CoV-2 mortality.
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2.1 Abstract
Background: In Southern Africa, first-line antiretroviral therapy (ART) consisted of one
non-nucleoside reverse transcriptase inhibitor (NNRTI) and two nucleoside reverse
transcriptase inhibitors (NRTI) but is now being replaced by dolutegravir (DTG)-based
ART. We estimated the prevalence of NRTI and NNRTI drug resistance mutations (DRMs) in
patients failing NNRTI-based ART using Bayesian evidence synthesis.

Methods: We searched seven databases from inception to May 2019 to identify studies
reporting DRMs among adults living with HIV (PLWH) who experienced virological failure
on first-line NNRTI-based ART in Southern Africa. We used a hierarchical meta-regression
model to synthesize the emergence of NRTI- and NNRTI-DRMs across different ART regimens,
accounting for ART duration and study characteristics. We estimated the prevalences of nine
NRTI and seven NNRTI DRMS after two years of ART.

Results: We included 17 study populations, including 2,432 PLWH with genotyping
information from South Africa (13 studies), Mozambique (1), Botswana (1), Lesotho (1), and
Zambia (1). In patients failing first-line ART, emtricitabine and lamivudine were strongly
associated with the M184V/I mutation (risk >70% after two years). With tenofovir disoproxil
fumarate, the prevalence of the K65R mutation was estimated at 55.2% at two years. On
efavirenz, K103 was the most prevalent NNRTI resistance mutation (59.8%) followed by V106
(44.6%).

Interpretation: In patients failing first-line ART in Southern Africa, the prevalence of
NRTI/NNRTI DRM is high. Many patients failing an NNRTI-based regimen may switch to a
DTG-based regimen with compromised NRTIs, which could impair the long-term efficacy of
DTG-based ART in Southern Africa.

2.2 Introduction
In 2014, UNAIDS communicated its goal of ending the AIDS epidemic as a public health
threat by 2030 [39]. The strategy to achieve this objective involved stepping up testing
and anti-retroviral therapy (ART) in low and middle-income countries (LMIC). In the
last two decades, first-line ART implemented in most LMIC consisted of a non-nucleoside
reverse-transcriptase inhibitor (NNRTI) combined with two nucleos(t)ide reverse transcriptase
inhibitors (NRTI). For many NNRTIs, a single mutation will lead to drug resistance; for
example, the K103N mutation [73]. Pre-treatment drug resistance (PDR) to NNRTIs has
exceeded the WHO threshold of 10% in Southern Africa [38]. Several countries in the
region are therefore transitioning from the NNRTI based first-line triple therapy towards an
integrase-strand-transfer-inhibitor (InSTI) based first-line triple therapy. WHO recommends
TLD, a fixed-dose combination of tenofovir, lamivudine and dolutegravir (DTG) [25].

People living with HIV (PLWH) on NNRTI-based ART should also transition to DTG-based
therapy. Among them, those with unsuppressed viral load are likely to have acquired
resistance to NNRTIs or NRTIs. As NRTI-resistance reduces the activity of the NRTI backbone
of DTG-based regimens, PLWH switching with pre-existing NRTI resistance are at higher risk
of DTG-failure and of developing DTG-resistance. A cross-sectional survey in South Africa
showed that 83% of patients failing NNRTI-based treatment had the M184V/I mutation, and
over half the patients developed K65R [74]. The risk of developing drug resistance mutations
(DRMs) depends on several factors, including the exact regimen used and treatment duration.
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In contrast to transmitted drug resistance, only a few studies have assessed acquired drug
resistance (ADR) in patients failing first-line ART in Southern Africa [38]. Most studies of ADR
were performed in Europe or North America, where subtype B is most prevalent, while most
HIV infections in Southern Africa are caused by subtype C [75, 76]. In-vitro studies suggest that
different subtypes might lead to different rates of ADR [77–79].

We performed a systematic review and Bayesian evidence synthesis of studies reporting
frequencies of drug resistance mutations in patients failing first-line ART in Southern Africa,
a region heavily affected by HIV [80].

2.3 Methods
2.3.1 Literature search
We searched seven bibliographic databases, including Embase and Medline, using terms
for “HIV” AND “anti-retroviral therapy” AND “drug-resistance mutations” AND “Southern
Africa”. The S1 File provides details on the literature search. We performed the final search
on 16 May 2019 and de-duplicated references in EndNote (version 18.0.0). We registered
this review in the International Prospective Register of Systematic Reviews (PROSPERO, No.
CRD42017076406) [81].

2.3.2 Inclusion criteria
We searched for studies from Southern African countries in adult (15 years or older) PLWH on
NNRTI-based first-line ART who were at least three months on treatment and experienced
virologic failure. The results of at least ten genotypic resistance tests covering all major single
mutations listed in the Stanford HIV drug resistance database had to be reported [82]. First,
FG and AH assessed articles based on their title and abstract. Second, AH and either FG or
MLR assessed potentially eligible studies based on the full text. We compared the results of
full-text screening and reached consensus on eligibility by discussion.

2.3.3 Data extraction
We extracted details on study populations and settings, study year and the number of
patients tested for viral load and with virologic failure. We recorded the definition of failure,
i.e. the viral load threshold and the number of measurements required, and the first-line
ART regimen. We grouped resistance mutations by locus (for example, M184I/V). We defined
year of study as the year of the analysis, the year enrolment ended, or by the "sampling date"
recorded in GenBank [83]. If studies reported stratified data (for example, by country or level
of urbanization), we extracted the data separately.

2.3.4 Bayesian evidence synthesis
We developed a hierarchical meta-regression model to estimate the prevalence of eight
single NRTI mutations: K65N/R, M184I/V, M41L, D67N/G/E, K70E/G/R, L210W, T215F/I/N/S/Y,
K219D/E/N/Q/R. Fig 2.1 and S2 File detail the model structure. The model includes a random
effect to account for study-level heterogeneity (i.e. shared by all the mutations) and a
random effect at the mutation level. We considered that time to acquiring a mutation was
exponentially distributed, thus assuming a risk of developing a DRM constant over time.
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We examined the effect of different NRTI drugs on the risk of developing a DRM. We report
model estimates of the prevalences of the eight major NRTI DRMs at baseline (treatment
start, corresponding to the intercept of the regression model) and after two years. We opted
for weakly informative prior distributions. S2 File reports the model equations and the prior
distributions.

Baseline
preva-
lence

Study 1 Study 2 Study I

M1 M2 MN M1 M2 MN M1 M2 MN

...

... ... ...

Study char-
acteristics

Study-level
heterogeneity

Mutation-level
heterogeneity

Observed
prevalences

Fig 2.1: Bayesian hierarchical model adjusting for the different levels of heterogeneity.

We considered five NRTI drugs: didanosine (ddI), emtricitabine/lamivudine (FTC/3TC),
tenofovir disoproxil fumarate (TDF), stavudine (d4T), and zidovudine (ZDV). As NRTI
backbones mostly comprise either ddI or FTC/3TC and TDF, d4T, or ZDV, there were strong
correlations between the drugs. We dealt with multicollinearity by selecting the covariates
with the strongest effects first. In a sensitivity analysis, we also ran the model with all
covariates (see S2 File). We imputed the time on ART in three studies [84–86] that did not
report it, assuming that the missing ART durations followed a gamma distribution with
mean and variance calculated from the observed ART durations. We also ran the model after
discarding these three studies to assess the impact of data imputation (see S2 File).

We also estimated the prevalence of any of six thymidine-analogue mutations (TAMs), i.e.
M41L, D67E/G/N, K70E/G/R, L210W, T215F/I/N/S/Y, or K219Q/E. As only a few studies reported
the prevalence of any TAM, we adopted a method that estimated the correlation between
the six TAMs (using results from the nine studies reporting the prevalence of the single TAMs
and the prevalence of any TAM), assuming a multivariate Bernoulli distribution. We used
this estimate to calculate the prevalence of any TAM (see S2 File). Finally, we applied the
same model to estimate the prevalence of seven NNRTI mutations (K101E/H/P/Q, K103N/R/S,
V106A/I/M, V108I, Y181C/I/V, Y188C/H/L, G190A/E/R/S) as for the NRTI DRMs. Estimates of the
prevalence of DRMS are given after two years of efavirenz (EFV)- or nevirapine (NVP)-based
regimens. The baseline prevalence of NNRTI DRMs was not reported because EFV and NVP
select for the same NNRTI DRMs, which in turn prevents the model from providing reliable
estimates.

All Analyses were performed in a Bayesian framework using the rstan package in R. All code
and data are available from https://github.com/anthonyhauser/ADR-meta-analysis.

2.3.5 Risk of bias
Two of us (AH, ME) independently assessed study designs to gauge the representativeness of
the patients for whom HIV genotypes were available. We calculated the percentage among
patients with virologic failure who had HIV genotypes. We considered studies at high risk of
20
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selection bias if i) genotyping rates were low (<50% of patients with failure were successfully
genotyped); ii) there were relevant differences between the characteristics of genotyped
and non-genotyped patient groups or iii) there was no clearly defined source population for
patients to be genotyped. In a sensitivity analysis, we removed studies fulfilling one or more
of these criteria and reran the analyses to examine the effect these studies had on the results.

2.4 Results
2.4.1 Selection and characteristics of studies
Our initial search produced 7,579 articles; 3247 were duplicates (Fig 2.2). We further excluded
4,138 papers based on title and abstract. We read the full texts of the remaining 194 articles.
Of these, 16 studies were eligible, with 17 unique study populations and 2,432 individuals
with genotyping information from South Africa (13 studies), Botswana (1), Lesotho (1),
Mozambique (1), and Zambia (1) [14, 74, 84–97]. Most study populations were from urban
settings.

Records identified through 
database searching 

(n = 7570) 

Records identified through 
other sources

(n = 9) 

Duplicate records removed
(n = 3247)

Records excluded
(n = 4138)

Full-text articles assessed 
for eligibility

(n = 194)

Articles excluded
(n = 178) 

Not Southern Africa: 27
Ineligible population: 69 
Not all data provided: 57
Overlapping datasets: 25

Studies eligible
(n = 16)

Unique populations: 17
• reporting NRTIs: 17
• reporting NNRTIs: 13

Records screened by title 
and abstract for relevance

(n = 4332)

Records before duplicate 
removal (n = 7579)

Fig 2.2: PRISMA flow-chart of inclusion of studies and populations in the systematic review.

Table 2.1 summarizes the study samples, the numbers of patients included, and their
characteristics. Most studies defined virologic failure as a viral load >1000 copies/ml, either as
a single measurement or confirmed by a second measure, as recommended by the WHO [25].
The most commonly used NRTI combinations were FTC/3TC with TDF (38% of patients), d4T
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(38%), or ZDV (19%). These NRTI drugs were mostly combined with EFV (74%) or NVP (26%).
Of 3,592 patients with virological failure, 68% (2,432) had HIV genotype data available.
In most study populations (11/17, 57.9%), the percentage of patients with virologic failure
with information on the HIV genotype was above 90%. Three large studies are responsible
for the gap between the numbers of PLWH with virological failure and the number with
genotype data. A national survey in South Africa [74] included 1,033 patients but obtained
genotypes only for 788 (76.3%), and three other studies in South Africa [93, 95, 96], where only
a subsample of the patients failing first-line ART had genotyping of HIV performed. Table 2.2
provides a detailed description of each study population.
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Table 2.1: Characteristics of the 17 study populations included in the systematic review.

Patients

Total No. of patients with virologic failure 3592
No. of patients with genotype data 2432 (67.7%)
Median (range) number of patients with virological failure 103 (31-950)
Median (range) number of patients with HIV genotype 68 (19-788)
Median (range) percent patients with HIV genotype 92% (10-100%)
among patients with virologic failure

Study populations

Definition of virologic failure (copies/mL)
Confirmed >1000 6
Single value >1000 6
Value >5000 3
Single value >400 1
Confirmed >80 1

Median (range) study year 2012 (2004-2014)
Most common first-line regimen

d4T + 3TC + EFV 6
TDF + 3TC + EFV 2
ZDV + 3TC + NVP 2
ZDV + 3TC + EFV 3
Other 4

Median (range) time on ART (months) 27.5 (5-49.2)
Country

Botswana 1
Lesotho 1
Mozambique 1
South Africa 13
Zambia 1

Urbanization
Urban 8
Rural 5
Both 4
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2.4.2 Prevalence of acquired NRTI resistance mutations
Fig 2.3A shows the prevalence of the eight NRTI DRMs at baseline and after two years of either
3TC/FTC and TDF or 3TC/FTC and ZDV. The prevalence of any of six TAM mutation at baseline
and after two years of ART is also displayed. Fig 2.3B-C display the prevalences of K65N/R
and M184V/I, respectively, with respect to ART duration. The prevalence at baseline for NRTI
DRMs was low, ranging from 0.6% to 8.5%, except for the M184V/I mutation with a baseline
prevalence of 15.1% but with high uncertainty (95% credibility interval [CrI] 0.9%-29.9%). The
use of FTC/3TC was associated with high-levels of the M184V/I mutation. The prevalence was
78.3% (95% CrI 64.7-90.5%) after two years on FTC/3TC combined with TDF, and 73.5% (95% CrI
57.9%-87.1%) on FTC/3TC combined with ZDV. When FTC/3TC was combined with TDF, there
was a substantial increase in the K65N/R mutation: 1.5% (95% CrI 0.1%-3.2%) at baseline and
55.2% (95% CrI 34.3%-79.4%) after 2 years. The prevalence of each of the six TAM mutations
after two years of FTC/3TC combined with either TDF or ZDV were moderate, ranging from
0.6% to 26%. Finally, the model showed a higher risk of developing any of the six TAMs when
3TC/TDF was combined with ZDV rather than TDF: 45.6% (95% CrI 34%-59.3%) versus 22.9%
(95% CrI 16.1%-34.8%).
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Fig 2.3: Prevalence of nine NRTI drug resistance mutations by first-line regimen. Panel A: baseline
prevalence and prevalence after 2 years of treatment according to NRTI use. Panel B: Prevalence of the
K65N/R mutation over time. Panel C: Prevalence of the M184V/I mutation over time. Points and vertical
lines: median and 95% credibility intervals of baseline prevalence (black), prevalence after 2 years on
3TC/FTC + TDF (red) or 3TC/FTC + ZDV (blue). Shaded area: 95% credibility interval over time.

2.4.3 Prevalence of acquired NNRTI resistance mutations
Fig 2.4A shows the estimated prevalence of the seven NNRTI DRMs after two years of either
EFV- or NVP-based regimens. Fig 2.4B-C display the prevalences of K103N/R/S and Y181C/I/V,
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respectively, with respect to ART duration. K103N/R/S was the most frequent NNRTI
DRM, with a high prevalence after two years of EFV-based (59.8%, 95% CrI 42.8-78.8%)
or NVP-based regimens (39.3%, 95% CrI 22-66%). Other NNRTI DRMs with prevalence
estimates over 20% included V106A/I/M, Y181C/I/V, and G190A/E/R/S. Of note, the model
estimated a higher prevalence of the Y181 mutations after the use of NVP (41.9%, 95%
CrI 23.5-63.1%) than with EFV (9.5%, 95% CrI 4.7-22.7%). S2 File gives the estimates of
the prevalence of the NRTI/NNRTI DRMs at baseline and after 2 and 3 years of ART. The
proportions of heterogeneity shared by all the mutations are displayed in Table 5 of S2 File.
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Fig 2.4: Prevalence of seven NNRTI drug resistance mutations. Panel A: Prevalences after 2 years on
either EFV- or NVP-based regimen. Panel B: Prevalence of the K103N/R/S mutation over time. Panel C:
Prevalence of the Y181C/I/V mutation over time. Points and vertical lines: median and 95% credibility
intervals of baseline prevalence (black), prevalence after 2 years on EFV (orange) or NVP (green). Shaded
area: 95% credibility interval over time.

2.4.4 Risk of bias and sensitivity analyses
We identified four studies at high risk of selection bias [90, 93, 95, 96]. Three had proportions
of genotyping below 50% [93, 95, 96]. Two of these by design only genotyped a subsample
of infections [95, 96]. One study [95] reported that every third patient was systematically
sampled for genotyping; however, the number of infections genotyped was substantially
lower (10.1% rather than the expected 33.3%, Table 2.2). Genotyping in the other study
[96] depended on the availability of residual plasma. Finally, one study [90] lacked a clearly
defined source population. It was based on referrals of patients with suspected first-line
treatment failure at a University Teaching Hospital. Estimating the prevalence of the eight
NRTI DRMs and seven NNRTI DRMs excluding the studies at high risk of bias showed that
most estimates were very similar to the main analysis, but with larger uncertainty (S2 File).
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Similarly, removing the studies with missing ART duration (rather than imputing it) or using
all the covariates on NRTI use (rather than including a selection step) did not substantially
affect the results (S2 File, Fig 4 and 5).

2.5 Discussion
This systematic review and Bayesian meta-analysis provide estimates of emerging DRMs in
patients failing first-line treatment in Southern Africa. By using a hierarchical structure and
adjusting for the use of different drugs, the model reliably estimates the major NRTI/NNRTI
mutations while appropriately accounting for between-study heterogeneity. The most
frequent acquired mutations among patients with virological failure after two years of
ART were M184, K65 and K103 (prevalence 55% to 78%). Of note, K65 and M184 confer
high-level resistance to 3TC/FTC and TDF, the two NRTI backbones that are usually combined
in DTG-based regimens. The model also estimated that 23% to 46% of patients failing
NNRTI-based regimen had at least one TAM.

The TenoRes study assessed the levels of NRTI resistance across regions of the world after the
failure of NNRTI + 3TC/FTC + TDF [101]. For Southern Africa, it estimated high levels of both
M184 and K65 mutations (59% and 56% respectively), in line with our study. The study found
lower levels of M184 and K65 mutations in Europe (34% and 20%) or North America (42%
and 22%). The authors argued that these differences in NRTI DRM levels might be driven by
the higher frequency of viral load monitoring in Europe and North America. Also, in line with
our study, the TenoRes study showed that Southern Africa is the only region with a similar
prevalence of M184 and K65 mutations. In contrast, a higher prevalence of M184 mutations
was observed in all other regions. As subtype C is most prevalent in Southern Africa, the K65
mutation might be more likely to emerge in subtype C compared with other subtypes, as
found in in-vitro studies [77–79].

The high prevalence of the K65N/R and M184I/V mutations means that 43.2% (55.2%·78.3%)
to 55.2% of PLWH failing first-line ART might have both, depending on the correlation
between the two mutations. In its new guidelines, the South African Department of Health
recommends switching patients failing a first-line regimen that includes 3TC/FTC and TDF to
DTG combined with 3TC/FTC and ZDV, to have at least one fully active NRTI [27]. However,
given the toxicity and side effects associated with ZDV and because there is no fixed-dose
combination combining DTG and ZDV, TDF might be preferred over ZDV. In this context, our
results show that nearly half of these patients will start a DTG-based regimen without a fully
active NRTI. The DAWNING trial [102] showed that DTG-based ART is effective in second-line
regimen provided it is combined with at least one fully active NRTI. However, it is uncertain
whether a functional DTG-therapy, i.e. DTG with no fully active NRTIs, will be effective.
Concerns on the efficacy of functional DTG-therapy have been raised by studies showing
high failure rates with maintenace DTG-monotherapy [103]. The efficacy of functional
DTG-monotherapy might be higher than DTG-monotherapy, as some NRTI activity may still
exist even in case of resistance. This assumption is supported by the EARNEST study, where
the presence of NRTI resistance did not impair virological response to second-line regimen
[104].

Our meta-analysis also shows that TAM mutations are present at a moderate level among
people failing NNRTI-based first-line regimen. Interestingly, in several studies the detection
of NRTI resistance and particularly of TAMs prior to starting second-line ART was associated
with better virological suppression, possibly because patients who are aware they developed
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resistance may on average have better adherence [105, 106]. Clearly, the large-scale switch to
DTG-based regimen should be accompanied by longitudinal, real-world studies of virologic
failure and drug resistance monitoring.

We observed a high prevalence of the K103 mutation (60% after two years on EFV, 39% on
NVP), conferring high resistance to both EFV and NVP. Several Southern African countries
recommend adherence support in patients on failing NNRTI-based regimen to achieve
viral suppression before switching to DTG. In the case where patients remain unsuppressed
after six months, these patients should nevertheless switch to DTG. The high level of
NNRTI-resistance harbored by these patients questions the efficacy of such a strategy.
Indeed, prolonging a failing regimen might increase the risk of accumulation of NRTI DRMs,
potentially impairing the efficacy of a future switch to DTG. Among the other NNRTI drug
resistance mutations, Y181C/I/V is of particular concern. The estimated prevalence of this
mutation was about 10% and 42% after two years of EFV and NVP, respectively, reflecting
the higher impact of Y181 on NVP, as previously observed [107]. This mutation also confers
resistance to the newer generation of NNRTIs, such as etravirine and rilpivirine.

Most previous reviews of HIV drug resistance focused on transmitted drug resistance, rather
than resistance that was likely acquired during ART [108]. Previous reviews on ADR tended to
focus on failure rates, CD4-positive lymphocyte counts, and the prevalence of drug resistance
mutations overall [109, 110], or a subset of mutations [38, 101, 111]. Our study provides
estimates of all relevant ADR mutations according to the drugs used, for the whole region of
Southern Africa, the region with the highest burden of HIV. To our knowledge, this is the first
meta-analysis of this literature that uses a hierarchical structure and estimates the DRMs
simultaneously to identify the study effect that is shared across the DRMs.

Our review has several limitations. Many of the included studies were based on patients
attending one or few outpatient clinics. We carefully assessed the likely representativeness
of the patients undergoing HIV genotyping. Still, even if results reflect the situation in these
clinics, they may not be representative of all patients who fail first-line ART in the region.
Indeed, the between-study heterogeneity was large, and decision-makers should consider
the studies most relevant to their settings, as well as the regional data. Many factors may
have introduced heterogeneity, including differences between patient populations, their
levels of adherence, the first-line regimen used, and the time spent on a failing regimen.
The hierarchical structure of the model adjusted for regimen and time spent on a failing
regimen, but some heterogeneity remains. Of note, in our sensitivity analyses, the likely
risk of selection bias did not appear to influence estimates. Finally, we attempted to assess
pre-treatment NRTI mutations, but the wide credibility intervals illustrate the difficulty to
disentangle pre-treatment from acquired drug NNRTI resistance.

Although we searched for studies from all over Southern Africa, the majority of data included
in our analysis were from South Africa. South Africa is one of few countries in the regions
that have implemented routine viral load monitoring in patients on ART, and routine viral
load monitoring is associated with a reduced probability of drug resistance [111]. Therefore,
the overrepresentation of South Africa studies in our meta-analysis might underestimate the
frequencies of the different DRMs in the rest of Southern Africa.

In conclusion, our analysis demonstrates that in Southern Africa, many patients failing
first-line ART have DRMs, with important implications for the likely future transmission
of drug resistance, the choice of second-line regimen, and the large-scale transition to
DTG-based first-line ART. These implications are particularly pertinent to settings where
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routine viral load and drug resistance testing is not routinely available [112].
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3.1 Abstract
The scale-up of antiretroviral therapy (ART) in South Africa substantially reduced AIDS-related
deaths and new HIV infections. However, its success is threatened by the emergence
of resistance to non-nucleoside reverse-transcriptase inhibitors (NNRTI). The MARISA
(Modelling Antiretroviral drug Resistance In South Africa) model presented here aims at
investigating the time trends and factors driving NNRTI resistance in South Africa. MARISA is
a compartmental model that includes the key aspects of the local HIV epidemic: continuum
of care, disease progression, and gender. The dynamics of NNRTI resistance emergence and
transmission are then added to this framework. Model parameters are informed using data
from HIV cohorts participating in the International epidemiology Databases to Evaluate AIDS
(IeDEA) and literature estimates, or fitted to UNAIDS estimates. Using this novel approach of
triangulating clinical and resistance data from various sources, MARISA reproduces the time
trends of HIV in South Africa in 2005-2016, with a decrease in new infections, undiagnosed
individuals, and AIDS-related deaths. MARISA captures the dynamics of the spread of NNRTI
resistance: high levels of acquired drug resistance (ADR, in 83% of first-line treatment
failures in 2016), and increasing transmitted drug resistance (TDR, in 8.1% of ART initiators
in 2016). Simulation of counter-factual scenarios reflecting alternative public health policies
shows that increasing treatment coverage would have resulted in fewer new infections and
deaths, at the cost of higher TDR (11.6% in 2016 for doubling the treatment rate). Conversely,
improving switching to second-line treatment would have led to lower TDR (6.5% in 2016
for doubling the switching rate) and fewer new infections and deaths. Implementing drug
resistance testing would have had little impact. The rapid ART scale-up and inadequate
switching to second-line treatment were the key drivers of the spread of NNRTI resistance
in South Africa. However, even though some interventions could have substantially reduced
the level of NNRTI resistance, no policy including NNRTI-based first line regimens could have
prevented this spread. Thus, by combining epidemiological data on HIV in South Africa with
biological data on resistance evolution, our modelling approach identified key factors driving
NNRTI resistance, highlighting the need of alternative first-line regimens.

3.2 Author summary
Resistance to non-nucleoside reverse transcriptase inhibitors (NNRTI) threatens the
long-term success of antiretroviral therapy (ART) roll-out in South Africa. We developed a
compartmental model integrating the local HIV epidemiology with biological mechanisms of
drug resistance. A first dimension of the model accounts for the continuum of care: infection,
diagnosis, first-line treatment with suppression or failure, and second-line treatment.
Other dimensions include: disease progression (CD4 counts), gender, and acquisition and
transmission of NNRTI resistance. Whenever possible, we informed the parameters using
the data available from local cohorts. Other parameters were informed using literature or
UNAIDS estimates. The model captured the rise of NNRTI resistance during the period. We
assessed the impact of counter-factual scenarios reflecting alternative countrywide policies
during the period 2005 to 2016, considering either increasing ART coverage, improving
management of treatment failure, broadening ART eligibility, or implementing drug
resistance testing before ART initiation. We identified key drivers of the NNRTI resistance
epidemic: large-scale ART roll-out and insufficient monitoring of first-line treatment failure.
The model also suggested that no policy including NNRTI-based first line regimen could have
prevented the spread of NNRTI resistance.
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3.3 Introduction
Since ART has been introduced in Southern Africa in 2004, ART coverage has continuously
increased. In 2016, 55% of individuals living with HIV were receiving ART in the region, the
great majority being treated with a standard first-line regimen consisting of two nucleoside
reverse transcriptase inhibitors (NRTI) and one non-nucleoside reverse transcriptase
inhibitor (NNRTI) [113]. The scale-up of ART led to a substantial reduction in mortality but
the emergence of drug resistance could jeopardize its long-term success [67]. Of particular
concern are NNRTIs, as this class has a relatively low genetic barrier to resistance [114]. As
documented by the World Health Organization (WHO), the level of pretreatment NNRTI
resistance has rapidly increased and reached the 10% threshold in the Southern Africa region
in 2015 [38]. According to WHO, this threshold should trigger considerations on changing the
first-line regimen. By contrast, resistance to NRTIs, though relevant at the individual level, is
only rarely transmitted [38].

In South Africa, adult HIV deaths have decreased from 220,000 in 2006 to 99,000 in 2014 [67].
In 2016, an estimated 63% of HIV positive people were on ART in South Africa [113]. While
initially only people with CD4 counts lower than 200 cells/µL were eligible to start ART, South
Africa adopted the "Treat-All" policy in 2017, which recommends ART for all HIV-positive
people regardless of their CD4 counts [115]. The goal is to reach 90% of diagnosed people on
ART in 2020, in line with the 90-90-90 targets of UNAIDS [116]. While the HIV epidemic in
South Africa has been well described and extensively modelled [67, 117, 118], relatively little
work has been done on drug resistance [53, 119]. The rapid increase in ART coverage might
fuel further increase in drug resistance as more and more people become exposed to the
drug, but the impact of the scaling up of ART on the development of NNRTI resistance is not
well defined at present. Another key question is whether a better management of treatment
failure would have mitigated NNRTI resistance.

While understanding the drivers of antiretroviral resistance is crucial for public health,
representative, longitudinal data on drug resistance are scarce, compared to the large
amount of cohort data available on the clinical and public health epidemiology of HIV.
Moreover, quantifying the spread of resistance is challenging because it involves both
epidemiological (transmission, cascade of care, disease progression) and evolutionary
processes (emergence and selection of resistance mutations) [120–122], with the parameters
governing the latter typically unknown [122].

We aimed to capture the dynamics of NNRTI resistance in South Africa during 2005-2016
and to quantify the impact that different policy changes would have had on the rise of drug
resistance. To this end we developed MARISA (Modelling Antiretroviral drug Resistance In
South Africa), a mathematical model integrating the specificities of HIV epidemiology in the
country with the evolutionary epidemiology of drug resistance. MARISA is a compartmental,
deterministic model whose structure reflects gender-specific dynamics of continuum of care
and disease progression, as well as acquisition and transmission of HIV NNRTI resistance. We
calibrated the model using data from the International epidemiology Databases to Evaluate
AIDS in Southern Africa (IeDEA-SA, www.iedea-sa.org, [71]), literature estimates and HIV
key outcomes provided by UNAIDS [113]. The acquisition and transmission of NNRTI drug
resistance was integrated within the general dynamics of the HIV epidemic in the country
and parametrized with estimates derived from other cohorts. This allowed the estimation of
the yearly levels of acquired and transmitted drug resistance (ADR and TDR, respectively).
We then assessed the impact of counter-factual scenarios reflecting alternative countrywide
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public health policies, including policies of increasing ART coverage, improving management
of treatment failure, broadening ART indications, or implementing drug resistance testing
before initiation.

3.4 Method
3.4.1 Model structure
MARISA is a mechanistic, compartmental model. The first dimension of the model accounts
for the whole continuum of care: infection of susceptible individuals, diagnosis, first-line
treatment including NNRTI with subsequent suppression or failure, and second-line
treatment including protease inhibitors (PI) with subsequent suppression or failure (8
classes). We then consider three additional dimensions: disease progression as characterized
by CD4+ T cell counts (4 classes); NNRTI resistance status (2 classes); and gender (2 classes).
This leads to a total of 128 compartments. The first two dimensions describe the different care
stages and their interaction with HIV progression. The third dimension is key to capture the
acquisition of NNRTI resistance by individuals with first-line treatment failure (with rateσres),
the transmission of resistant strains of HIV to susceptible individuals, and the reversion of
HIV resistance mutations when no more drug pressure is exerted (with rateσrev). We assume
that individuals infected with the NNRTI resistant virus have higher failure and lower viral
suppression rates (hazard ratio α and α−1, respectively). As one mutation (e.g. the K103N
mutation) alone confers high-level resistance to NNRTI drugs [123], only one layer is used to
represent NNRTI resistance. The fourth dimension reflects differences observed between
women and men, with diagnosis and treatment rates being higher for women than for men
[66, 124]. This dimension is also involved in modelling HIV transmission among adults (≥ 15
years old).

Movement between compartments is determined by different rates, some of which change
over time to reflect modifications in treatment policies or in behavior. Adults living in South
Africa who are not infected are represented by the susceptible compartment (Susc), as
shown in Fig 3.1. The I compartments represent undiagnosed HIV-positive individuals. The
force of infection considers three transmission routes among adults: a man can either be
infected by a woman ("heterosexual" or HET transmission) or, less commonly, by a man ("men
having sex with men" or MSM transmission), while a woman can only be infected by a man.
HET and MSM populations are only implicitly modelled: we assume a density-dependent
transmission that accounts for different risk behaviors according to knowledge of HIV status
(monthly number of unprotected sexual contacts βu and βd for undiagnosed and diagnosed
HIV-infected individuals, respectively) and the expected proportion of HET and MSM among
men. Inflow of infected children reaching the age of 15 is also taken into account by using
estimates from the Thembisa model and published literature (See Section 1.5 in S1 File)
[66, 67, 125, 126]. Infected individuals become diagnosed at a rate γI→D(t) that is allowed to
vary over time, by CD4 count and by gender. Once diagnosed (compartment D), individuals
will start treatment at a rate γD→T1

(t) that also varies over time, reflecting the successive
changes in ART guidelines. This rate also depends on the CD4 count, as individuals with lower
counts will initiate treatment at higher rates (see Section 1.3 in S1 File).

First-line ART initiation is represented by the T1 compartment, which characterizes individuals
who have been on ART for three months or less. After this period, they can either suppress
viral replication (S1) or fail treatment (F1). These two compartments reflect the use of viral
load monitoring in South Africa to identify patients failing first-line treatment that should
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Fig 3.1: Compartmental model. Three of the four dimensions are represented: 1) care stages (vertically),
2) disease progression (horizontally, stratified in 4 CD4 counts strata), 3) NNRTI resistance (represented
by the two overlapped layers). For sake of clarity, arrows representing treatment interruption are not
displayed. Red arrows represent acquisition of NNRTI resistance, while blue arrows represent reversion
to wild-type HIV-strain.

switch to second-line regimen. We assume that virally suppressed individuals cannot transmit
the virus. When failing first-line treatment, individuals are switched to second-line treatment
(compartment T2) at rateγF1→T2

. Care and disease progression on second line treatment are
modelled identically to first-line therapy. Mortality at each stage differs according to disease
progression and care stage. In addition, the mortality rates for patients with CD4 counts below
200 cells/µl are time-dependent, due to the highly variable mortality risk in this class [127].
Overall, the model contains 137 different rates. The total population of each gender follows the
WHO estimates for South Africa, and initial conditions in each compartment reflect UNAIDS
estimates for 2005. Further details on the MARISA model are available in Sections 1 and 2 in
S1 File.

3.4.2 Parameter values and calibration procedure
We parameterized and calibrated the model in two successive steps. First, some parameters
were given fixed values using external sources. Literature estimates were used for
parameters related to NNRTI resistance (σres, σrev, and α), for transmission probabilities
per sexual contact, for the proportion of MSM and for the mortality risks (relatively to
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suppressed individuals with more than 500 CD4/µL). Similarly, values were defined for the
time-dependent diagnosis rates (differentiating between testing asymptomatic individuals,
symptomatic individuals and pregnant women, and relatively to the treatment rate in
2005) and treatment rates (relatively to the treatment rate for an eligible individual with
less than 200 CD4/µL in 2005). We used estimates from studies conducted in South Africa
whenever available. For parameters related to disease progression (movements between CD4
strata) and to the continuum of care after starting first-line treatment (rates of suppression,
treatment failure, switching to second line, and treatment interruption), we used data from
five IeDEA cohorts in South Africa (Aurum Institute, Hlabisa, Khayelitsha, Kheth’Impilo
and Tygerberg) that provided longitudinal information for 54,016 HIV-infected adults
[71]. The majority of them were female (62%). All patients started a first-line regimen
and 3905 (7.2%) received a second-line regimen. Viral load measurements were used to
identify the occurrence of suppression or treatment failure in treated individuals (using a
threshold of 1000 copies/mL). Because of low monitoring frequency, the number of available
measurements per patient was limited and some intermediate steps in disease or care
progression were missing. We thus adapted methods from survival analysis in order to
reconstruct patients’ care histories (see Section 3.1 in S1 File). See Table 3.1 for more details
about parameters.

During the second phase, the 7 remaining unknown parameters were estimated by fitting the
model to estimates from the Thembisa model for the period 2005 to 2015: annual numbers
of new HIV infections, number of undiagnosed individuals, annual number of AIDS-related
deaths and ART coverage (Table 3.2 and Fig 3.2). The Thembisa model is a compartmental
model providing UNAIDS with estimates on the South African HIV epidemic. Inference
relied upon a maximum likelihood approach, assuming Poisson-distributed errors. We thus
obtained point estimates for the monthly numbers of unprotected sexual contacts βu and
βd, for the base diagnosis rate in 2005 and its increase between 2005 and 2016, for the
treatment rate in 2005, for a scale parameter modelling the decrease in the proportion of
individuals with CD4 <50 cells/µL (only used for mortality estimates), and for the mortality
rate of suppressed individuals with more than 500 CD4/µL (see Table 3.1). Further details are
available in the Section 3 in S1 File.

3.4.3 Simulations and counterfactual scenarios
The model was simulated from 2005 to 2016 using the specified parameter values and
a monthly time step. Several outcomes were computed from the output, including the
proportions of NNRTI ADR (proportion of individuals in F1 compartments with NNRTI
resistance, see Eq. 15 in S1 File) and of NNRTI TDR (proportion of individuals coming from I
to D compartments with NNRTI resistance). When not specified otherwise, NNRTI TDR is
measured in newly diagnosed patients (D) (see Eq. 16 in S1 File). Alternatively, we determine
the proportion of NNRTI resistance in newly infected patients, newly diagnosed patients or in
ART initiators. In this latter case, as it comprises drug-experienced people, we used the term
pre-treatment drug resistance (PDR), rather than TDR.

Four counterfactual scenarios were examined with the model. The first counterfactual
scenario assessed the impact of treatment initiation (γD→T1 ) increased by factors 2, 3 or 5.
The second counterfactual scenario investigated the impact of an earlier switch to second-line
regimen (γF1→T2

) when failing the first-line regimen, by factors 2, 5 or 10. The third and
fourth scenario examined the impact of different testing and treatment policies. In the third
scenario, the "Treat-All" policy, i.e. initiating first-line treatment of diagnosed individuals
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Table 3.1: Parameters used in the model. IeDEA cohort data were used to estimate clinical
progression rates. Parameters that could not be estimated with these data were collected from
literature. Finally, time-varying parameters were estimated by fitting the MARISA model to
estimates from Thembisa model.

Parameters Definition Reference

Parameters obtained from literature (see Table 4 in S1 File)

Resistance parameters

σres Rate of acquiring NNRTI resistance when failing 1st -line
treatment

[128]

σrev Reversion rate when no more NNRTI-drug pressure [31]

α Positive impact of NNRTI resistance on treatment failure [37]

HIV-transmission parameters

Probabilities of HIV infection across gender [129]

MSM prevalence [130]

Mortality parameters

Relative mortality risks across CD4 strata and care treatment
status

[127, 131]

Diagnosis and treatment rates

γI→D(t) Diagnosis rates according to gender and CD4 strata [66]

γD→T1
(t) Treatment rates according to CD4 strata [66]

Parameters estimated of IeDEA cohort data by survival analysis (see Tables 2 and 3 in S1 File)

Parameters related to disease progression [71]

Transition rates between CD4 strata

Parameters related to continuum of care

γT1→S1
,γF1→S1

,
γT2→S2

,γF2→S2

Suppression rates for first- and second-line treatment

γT1→F1
,γS1→F1

,
γT2→F2

,γS2→F2

Failure rates for first- and second-line treatment

γF1→T2
Switching rate from first- to second-line treatment

γT1→D ,γS1→D ,γF1→D ,
γT2→D ,γS2→D ,γF2→D

Treatment interruption rates

Parameters estimated by fitting MARISA to Thembisa model data (see Table 5 in S1 File)

βu ,βd Monthly numbers of unprotected sexual contacts for
undiagnosed and diagnosed people respectively

[66, 113])

γI→D (2005),
γI→D (2016) /γI→D (2005)

Base diagnosis rate in 2005 and its increase between 2005 and
2016

γD→T1
(2005) Treatment rate in 2005

q Scale parameter modelling the decrease in the proportion of
individuals with CD4<50 cells/µL

µi=1
S1/S2 Mortality rate of suppressed individuals with >500 CD4/µL.
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Table 3.2: Outcomes and data sources used to calibrate the model and to compare the
resistance related outcomes of the model. The six outcomes are displayed in Fig 3.2. See Section
3.2 in S1 File for more details.

Outcome Definition Source Reference

Data used during the fitting procedure

New infections Number of newly HIV-infected adults per
year

Thembisa model [66]

Undiagnosed people Number of undiagnosed HIV-infected
adults

Thembisa model [66]

AIDS-related deaths Number of AIDS-related deaths per year
(for adults)

Thembisa model [66]

Treatment coverage Percentage of HIV-infected adults that
are treated

UNAIDS data [113]

Resistance estimates from cross-sectional studies

Level of NNRTI ADR Percentage of people failing first-line
treatment that are resistant to NNRTI

2 cross-sectional studies done in
2010 and 2014 in South Africa

[74, 128]

Level of NNRTI TDR Percentage of treatment-naïve people
that are resistant to NNRTI

Data from a systematic review
on the prevalence of PDR in
South Africa, among other low
and middle income countries.

[132]

regardless of CD4 counts, was implemented at a hypothetical earlier point in time (moved
forward by 1.5, 3 or 6 years). The fourth scenario implemented drug resistance testing and
immediate second-line treatment of individuals harboring a resistant strain at baseline.

3.4.4 Sensitivity analysis
We performed a multivariate sensitivity analysis in order to quantify the impact of uncertainty
on the values of 1) four parameters related to NNRTI resistance (σres, σrev, α and the rates of
treatment interruption) and 2) three parameters related to HIV transmission (percentage
of MSM, probability of male-to-male infection per sexual contact, and ratio between
HIV prevalence in MSM and HET). Multivariate uncertainty within specified ranges was
introduced using Latin hypercube sampling [133]. Each model estimate is reported with a
100% sensitivity range. Further details are available in Section 4.2 in S1 File.

3.5 Results
3.5.1 Model outcomes
The model reproduces the main time trends of the HIV epidemic in South Africa 2005-2016
(Fig 3.2A-D). There is a clear increase in ART coverage since 2005, attaining 48% of infected
individuals in 2015, and a significant drop in the number of undiagnosed individuals, as a
result of the increasing number of HIV tests performed annually. In 2015, the model estimated
that 0.79 million of the 6.9 million infected individuals (11.4%) were not yet diagnosed. The
number of yearly newly-infected individuals decreased from over 400,000 individuals in 2006
to about 300,000 in 2016. The decrease in risk behavior due to testing among HIV-positive
individuals is estimated at 46% (βd/βu=0.54), in line with a behavioral study conducted in
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Fig 3.2: Best fit of the model. The plots A, B, C and D correspond to the four outcomes used during
the fitting procedure: A) the number of newly infected per year, B) the total number of undiagnosed
individuals at each year, C) the number of AIDS-related deaths per year and D) the percentage of infected
individuals that are on ART. NNRTI ADR and TDR levels are displayed in E and, F and G respectively, and
are not used to fit the model. Lines correspond to model output and circles to Thembisa estimates (in
red) or to results from cross-sectional studies (in blue, see Table 6 in S1 File). Grey shades correspond to
100% sensitivity ranges. See Table 3.2 for more details.

South Africa in 2013 [134]. Finally, HIV-related deaths dropped from over 200,000 in 2006 to
109,000 in 2016.

The MARISA model also captures the dynamics of NNRTI ADR and TDR, showing very high
levels of ADR (Fig 3.2E) and increasing levels of TDR (Fig 3.2F) in South Africa after 2004. The
model estimates that 73% of the individuals failing the first-line regimen had ADR to NNRTI
in 2008, with a slight yet steady increase in the following years, surpassing 83% in 2016.
Moreover, the model estimated that 13.8% of these individuals were already resistant at the
time of failure. NNRTI TDR among newly diagnosed individuals increased from 0.9% to 8.1%
during the period. Interestingly, the model indicates substantial variation in TDR levels over
the four CD4 strata, ranging from 2.9% for newly diagnosed individuals with less than 200
CD4/µL to 10.0% for those with more than 500 CD4/µL in 2016. For newly infected individuals,
the NNRTI TDR level reaches 15.0% in 2016. We also observe a high PDR prevalence among
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individuals initiating first-line ART (6.5% in 2016). Finally, the model estimated that 16.9% of
ADR cases in 2016 were related to TDR (see Eq 17, in S1 File).

3.5.2 Counterfactual scenarios
In the first scenario, increasing the treatment rate by a factor 2, 3 or 5 during the whole period
would have led to a substantial reduction of the number of annual deaths, but would have
had little effect on the number of newly-infected or the number of undiagnosed individuals
(Fig 3.3). The decrease in new infections due to increased treatment rates is modest for two
reasons: 1) the low proportion of HIV-infected individuals who are ART eligible (only 28%
of HIV-infected individuals are diagnosed in 2005) and 2) the decrease in the number of
deaths of infectious individuals when increasing ART coverage (67,000 deaths of infectious
individuals prevented per year in 2005-2012 under the 5-fold increase scenario). As expected,
increasing treatment rates would not have impacted NNRTI ADR levels. On the other hand,
by increasing the number of individuals at risk of acquiring NNRTI resistance, it would have
led to a considerable increase of NNRTI TDR levels, surpassing 15.0% in 2016 in the 5-fold
increase scenario.

In the second scenario, increasing the rate of switching to second-line treatment in case of
first-line treatment failure (i.e. dividing the time spent in treatment failure) by factors 2, 5
or 10 would not have influenced the four key HIV outcomes (Fig 3.4). However, the model
predicts a substantial decrease in the levels of both NNRTI ADR and TDR (to 51.5% and 3.1%,
respectively), for the 10-fold increase scenario compared to 83% and 8.1%, respectively, for the
baseline model in 2016.

Moving the "Treat-All" policy forward in time by 1.5, 3 or 6 years in the third scenario, would
have hardly reduced mortality, as it targets individuals with high CD4 counts. On the other
hand, removing infectious individuals with high CD4 counts, who are most likely to achieve
viral suppression, would have led to a decrease in the number of new infections (256,000 for
the 6-year-early implementation scenario instead of 302,000 in the baseline model in 2016).
Increasing ART coverage might, however, increase the spread of resistance as NNRTI TDR
increased to 10.3% in this scenario.

Finally, in the fourth scenario, drug resistance testing, by directly starting individuals with
NNRTI resistance on second-line regimens, would have slightly improved viral suppression
among resistant individuals (59.3% instead of 56.9% in the baseline model) and also reduced
the transmission of resistance (14.4% instead of 15% resistant among newly infected in
2016). The relative impact of each counterfactual scenario on the number of new infections,
AIDS-related deaths and the numbers of both new NNRTI TDR and ADR cases in 2016, as well
as their relative percentages is shown in Table 3.3.
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Fig 3.3: Counterfactual scenario that investigates the impact of increased treatment rate. Simulations
of the MARISA model from 2005 to 2016 under the scenarios where the treatment rate is increased by 2,
3 and 5, represented respectively by the blue, red and yellow curves. Simulations of the baseline model
are represented in black. The following HIV outcomes are displayed: A) the number of newly infected
per year, B) the total number of undiagnosed individuals at each year, C) the number of AIDS-related
deaths per year and D) the percentage of infected individuals that are on ART, E) level NNRTI ADR and
F) level of NNRTI TDR. Different colours correspond to different rates of starting treatment, where the
rates are expressed as multiple of the rate in the standard model. The coloured circles and vertical lines
at the right of each sub-figure correspond to the point estimates and 100% sensitivity ranges in 2016,
respectively.
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Fig 3.4: Counterfactual scenario that investigates the impact of increased switching rate to second line
regimen. Simulations of MARISA model from 2005 to 2016 under the scenarios where the switching
rate to second-line regimen γF1→T2 is increased by factor 2, 5 and 10, represented respectively by the
blue, red and yellow curves. In the baseline simulations represented by the black curves, a switching
rate γF1→T2 of 1/2.9 years−1 is assumed for individuals with CD4<200 copies/µl. The following HIV
outcomes are displayed: A) the number of newly infected per year, B) the total number of undiagnosed
individuals at each year, C) the number of AIDS-related deaths per year and D) the percentage of infected
individuals that are on ART, E) level NNRTI ADR and F) level of NNRTI TDR. Different colours correspond
to different rates of starting treatment, where the rates are expressed as multiple of the rate in the
standard model.
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3.5.3 Sensitivity analysis
Sensitivity analyses showed that uncertainty in the values of four resistance-related
parameters (σres, σrev, α and the rates of treatment interruption) and of three parameters
related to HIV transmission (percentage of MSM, probability of male-to-male infection
per sexual contact, and ratio between HIV prevalence in MSM and HET) did not modify
substantially the main outcomes of the MARISA model (Fig 3.2).

3.6 Discussion
In this comprehensive modelling study, we show that the MARISA model captured the
dynamics of the HIV epidemic in South Africa over the years 2005-2016. More importantly,
it reproduced the emergence of NNRTI resistance, following the roll-out of ART in 2004.
The four counterfactual scenarios provided insights into the drivers of NNRTI resistance.
They highlighted the close association between the magnitude of ART roll-out and the
extent of NNRTI drug resistance. The results also suggest that a better management of
first-line treatment failure, improving identification of treatment failure and switching to
second-line treatment, might have reduced AIDS-related mortality and new HIV infections,
while offering a better control of NNRTI resistance. However, our results also show that while
some policies result in substantial reductions in NNRTI TDR, no measure could have stopped
its increase. Even with optimal monitoring and management, NNRTI resistance would have
rapidly spread in South Africa, suggesting that NNRTI resistance is inevitable if NNRTI-based
regimens are used for first-line therapy.

The MARISA model fit was good regarding all four key outcomes of the HIV epidemic in
South Africa produced by Thembisa/UNAIDS for the period of study: new infections, number
of undiagnosed individuals, AIDS-related deaths and ART coverage [66, 113]. The estimates
related to the "90-90-90" target provided by our model are also in line with those from
UNAIDS. The proportion of HIV-infected individuals knowing their HIV status was estimated
at 88% and 86% in 2015 by our model and UNAIDS, respectively. The second "90" was slightly
underestimated by the MARISA model: the proportion of individuals with diagnosed HIV
infection receiving ART was estimated at 52% in 2015, compared to estimates of 56% and 60%
from Thembisa and UNAIDS, respectively. Finally, the proportion of individuals receiving ART
achieving viral suppression was estimated at 79%, compared to 78% by UNAIDS [113].

NNRTI ADR and TDR levels estimated by the MARISA model were comparable, though
slightly lower, to estimates from six cross-sectional studies conducted during this period
[74, 128, 135–137]. Of note, these observational data were not used for model calibration and
the resistance-specific processes of the MARISA model were partly informed using published
estimates from other settings (in particular the rate of reversion to a drug-susceptible strain
[31] and the positive association between drug resistance and treatment failure [37]), since
no data for South Africa were available. Beyond sampling variability in the estimates from
the cross-sectional studies, the discrepancy in ADR and TDR estimates between MARISA
and the cross-sectional studies could be explained by several factors: a higher proportion of
individuals with previous exposure to ART in the studied samples (e.g. through prevention
of mother-to-child transmission, not included in the MARISA model), selection bias in the
cross-sectional studies (e.g. regarding gender, age, socio-economic features or time since
infection), publication bias by which lower measurements of ADR and TDR are less likely to
be published, or possibly a misspecification of some parameters of the MARISA model due to
geographical differences.
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Note that TDR and ADR reflect different populations and processes. ADR is measured in
people failing therapy, while TDR is measured in newly diagnosed individuals. The term ADR
is somewhat imprecise since we measure it as the proportion of all drug resistant infections
among individuals failing treatment and some of these individuals acquired the resistance
already by infection. It reflects, however, the terminology used in resource limited settings,
where baseline resistance tests are not routinely performed. Our simulations showed that
the vast majority of these ADR cases were indeed acquired after treatment failure: in 2016,
only 16.9% of ADR cases resulted from treatment failing in individuals already infected with
a resistant virus, while the remaining resulted from the selection of resistance mutations in
individuals failing on therapy with an initially sensitive virus (see Eq.17 in S1 File). This pattern
also explains the relatively weak increase over time (from a high initial level) that is observed
for ADR (Fig 3.2E).

Interestingly, MARISA revealed heterogeneity in NNRTI TDR levels across CD4 strata, with
higher levels of NNRTI TDR associated with higher CD4 counts. This can be explained by the
fact that individuals with high CD4 counts are more likely to have been recently infected, and
thus exposed to a higher risk of NNRTI TDR as the prevalence of NNRTI resistance increases
with time. Other studies have indeed observed a higher NNRTI TDR level among acutely than
chronically HIV-infected patients [138]. Given that untreated patients with low CD4 counts
might have been infected for a longer time, another explanation could be the increased
probability of reversion from a drug-resistant to a wild-type strain in these patients.

The counterfactual scenarios identified two main drivers of the emergence and spread of
NNRTI resistance: the magnitude of the ART roll-out and low frequency of monitoring of
first-line treatment failure. The first scenario underlined the inherent risks of resistance
emergence induced by a rapid and generalized ART scale-up. This observation is supported
by findings of Hamers et al. [139] that the level of NNRTI TDR is associated with time
since ART roll out in sub-Saharan Africa. According to the first scenario, policies focused on
increasing ART coverage would have allowed a better control of the HIV epidemic, reducing
both mortality and new infections. However, such policies would have likely resulted in
even higher levels of NNRTI TDR during 2005-2016, leaving doubt about the long-term
sustainability of this approach. As seen in the second counterfactual scenario, an earlier
treatment switch for individuals failing NNRTI-based treatment would not have prevented
resistance from emerging. In this context, the high NNRTI-mutation rate (after on average
6 months in the presence of treatment failure) makes the emergence of NNRTI resistance
almost inevitable. For instance, we observe an emergence of TDR (3.3% in 2016) and a
substantial level of ADR (50% in 2016), even when assuming that from 2005 an optimal
management of treatment failure complying with the South African Department of Health
2016 guidelines [140] was in place. The guidelines recommend a VL measure every six
months and an immediate switch to second-line ART after failure of two months of adherence
counselling (corresponding to an average time before switching of 1/γF1→T2

=5 months).
Still, policies focused on improving first-line treatment failure identification and early
switching to second-line treatment would have likely led to better control of both the HIV
epidemic (with fewer AIDS-related deaths and new infections) and the extent of NNRTI
resistance in South Africa. An earlier implementation of the "Treat-All" policy in the third
scenario would have modestly decreased mortality, as it extends ART to individuals with
high CD4 counts. However, the simulations emphasized the risk of increased levels of NNRTI
TDR following implementation of this policy, in a similar way to policies simply increasing
ART coverage. Finally, the fourth scenario showed the limited impact on HIV outcomes of
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implementing drug resistance testing at baseline. Immediate PI-based treatment in patients
with TDR only slightly diminished NNRTI TDR prevalence. This small effect may be explained
by the limited number of patients affected by the policy (i.e. newly-infected individuals
carrying a resistant strain and initiating ART), whose contribution to the transmission of
resistance was relatively small (TDR accounts for only 16.9% of ADR cases). We acknowledge
that assuming the same failure rates in the counterfactual scenario for patients on a PI-based
first-line regimen as for patients on a PI-based second-line regimen may lead to under
estimation of the effect of baseline resistance monitoring, because rates of failure in patients
on first-line PI-based regimen are probably lower.

The model has several limitations. First, as the estimates from the Thembisa model were
used to fit MARISA, findings produced by MARISA partly rely on the accuracy of Thembisa
model. Second, it does not take into account NRTI mutations, which could also affect
the success of first-line treatment. However, as transmission of NRTI mutations remains
at a low level, their impact on the overall effectiveness of first-line regimens is limited
[38]. Third, adherence is not modelled explicitly in the model, as it is not systematically
assessed in the IeDEA cohorts. Nevertheless, adherence is implicitly included in MARISA, as
estimates of suppression and failure rates rely on a large cohort of individuals with different
levels of adherence. Moreover, modelling of HIV transmission was based on simplified
assumptions: the model only distinguished male from female transmission and attributed
two different transmission rates according to awareness of HIV-status. The probability of
HIV-infection per sexual act was assumed to be identical for all unsuppressed individuals.
The heterogeneity in sexual behavior within genders was only approximated, and MARISA
does not account for interactions between resistance status and sexual behavior. However,
in view of the good fit to the number of new infections, there is no need for introducing a
more complex representation of HIV transmission dynamics. Finally, the model does not
simulate prevention of mother-to-child transmission, which could be an important source
of NNRTI resistance. Overall, there is a trade-off between these potential additional layers
of complexity and the limited knowledge about specific mechanisms. We argue that the
ability of the MARISA model to capture the dynamics of NNRTI resistance with parameters
fixed to known values from external data supports the validity of these simplifications. As it
stands, the model does not make any unverifiable assumptions, and the sensitivity analyses
showed that conclusions were robust, despite uncertainty in the main parameters related
to resistance and transmission. Furthermore, the relatively simple representation of NNRTI
resistance emergence and transmission makes the model easily interpretable.

MARISA can be adapted to address other questions on HIV drug resistance by adding further
layers of complexity. The imminent roll-out of Dolutegravir (DTG), and has been presented
as a response to the NNRTI resistance epidemic [115]. In South Africa, DTG in combination
with two NRTI-class drugs will progressively replace NNRTI as the first-line regimen for men,
but there is uncertainty as to whether it should be recommended for women of reproductive
age due to safety issues [141]. DTG will also be prescribed to patients failing NNRTI-based
regimens. As NRTI resistance mutations might already have occurred in these patients, this
could affect the future success of the DTG-based regimen [142, 143]. From this basis, MARISA
can be extended in order to evaluate the potential impact of introducing DTG-based regimens,
either for men and women or for men only. While the overall structure of the model in terms of
care and disease progression will stay unchanged, the resistance dimension can be expanded
by adding key NRTI resistance mutations (e.g. K65R and M184V). We could also stratify the
model by age group in order to represent the difference in drug prescription (NNRTI or DTG) in
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women according to age. MARISA could thus be used to predict the spread of NRTI- and NNRTI
resistance mutations according to the different strategies of DTG roll-out and their impact on
the overall success of HIV-epidemic.

To conclude, we propose MARISA, a mechanistic model aimed at providing insight into
the NNRTI resistance epidemic in South Africa in 2005-2016. Integrating information from
several sources, including local cohorts of HIV-infected individuals, the model captured
the essence of NNRTI resistance emergence in South Africa. Counter-factual scenarios
identified key drivers of the NNRTI resistance epidemic at the policy level: a rapid, large-scale
ART roll-out and an insufficient monitoring of first-line treatment failure. The model
also showed that the rapid rate of acquisition and slow rate of reversion of NNRTI drug
resistance mutations make it difficult to prevent their spread if NNRTI-based treatments
are used as a first-line regimen, and it indicated the limited effect of drug resistance testing.
Understanding future challenges in HIV drug resistance such as the introduction of DTG, its
effect on the epidemic, the possibility of DTG resistance, and the impact of NRTI mutations on
DTG based regimens will require the modelling of a more complex and uncertain mutational
landscape. MARISA, with its backbone of a simple yet adequate epidemiological model will
provide a suitable foundation to address this challenge.

3.7 Supporting information
S1 File. Detailed description of the MARISA model. Detailed description of the MARISA
model and the computational methods used to calibrate and then run it.
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4.1 Abstract
Background: Rising resistance of HIV-1 to non-nucleoside reverse transcriptase inhibitors
(NNRTIs) threatens the success of the global scale-up of antiretroviral therapy (ART). The
switch to WHO-recommended dolutegravir (DTG)-based regimens could reduce this threat
due to DTG’s high genetic barrier to resistance. We used mathematical modelling to predict
the impact of the scale-up of DTG-based ART on NNRTI pre-treatment drug resistance (PDR)
in South Africa, 2020-2040.

Methods and Findings: We adapted the MARISA (Modelling Antiretroviral drug Resistance
In South Africa) model, an epidemiological model of the transmission of NNRTI resistance
in South Africa. We modelled the introduction of DTG in 2020 under two scenarios: DTG as
first-line regimen for ART-initiators, or DTG for all patients, including patients on suppressive
NNRTI-based ART. Due to safety concerns related to DTG during pregnancy, we assessed the
impact of prescribing DTG to all men and in addition to i) women beyond reproductive age,
ii) women beyond reproductive age or using contraception, and iii) all women. The model
projections show that, compared to the continuation of NNRTI-based ART, introducing DTG
would lead to a reduction in NNRTI pre-treatment drug resistance (PDR) in all scenarios if ART
initiators are started on a DTG-based regimen and those on NNRTI-based regimens are rapidly
switched to DTG. NNRTI PDR would continue to increase if DTG-based ART was restricted to
men. When given to all men and women, DTG-based ART could reduce the level of NNRTI PDR
from 52.4% (without DTG) to 10.4% (with universal DTG) in 2040. If only men and women
beyond reproductive age or on contraception are started on or switched to DTG-based ART,
NNRTI PDR would reach 25.9% in 2040. Limitations include substantial uncertainty due to
the long-term predictions and the current scarcity of knowledge about DTG efficacy in South
Africa.

Conclusions: Our model shows the potential benefit of scaling up DTG-based regimens for
halting the rise of NNRTI resistance. Starting or switching all men and women to DTG would
lead to a sustained decline in resistance levels whereas using DTG-based ART in all men, or
in men and women beyond childbearing age, would only slow down the increase in levels of
NNRTI PDR.

4.2 Author summary
Why was this study done?

• The scale-up of antiretroviral therapy in resource-limited settings has achieved an
unprecedented reduction in HIV-related morbidity and mortality.

• The success of antiretroviral therapy is however threatened by increasing levels of
resistance to antiretroviral drugs of the non-nucleoside reverse transcriptase inhibitors
(NNRTI) class.

• Replacing NNRTIs by dolutegravir may curb the spread of resistance but it is unclear
how effective this switch will be and which patient groups should be switched from
NNRTI to dolutegravir.

• It has been debated whether Dolutegravir should be given to women, because of a
potential risk of birth defects, and to patients already on an NNRTI based therapy.
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What did the researchers do and find?

• Using a mathematical model simulating the HIV epidemic in South Africa, we find that
scaling up dolutegravir-based antiretroviral therapy can halt the increase of NNRTI
resistance.

• This predicted effect of dolutegravir depends crucially on including both women and
people already on NNRTI-based ART among patients to whom dolutegravir will be
prescribed.

• Restricting dolutegravir to men or to patients initiating antiretroviral therapy would
substantially reduce its potential to curb resistance at the population level, as in this
case it could merely slow down but not halt the spread of NNRTI resistance.

• Patients still relying on NNRTI-based therapy would in this case face increased risk of
resistance and therapy failure.

What do these findings mean?

• Our model highlights the potential of dolutegravir scale up to curb NNRTI resistance.

• In order to halt the increase in NNRTI resistance, dolutegravir should become accessible
to both women and people currently on NNRTI-based therapy.

4.3 Introduction
The rollout of antiretroviral therapy (ART) in South Africa is estimated to have prevented 0.73
million HIV infections between 2004 and 2013 as well as 1.72 million deaths between 2000
and 2014 [67, 144]. However, the spread of non-nucleoside reverse transcriptase inhibitor
(NNRTI) resistant viruses is threatening this success [145]. An estimated 16% of AIDS-related
deaths and 8% of ART costs will be attributable to HIV drug resistance up to 2030 in the
sub-Saharan African countries that reached HIV pretreatment drug resistance (PDR) levels
above 10% in 2016 [53].

In Southern Africa, dolutegravir (DTG), an integrase inhibitor drug, is being introduced on
a large scale as part of fixed-dose combinations of Tenofovir, Lamivudine, and Dolutegravir
(TLD) [146]. With a high genetic barrier to resistance, DTG has the potential to curb the
spread of antiretroviral resistance, as it is highly effective, well tolerated and affordable in
resource-limited settings [114, 147–149]. Mathematical models explored the effectiveness
and cost-effectiveness of prescribing DTG to all ART initiators [150]. These models found that
the introduction of DTG was cost-saving and reduced HIV mortality in people living with HIV
who initiate ART [150].

The introduction of DTG has been complicated by the increased risk of neural tube defects
(NTD) in women living with HIV using DTG at the time of conception [151] and other
potential side effects such as weight gain [149, 152]. Concerns surrounding NTD risk have
delayed the rollout of DTG and, in some settings, led to recommending DTG-based regimens
only for men and women who are not at risk of pregnancy [153, 154]. For South Africa, a
mathematical modelling study showed that DTG-based first-line ART for all women of
child-bearing potential would prevent more deaths among women and more sexual HIV
transmissions than either NNRTI-based ART for women of child-bearing potential or women
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without contraception, but increase pediatric deaths [155]. In its 2019 guidelines, the WHO
recommends DTG in combination with nucleoside reverse-transcriptase inhibitors (NRTIs)
for first-line ART, with the proviso that "women should be provided with information about
benefits and risks to make an informed choice regarding the use of DTG" [156].

It is likely that in many settings, people living with HIV on NNRTI-based first-line ART will be
switched to DTG-based ART; however, the rate of the transition will vary between countries
and settings. For second-line ART, WHO recommends DTG-based ART in people living with
HIV for whom an NNRTI-based first-line regimen has failed [156]. Again, the rate of switching
to DTG-based second-line ART will vary, influenced by concerns about the development of DTG
resistance in patients who switch with pre-existing resistance to NRTIs [157]. Taken together,
it is likely that for the foreseeable future a considerable fraction of people living with HIV,
and particularly women, may continue to rely on NNRTI-based ART regimens, even in the
case when guidelines recommend DTG. In this context, NNRTI resistance will likely remain
an important issue during and after the rollout of DTG.

We adapted the MARISA model (Modelling Antiretroviral drug Resistance In South Africa)
[158] to predict the impact of different scenarios regarding the scale-up of DTG-based ART on
NNRTI pre-treatment drug resistance (“NNRTI resistance” in the remaining of this article) in
South Africa for 2020 to 2040.

4.4 Materials and methods
4.4.1 Extended MARISA model
Described in detail elsewhere [158], MARISA is a deterministic compartmental model of both
the general HIV epidemic and the NNRTI resistance epidemic in South Africa. It consists of
four dimensions representing (1) care stages (see Fig 4.1); (2) disease progression according
to the CD4 cell counts; (3) sex; and (4) NNRTI resistance. Care stages distinguish between
infected, diagnosed and treated individuals (either with NNRTI- or protease inhibitor
(PI)-based regimen), with subsequent treatment-specific suppression (Supp compartment in
Fig 4.1) or failure (Fail compartment). Treat init. compartments represent individuals treated
for less than 3 months.

We simulated the adapted model from 2005 to 2040 assuming the rollout of DTG-based
ART started in 2020 under different scenarios (see below). We further assumed that all men
and a proportion p1 of women are eligible for DTG, this proportion varied between scenarios.
Before 2020, an NNRTI is used in first-line ART and PIs in second-line regimens. As first line
regimen, DTG is prescribed from 2020 on either to ART initiators (i.e., eligible, ART-naive
people living with HIV) or for switching to DTG-based first-line ART (i.e., people on NNRTI and
eligible for DTG). We assumed that patients failing DTG are switched to a PI-based regimen.
For DTG-ineligible women, the cascade of care remains unchanged after 2020 (Fig 4.1).

4.4.2 Calibration and extension of the MARISA model
We previously calibrated the MARISA model by combining different sources of data. Rates
either related to treatment response (NNRTI- or PI-based regimen) or disease progression
(characterized by CD4 counts) were estimated using clinical data from five cohorts in
South Africa (Aurum Institute, Hlabisa, Kheth’Impilo, Rahima Moosa and Tygerberg) that
participate in the IeDEA collaboration [71]. These cohorts provided longitudinal information
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Fig 4.1: The adapted MARISA model. The model differentiates DTG-eligible from DTG-ineligible
women. The model structure related to the cascade of care is shown.

for 30,317 HIV-infected adults. Other parameters were either estimated from the literature
(e.g. resistance-related parameters) or fitted to estimates from the Thembisa model (e.g.
diagnosis rates and treatment initiation rates). Thembisa is a demographic projection model
on which the official UNAIDS estimates for South Africa are based [66]. More details about
the calibration procedure can be found in [158] and in the supplementary materials (S1 Text,
Section 1.1).

We added and modified parameters in order to model the introduction of DTG. We assumed
that the DTG initiation rate γD→T3(t) is the same as the NNRTI initiation rate γD→T1(t)
from 2020. Both NNRTI and DTG initiation rates increase until 2022, as a consequence of
the Treat-All policy that was implemented in 2017. From 2022 onwards, they are assumed
to remain constant (S1 Text, Section 2.2). Finally, we fixed switching rates from NNRTI- to
DTG-based regimens for both eligible suppressed (see “Scenarios”) and all failing individuals
(γS1→S3

(t) and γF1→T3
(t) respectively) to 1 year−1. We assumed that suppressed

individuals would stay suppressed when switching, while failing individuals would start DTG
in the Treat init. compartment (see Fig 4.1). The main parameters are summarized in Table 4.1.

In the adapted MARISA model, we also added a fifth NRTI resistance dimension to model the
impact of NRTI resistance on DTG-efficacy. NRTI resistance is defined as having resistance
to both tenofovir (TDF) and lamivudine/emtricitabine (3TC/FTC), the two backbones that
are usually combined with DTG (see S1 Text, Section 2.5) [27]. We assumed that NRTI
resistance is acquired when failing NNRTI-based regimen. In view of the low levels of
NRTI PDR that are observed in Africa and its rapid reversion to wild-type, we assumed
as an approximation that it cannot be transmitted. We investigated different impacts
of NRTI resistance on DTG-based regimen and different DTG-efficacies. For this aim,
we re-calibrated the model so that it reflects different odds ratios (ORs) of DTG-failure
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Table 4.1: Main parameters used in the extended MARISA model.

Rate Description Source/Definition

Rates estimated in the previous MARISA model [158]

γ
k,elig/inel
I→D ,γk,elig

D→T1
Diagnosis rate, treatment
initiation rate to NNRTI

Calibrated by fitting MARISA to Thembisa model
(see [158]) from 2005 to 2016 (see S1 Text Section
2.2)

γT1→S1
,γT1→F1

,
γF1→S1

,γS1→F1

NNRTI suppression and failure
rates

Estimated with individual epidemiological data
from IeDEA-SA [71] (see S1 Text Table B)

γT2→S2
,γT2→F2

,
γF2→S2

,γS2→F2

PI suppression and failure rates Estimated with data from IeDEA-SA [71] (see S1 Text
Table B)

γ
k,elig/inel
F1→T2

Rate of switching from NNRTI
to PI (before 2020)

Estimated with data from IeDEA-SA and then
adjusted (see S1 Text Section 2.2)

Added rates

γT3→S3
,γT3→F3

,
γF3→S3

,γS3→F3

DTG suppression and failure
rates

Calibrated with data from NAMSAL study [152] (see
S1 Text Section 2.5)

γD→T3(t) (t ≥ 2020) DTG initiation rate (from 2020) Same DTG initiation rate as for NNRTI (for DTG-inel.
people)γD→T3 := γinel

D→T1

γk,elig
I→D (t),γk,inel

I→D (t),
(t ≥ 2020)

Diagnosis rate from
2020 (distribution across
DTG-eligibility classes)

γ1,elig
I→D (t) = p1 · γ1

I→D(2020) and
γ1,inel
I→D (t) = (1 − p1) · γ1

I→D(2020),
for t ≥ 2020 (see S1 Text Section 2.2)

γ
elig/inel
F1→T2

(t),
(t ≥ 2020)

Rate of switching from NNRTI
to PI (DTG-inel.)

γinel
F1→T2

(t) = γF1→T2
,γelig

F1→T2
(t) = 0, for

t ≥ 2020 (see S1 Text Section 2.2)

γF3→T2
(t), (t ≥

2020)

Rate of switching from DTG to
PI

γF3→T2
(t) := γinel

F1→T2
(t), t ≥ 2020

γS1→S3
(t), (t ≥

2020)

Switching rate from NNRTI to
DTG (maintenance therapy)

γk
S1→S3

(t) := 1 year−1 , t ≥ 2020

γF1→T3
(t), (t ≥

2020)

Switching rate from NNRTI to
DTG (switch therapy)

γF1→T3
(t) = 1 year−1 , t ≥ 2020
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between NRTI-resistant and NRTI-susceptible individuals (OR=1, OR=2, OR=5). In the
main analysis, we assumed that DTG-efficacy was similar to the one observed in the New
Antiretroviral and Monitoring Strategies in HIV-infected Adults in Low-income countries
(NAMSAL) study [152], corresponding to an OR of failure between NNRTI and DTG of 1.02,
after adjusting for the different baseline characteristics of the two groups (see S1 Text,
Section 2.5). Other DTG efficacy corresponding to an OR of 2 and 5 were investigated in
an additional analysis (see S1 Text, Section 5.3). All code and manuscript are available
from https://github.com/anthonyhauser/MARISA2. This study was approved by the Ethics
Committee of the Canton of Bern, Switzerland.

4.4.3 Scenarios
The model investigated the impact of the introduction of DTG-based regimens on the level
of NNRTI resistance in diagnosed individuals (i.e. NNRTI PDR) under 2 main scenarios, with
4 variations for each of the two scenarios. We also examined the scenario where DTG-based
ART is not introduced. There were thus 9 scenarios in total. The two main scenarios were:

1. DTG is only used in first-line regimen of ART-initiators and, as second-line, in patients
failing NNRTI-based ART,

2. DTG is used as initial first-line regimens (for ART-initiators), with all patients on
NNRTI-based regimens being switched to a DTG-based regimen.

For the second scenario, we varied the impacts of NRTI resistance on DTG-based regimen,
by either assuming an OR of DTG-failure between NRTI-resistant and NRTI-susceptible
individuals of 1 (i.e. no impact) or of 2. Each scenario also investigated four different DTG
eligibility levels p1 for women. The population eligible for DTG in each scenario was:

a) only men (100% men, 0% women)

b) men and women beyond reproductive age (100% of men, 17.5% of women)

c) men and women beyond reproductive age or using contraception (100% of men, 63%
of women)

d) all men and women (100% of men, 100% of women)

The percentages of women eligible for DTG in b) and c) were determined by analyzing cohort
data from IeDEA, which show that 17.5% adult women on ART are 50 or older [71], and
estimates on the use of contraception from the World Bank [159](see S1 Text, Section 3.1).
Throughout the rest of the paper, scenarios (b) and (c) will be referred as "men and women
beyond childbearing age" and "men and women not at risk of pregnancy", respectively. Of
note, to model scenario 1., we set γS1→S3

(t) = 0 and γF1→T3
(t) = γinelF1→T2

(t) (as opposed
to scenario 2., where γS1→S3

(t) = γF1→T3
(t) = 1 year−1). We thus assumed that in all

scenarios DTG will be used in second-line regimens for people failing NNRTI-based first-line
ART.

4.4.4 Additional analyses
We predicted the impact of different levels of DTG introduction on the level of NNRTI
failure. We considered the scenario where DTG was prescribed to ART initiators and those on
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NNRTI-based first-line ART were switched to a DTG-based regimen, with the four different
levels of women accessing DTG-based ART (see "Scenarios"). However, we assumed that
99% of women were eligible for DTG in scenario d) (instead of 100%), in order to estimate
NNRTI failure when only a very small fraction of women rely on it. For each of these scenarios,
we predicted the percentage of individuals failing an NNRTI-based regimen in 2035 after
different durations on ART (1 or 2 years). For each of the scenarios, we ran the model from
2005 up to 2035 and retained the numbers of people starting NNRTI-based first-line ART (by
CD4 groups, NNRTI resistance and sex) in 2035. We then ran the model for the compartments
related to NNRTI-treatment, using the previously saved starting values. This way, we could
predict the levels of NNRTI-failure in patients starting NNRTI in 2035 after 1 or 2 years of ART.

We assessed the impact of different switching rates from NNRTI- to DTG-based regimens,
fixed to1 year−1 for both suppressed and failing individuals. We varied both ratesγS1→S3

(t)
and γF1→T3

(t) within a range corresponding to a time to switch of between 0.5 and 10 years
after start of ART. For each analysis, the percentage of women who are DTG-eligible varied
from 0% to 100%.

4.4.5 Sensitivity analyses
The values of eight parameters were varied in the sensitivity analysis: three transmission-related
parameters (percentage of men who have sex with men (MSM), probability of male-to-male
infection per sexual contact, and HIV prevalence ratio between MSM and heterosexuals), four
resistance-related parameters (resistance rates, reversion to wild-type rate and the effect of
NNRTI resistance on NNRTI efficacy) and one parameter related to treatment (efficacy of
DTG-based treatment). Multivariate uncertainty within specified ranges was assessed using
Latin hypercube sampling [160]. Each model estimate is reported with a 95% sensitivity
range. Further details are available in S1 Text, Section 3.2. and Fig C and D. In addition, we also
investigated the impact on NNRTI PDR of 1) lower treatment-initiation rates than suggested
by the Treat-All policy (as suggested by [161]), 2) treatment interruption, 3) higher efficacy of
DTG and different impacts of NRTI resistance on DTG (S1 Text, Section 5).

4.5 Results
4.5.1 Use of NNRTIs and levels of resistance
The percentages of patients treated with DTG and NNRTI for each of the 9 scenarios are shown
in Fig 4.2. The predicted evolution of levels of NNRTI PDR up to 2040 across 13 scenarios is
shown in Fig 4.3. The model predicts that while NNRTI PDR would increase substantially
under continued NNRTI-based ART, the introduction of DTG-based ART can halt this increase,
if in addition to starting new patients on a DTG-based regimen the patients on NNRTI-based
regimens are switched to DTG-based first-line ART. Specifically, under the scenario of
continued NNRTI-based ART as standard first-line therapy, NNRTI PDR would increase to
29.8% (95% sensitivity range: 7.4%-39.4%) by 2030 and 52.4% (21.1%-63.4%) by 2040 (Fig
4.3A). At the other end of the spectrum, initiating all new ART patients on DTG-based ART
and rapidly switching all patients currently on NNRTI-based ART to DTG-based regimens,
independently of their sex, would stabilize NNRTI PDR at a moderate level, with a prevalence
of 8.4% (2%-11.8%) by 2030 and 10.4% (4.4%-13.8%) by 2040 (Fig 4.3B). When assuming an
impact of NRTI resistance on DTG-failure (Fig 4.3C), we found slightly higher levels of NNRTI
PDR: 9.7% (2.4%-13%) in 2030 and 13.2% (5.6%-16.9%) in 2040, but a similar impact of the
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different scenarios of DTG introduction. Using DTG only in first-line regimens of patients
initiating ART is not sufficient to curb the increase of NNRTI PDR, even when given to all men
and women (Fig 4.3A).
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Fig 4.2: Predicted use of NNRTI- and DTG-based regimens. Percentages of patients treated with NNRTI-
and DTG-based regimens (left and right panels, respectively) are shown. Panels A represent the scenarios
where DTG is used in patients initiating ART, while in panels B patients are also switched to DTG-based
first line ART.

If restricted to men, DTG-based ART will not curb the increase in NNRTI PDR: the prevalence
of resistance is predicted to increase over the entire study period, reaching values of close to
40% by 2040 (Fig 4.3B). The situation is similar under the scenario of initiating or switching
men and women beyond childbearing age (17.5% of women in the IeDEA cohorts). However,
the model estimates that the increase in the prevalence of NNRTI PDR is substantially slowed
down if women beyond the age of reproduction or on contraception (63% of women) also
initiate a DTG-based regimen or switch to DTG. Under this scenario the prevalence of NNRTI
PDR is predicted to reach 25.9% (8.5%-37%) in 2040 and 13.3% (3%-18.7%) in 2030, if DTG
is given to both ART-initiators and individuals already on NNRTI-based ART (Fig 4.3). Again,
slightly higher NNRTI PDR levels are observed when including the impact of NRTI resistance
on DTG-efficacy: 27% (9.3%-37.9%) in 2040 and 14.2% (3.4%-19.3%) in 2030.
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Fig 4.3: Predicted levels of NNRTI pre-treatment drug resistance in South Africa (PDR) 2005-2040.
Dolutegravir is introduced in 2020 under three scenarios: DTG as first-line regimen for ART-initiators
(panel A), DTG for all patients (panel B) or DTG for all patients, assuming an impact of NRTI resistance
on DTG-efficacy (panel C), and with different eligibility criteria for women (colors). The baseline model
shows the situation without the introduction of DTG (black line). The two boxes on the right of each panel
represent the levels of NNRTI PDR in 2040 and their 95% sensitivity ranges.

4.5.2 Impact of switching rates
We calculated levels of NNRTI PDR for 2035 for different average switching delays and
percentages of women eligible for DTG-based ART, however without considering the effect of
NRTI- resistance. We considered the effect of a modified switching rate both in suppressed
individuals (Fig 4.4A) and in individuals on a failing regimen (Fig 4.4B). The predicted levels
of NNRTI PDR range from 8.4% to 33.1% . The results indicate potential benefits of both
strategies to reduce NNRTI resistance. However, as shown by the greater variation in the
prevalence of NNRTI PDR in the vertical than horizontal direction in Fig 4.4, allowing a
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higher proportion of women access to DTG-based ART has a greater impact than increasing
switching rates.

Fig 4.4: Level of NNRTI pre-treatment drug resistance in 2035, by rate of switching to DTG-based
ART and percent women eligible for DTG-based ART. Panel A relates to patients on first-line ART with
suppressed HIV-1 replication, and panel B to individuals failing NNRTI-based ART. The average time
to switching (i.e. the inverse of the switching rate) varies from 0.5 to 10 years for individuals with viral
suppression (panel A) or failure (panel B).

4.5.3 Impact of DTG-eligibility on the rate of NNRTI failure
As expected from their effect on NNRTI resistance, the different scenarios of the rollout of
DTG-based ART also influence the virological failure under NNRTI-based ART. Fig 4.5 shows
the predicted proportion of NNRTI-failure after 1 and 2 years among DTG-ineligible women
according to different scenarios of DTG-introduction. In the absence of DTG introduction, we
observe a high level of failure in women starting NNRTI in 2035, reaching 18.2% after 2 years
of ART. If all men are started on or switched to DTG, it would help diminish the level of failure
by 2 years to 14.3% in 2035, and to 14.5% when including the impact of NRTI resistance. This
percentage decreases to 13.1% , when including all women not at risk of pregnancy (13.4%
when including NRTI resistance), and to 12.3% (12.7% when including NRTI resistance) if all
men and 99% of women are included. Finally, we find that the increase of virological failure in
DTG-ineligible women who still rely on NNRTI can be stopped by the introduction of DTG (see
S1 Text Fig E).

4.6 Discussion
We adapted the epidemiological MARISA model to examine the impact of the scale-up
of DTG-based ART on NNRTI pre-treatment drug resistance in South Africa. Overall, our
findings suggest that if a large fraction of women is excluded from receiving DTG-based
ART, they will not only receive a potentially inferior NNRTI-based regimen but will also face
increasing rates of resistance to this regimen due to the population level effects of continued
NNRTI use. In contrast, the spread of NNRTI resistance can be slowed down if DTG-based
ART is made accessible both to women at low risk of pregnancy and to people currently
on a NNRTI-based first-line regimen, thereby indirectly protecting those still requiring a
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Fig 4.5: Predicted percentage of women failing NNRTI-based ART after one and two years of ART in
2035, depending on the scenario of the rollout of DTG-based ART. Note that the scenario in which DTG
is given to all men and 99% of women (in red) replaces the scenario in which DTG was given to all men
and women (see "Additional analyses"). Failure is given after 1 and 2 years of ART.

NNRTI-based treatment. Model simulations emphasize the importance of starting on or
switching a maximum number of women to DTG-based ART: increasing use of DTG-based
regimens was the strategy with the greatest potential to curb the spread of NNRTI resistance.
The latter strategy will also lower the risk of virologic failure in women who have to rely on
NNRTI-based ART in the future. Finally, it is interesting to observe that, even when using DTG
for all patients, NNRTI PDR is not expected to decrease but rather to remain approximatively
stable at a moderate level, due to the very slow reversion of NNRTI resistance that allows
subsequent transmission of NNRTI resistance (in line with [162]).

While some countries, such as South Africa, first considered limiting access to DTG to men,
menopausal women, and women using long-term family planning as a potential policy, the
new WHO guidelines state that women should not in principle be excluded from DTG-based
ART, even women who are at risk of pregnancy or desire to get pregnant. WHO recommends
a woman-centered approach where women should be provided with information about
benefits and risks to make an informed choice [49, 156]. It is unclear what proportion
of women will effectively receive DTG-based ART, as it depends on individual women’s
decisions. In this context, model simulations are essential in order to assess the impact of the
different options proposed and different levels of DTG uptake. A strength of our model is that
it deals with the two most significant sources of uncertainty associated with the introduction
of DTG, namely DTG uptake in women and the delay in switching people currently on NNRTI
regimens. Despite the uncertainty concerning the uptake of DTG in women, it is likely that
a proportion of women will continue to rely on NNRTI-based ART. Therefore, even with the
rollout of DTG, NNRTI resistance will continue to be relevant for these women. Compared
with other modelling work that assessed risks and benefits of DTG introduction (e.g. [155]),
our model focused on its indirect, population-level impact on NNRTI resistance. Rather than
assigning a level of NNRTI resistance that is fixed over time, HIV care and disease stages (as in
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[155]), our model considered the dynamic development of NNRTI resistance under relevant
scenarios.

Our model also has several limitations. First, real-world data on the efficacy of DTG, especially
in resource-limited settings are scarce. Therefore, we conservatively assumed that DTG has
a similar efficacy as observed in the NAMSAL study [152]. Higher DTG efficacies as well
as different impacts of NRTI resistance on DTG-failure are investigated in supplementary
analyses (see S1 Text, Section 5.3). Second, predictions of levels of NNRTI resistance over
the next twenty years are naturally uncertain, as reflected by the wide sensitivity ranges in
Fig 4.3. However, despite the uncertainty, it is clear that the different strategies of rolling
out DTG-based ART influenced the levels of NNRTI resistance. Finally, the MARISA model
includes some simplifying assumptions, e.g. we did not model prevention of mother to
child transmission (PMTCT), or treatment interruption. However, relaxing some of these
assumptions did not drastically change our conclusion (see S1 Text, Section 5).

Another limitation of this study is the fact that the MARISA model does not take into account
resistance to DTG and uses a simplified representation of NRTI resistance. In the context
of the introduction of DTG-based ART, modelling of NRTI resistance is particularly relevant
as individuals starting on DTG as a functional monotherapy due to resistance to both NRTI
backbones - tenofovir and lamivudine - experience higher risk of treatment failure [103]. As
they are considerably less frequently transmitted [38] and revert back quickly [31, 32], NRTI
resistances might primarily be an issue for ART-experienced individuals and more specifically,
in patients failing NNRTI-based regimens, who often exhibit high levels of NRTI resistance
[74]. These patients who are on non-suppressive NNRTI-based regimens are expected to
switch to DTG, either after identification of treatment failure, following the new WHO
guidelines, or blindly [157]. In the context of modelling the DTG rollout, this consideration
has two important implications. First, patients currently failing NNRTI-based regimens are
expected to have higher DTG failure rates, mainly due to previously acquired NRTI resistance.
Second, due to ongoing viral replication and due to pre-existing NRTI resistance, they are
at higher risk of accumulating resistance, which may also lead to the emergence of DTG
resistance. So far, data on emergence of DTG resistance is primarily available from patients in
whom treatment failure was detected relatively early, which may not be the case in African
settings [149]. Therefore, to understand risk inherent in the emergence of DTG resistance,
adapting the MARISA model by extending its resistance dimension to DTG resistance will be
necessary.

4.7 Conclusion
In conclusion, our study indicates that giving access to DTG-based ART to all women not at risk
of pregnancy could limit the increase of NNRTI PDR, but even if all women receive DTG-based
ART the level of NNRTI PDR will remain above 10% in South Africa. Our model highlights the
importance of a rapid switch of patients currently on NNRTI-based to DTG-based ART in order
to limit the increase in NNRTI PDR. Women who remain on NNRTI-based ART will indirectly
benefit from a high level of DTG uptake due to a reduced risk of virologic failure.
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5.1 Abstract
The prevalence of pretreatment resistance to non-nucleoside reverse transcriptase
inhibitors (NNRTIs) is >10% in many low-income countries. As a consequence, several
sub-Saharan African countries have implemented, or are considering the introduction
of, non-NNRTI-based first-line antiretroviral therapy (ART) for treatment-naïve and
treatment-experienced patients. This is occurring at a time when ART programmes are
expanding, in response to the World Health Organization guidelines, which recommend
ART initiation regardless of CD4 cell count. Both those developments raise important
questions regarding their potential impact on HIV drug resistance and the impact of HIV
drug resistance on clinical outcomes. Those issues are particularly relevant to sub-Saharan
Africa, where standardised ART regimens are used and where viral load monitoring and
resistance testing are often not done routinely. It is therefore essential to forecast the impact
of the implementation of universal ART, and the introduction of drugs such as dolutegravir to
first-line regimens, on HIV drug resistance in order to inform future policies and to help ensure
sustainable positive long-term outcomes. We discuss important public health considerations
regarding HIV drug resistance, and describe how mathematical modelling, combined with
real-world data from the four African Regions of the International epidemiology Databases
to Evaluate AIDS consortium, could provide an early warning system for HIV drug resistance
in sub-Saharan Africa.

5.2 Introduction
The widespread emergence and transmission of HIV drug resistance (HIVDR) has
impaired the success of the currently recommended first-line antiretroviral therapy (ART)
regimens including efavirenz in sub-Saharan Africa (SSA). The prevalence of pretreatment
non-nucleoside reverse transcriptase inhibitor (NNRTI) resistance ranges from 8% in
Cameroon to 15% in Uganda [38]. As many countries in the region consider shifting to
dolutegravir-containing regimens, surveillance and monitoring of HIVDR will be key to
ensuring the durability of this new drug. The introduction of universal test-and-treat
policies [163] will increase the number of individuals on ART from 20 million in mid-2017
to approximatively 30 million by 2020. This rapid expansion of ART programmes might
impact the occurrence of HIVDR, particularly in under-resourced health systems with
little capacity for virological monitoring. In this viewpoint article we discuss important
public health considerations regarding HIVDR in SSA, namely the potential impact of
universal test-and-treat policies on HIVDR, and the potential implications of HIVDR on the
effectiveness of dolutegravir-based ART. We also identify gaps in current knowledge, and
describe how we could address current and future challenges in the field using real-world
data from the International epidemiology Databases to Evaluate AIDS (IeDEA), a large
consortium of HIV cohorts, and mathematical modelling.

5.3 Universal test-and-treat policies and the emergence of
HIV drug resistance in sub-Saharan Africa

Randomised controlled trials have shown the benefits of early ART initiation in terms of
individual patient outcomes and reduction in HIV transmission rates [164, 165]. However,
there are concerns that early ART initiation may increase the prevalence of antiretroviral drug
resistance due to compromised adherence, as patients who feel healthy might be less likely
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to be fully adherent [166]. Data regarding the impact of early ART on adherence and the
development of HIVDR are limited and inconsistent. In a prospective study of 473 patients
from Uganda, those who initiated ART with a CD4 cell count ≥250 cells/µL were twice as
likely to have treatment interruptions of >72 hours in the first 90 days of ART, as assessed
by electronic pill bottles. As a consequence, they were nearly three times as likely to have
HIV viral load >400 copies/mL at 120 days than those with CD4 count <250 cells/µL [167].
However, a study of 900 patients from South Africa found that CD4 count at ART initiation
was not associated with adherence <95% in the first 12 months on ART (assessed by visual
analogue scale and pill count) [44]. In terms of the impact of early ART initiation on HIVDR,
in a cohort study from Europe, patients who initiated ART immediately (within three months
of having a CD4 count and viral load measured while AIDS-free), were slightly more likely to
develop drug resistance within seven years than those who initiated ART at CD4 <500, or <350
cells/µL [47]. In contrast, in the HPTN052 trial, which showed decreased HIV transmission
between sero-discordant couples with ART initiation at a CD4 cell count of 350–550 versus
<250 cells/µL, the risk of drug resistance was higher in the delayed versus early ART initiation
arm [168].

These differences in the effect of timing of ART initiation on the development of HIVDR
might be explained by differences in adherence: patients in clinical trials are generally more
closely monitored, and may be more motivated to take treatment than those in routine
care. Although the evidence that early ART initiation in itself influences the emergence of
HIVDR is not compelling, there is reason to believe that the continued expansion of ART
programmes might result in increased rates of HIVDR through suboptimal adherence and
suboptimal retention in care in the context of resource-limited health systems. Along with
HIVDR surveys, adherence monitoring and interventions to improve adherence should be
studied in more depth in these settings.

5.4 Potential implications of HIV drug resistance on the
success of dolutegravir-based antiretroviral therapy in
sub-Saharan Africa

In many African countries, the prevalence of pretreatment NNRTI resistance mutations is
>10%, the World Health Organization’s threshold for countries to consider implementing
non-NNRTI-based first-line ART [38, 169]. As a consequence, many SSA countries have either
started or are considering implementation of dolutegravir-based first-line ART, although
recent concerns regarding its safety in early pregnancy may limit its use in women of
child-bearing age [151]. It is anticipated that dolutegravir will be used in both ART-naïve and
ART-experienced patients; the latter will switch from their current NNRTI-based first-line
regimens. This raises concerns regarding its use in settings where resistance testing is not
standard of care, and where even viral load monitoring may not be performed routinely.

Dolutegravir has a high genetic barrier to resistance and development of resistance
mutations has not been shown in clinical trials of treatment-naïve patients initiating
dolutegravir-containing ART without pretreatment drug resistance [170, 171]. In ART-naïve
patients, dolutegravir was superior to efavirenz and to ritonavir-boosted darunavir in terms
of virological outcomes, and much of that superior efficacy was due to dolutegravir’s better
tolerability [170, 171]. However, in a study of dual therapy with dolutegravir and lamivudine
in the US, three out of 120 patients had virological failure at 24 weeks, and one patient
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developed resistance mutations to both drugs (M184V and R263R/K) [172]. This patient was
thought to be poorly adherent to ART as his plasma dolutegravir concentrations were below
the limit of quantification on at least one occasion.

In treatment-experienced patients receiving dolutegravir, development of HIVDR is also
uncommon, but has been reported in patients on dolutegravir monotherapy. In the DOMONO
trial, ART-experienced patients who were virologically suppressed were randomly allocated to
switch to dolutegravir monotherapy immediately or at 24 weeks [143]. Eight of 95 participants
experienced virological failure and three developed integrase resistance mutations at 48
weeks. In another clinical trial from Spain, two of 31 patients who were randomly allocated to
be switched to dolutegravir monotherapy developed integrase resistance [142]. The authors
of both studies concluded that dolutegravir should not be used as monotherapy. Of note,
ART-experienced patients in the studies described above were virologically suppressed at
baseline, and patients with previously documented HIVDR were excluded. Routine viral
load monitoring is not carried out in many SSA countries, so it is likely that many patients
will switch to dolutegravir-based ART when they are not virologically suppressed. The
DAWNING study, a multicentre trial that randomly allocated patients whose first-line ART
was failing to receive dolutegravir-based or protease inhibitor-based ART provides some
reassurance regarding the use of dolutegravir in patients who are not virologically suppressed
[173]. Importantly, all patients had to have at least one active nucleoside/nucleotide reverse
transcriptase inhibitor (NRTI) predicted by resistance testing. Dolutegravir-based ART was
superior to protease inhibitor-based ART, and no patients in the dolutegravir arm developed
resistance mutations.

In summary, based on the available evidence, dolutegravir seems to be highly effective, both
in ART-naïve and ART-experienced patients, provided that it is combined with a functional
NRTI backbone. The TenoRes collaboration, which comprises data from clinical trials and
observational studies, reported a prevalence of tenofovir resistance of 57% (370/654), and a
prevalence of M184V/I mutation of 61% (401/654) in patients whose first-line ART regimens
including tenofovir were failing [101]. Even though the high prevalence of NRTI resistance
in patients with failing first-line ART in SSA may have important implications for the use of
dolutegravir in settings without viral load monitoring, the long-term clinical significance
of NRTI resistance in patients starting dolutegravir is not yet known. Interestingly, HIV-
suppressed, treatment-experienced individuals with the M184V mutation switching to a
dolutegravir/lamivudine dual therapy do not seem to have an increased risk of virological
failure [174]. This finding is supported by results from in vitro studies, which showed that
the presence of either of the NRTI resistance mutations M184I/V or K65R prevented the
development of resistance to dolutegravir [175].

5.5 Gaps in current knowledge: the place for using IeDEA
cohort data and mathematical modelling to predict and
monitor HIV drug resistance in sub-Saharan Africa

While treatment guidelines and drug prescribing policy are usually based on results from
randomised controlled trials, such studies often give little insight into the real-world
effectiveness of the interventions evaluated. Clinical trials usually have strict inclusion
and exclusion criteria, provide close follow-up and monitoring of patients, and adherence
is usually better than in routine care. Observational cohorts are often able to provide
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generalisable data from many more patients in settings that reflect real-world use of
interventions. However, in terms of predicting how HIVDR will affect the success of universal
test-and-treat policies and the introduction of new drugs to first-line ART regimens in SSA,
both clinical trials and observational cohorts have limitations. The vast majority of studies
published to date were conducted in North America or Europe, in clinical settings that differ
substantially from SSA. Although we can be confident that dolutegravir-based first-line triple
therapy will lead to favourable virological outcomes in SSA, data on its use among patients
whose NNRTI-based first-line therapy was failing are insufficient to date.

The scarcity of HIVDR surveillance data in resource-limited settings, together with the
fact that those data are usually not linked with observational cohorts, presents challenges
for assessing and predicting the transmission of HIVDR. Mathematical models offer a
unique opportunity to bridge this gap [176] by combining observational data on rates of HIV
diagnosis, treatment, and virological response with cross-sectional HIVDR surveillance data
from local settings. Mathematical models have been used to address several key questions
regarding HIVDR in various populations, and they are increasingly being used to inform
policy [163, 169, 176]. Box 1 and Table 5.1 briefly discuss several examples.

The African regional cohorts of the IeDEA consortium provide the ideal platform to explore
many of the outstanding research questions highlighted in this article, as they comprise large
cohorts of patients on ART from 23 countries across West, Central, East, and Southern Africa
[183]. The Consortium collects routine clinical data of patients managed largely in primary
healthcare settings, and has a strong capacity for data management and analysis, with a long
track record of research that influences policy. Few cohorts measure or collect HIVDR data, but
many have the infrastructure to collect them, provided dedicated funding is available.

We have also recently developed a deterministic compartmental mathematical model that
comprises three layers: treatment stage (e.g. diagnosis, treatment, viral suppression or
failure); disease progression (represented by CD4 count strata); and the presence/absence of
HIVDR (in process for future publication). Disease progression at each treatment stage, as
well as the transition from one treatment stage to another, are estimated from observational
data from the IeDEA Southern Africa cohorts and UNAIDS data. The model has the potential
to address key questions regarding HIVDR in Southern Africa. Specifically, we aim to describe
time trends and drivers of HIVDR, and to estimate how the spread of resistance is affected by
alternative interventions. For example, we could assess the impact of enhanced laboratory
monitoring (i.e. viral load and resistance testing) on the development of acquired drug
resistance under universal test-and-treat conditions. Furthermore, we aim to assess to
what extent changes in ART guidelines (e.g. dolutegravir-based first-line ART), can curb
the transmission of resistance and improve clinical outcomes. As described above, a key
question in this context is the potential impact of NRTI resistance on the effectiveness of
dolutegravir-based ART. Finally, we hope to predict the potential development and spread
of resistance to dolutegravir. The main difficulty of making such a prediction is the lack
of long-term data regarding the impact of dolutegravir resistance on clinical outcomes.
Nevertheless, we believe that, by integrating the accumulating clinical data or by making
reasonable assumptions on such parameters based on comparable processes or settings
[184], mathematical models will be helpful in providing risk assessments, and identifying
key knowledge gaps that should be addressed by clinical, epidemiological, and laboratory
studies.
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Box 1: HIV drug resistance mathematical models

The HIV Synthesis Model, developed by Phillips et al, captures resistance to the different
antiretroviral classes and its effect on treatment outcome [53, 150, 177]. More specifically,
it models HIVDR in terms of the presence or absence of every mutation specific to the
antiretrovirals in use. Agent-based models such as the HIV Synthesis Model have the
advantage of being able to represent complex processes, like the process of acquiring resistance
mutations. However, the drawback of using such models is that many assumptions are made
but may not be verifiable. This can be avoided by using simpler models, such as compartmental
models. Abbas et al [69], Nichols et al [178], and Supervie et al [179] have developed
deterministic compartmental models to model HIV drug resistance and calibrated them with
data from South Africa, Zambia and Botswana, respectively. These three models capture
resistance in a simpler way than the HIV Synthesis Model. The South African Transmission
Model [69] has only two layers (absence/presence of resistance) to model resistance, while the
HIV-transmission models developed by Nichols et al [70] and Supervie et al [179] represent the
main resistance mutations (K65R and M184V mutations for nucleoside reverse transcriptase
inhibitors) (Table 5.1).

Table 5.1: Examples of how mathematical models have been used to address key HIV drug
resistance questions.

Model HIV drug resistance questions
HIV Synthesis Model: individual-based
model calibrated with sub-Saharan African
data

• Assessing the impact of viral load
monitoring on HIVDR [180]

• Predicting the impact of HIVDR on
mortality [53, 181]

• Assessing the effectiveness and
cost-effectiveness of interventions
such as dolutegravir-based ART
in settings with a relatively high
prevalence of HIVDR [53, 177]

Deterministic compartmental model
calibrated with Ugandan and Kenyan data • Assessing the impact of increasing

second-line ART coverage; and
earlier ART initiation on HIVDR

South African Transmission Model:
compartmental model calibrated to
replicate the South African HIV-1 epidemic

• Assessing the impact of PrEP on
HIVDR [69]

Macha HIV Transmission model:
deterministic compartmental model
calibrated with Zambian data

• Assessing the impact of PrEP [178]
on HIVDR

PrEP Intervention Transmission model:
compartmental model integrating PrEP
and ART and calibrated with data from
Botswana

• Assessing the impact of PrEP on
HIVDR [179]

PrEP intervention model: compartmental
model representing the MSM population
in San Francisco

• Assessing the impact of PrEP on
HIVDR [182]
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5.6 Conclusion
Universal test-and-treat policies and the introduction of new drugs such as dolutegravir
to first-line ART regimens have the potential to improve patient outcomes and reduce the
transmission of HIV in SSA. However, it is important to monitor their implementation,
and to forecast their effect on the development of HIVDR. The African regional cohorts
of the IeDEA global consortium represent an ideal platform to provide data regarding the
real-world effectiveness of novel ART strategies and mathematical models have the potential
to help predict the emergence of HIVDR in SSA. Such research is essential to ensure positive
long-term outcomes, and to inform future programmatic and policy changes, tailored to local
settings.
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6.1 Summary of the findings
In Chapter 2, I conducted a systematic review and Bayesian meta-analysis in order to assess
the prevalences of NNRTI/NRTI resistance mutations among adults failing NNRTI-based
first-line regimen in Southern Africa. Rather than opting for the commonly used approach
that analyzes each outcome separately, I developed a hierarchical model in order to identify
the study-level heterogeneity. The model estimated high level of K65 (55%) and M184 (78%)
mutations after two years of TDF and 3TC/FTC, the two currently used NRTI backbones. These
results suggest that around half (43%-55%) of the people failing the first-line regimen are
resistant to their two NRTI backbones, as K65 and M184 confer high resistance to TDF and
3TC/FTC, respectively. The model also estimated high level of resistance to some NNRTI
resistance mutations, such as the K103 mutation (39% after two years on NVP, 60% after two
year on EFV), conferring high resistance to both EFV and NVP. Finally, the high prevalence of
the Y181 mutation estimated after two years of NVP is of some concern, as not only does it
confer resistance to both EFV and NVP, but also to newer NNRTI drugs.

In Chapter 3, I developed the MARISA model, a mathematical model that reproduces both
the general HIV-epidemic and the dynamic of NNRTI resistance in South Africa from 2005
to 2016. It showed that models whose resistance-related parameters were informed from
general clinical data are able to provide reliable population-scale estimates on resistance.
Indeed, the model captured the high level of NNRTI ADR and increasing level of NNRTI TDR
observed from surveillance studies in South Africa. By running counterfactual scenarios,
the model identified two main factors driving the emergence of NNRTI resistance in South
Africa: the magnitude of the ART roll-out and the low switching rate to second-line regimen
during first-line ART failure. Increasing access to ART, either by increasing the treatment
rate or by an earlier implementation of the Treat-All strategy, reduces HIV-related mortality
and new infections. However, such strategies also result in higher level of NNRTI TDR. An
earlier switch to second-line would have reduced both levels of ADR and TDR. However, due
to the rapid development of NNRTI resistance during ART failure and the low reversion rates
of NNRTI resistance in untreated patients, it would have hardy prevented NNRTI resistance
from emerging.

In Chapter 4, I extended the MARISA model to model the impact of the introduction of DTG on
the level of NNRTI resistance. The impact of different strategies of DTG implementation were
assessed, such as the use of DTG only as first-line or both as a first-line and switch regimen.
Different proportions of DTG-eligible women were also considered in order to reflect the
hesitancy of using DTG due to safety issues in pregnant women that were preliminary
reported. The model shows that, while DTG can halt the increase of NNRTI resistance, none
of the strategies implementing DTG are able to eliminate NNRTI resistance. However, we
observed that the effect of DTG crucially depends on including both women and people
currently on NNRTI-based ART among people to whom DTG should be prescribed. Rapidly
transitioning patients currently receiving NNRTI, especially those with active viremia,
also reduces the level of NNRTI resistance. By reducing the level of NNRTI TDR, a wide
introduction of DTG will also decrease the future risk of NNRTI-failure among ART-naïve
individuals. Nevertheless, we observe that none of the strategies is able to reduce the level of
NNRTI TDR below 10%.

Finally, the Chapter 5 presented a publication to which I have contributed as a co-author,
which discussed the role of mathematical models in synthesizing evidence on HIV drug
resistance. It emphasized the importance of monitoring the implementation of DTG in
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sub-Saharan Africa to forecast their effect on the development of HIV drug resistance.
Mathematical models can help combine different levels of evidence in order to predict the
emergence of HIV drug resistance in sub-Saharan Africa

6.2 Implications
6.2.1 Transitioning to DTG
The results shown in Chapter 2 have important implications regarding the transition of
patients currently on NNRTI to DTG in South Africa. In its guidelines, the National Health
Department recommends different DTG-switching strategies based on the viral load [27].
Suppressed individuals, defined as a viral load below 50 cells/ml here, should be immediately
transitioned to DTG, given the informed consent of the patients. Individuals with active
viremia should undergo a thorough assessment of the cause of the elevated VL, including
adherence support and repeated VL test after three months. Patients with suppressed viral
load at that time can transition to DTG, while the other continue adherence support for
another three months. After this period, both suppressed and unsuppressed patients are
recommended to switch to DTG. In this context, adherence support aims at reducing the
proportion of individuals switching with elevated VL in order to limit the risk of subsequent
DTG-failure and development of resistance.

As indicated in Chapter 2, between 43% and 55% of patients failing the recommended
NNRTI-based first-line are resistant to the two NRTI backbones that accompany DTG. In
fact, if we assume that adherence support will be consistently provided to all unsuppressed
patients, this percentage might be even higher. Indeed, adherence support favours the
suppression of patients whose failure is due to adherence issues uniquely, and not due
to resistance. Therefore, while adherence support will reduce the number of individuals
failing NNRTI-based regimens, it might increase the proportion of unsuppressed patients
with NRTI resistance. To prevent this latter group of patients to start DTG-based regimen
without any working NRTI drug, an optimized backbone regimen could be used instead of the
recommended 3TC and TDF combination. For instance, guidelines recommend replacing TDF
by ZDV to increase susceptibility to NRTI backbones. However, the higher NRTI-susceptibility
provided by such strategy should be balanced with the higher toxicity of ZDV.

The low frequency of VL testing in practice also questions the feasibility of using optimized
backbones. Optimizing NRTI backbones presupposes that every patient is tested for viral
load before switching to DTG in order to identify the patients who need to change their
NRTI backbones due to resistance. In view of the high proportion of patients currently on
NNRTI-based regimens [185], it is questionable whether this condition can be fulfilled in
practice. Therefore, some patients currently on NNRTI might be switched to DTG blindly, i.e.
without viral load testing [157]. In this context, the strategy of optimizing NRTI backbones is
questionable, as the patients who would benefit from it, i.e. the patients with unsuppressed
VL, could not be identified anymore.

6.2.2 Bridging the gap between clinical and epidemiological data
Mathematical models are useful to predict the impact of public-health measures at the
population-level as they aggregate evidence from different sources. However, the validity of
such models is often questioned, as there are several differences between real-world settings
and the clinical settings, in which these data are collected [72]. In addition, mathematical
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models often make strong assumptions. In Chapter 3, I showed that the MARISA model
captured the population dynamic of NNRTI drug resistance, as it leads to realistic estimates
of the levels of ADR and TDR. This validates the approach of using clinical data to calibrate
the resistance layer of the model.

In the context of the introduction of DTG in sub-Saharan Africa, similar models could be
used to predict the potential risk of emergence of DTG resistance. Several clinical trials have
assessed the risk of development of DTG resistance. However, as the implementation of DTG
first-line regimen has just started, surveillance data on the risk of acquiring and transmitting
DTG resistance are not yet available. In this context, an adapted version of the MARISA could
bridge the gap between the large availability of epidemiological data and the limited clinical
evidence regarding DTG resistance in order to model the introduction of DTG in real-world
settings. This issue is discussed in more details in Section 6.4 of this chapter.

6.2.3 Emergence of resistance in the South African context
Identifying the drivers of NNRTI resistance is important in order to prevent the future
emergence of resistance to newer drug classes, such as DTG. In Chapter 3, the long time
on a failing NNRTI-based regimen has been identified as one of the drivers of NNRTI
resistance. This long duration reflects the challenges that are associated with a rapid
national-wide ART roll-out [186]. First, the frequency of viral load testing is often lower in
practice than the frequency recommended in the guidelines, which delays the identification
of virological failure [112, 187]. Second, the high cost of PI-based regimens has limited
its access as a second-line regimen in South Africa and considerably prolonged the time
from recognition of first-line failure to second-line switch [185, 188]. Moreover, to avoid
switching patients whose treatment failure is uniquely due to low adherence, adherence
counselling has also been proposed [27]. This led to prolonged time on failing regimens,
increasing the risk of developing resistance and of transmitting it. As shown by the MARISA
model, even a considerable increase of the switching rate to values that reflect the national
recommendation would not have prevented NNRTI resistance from emerging. This suggests
that in the South African context, where the access of first-line ART has quickly increased, no
simple measure could have prevented the emergence of NNRTI resistance.

6.2.4 Control of the NNRTI resistance level with the introduction of DTG
While the emergence NNRTI resistance might have been difficult to prevent, the current
implementation of DTG-based regimen offers the opportunity to control it. Halting the
current increase in NNRTI resistance is essential to sustain high suppression level among
people who will continue to rely on NNRTI despite the introduction of DTG. In its new
consolidated guidelines, the South African Health Department recommends the use of
NNRTI-based regimen for pregnant women up to six weeks of gestation or women wanting
to conceive in the near future [27]. However, the ultimate decisions belongs to the patients,
who will choose between NNRTI- and DTG-based regimen based on the risks and benefits
of both options. In Chapter 4, different scenarios of DTG-introduction model the uncertainty
on the proportion of women who will take DTG-regimen. In view of the many advantages of
DTG, we can fairly assume that all men and women not at risk of pregnancy will follow the
guidelines’ recommendation, i.e. opting for DTG. In this perspective, the results suggest that
NNRTI resistance could be stabilized somewhere around 20%, depending on the proportion
of women opting for DTG among the ones who are at risk of pregnancy. Preventing the rise of
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NNRTI resistance is important in order to leave a sustainable alternative to patients who will
refuse DTG.

The fact that even the strategy where all men and women are started with or transitioned to
DTG does not lead to the elimination of NNRTI resistance highlights its rather irreversible
nature. As shown by its very slow reversion to wild-type, the low fitness cost of NNRTI
resistance mutations allows them to persist for several years without drug selective pressure
[31, 32].

6.3 Strengths and limitations
6.3.1 Strengths
The MARISA model collected evidence of different levels and from different sources in order
to reproduce the mechanisms of drug resistance development and transmission at the scale
of a country. It combined epidemiological cohort data about more than 30,000 HIV-infected
individuals on ART, together with national HIV indicators and clinical data on HIV drug
resistance. This approach was validated by comparing the levels of TDR and ADR estimated
by the model with the ones observed in surveillance data. This approach offers perspective
to model the population-scale emergence of resistance when it has only been clinically
observed in a limited number of patients (e.g. DTG resistance).

The relative simplicity of the MARISA model can also be considered as a strength, as more
complex models often force us to make unverifiable assumptions. I also tried to provide an
exhaustive description of the different versions of the MARISA model and the assumptions
that were involved in the supplementary material of the published papers (see "Annexes") for
the sake of transparency. To ensure reproducibility of the adapted MARISA model (Chapter
4), the model code is publicly available (see https://github.com/anthonyhauser). Moreover,
I arranged the model code in a flexible way, to make it able to integrate additional layers of
complexity (e.g. resistance layers), without changing its structure.

Mathematical models often involve high levels of uncertainty, which should be transparently
represented. Throughout my project, two different methods were used to capture and
represent uncertainty in order to adapt to the complexity of the model. In Chapters 3 and
4, I ran sensitivity analyses to assess the impact of the uncertainty of several parameters on
the model outcomes. The parameters that involve the most uncertainty, because they are
difficult either to measure (e.g. parameters related to HIV transmission) or to predict (e.g.
future efficacy of DTG in South Africa), were simultaneously varied.

One of the main strengths of Chapter 2 is that, rather than applying the standard
meta-analysis approach, I developed a tailor-made hierarchical model to synthesize
evidence from the collected studies. In view of the simplicity of the model, I was able to
apply a Bayesian framework that propagates model uncertainty. In addition, the hierarchical
structure of the model disentangled the two main levels of uncertainty that could not be
identified with simpler models (i.e. the study-level heterogeneity and the mutation-specific
heterogeneity).

6.3.2 Limitations
In Chapter 2, the quality of the data collected from the selected studies may have limited
the precision of the results. Even after adjusting for drug use and ART duration, we observed
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substantial heterogeneity between the studies, caused by their different characteristics,
for which the model could not adjust. In addition, the fact that not all studies reported
the occurrence of DRMs at an individual level forced me to run the meta-analysis with the
study-aggregated data. The absence of individual data prevents the model to systematically
estimate the correlations between the DRMs and to explore how the DRMs accumulate.
Using data at the study-level rather than the individual level also limits the power of the
model to detect any weak effect of an ART drug on the occurrence of a DRM. In this context,
making individual data available for such studies would contribute to gain key information
on the accumulation of HIV drug resistance.

Some processes that might influence the dynamic of HIV drug resistance were omitted by the
MARISA model (Chapters 3 and 4), as not sufficient data were available to parametrize them.
The MARISA model did not model the impact of PMTCT programme on NNRTI resistance.
Nevertheless, as the PMTCT programs started in 2002 in South Africa, they do not have
any impact on the transmission of NNRTI resistance among adults (i.e. aged ≥15) before
2017 [189]. I did not include either PrEP or PEP, as their use is not systematically reported
in South Africa. The transmission of HIV is also simplified in the MARISA model. Only the
sexual transmission of HIV is modelled and the model did not capture the age-disparate
transmission of HIV, as suggested by [190]. The implication of such findings in terms of the
transmission of HIV drug resistance is unclear, making the age-stratification of the model
not imperative. Adherence, which plays a central role in the risk of acquisition of HIV drug
resistance was not explicitly represented by the MARISA model, as it is not systematically
reported in the cohort data from IeDEA-SA. Nevertheless, as IeDEA-SA data includes patients
with different levels of adherence, the effect of adherence on the risk of failure is already
implicitly represented. Finally, the majority of parameters related to HIV disease progression
and HIV continuum of care were estimated using data from IeDEA-SA cohorts. As for every
longitudinal study, the attrition bias might compromise the accuracy of these estimates. In
particular, IeDEA data might underestimate the rate of treatment interruption, as a part of
the patients stopping treatment are not monitored anymore. Treatment interruption was
modelled in the first version of the MARISA model, while the adapted MARISA model only
investigated its effect in an additional analysis.

The parsimonious representation of HIV resistance in the MARISA model might also be
seen as an oversimplification. In Chapter 3, the original MARISA model only distinguished
between NNRTI-susceptible and NNRTI-resistant individuals and did not model the impact
of specific NNRTI resistance mutations. This is justified by the fact that only one mutation,
the K103N mutation, confers high resistance to NNRTI [82]. The original MARISA model did
not include the effect of NRTI resistance on NNRTI-based regimen. Even if NRTI resistance
might reduce the activity of NNRTI-based regimen, its impact on the efficacy of such regimen
is more uncertain than for NNRTI resistance, making it difficult to measure in practice.
Moreover, as patients with NNRTI resistance often also harbour NRTI resistance, the effect of
NRTI resistance is already partially included within the effect of NNRTI resistance.

6.4 Perspective
The roll-out of NNRTI-based regimen in South Africa has considerably reduced both
HIV-mortality and HIV-infections, but at the same time, lead to an uncontrolled spread of
NNRTI resistance. The implementation of DTG-based regimen, from 2020 in South Africa,
bring new hopes to finding a new sustainable ART regimen. In view of the contrasted
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experience of the NNRTI roll-out, we should nevertheless ask ourselves whether resistance
to DTG could also emerge. In this chapter, I first give the current state of knowledge on the
clinical characteristics of DTG, and describe how it differs from NNRTI. I then mention some
characteristics regarding DTG that are expected to be different in real-world resource-limited
settings than observed in clinical trials. I then enumerate the potential knowledge gaps
about the potential emergence of DTG resistance and describe how mathematical can partly
overcome this issue. Finally, I show how the experience of the NNRTI roll-out might help to
explore the future risk of DTG resistance in South Africa.

6.4.1 Current state of knowledge
DTG is very effective at suppressing a treated patient’s viral load quickly. The SINGLE study, a
RCT that compared efficacy of DTG against EFV, both combined with two NRTI drugs, among
ART-naïve patients from North America, Europe, and Australia, has shown higher efficacy
in the DTG group [170]. The difference in viral suppression (VL<50 copies/mL) was the most
striking during the first weeks of treatment initiation but tends to decrease after 48 weeks
(81% for EFV vs 88% for DTG) and 144 weeks (63% vs 71%). We observed the same patterns
in two RCTs done in Africa, the NAMSAL (Cameroon) and ADVANCE (South Africa) studies
[149, 152], but with different overall suppression levels (69% for EFV vs 74.5% for DTG in
NAMSAL, 79% vs 85% in ADVANCE at week 48, respectively). The lower suppression levels
observed in the NAMSAL study might be partially explained by its broader eligibility criteria.
Some clinical trials also assessed the DTG-efficacy among ART-experienced individuals, either
suppressed or with virological failure. As expected, transitioning suppressed individuals to
DTG-based regimen leads to very high suppression levels. However, several RCTs showed a
considerably higher risk of failure when switching ART-experienced individuals with active
replication (between 29% and 36% after 48 weeks) [102, 191, 192]. Failure rates were even
higher when individuals had earlier exposure to InSTI, due to the presence of pre-existing
InSTI cross-resistance that undermines the success of DTG (25%-59% of VF after 24 weeks)
[191, 193].

DTG has a higher genetic barrier to developing drug resistance compared to NNRTI.
Unlike NNRTI, where acquiring only one mutation already confers high-level resistance, a
sequential acquisition of several InSTI-mutations is required to cause a substantial decrease in
DTG-susceptibility. This was first suggested by findings from in-vitro experiments, indicating
that, while DTG selects for some specific mutations (e.g. mutations at positions 138 and
263), these mutations alone only confer moderate resistance to DTG [191]. In-vivo studies
testing individuals failing DTG-based regimen for genotypic resistance provided higher-level
evidence on the potential development of resistance. While development of DTG resistance
mutation is regularly reported among InSTI-experienced individuals, the presence of DTG
resistance mutations among InSTI-naïve individuals failing DTG is much rarer [191]. These
case reports are nevertheless helpful to identify the mutational pathways, through which
DTG resistance develops. However, due to its limited number, the impact of such groups of
mutations on the efficacy of DTG-based regimen is difficult to quantify.

DTG is well tolerated. Clinical trials reported fewer side effects in individuals using DTG
compared to those using NNRTI [170]. This better tolerability was associated with lower
discontinuation rates and might also lead to higher adherence, limiting the risk of developing
resistance.
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6.4.2 Difference between clinical and real-world settings
Clinical studies have shown that DTG has low failure rates when used as first-line
or maintenance therapy. Even if failures were more common among unsuppressed
ART-experienced individuals, the development of high resistance level to DTG was almost
exclusively limited to individuals with previous exposure to InSTI, a drug class that was barely
available in South Africa before the implementation of DTG. These clinical findings suggest
that the risk of emergence of DTG resistance in South Africa is limited. However, some
differences between the real-world resource-limited settings and settings, from which data
are collected (i.e. from clinical trials or from cohorts in rich-resource settings) might increase
this risk when implemented nationally.

First, adherence in the real-world settings might be lower than the one observed in clinical
trials. The high adherence levels usually observed in RCTs are not representative to the overall
treated population and are often a result of strict inclusion criteria and close follow-up. In
consequence, RCTs might often underestimate the proportion of DTG-failures. For example,
the NAMSAL study, which applied eligibility criteria that were wider and thus closer to
real-world settings than the other RCTs, observed higher DTG-failure rate. Even if some
differences in the study characteristics might also have driven the higher failure rate in
NAMSAL, this suggests that the efficacy of DTG-based regimen when implemented at a
national scale for all PLWH might be lower than previously observed in RTCs.

Second, the frequency of virological failure monitoring is lower in practice than in RCTs
where patients receive a closer follow-up. The national guidelines currently recommend
testing for viral load at ART initiation, after 6 months, 1 year and then every year. In practice,
the frequency of viral load test is considerably lower [112]. This might prevent the rapid
identification of DTG-failure and thus prolongs the time spent on a failing DTG-regimen,
which favors the development of resistance.

Third, pre-existing NRTI resistance in patients switching from NNRTI to DTG might increase
the risk of DTG-failure. In Chapter 2, the results from the meta-analysis suggested that,
among failing individuals, half of them will switch to a functional DTG-monotherapy, in
the case where NRTI backbones are not optimized. In this context, the failure rate among
unsuppressed individuals switching to DTG might be higher than the ones found in RCTs
(estimated at around 30% after 1 year), potentially driving the emergence of DTG resistance.

6.4.3 Knowledge gaps on DTG resistance
In the previous section, I enumerated several factors that could drive the emergence DTG
resistance in practice. However, due to limited availability of data, it is unclear to what extent
these factors will affect rates of DTG-failure and risk of developing DTG resistance.

Although the level of adherence in real-world settings is expected to be lower than observed in
RCTs, ART adherence is difficult to measure in practice. Several devices have been developed
to measure adherence among patients, but there is currently no gold-standard methods
accurately measuring ART adherence [194]. Due to its high potency, DTG might have a higher
"forgiveness" regarding lower adherence, allowing patients to regularly miss ART doses
without undermining their chance of viral suppression. However, the relationship between
DTG adherence level and the risk of failure is not well known. Our limited understanding on
how real-world level of adherence might affect the development of DTG resistance is a major
obstacle to determining the risk of DTG resistance emergence in South Africa.
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DTG-failures in RCTs have been observed in a limited number of patients and only a few of
them have developed resistance to DTG [191]. This restricts our ability to identify the different
DTG resistance mutations and to precisely estimate the rate at which they develop, as well
as the pathways along which they accumulate. Similar limitations applies for estimating the
impact of the DTG resistance mutations on the efficacy of DTG-based regimen, as this requires
information on a high number of patients. Therefore, in-vitro studies are often used in order to
estimate these values, but the validity of such approaches is sometimes questionable. Finally,
information on the transmission of DTG resistance is scarce [195].

Some uncertainty also subsists about the actual impact of pre-existing NRTI resistance on
the efficacy of DTG-based regimen. In the case where NRTI resistance would annihilate any
activity of the NRTI drugs, the efficacy of DTG in patients with two compromised NRTIs would
be similar to the efficacy of a DTG-monotherapy. As indicated by Wandeler and colleagues
who compared the efficacy of transitioning suppressed individuals to DTG with and without
NRTI, the absence of any NRTI drug activity substantially increases the risk of failure (8.9%
in DTG-monotherapy vs 0.7% in DTG combined with a working NRTI after 48 weeks) [103].
However, accumulating evidence shows that the presence of NRTI resistance may only have
a limited impact on the risk of failure, suggesting a residual activity of the NRTI backbones
even in case of resistance. The EARNEST study found that even high level of NRTI resistance
did not impair virological response to PI-based second-line ART [104]. An observational
study from European HIV cohorts also found similar failure rates in suppressed individuals
switching to DTG, whether or not they harbored the M184 mutation [196]. However, I did not
find an observational study that investigated the effect of NRTI resistance on the efficacy of
a DTG-based regimen, in patients who switch after virological failure. More clinical evidence
is therefore needed to assess the long-term efficacy of DTG alongside a compromised NRTI
backbone [197].

6.4.4 The role of mathematical models
The scarcity of observational data on DTG resistance in resource-limited settings limits our
current understanding of the risk of DTG resistance in South Africa. The implication of findings
from clinical trials and from cohorts in resource-rich settings should be interpreted with
caution due to the afore-mentioned differences with resource-limited settings. In this context,
mathematical models offer the opportunity to bridge these knowledge gaps by integrating
evidence of different levels. Specifically, in order to model the risk of DTG resistance in South
Africa, we would need to inform the model about the following parameters: the overall
DTG-efficacy, the rates at which DTG resistance develops, the reversion rate of DTG resistance
(i.e. the time before resistant strains revert to wild-type in the absence of drug selective
pressure) and the impact of DTG resistance on the efficacy of DTG-based regimens. The
model could be developed in a similar way as in Chapter 3, with a DTG resistance dimension
primarily informed by clinical studies. However, the current scarcity of data on DTG resistance
would require making more assumptions, especially on how findings from clinical studies
(e.g. RCTs and in-vitro studies) translate into real-world parameters. In this context, looking
at the past NNRTI experience in South Africa is insightful, as it allows to assess whether prior
clinical evidence could predict the spread of HIV drug resistance at a population level.

6.4.5 Comparison between DTG and NNRTI roll-outs
At the time of NNRTI roll-out in South Africa (from 2004), estimates on the efficacy of
NNRTI-based regimen were available from several randomized trials that either compared
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NNRTI with PI or compared different combinations of NNRTI and NRTI drugs [198–201].
These early studies already showed high levels of failure, with 20% - 50% of patients having
a VL above 50 copies/ml after 48 weeks, depending on the drug combination. The efficacy
of NNRTI was nevertheless comparable, if not superior, to the unboosted PI drugs that were
available at that time [198]. However, the low barrier to resistance of NNRTI, compared with
PI drugs, was already widely acknowledged, as well as the fact that resistance developed
quickly after failure [202]. A randomized trial estimated that half of the patients with VL>400
copies/ml after 48 weeks had NNRTI resistance [201]. Higher incidence of adverse events
were also found in patients treated with NNRTI, leading to treatment discontinuation [203].
In this context, some studies also shared concerns about the particular risk of developing
NNRTI resistance when adherence is low or treatment is discontinued. The higher half-lifes
of NNRTI, compared with NRTI, estimated from in-vivo studies [36], warned about the risk
of prolonged NNRTI-monotherapy, potentially leading to NNRTI resistance, in case of ART
discontinuation or poor adherence. Finally, several events of transmission of NNRTI resistance
were also documented [204].

Therefore, at the time of NNRTI roll-out in South Africa, there were already clear indications
of potential risk of developing and transmitting NNRTI resistance. These early findings
highlighted the need of creating proper health care infrastructure to monitor treatment
response and develop strategies to control the spread of NNRTI resistance. As setting up
such infrastructure in South Africa would have taken years, some proposed to postpone the
roll-out of NNRTI-based regimens [205–207]. However, withholding the NNRTI drug class
during this period would have been highly unethical, as South Africa faced at that time an
urgent need to supply ART in order to reduce HIV mortality [208]. In this context, South Africa
decided to implement NNRTI roll-out, despite clear risks of emergence of NNRTI resistance
and in the absence of a clear strategy and of infrastructures to control it.

In Section 6.4.2, I enumerated some differences between clinical and real-world settings
that could make the emergence of drug resistance more likely in practice than observed in
clinical trials. In the case of NNRTI, clinical findings showing high failure rates and a low
resistance barrier already provided some strong indications that the emergence of NNRTI
resistance in the South African context would occur. The situation is different for the roll-out
of DTG-based regimens. On the one hand, clinical trials and cohort studies from resource-rich
settings found high suppression rates and rare cases of acquisition of DTG resistance. In terms
of infrastructure, South Africa is also better prepared, which is essential to ensure sustained
monitoring of treatment failure. National guidelines have also integrated adherence support
of patients, which should limit the risk of developing DTG resistance.

On the other hand, a particular feature of the implementation of DTG, compared with
NNRTI, could drive the emergence of DTG resistance. Unlike the roll-out of NNRTI, where
the overwhelming majority of patients were ART-naïve, a substantial fraction of people will
start DTG with previous ART exposure and therefore, with pre-existing NRTI resistance. This
mainly concerns patients failing first-line NNRTI-based regimen, as almost half of them will
switch to DTG with heavily compromised NRTI backbones. While pre-existing NRTI resistance
might affect the efficacy of DTG, it is currently difficult to predict its actual impact due to the
scarcity of data. This nevertheless suggests that emergence, if it occurs, might be driven by
individuals switching to DTG with unsuppressed VL. Close monitoring of this specific group of
patients is thus key to control the potential emergence of DTG resistance.

Long duration on a failing regimen can drive the emergence of resistance, jeopardizing its
long-term efficacy. This was shown for NNRTI in Chapter 3, but the same conclusions could
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also apply to DTG resistance. Quite paradoxically, a too rapid switch from DTG-regimen could
also threaten the sustainability of DTG-regimen, as it limits the spectrum of ART alternative
for these patients. Most patients failing DTG-regimen will probably do so because of poor
adherence rather than resistance. Therefore, a direct switch to PI-based regimen may be a
waste of resource for all the individuals switching without DTG resistance. In this context,
the focus should rather be on promoting adherence among these patients. Not only will
adherence support limit the development of resistance, but it will also avoid unnecessary
switch. As suggested by Maartens and colleagues [209], resistance testing, if it becomes more
affordable, could also be implemented to identify the patients that are failing DTG-regimen
because of resistance.

6.5 Conclusion
In this thesis, I use mathematical modelling to capture the emergence of NNRTI resistance in
South Africa. I identify some factors that have driven the development of NNRTI resistance,
such as the long time spent on a failing regimen. Due to its flexibility, the MARISA model is
adapted to investigate future strategies, such as the impact of the DTG-introduction on the
levels of NNRTI resistance. This shows that processes such as the acquisition and the spread
of HIV drug resistance can be reproduced at the population-level using mathematical models
calibrated with clinical resistance data. As South Africa is currently introducing DTG-based
regimen, such modelling approach can be implemented to investigate the future risk of
emergence of DTG resistance. However, even if mathematical models could help to bridge
the gaps between clinical and real-world resource-limited settings, more real-world data
is needed to understand the actual risk of DTG resistance development in the context of a
countrywide implementation of DTG. The meta-analysis in Chapter 2 adds to the body of
evidence, as it highlights the potential threat on the long-term efficacy of DTG posed by the
switch of patients with elevated viral load. Close follow-up and resistance monitoring of these
patients is therefore key to ensure an early detection of DTG resistance and prevent it from
spreading through the population.
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Chapter 7

Additional work

Chapter 7.1 is a publication that was not initially planned to be part of my PhD project. The
sudden and unexpected SARS-CoV-2 outbreak offered unique opportunities to exploit the
ability of mathematical to synthesize evidence when data are scarcely available. At the early
stage of the SARS-CoV-2 epidemic, there was high uncertainty on the mortality associated
with SARS-CoV-2 and the case fatality rate - the number of deaths divided by the number of
reported cases - was often reported. However, this indicator has two important biases: 1) it
only counts reported infections, and 2) it does not take into account the deaths that will occur
afterwards. The aim of the project was thus to develop an age-stratified compartmental
model to provide age-specific mortality estimates corrected for these two biases.
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7.1.1 Abstract
Background. As of 16 May 2020, more than 4.5 million cases and more than 300,000 deaths
from disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have
been reported. Reliable estimates of mortality from SARS-CoV-2 infection are essential to
understand clinical prognosis, plan health care capacity and for epidemic forecasting. The
case fatality ratio (CFR), calculated from total numbers of reported cases and reported deaths,
is the most commonly reported metric, but can be a misleading measure of overall mortality.
The objectives of this study were to: 1) simulate the transmission dynamics of SARS-CoV-2
using publicly available surveillance data; 2) infer estimates of SARS-CoV-2 mortality adjusted
for biases and examine the CFR, the symptomatic case fatality ratio (sCFR) and the infection
fatality ratio (IFR) in different geographic locations.

Method and Findings. We developed an age-stratified susceptible-exposed- infected-removed
(SEIR) compartmental model describing the dynamics of transmission and mortality during
the SARS-CoV-2 epidemic. Our model accounts for two biases: preferential ascertainment
of severe cases and right-censoring of mortality. We fitted the transmission model to
surveillance data from Hubei province, China and applied the same model to six regions
in Europe: Austria, Bavaria (Germany), Baden-Württemberg (Germany), Lombardy (Italy),
Spain and Switzerland. In Hubei, the baseline estimates were: CFR 2.4% (95% credible
interval [CrI]: 2.1-2.8%), sCFR 3.7% (3.2-4.2%) and IFR 2.9% (2.4-3.5%). Estimated measures
of mortality changed over time. Across the six locations in Europe estimates of CFR varied
widely. Estimates of sCFR and IFR, adjusted for bias, were more similar to each other but still
showed some degree of heterogeneity. Estimates of IFR ranged from 0.5% (95% CrI 0.4-0.6%)
in Switzerland to 1.4% (1.1-1.6%) in Lombardy, Italy. In all locations, mortality increased with
age. Among 80+ year olds, estimates of the IFR suggest that the proportion of all those
infected with SARS-CoV-2 who will die ranges from 20% (95% CrI: 16-26%) in Switzerland to
34% (95% CrI: 28-40%) in Spain. A limitation of the model is that count data by date of onset
are required and these are not available in all countries.

Conclusions. We propose a comprehensive solution to the estimation of SARS-Cov-2
mortality from surveillance data during outbreaks. The CFR is not a good predictor of overall
mortality from SARS-CoV-2 and should not be used for evaluation of policy or comparison
across settings. Geographic differences in IFR suggest that a single IFR should not be applied
to all settings to estimate the total size of the SARS-CoV-2 epidemic in different countries. The
sCFR and IFR, adjusted for right-censoring and preferential ascertainment of severe cases,
are measures that can be used to improve and monitor clinical and public health strategies to
reduce the deaths from SARS-CoV-2 infection.

7.1.2 Author summary
Why was this study done?

• Reliable estimates of measures of mortality from severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection are needed to understand clinical prognosis, plan
health care capacity and for epidemic forecasting.

• The case fatality ratio (CFR), the number of reported deaths divided by the number of
reported cases at a specific time point, is the most commonly used metric, but is a biased
measure of mortality from SARS-CoV-2 infection.
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• The symptomatic case fatality ratio (sCFR) and overall infection fatality ratio (IFR) are
alternative measures of mortality with clinical and public health relevance, which
should be investigated further in different geographic locations.

What did the researchers do and find?

• We developed a mathematical model that describes infection transmission and death
during a SARS-CoV-2 epidemic. The model takes into account the delay between
infection and death and preferential ascertainment of disease in people with severe
symptoms, both of which affect the assessment of mortality.

• We applied the model to data from Hubei province in China, which was the first place
affected by SARS-CoV-2, and to six locations in Europe: Austria, Bavaria (Germany),
Baden-Württemberg (Germany), Lombardy (Italy), Spain and Switzerland, to estimate
the CFR, the sCFR and the IFR.

• Estimates of sCFR and IFR, adjusted for bias, were similar to each other and varied less
geographically than the CFR. IFR was lowest in Switzerland (0.5%) and highest in Hubei
province (2.9%). The IFR increased with age; among 80+ year olds, estimates ranged
from 20% in Switzerland to 34% in Spain.

What do these findings mean?

• The CFR does not predict overall mortality from SARS-CoV-2 infection well and should
not be used for the evaluation of policy or for making comparisons between geographic
locations.

• There are geographic differences in the IFR of SARS-CoV-2, which could result from
differences in factors including emergency preparedness and response, and health
service capacity.

• SARS-CoV-2 infection results in substantial mortality. Further studies should
investigate ways to reduce death from SARS-CoV-2 in older people and to understand
the causes of the differences between countries.

7.1.3 Introduction
The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection
has resulted in more than 4.5 million confirmed cases and more than 300,000 deaths from
coronavirus disease 2019 (COVID-19), as of 16 May, 2020 [210]. The infection emerged in
late 2019 as a cluster of cases of pneumonia of unknown origin in Wuhan, Hubei province
[211, 212]. China had reported 84,038 cases and 4,637 deaths by 16 May, 2020, with no new
deaths since early April. The largest outbreaks are now in the United States of America and
Western Europe. The transmission characteristics of SARS-CoV-2 appear to be similar to
those of the 1918 pandemic influenza strain [213], but, at this early stage of the pandemic,
the full spectrum and distribution of disease severity and of mortality are uncertain. Reliable
estimates of measures of mortality are needed to understand clinical prognosis, plan health
care capacity and for epidemic forecasting.

The case fatality ratio (CFR), the number of reported deaths divided by the number of reported
cases at a specific time point, is the most commonly used metric because most countries
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collect this information [211, 214]. However, the CFR can be misleading if used to assess the
overall risk of death from an infection because of two opposing biases [215, 216]. First, because
of the delay of several weeks between symptom onset and death, the number of confirmed
and reported deaths at a certain time point does not consider the total number of deaths that
will occur among already infected individuals (right-censoring). Second, surveillance-based
case reports underestimate the total number of SARS-CoV-2-infected patients, because
testing focuses on individuals with symptoms of COVID-19 and, among symptomatic cases,
on patients with more severe manifestations (preferential ascertainment). In addition,
the World Health Organization does not distinguish between SARS-CoV-2 infection and
COVID-19 and defines a confirmed case as a person with laboratory confirmation of infection,
irrespective of signs and symptoms. The number of cases detected and reported therefore
depends on the extent and strategy of testing for SARS-CoV-2, especially amongst people
without severe symptoms. Precisely defined measures could be more useful for describing
SARS-CoV-2 mortality than the CFR [215]. The symptomatic case fatality ratio (sCFR) is
the proportion of infected individuals showing symptoms who die over the course of their
SARS-CoV-2 infection and is clinically relevant to assessment of prognosis and healthcare
requirements. The infection fatality ratio (IFR) is the proportion of all people with SARS-CoV-2
infection who will eventually die from the disease, and is a central indicator for public health
evaluation of the overall impact of an epidemic in a given population.

Estimates of the sCFR and IFR can be obtained from prospective longitudinal studies of
representative samples of individuals with SARS-CoV-2 infection but such studies cannot
provide the information needed for clinical and public health decision-making in real
time. The objectives of this study were to: 1) simulate the dynamics of transmission and
mortality of SARS-CoV-2 using publicly available surveillance data; and 2) provide overall and
age-stratified estimates of sCFR and IFR for SARS-CoV-2, adjusted for right-censoring and
preferential ascertainment, in different geographic locations.

7.1.4 Methods
We developed an age-stratified susceptible-exposed-infected-removed (SEIR) compartmental
model that describes the dynamics of SARS-CoV-2 transmission and mortality. We fitted
the model to surveillance data from Hubei province (China) and six geographic locations
locations in Europe: Austria, Bavaria (Germany), Baden-Württemberg (Germany), Lombardy
(Italy), Spain and Switzerland. There is no written prospective protocol for the study.
The analysis has been developed specifically for the research question, and adapted in
response to peer review comments. Main changes include assuming pre- and asymptomatic
transmissions and running additional sensitivity analyses. In the revised version, the
analysis also includes additional regions, for which data had been made available. All
code including the different versions of the model and manuscript are available from
https://github.com/jriou/covid_adjusted_cfr. This study is reported as per the TRIPOD
guideline (S2 Text).

7.1.4.1 Setting and data, Hubei province, China
The first known case of SARS-CoV-2 infection was traced back to December 1st, 2019 in
Wuhan, the main city of Hubei province, China [212]. The first reported death was on 11
January 2020. Human-to-human transmission of SARS-CoV-2 led to exponential growth
of the reported incidence of cases (Fig 7.1.1A). On 20 January 2020, Chinese authorities
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Fig 7.1.1: (A) Reported number of confirmed cases of SARS-CoV-2 infection by date of symptom
onset in Hubei, China until 11 February 2020. (B) Age distribution of the Chinese population and
of the reported cases and deaths in Hubei, China. (C) Reported number of deaths associated with
SARS-CoV-2 infection in in Hubei, China until 11 February 2020. (D) Age-specific contact matrix
from a 2018 survey conducted in Shanghai, China [218] applied to Hubei province.

implemented extensive control measures in Hubei: early identification and isolation of
clinical cases, tracing and quarantining of contacts, temperature checks before accessing
public areas, extension of the lunar new year holiday period, and extreme social distancing,
including cancellation of mass gatherings [217]. Three days later, a cordon sanitaire was
imposed, with strict traffic restrictions. From 27 January, the daily incidence of cases, by date
of symptom onset, started to plateau, then decreased.

The Chinese Center for Disease Control and Prevention (China CDC) reported the number of
cases by date of symptom onset, and the age distribution of cases and deaths up 11 February
2020 in China (Fig 7.1.1B) [219]. We extracted these data, together with the age distribution
of the Chinese population. Deaths counts were obtained from a repository aggregating data
from Chinese public data sources [220]. We used data about the daily number of potentially
infectious contacts by age group in Shanghai [218]. We assumed that all data sources were
applicable to the population of Hubei. As of 11 February, after which information about date
of symptom onset was no longer available, there were 41,092 cases and 979 deaths, resulting
in a CFR of 2.4%.

7.1.4.2 Setting and data, six geographic locations in Europe
The first cases of SARS-CoV-2 infection in Europe were reported at the end of January 2020.
Italy was the first country with a large epidemic, after a cluster of cases, followed shortly by
the first deaths, emerged in Lombardy at the end of February. As of 16 May 2020, Europe is
the continent having reported the highest number of cases and deaths (more than 1,800,000
confirmed cases and 160,000 deaths) [210].

We selected European countries that reported the daily number of cases of confirmed
SARS-CoV-2 infection by date of symptoms onset. In countries where this information was
available at a regional level, we selected worst-affected regions. We extracted data about
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the number of confirmed cases by symptom onset, the daily number of deaths, and the
distribution of cases and deaths across age groups for each of six locations: Austria, Bavaria
(Germany), Baden-Württemberg (Germany), Lombardy (Italy), Spain and Switzerland.

For Austria, we obtained all required data from published reports from 11 March to 14 April
[221]. On 14 April, there were 14,151 reported cases and 399 deaths (CFR 2.8%). For Germany,
we used published data from 3 March to 16 April [222]. Age distributions, available at the
country level only, were applied to both regions. On 16 April, there were 31,196 cases (62%
with date of onset) and 802 deaths in Baden-Württemberg (CFR 2.6%) and 36,538 cases
(56% with date of onset) and 1,049 deaths in Bavaria (CFR 2.9%). For Lombardy, we collected
published data from 11 February to 25 April [223, 224]. Age distributions at the national level
were applied to Lombardy. On 25 April, there were 74,346 cases (77% with date of onset) and
13,263 deaths (CFR 17.8%). For Spain, we used published data from 2 March to 16 April [225].
On 16 April, 178,031 cases (79% with date of onset) and 19,478 deaths were reported (CFR
10.9%). For Switzerland, we used individual-level data from 2 March to 23 April aggregated
by day of onset or day of death [226]. On 23 April, there were 33,228 cases (11% with date of
onset) and 1,302 deaths (CFR 3.9%). Further details about the data are available in S1 Text,
section 1.

7.1.4.3 Age-structured model of SARS-CoV-2 transmission and mortality
We used an age-stratified susceptible-exposed-infected-removed (SEIR) compartmental
model that distinguished between incubating, pre-symptomatic, asymptomatic and
symptomatic infections. We stratified the population into nine 10-year groups (0-9 up to
80+ years) for all locations except Austria where the age groups were 0-4, 5-14, up to 75+
years. We assumed that susceptibility to SARS-CoV-2 and the risk of acquisition per contact
is identical for each age group and that transmission is possible during pre-symptomatic
and asymptomatic infections. We used age-specific contact matrices to model contact
patterns according to age group (contact matrix derived by Zhang et al. for Hubei [218],
and the POLYMOD contact matrix for the six European locations [227]). We modelled the
decrease in SARS-CoV-2 transmission due to control measures using a logistic function for the
transmission rate.

In the model, after an average incubation period of 5.0 days [228], 81% (95%CrI: 71-89)
of infected people develop symptoms of any severity and the rest remain asymptomatic
[229, 230]. The estimated proportion of symptomatic infections was derived from outbreak
investigations included in a systematic review and is implemented as a beta distribution to
propagate uncertainty. Studies that have estimated the proportion of asymptomatics have
not provided conclusive evidence of an age trend, so we assumed it to be constant [231]. We
assumed reduced infectiousness during the period of 2.3 days preceding symptom onset
(pre-symptomatic compartment) and also among asymptomatic individuals [228].

The model was used to compute the number of symptomatic SARS-CoV-2 infections by day
of symptom onset in each age group. We applied an age-specific ascertainment proportion
to the number of symptomatic infections to estimate the number of reported cases of
SARS-CoV-2 infections by date of symptom onset. To identify the parameters, we assumed
that 100% of infections in the oldest age group (80+ years old, 75+ years old in Austria) were
reported. We assumed that mortality only occurred in symptomatic people, and that the
time from symptom onset to death followed a log-normal distribution with mean 20.2 days
and standard deviation 11.6 [232]. This allowed us to account for the deaths occurring after
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the date of data collection.

Separately for Hubei and the six European locations, we simultaneously fitted our model
to the data sets described above (Fig 7.1.1): (1) the number of confirmed cases by day of
symptom onset, (2) the number of deaths by day of occurrence, (3) the age distribution of all
confirmed cases and (4) the age distribution of all reported deaths. We assumed a negative
binomial distribution for data (1) and (2), and a multinomial distribution for data (3) and (4).
All parameters were estimated from data except for the incubation period, the generation
time, the contribution of presymptomatics to transmission, the presymptomatic duration,
and the time from symptom onset to death.

The fitted model was used to produce estimates (median posterior distributions with 95%
credible intervals, CrI) of the total number of symptomatic and pre-/a-symptomatic infections
(adjusted for preferential ascertainment) and of the total number of deaths (adjusted
for right-censoring). These were then transformed into adjusted estimates of sCFR and
IFR. Besides parameter values and model structure, these estimates rely on the following
additional assumptions:

1. The severity of symptoms differs by age group and influences the probability of
reporting;

2. All deaths due to SARS-CoV-2 infection have been identified and reported;

3. The susceptibility to SARS-CoV-2 infection is identical across age groups;

4. The average standard of care is stable for the period of interest and the next two months,
during which a proportion of the infected people will eventually die;

5. The ascertainment probability by age is constant over the periods considered.

Further details about the method are available in S1 Text, section 2.

7.1.4.4 Sensitivity analysis
From 12 February 2020, the Chinese authorities changed their criteria for reporting cases,
increasing the total by more than 25,000. Reported numbers of deaths increased on 16 April,
when Wuhan city reported an additional 1,290 deaths. We ran a sensitivity analysis with
corrected numbers of cases and deaths in Hubei province. We also examined the impact of
assuming a 50% lower susceptibility in 0-19 years old, and of a lower ascertainment among
80+ year olds (from 90% to 10%, compared with a fixed proportion of 100% in the main
analysis). We also re-fitted the model at different dates of data collection (every 5 days
from 12 January to 11 February) to examine the effect of the accumulation of data over time.
Additional sensitivity analyses are presented in S1 Text, section 6.

We implemented the model in a Bayesian framework using Stan [233]. All code and data are
available from https://github.com/jriou/covid_adjusted_cfr.

7.1.5 Results
Our model accurately describes the dynamics of transmission and mortality by age group
during the SARS-CoV-2 epidemic in Hubei from 1 January to 11 February 2020 (Fig 7.1.2). The
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model predicts that control measures implemented from 20 January reduced SARS-CoV-2
transmissibility by 92% (95%CrI: 87-100), with a steep diminution in case incidence 4.3
(95%CrI: 3.2-5.4) days after 20 January. Assuming 100% of cases aged 80 and older were
initially reported, we estimate that a total of 83,300 individuals (95%CrI: 73,000-98,600)
were infected in Hubei between 1 January and 11 February 2020. Of these, the number of
symptomatic cases is estimated at 67,000 (95%CrI: 60,500-73,600), 1.6 times (95%CrI: 1.5-1.8)
more than the 41,092 reported cases during that period. Accounting for the later correction
in the number of reported cases, the total number of infections increases to 138,000 (95%CrI:
120,000-162,000). The proportion of ascertained cases by age group increased from less than
9% (95%CrI: 8-10) under 20 years old to 93% (95%CrI: 88-98) in the age group 70-79 (the
ascertainment proportion was assumed to be 100% in the age group 80+, Fig 7.1.3A).
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Fig 7.1.2: Model fit for Hubei, China of (A) incident cases of SARS-CoV-2 infection by date of symptom
onset, (B) total cases, (C) age distribution of cases, (D) incidence of deaths, (E) total number of deaths
among individuals infected until 11 February 2020 and (F) age distribution of deaths. White circles and
bars represent data. Lines and shaded areas or points and ranges show the posterior median and 95%
credible intervals for six types of model output: reported cases, symptomatic cases, overall cases (i.e.
symptomatic and asymptomatic cases), reported deaths until 11 February 2020, projected deaths after
11 February 2020 and overall deaths.

The model predicts a total of 2,450 deaths (95%CrI: 2,230-2,700) among all people infected
until 11 February in Hubei (compared with 979 deaths at this point without adjusting for
right-censoring). This results in an estimated IFR of 2.9% (95%CrI: 2.4-3.5, Table 7.1.1).
Assuming the later correction of deaths was evenly distributed by date of symptom onset and
age group, the total number of deaths increases to 3,430 (95%CrI: 3,120-3,760). When using
the corrected numbers of cases and deaths, we derived an IFR of 2.5% (95%CrI: 2.1-2.9).

The estimated sCFR, more relevant to the clinical setting, was 3.7% (95%CrI: 3.2-4.2) in
the baseline analysis and 3.1% (95%CrI: 2.7-3.6) after correction of the increase number of
reported cases and deaths. The estimated sCFR increased with age (S1 Text, section 5): under
20 years of age, below 1 in 1,000; 20-49 years, between 3 and 8 per 1,000; 50-59 years, 2.5%
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Fig 7.1.3: (A) Estimated proportion of cases ascertained by age group in Hubei, China (baseline, after the
later correction of the number of reported cases and deaths, and assuming 50% lower susceptibility of
children aged 0-19). (B) Estimated case symptomatic fatality ratio by age group in Hubei, China. (C)
Impact of varying the fixed proportion of cases ascertained among individuals aged 80 and older from
10% to 100% on the mortality estimates. (D) Mortality estimates at different dates of reporting (every 5
days from January 12 to February 11).

(95%CrI: 2.0-3.0); 60-69 years, 8.0% (95%CrI: 6.9-9.3); 70-79 years, 19.3% (95%CrI: 16.7-22.1);
80 years and older, 39.0% (95%CrI: 33.1-46.1).

In sensitivity analyses, the correction of the number of reported cases (+65%) and deaths
(+40%) by the local authorities in Hubei did not influence the ascertainment proportion
(Fig 7.1.3A) but led to a proportional decrease of the sCFR and IFR estimates by 15%, as
expected from the correction applied (1.40/1.65 = 0.85, Fig 7.1.3B and Table 7.1.1).
Second, lowering the susceptibility of individuals aged 0-19 years by 50% did not affect the
ascertainment proportion or the sCFR in other age groups (Fig 7.1.3A and B). The decrease
in the denominator led to a proportional increase of total sCFR and IFR. Third, relaxing
the assumption of complete reporting of cases among individuals aged 80 years and older
resulted in a proportional decrease of the sCFR and IFR (Fig 7.1.3C). Fourth, patterns in the
observed mortality changed as the epidemic progressed (Fig 7.1.3D). The CFR increased as
delayed deaths were reported. The sensitivity analysis suggests that our proposed approach
overestimates the sCFR and IFR when applied before the peak of incidence (around 27
January) and stabilizes afterwards. Additional sensitivity analyses examining how the
contribution of pre-symptomatic transmission, the susceptibility of children and several
other choices in model structure and parameter values did not impact the results (S1 Text,
section 6).
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Table 7.1.1: Model estimates of total infections of SARS-CoV-2 infection, attack rate, total deaths,
case fatality ratio (CFR), symptomatic case fatality ratio (sCFR) and infection fatality ratio (IFR)
by location until the limit date.

Location (limit date) Estimated total infections Estimated attack
rate

Estimated total deaths CFR sCFR IFR

Hubei, China (11 February)
Baseline 83,300

(73,000-98,600)
0.1% (0.1-0.2) 2,450 (2,230-2,700) 2.4% 3.7% (3.2-4.2) 2.9% (2.4-3.5)

After correction 138,000
(120,000-162,000)

0.2% (0.2-0.3) 3,430 (3,120-3,760) 2.0% 3.1% (2.7-3.5) 2.5% (2.1-2.9)

With lower susceptibility of
children

74,100
(63,600-86,700)

0.1% (0.1-0.1) 2,440 (2,230-2,710) 2.4% 4.1% (3.6-4.7) 3.3% (2.7-4.0)

Austria (14 April) 69,100
(56,500-82,700)

0.8% (0.6-0.9) 731 (623-867) 2.8% 1.3% (1.1-1.6) 1.1% (0.8-1.3)

Baden-Württemberg,
Germany (16 April)

212,000
(188,000-247,000)

1.9% (1.7-2.2) 1,580 (1,060-2,710) 2.6% 0.9% (0.6-1.6) 0.7% (0.5-1.3)

Bavaria,
Germany (16 April)

257,000
(228,000-296,000)

2.0% (1.7-2.3) 1,940 (1,420-2,720) 2.9% 0.9% (0.7-1.3) 0.8% (0.5-1.1)

Lombardy, Italy (25 April) 1,150,000
(1,010,000-1,350,000)

11.5% (10.1-13.4) 15,700 (13,900-17,600) 17.8% 1.7% (1.5-2.0) 1.4% (1.1-1.6)

Spain (16 April) 2,650,000
(2,360,000-3,090,000)

5.7% (5.0-6.6) 27,800 (25,400-30,500) 10.9% 1.3% (1.2-1.5) 1.0% (0.9-1.2)

Switzerland (23 April) 308,000
(248,000-383,000)

3.6% (2.9-4.5) 1,520 (1,380-1,690) 3.9% 0.6% (0.5-0.8) 0.5% (0.4-0.6)

We applied the same model to data from six European locations with all required
data: Austria, Germany (Baden-Württemberg and Bavaria), Italy (Lombardy), Spain and
Switzerland. The model fit was satisfactory in all cases (S1 Text, section 3). CFR estimates
differed widely between countries, while sCFR and IFR estimates were more similar to each
other (Table 7.1.1 and Fig 7.1.4A). Across countries, model estimates of IFR ranged from 0.5%
(95%CrI: 0.4-0.6) in Switzerland to 1.4% (95%CrI: 1.1-1.6) in Lombardy, Italy. The patterns of
age-specific IFR estimates were similar across locations (Fig 7.1.4B), despite differences in
the surveillance-reported age distribution of cases (Fig 7.1.4C). Some degree of variability
remained between age-specific IFR estimates, especially in older age groups. Compared with
Hubei province, higher proportions of cases in European locations were in older age groups,
suggesting higher levels of preferential ascertainment of severe cases. This appears in the
estimated patterns of the age-specific ascertainment proportion, with a generally lower
ascertainment of age groups 20-79 in Europe compared to Hubei (Fig 7.1.4D). Additional
results are presented in S1 Text, section 5.

7.1.6 Discussion
In this modelling study, we estimate different measures of mortality from SARS-CoV-2
infection in Hubei province, China and six geographic locations in Europe. After adjusting
for right-censoring and preferential ascertainment, we estimate the IFR in Hubei to 2.9%
(2.4-3.5), higher than the CFR of 2.4%. In different European settings, estimates of IFR ranged
from 0.5% (95%CrI: 0.4-0.6) in Switzerland to 1.4% (95%CrI: 1.1-1.6) in Lombardy, compared
with CFR of 3.9% and 17.8%, respectively. The model estimates of mortality show a strong age
trend in all locations, with very high risks in people aged 80 years and older: between 20%
(95%CrI: 16-26) in Switzerland and 34% (95%CrI: 28-40) in Lombardy.

7.1.6.1 Strengths and limitations
Our work has four important strengths. First, we distinguish between the crude CFR and
two separate measures of mortality, sCFR and IFR. Second, we use a mechanistic model for
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Fig 7.1.4: (A) Case fatality ratio, symptomatic case fatality ratio and infection fatality ratio estimates
by geographic location. (B) Infection fatality ratio estimates by age group and location (for Austria,
the estimates are adapted to the available age groups from 0-4 to 75+ years). (C) Proportion of cases
ascertained by age group and location (color code as for panel B). (D) Distribution of reported cases by
age group by location (color code as for panel B).

the transmission of SARS-CoV-2, and the mortality associated with SARS-CoV-2 infection
which directly translates the data-generating mechanisms leading to biased observations
of the number of deaths (because of right-censoring) and of cases (because of preferential
ascertainment). Our model also accounts for the effect of control measures on disease
transmission. We implemented the model in a Bayesian framework in order to propagate
most sources of uncertainty from data and parameter values into the estimates. In Hubei,
as the model captured most of the epidemic wave, the predicted number and timing of
deaths could be compared with later reports of SARS-CoV-2 deaths, providing some degree
of external validation (S1 Text, section 4). Third, our model is stratified by age group, which
has been shown as a crucial feature for modelling emerging respiratory infections [234].
Fourth, the model uses surveillance data that can be collected routinely, and does not require
individual-level data or studies in the general population.

Our study has several limitations. First, an important assumption is that all cases in
symptomatic individuals aged 80 years and older were reported, as a result of more severe
symptoms at older ages. We cannot confirm this, but the high risk of death from SARS-CoV-2
infection amongst the elderly was reported very early on [212], so we believe that most old
people with symptoms sought care. Sensitivity analyses show that sCFR and IFR estimates
decrease linearly with a lower ascertainment of infections among individuals aged 80 years
and older (Fig 7.1.3C). For the IFR in Hubei province to be below 0.5%, fewer than 15% of
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infections in individuals aged 80 years and older would have been ascertained by the local
authorities.

Second, our model requires surveillance data about the incidence of cases of reported
SARS-CoV-2 by date of symptom onset. When information on symptom onset is only available
for a subset of cases, we have to assume that data are missing at random. Additionally, within
a given geographic location, the model assumes a constant ascertainment proportion and
a constant mortality for each age group during the period. When repeating the analysis
at different stages of the epidemic in Hubei, we found that estimates obtained before the
epidemic peak led to overestimation of the sCFR and IFR (Fig 7.1.3D). This finding could be
the result of a decrease in mortality as the epidemic progresses, but could also be attributed
to a lower ability of the model to estimate the epidemic size before epidemic peak is reached,
a common problem in epidemic modelling [235].

Third, we assume that the deficit of reported cases among younger age groups is a result
of preferential ascertainment, whereby younger individuals have milder symptoms and are
less likely to seek care, and does not reflect a lower risk of infection in younger individuals.
During the pandemic of H1N1 influenza, lower circulation in older individuals was attributed
to residual immunity [236]. There is no indication of pre-existing immunity to SARS-CoV-2 in
humans [217]. Lower susceptibility of younger individuals for immunological reasons seems
unlikely. Different contact patterns could contribute to different attack rates by age group.
We include age-specific contact patterns in the model, so our results are dependent on the
contact matrix used. In a sensitivity analysis, with 50% reduced susceptibility in children, the
estimates of age-specific IFR in other age groups did not change, but the lower number of
total infections and led to a higher IFR.

Fourth, the proportion of SARS-CoV-2 infections that remains asymptomatic is still uncertain.
To propagate this uncertainty into the results, we implemented a prior distribution informed
by the findings of outbreak investigations included in a living systematic review and
meta-analysis [229, 230]. Our estimate is in agreement with the findings of a statistical
modelling study of an outbreak on the cruise ship “Diamond Princess”, estimating an average
proportion of symptomatic infections of 82.1% (95%CrI: 79.8-84.5) [237]. Another study of
87 contacts of infected cases in Shenzhen, China, estimated that 80.4% (95%CrI: 70.9-87.4)
were symptomatic [228]. Additionally, dichotomization into asymptomatic and symptomatic
is a simplification; SARS-CoV-2 causes a spectrum of symptoms, likely depending on age, sex
and comorbidities. Serological surveys in the general population will be needed to better
characterize asymptomatic infections [238].

7.1.6.2 Comparison with other studies
Our model-based estimates have some degree of external validation from serological studies
of previous exposure to SARS-CoV-2. In Geneva, Switzerland, a study reported an attack
rate of 9.7% (95% confidence interval: 6.1-13.1) in the city, resulting in an IFR of 0.6%, very
close to our national estimate for Switzerland [239]. Preliminary results from a national
seroprevalence study in Spain, with more than 60,000 participants, found an attack rate
of 5.0% (95% confidence interval: 4.7-5.4), consistent with our estimate of 5.7% (95% CrI:
5.0-6.6) [240]. A study of excess mortality in Italy estimated 17,786±269 deaths in Lombardy,
close to our credibility interval for the number of total deaths [241]. This study did not attempt
to estimate the size of the epidemic, but only applied the proportion of positive tests to the
population to obtain an upper limit of epidemic size, which resulted in a lower bound for the
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IFR of 0.6% in Lombardy.

Model-based estimates of mortality from SARS-CoV-2 in China, adjusting for bias, vary.
Our estimate for Hubei province is higher than the sCFR of 1.4% estimated in two other
modelling studies [242, 243]. Differences in modelling approaches and assumptions explain
the variation. Verity et al. used a similar modelling approach, but applied their findings to
all of mainland China, where mortality outside Hubei province appeared lower [219]. This
paper also assumed a homogeneous attack rate across age groups, rather than simulating
epidemics using an age-specific contact matrix. Wu et al. used another approach, assuming
that susceptibility to infection varies by age. Both Verity et al. and Wu et al. used data
from individuals leaving Wuhan before lockdown was implemented to infer ascertainment,
where we fixed it to 100% for the oldest age group. This resulted in comparatively lower
ascertainment proportions (up to 70% for the oldest age groups in Verity et al., 2% for Wu
et al.), and consequently to higher estimates of epidemic size and lower estimates of sCFR.
The use of data from travellers might result in bias, especially if people who can travel are
healthier than the general population.

Other studies that attempt to adjust for right-censoring of deaths give different estimates
of mortality in China than in our study. A study using a competing risk model estimated
mortality at 7.2% (95% confidence interval: 6.6%-8.0%) for Hubei province [244]. Using
data on exported cases, another team estimated mortality of 5.3% (95% confidence interval:
3.5%, 7.5%) among confirmed cases in China [245]. Another team reported a CFR of 18%
(95% credible interval: 11-81%) among cases detected in Hubei, accounting for the delay in
mortality and estimated the IFR at 1.0% (95% CI: 0.5%-4%), based on data from the early
epidemic in Hubei and from cases reported outside China [246]. Our estimate of mortality
among all infected cases in Hubei is also higher than in an earlier version of this work (2.9%
against 1.6%) [247]. We believe the newer estimate to be more reliable for two reasons.
First, we implemented age-specific risks of transmission through a contact matrix, which
partially explains the age patterns in reported SARS-CoV-2 infections and leads to lower
estimates of the total number of infections, thus increasing mortality. Second, a higher
estimated proportion of symptomatic people based on new data also led to higher estimates
of mortality among all infected.

7.1.6.3 Interpretation and implications
In this study, we propose a comprehensive solution to the estimation of mortality from
surveillance data during outbreaks, using two measures of mortality [215]. Adjusted for
right-censoring and preferential ascertainment of severe cases, the IFR is a measure of
overall mortality associated with SARS-CoV-2 infection, which can be used to assess the
potential consequences of the pandemic, e.g. using theoretical estimates of final epidemic
size [248]. The sCFR is a measure of mortality that is most relevant to the clinical setting, for
assessment of prognosis and prioritization of health care services. Crude CFR estimates are
a poor predictor of mortality from SARS-CoV-2 infection, as demonstrates for instance the
comparison of CFR and IFR values in Switzerland (high CFR, lowest IFR) and Hubei (lowest
CFR, highest IFR). In addition to the inherent biases, the wide variation in CFR between
geographic locations is likely to reflect external factors, including policies for testing and
differences in systems of surveillance and reporting more than differences in mortality. Crude
CFR values should therefore not be used for evaluating policy or making comparisons across
settings.
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Our model-based estimates of the IFR and sCFR varied geographically (Fig 7.1.4A). The highest
estimate of IFR was found in Hubei province (2.9%; 95%CrI: 2.4-3.5 in the baseline analysis).
The steep increase in mortality among people aged 60 years and older, reaching very high
values in people aged 80 years and older is of concern. The credibility of this estimate, and
of our approach for adjusting for right-censoring, is supported by the model predictions of
reported daily SARS-CoV-2-associated deaths in Hubei province after 11 February (S1 Text,
section 4). The estimated IFR decreases to 2.5% (95%CrI: 2.1-2.9) when accounting for the
later correction of reported cases and deaths by the local authorities, and increases to 3.3%
(95%CrI: 2.7-4.0) if we consider a lower susceptibility of individuals under 20 years. We
also show that applying our model at earlier stages of the epidemic would have resulted in
higher estimates of sCFR and IFR, and more uncertainty (Fig 7.1.3D). However, our estimates
here correspond to an average value over the considered period, and it has been shown that
mortality has changed over time as a result of an improvement of the standard of care [217].

The estimated IFR in Lombardy, 1.4% (95%CrI: 1.1-1.6), was lower than in Hubei province,
but higher than in five other European locations. Further research is necessary to better
understand the factors associated with SARS-CoV-2 mortality. These differences highlight the
importance of local factors on the outcome of SARS-CoV-2 infection, including demographic
characteristics. A partial explanation for the remaining heterogeneity is the lower degree
of preparedness and health service capacity in northern Italy, which in Europe was affected
first by the SARS-CoV-2 epidemic. Consequently, we suggest that a single mortality estimate
should not be applied to all settings to estimate the total size of the epidemic [249]. This study
shows that the IFR and sCFR, adjusted for right-censoring and preferential ascertainment
biases, are appropriate measures of mortality for SARS-CoV-2 infection, which can be used
to improve and monitor clinical and public health strategies to reduce the deaths from
SARS-CoV-2 infection.

7.1.7 Conclusions
We developed a mechanistic approach to correct the CFR for bias due to right-censoring and
preferential ascertainment and provide adjusted estimates of mortality due to SARS-CoV-2
infection by age group. We applied this approach to seven different settings, showing that
widely different estimates for the CFR corresponded in fact to more similar estimates of the
IFR, around 3% in Hubei province, China, and ranging between 0.5 and 1.4% in six included
European locations. Despite these similarities, substantial heterogeneity remains in the
IFR estimates across settings, indicating the impact of local conditions on the outcome of
SARS-CoV-2 infection. The steep increase in mortality among people aged 60 years and older,
reaching very high values in people aged 80 years and older is of concern.
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7.1.9. SUPPORTING INFORMATION

7.1

7.1.9 Supporting information
S1 Text. Supplementary appendix. Further details about data sources, model, external
validation, additional results and sensitivity analyses.

S2 Text. TRIPOD checklist. Reporting of model developing and validating according to the
TRIPOD Checklist for Prediction Model Development.
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3TC Lamivudine
ABM Agent-based model
ADR Acquired drug resistance
AIDS Acquired immunodeficiency syndrome
ART Antiretroviral therapy
ARV Antiretroviral
CFR Case fatality ratio
COVID-19 Coronavirus disease 2019
CrI Credibility interval
d4T Stavudine
ddI Didanosine
DTG Dolutegravir
DRM Drug resistance mutation
EFV Efavirenz
FTC Emtricitabine
HET Heterosexual
HIV Human immonodeficiency virus
HIVDR HIV drug resistance
IeDEA-SA International epidemiological Databases to Evaluate AIDS in sub-Saharan

Africa
IFR Infection fatality ratio
InSTI Integrase strand transfer inhibitor
LMIC Low and middle-income countries
MARISA Modelling Antiretroviral drug Resistance In South Africa
MSM Men having sex with men
NNRTI Non-nucleoside reverse transcriptase inhibitor
NRTI Nucleos(t)ide reverse transcriptase inhibitor
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NVP Nevirapine
NTD Neural tube defect
OI Opportunistic infection
OR Odds ratio
PDR Pre-treatment drug resistance
PEP Post-exposure prophylaxis
PI Protease inhibitor
PLWH People living with HIV
PMTCT Prevention of mother-to-child transmission
PrEP Pre-exposure prophylaxis
RCT Randomized controlled trial
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
sCFR symptomatic case fatality ratio
SIV Simian immunodeficiency virus
SSA sub-Saharan Africa
TAM Thymidine-analogue mutation
TasP Treatment as Prevention
TDF Tenofovir disoproxil fumarate
TDR Transmitted drug resistance
TLD Tenofovir, lamivudine, dolutegravir
UTT Universal Test-and-Treat
VF Virological failure
VL Viral load
WHO World Health Organization
ZDV Zidovudine
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eAppendix Hauser 
 
 
Search strategies performed in 7 databases:  
 
 Before 

deduplication 
After 
deduplication 

Date 
searched 

Medline Ovid 1794 1794 15.05.2019 
Embase Ovid 2854 1250 15.05.2019 
Cochrane Library 433 233 15.05.2019 
African Index 
Medicus (AIM) 

62 62*  16.05.2019 

Web-of-Science 2108 779 16.05.2019 
Clinical Trials. gov 119 118 16.05.2019 
Google Scholar 200 154 16.05.2019 
Total  7570 4323  
    

*not possible to import AIM results in Endnote – please screen separately 
 
 
4 Blocks: 
1) Antiretroviral therapy AND 2) HIV1 AND 3) (Drug) resistance AND 4) Africa South of the Sahara 
 
 
 
 
Search strategies 
 
 
Database: Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations, Daily and Versions(R) 
<1946 to May 14, 2019> 
-------------------------------------------------------------------------------- 
1     exp Anti-Retroviral Agents/ or exp Antiretroviral Therapy, Highly Active/ or exp Anti-HIV Agents/ (89260) 
2     (anti-hiv or antihiv or (anti-retrovir* or antiretrovir*) or ARV or ART or cART or HAART or (anti and hiv) or (anti and 
retroviral*) or (anti and acquired immun#deficiency) or (anti and acquired immun#-deficiency) or (anti and acquired 
immun* and deficiency)).ti,ab,kw. (167334) 
3     1 or 2 (210116) 
4     exp HIV Infections/ (269917) 
5     (hiv or hiv?1 or human immun#deficiency virus or human immun#-deficiency virus or (human immun# adj3 deficiency 
virus) or acquired immun#deficiency syndrome or acquired immun#-deficiency syndrome or (acquired immun# adj3 
deficiency syndrome)).ti,ab,kw. (323922) 
6     4 or 5 (384542) 
7     exp Drug Resistance, Viral/ (12976) 
8     (resistan* and (mutat* or genotyp* or genetic* or drug*)).ti,ab,kw. (289103) 
9     7 or 8 (292643) 
10     exp Africa South of the Sahara/ (193898) 
11     (Africa or (African* not African-American*) or Afrika* or sub-Sahara* or subsahara* or Southern Africa or Western 
Africa or Eastern Africa or Central Africa or Angola or Benin or Botswana or Burkina Faso or Burundi or Cameroon or 
Cape Verde or Cabo Verde or Chad or Tchad or Comoros or Congo or Cote d'Ivoire or Ivory Coast or Djibouti or 
Equatorial Guinea or Eritrea or Ethiopia or Gabon or Gambia or Ghana or Guinea or Guinea-Bissau or Kenya or Lesotho 
or Liberia or Madagascar or Malawi or Mali or Mauritius or Mauritania or Mozambique or Namibia or Niger or Nigeria or 
Rwanda or Sao Tome or Senegal or Seychelles or Sierra Leone or Somalia or South Africa or Sudan or South Sudan or 
Swaziland or Togo or Uganda or Tanzania or Zambia or Zimbabwe).ti,ot,ab,kw,in,jn,ia,cp. (543020) 
12     10 or 11 (565920) 
13     3 and 6 and 9 and 12 (1794) 
 
*************************** 
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Database: Ovid Embase <1974 to 2019 May 14> 
-------------------------------------------------------------------------------- 
1     exp antiretrovirus agent/ or exp highly active antiretroviral therapy/ or antivirus agent/ (251078) 
2     (anti-hiv or antihiv or (anti-retrovir* or antiretrovir*) or ARV or ART or cART or HAART or (anti and hiv) or (anti and 
retroviral*) or (anti and acquired immun#deficiency) or (anti and acquired immun#-deficiency) or (anti and acquired 
immun* and deficiency)).ti,ab,kw. (219391) 
3     1 or 2 (396846) 
4     exp Human immunodeficiency virus infection/ (361038) 
5     (hiv or hiv?1 or human immun#deficiency virus or human immun#-deficiency virus or (human immun# adj3 deficiency 
virus) or acquired immun#deficiency syndrome or acquired immun#-deficiency syndrome or (acquired immun# adj3 
deficiency syndrome)).ti,ab,kw. (407459) 
6     4 or 5 (509145) 
7     exp antiviral resistance/ (7854) 
8     (resistan* and (mutat* or genotyp* or genetic* or drug*)).ti,ab,kw. (390742) 
9     7 or 8 (393257) 
10     exp "Africa south of the Sahara"/ (222698) 
11     (Africa or (African* not African-American*) or Afrika* or sub-Sahara* or subsahara* or Southern Africa or Western 
Africa or Eastern Africa or Central Africa or Angola or Benin or Botswana or Burkina Faso or Burundi or Cameroon or 
Cape Verde or Cabo Verde or Chad or Tchad or Comoros or Congo or Cote d'Ivoire or Ivory Coast or Djibouti or 
Equatorial Guinea or Eritrea or Ethiopia or Gabon or Gambia or Ghana or Guinea or Guinea-Bissau or Kenya or Lesotho 
or Liberia or Madagascar or Malawi or Mali or Mauritius or Mauritania or Mozambique or Namibia or Niger or Nigeria or 
Rwanda or Sao Tome or Senegal or Seychelles or Sierra Leone or Somalia or South Africa or Sudan or South Sudan or 
Swaziland or Togo or Uganda or Tanzania or Zambia or Zimbabwe).ti,ab,kw,ot,jn,in,cp,ox,ga,go. (706876) 
12     10 or 11 (706936) 
13     3 and 6 and 9 and 12 (2854) 
 
*************************** 
 
 
Cochrane Database of Systematic Reviews   
Issue 5 of 12, May 2019 
141 Cochrane Reviews 
 
Cochrane Central Register of Controlled Trials   
Issue 5 of 12, May 2019 
280 Trials 
 

 
 
  
Date Run: 15/05/2019 17:09:50  
 
ID Search Hits 
#1 (anti-hiv OR antihiv OR anti-retrovir* OR antiretrovir*) OR ARV OR ART OR cART OR HAART OR (anti AND hiv) 
OR (anti AND retroviral*) OR (anti AND acquired immun?deficiency) OR (anti AND acquired immun? deficiency) OR (anti 
AND acquired immune* AND deficiency) 21338 
#2 (hiv OR hiv-1* OR hiv1 OR "human immunodeficiency virus" OR "human immunedeficiency virus" OR "human 
immuno-deficiency virus" OR "human immune-deficiency virus" OR ((human immun*) NEAR/3 (deficiency virus)) OR 
"acquired immunodeficiency syndrome" OR "acquired immunedeficiency syndrome" OR "acquired immuno-deficiency 
syndrome" OR "acquired immune-deficiency syndrome" OR ((acquired immun*) NEAR/3 (deficiency syndrome))) 31858 
#3 (resistan* AND (mutat* OR genotyp* OR genetic* OR drug*)) 40744 
#4 (Africa or (African* not African-American*) or Afrika* or sub-Sahara* or subsahara* or Southern Africa or Western 
Africa or Eastern Africa or Central Africa or Angola or Benin or Botswana or Burkina Faso or Burundi or Cameroon or 
Cape Verde or Cabo Verde or Chad or Tchad or Comoros or Congo or Cote d'Ivoire or Ivory Coast or Djibouti or 
Equatorial Guinea or Eritrea or Ethiopia or Gabon or Gambia or Ghana or Guinea or Guinea-Bissau or Kenya or Lesotho 
or Liberia or Madagascar or Malawi or Mali or Mauritius or Mauritania or Mozambique or Namibia or Niger or Nigeria or 
Rwanda or Sao Tome or Senegal or Seychelles or Sierra Leone or Somalia or South Africa or Sudan or South Sudan or 
Swaziland or Togo or Uganda or Tanzania or Zambia or Zimbabwe) 29366 
#5 #1 AND #2 AND #3 AND #4 441 
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Database: AIM (African Index Medicus) 
 

 
 
hiv + (antiretrovir* ART HAART ARV) + resistan*   62 records 
 
 
AIM has an export function to Endnote, but it does not work. For screening you either have to reproduce the search (see 
above, in http://indexmedicus.afro.who.int/ or you go through the html version I was able to generate (in the 
attachment of the mail). 
 
 
 
 
Database: Web of Science (WoS) 
 
 
Set  

Results 
 

Save History / Create Alert Open Saved History  
# 5 2,108  #1 AND #2 AND #3 AND #4  

Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=All years 

# 4 854,679  TS=(Africa or (African* not African-American*) or Afrika* or sub-Sahara* or subsahara* or Southern 
Africa or Western Africa or Eastern Africa or Central Africa or Angola or Benin or Botswana or Burkina 
Faso or Burundi or Cameroon or Cape Verde or Cabo Verde or Chad or Tchad or Comoros or Congo or 
Cote d'Ivoire or Ivory Coast or Djibouti or Equatorial Guinea or Eritrea or Ethiopia or Gabon or Gambia 
or Ghana or Guinea or Guinea-Bissau or Kenya or Lesotho or Liberia or Madagascar or Malawi or Mali 
or Mauritius or Mauritania or Mozambique or Namibia or Niger or Nigeria or Rwanda or Sao Tome or 
Senegal or Seychelles or Sierra Leone or Somalia or South Africa or Sudan or South Sudan or Swaziland 
or Togo or Uganda or Tanzania or Zambia or Zimbabwe)  
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=All years 

# 3 393,697  TS=(resistan* AND (mutat* OR genotyp* OR genetic* OR drug*))  
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=All years 

# 2 387,652  TS=(hiv OR hiv-1* OR hiv1 OR "human immunodeficiency virus" OR "human immunedeficiency virus" 
OR "human immuno-deficiency virus" OR "human immune-deficiency virus" OR ((human immun*) 
NEAR/3 (deficiency virus)) OR "acquired immunodeficiency syndrome" OR "acquired 
immunedeficiency syndrome" OR "acquired immuno-deficiency syndrome" OR "acquired immune-
deficiency syndrome" OR ((acquired immun*) NEAR/3 (deficiency syndrome)))  
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=All years 

# 1 607,962  TS=((anti-hiv OR antihiv OR anti-retrovir* OR antiretrovir*) OR ARV OR ART OR cART OR HAART 
OR (anti AND hiv) OR (anti AND retroviral*) OR (anti AND acquired immunedeficiency) OR (anti 
AND acquired immunodeficiency) OR (anti AND acquired immun* AND deficiency))  
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI Timespan=All years 

 
 
 
 
 
 
 
 
 
 
 
 
 



Page 4 

 
Database: Clinical Trials.gov 
 
119 Studies found for: ( Africa OR sub-Sahara OR Subsahara OR Southern Africa OR Western Africa OR Eastern Africa 
OR Central Africa OR Angola OR Benin OR Botswana OR Burkina Faso OR Burundi OR Cameroon OR Cape Verde OR 
Cabo Verde OR Chad OR Tchad OR Comoros OR Congo OR Cote d'Ivoire OR Ivory Coast OR Djibouti OR Equatorial 
Guinea OR Eritrea OR Ethiopia OR Gabon OR Gambia OR Ghana OR Guinea OR Guinea-Bissau OR Kenya OR Lesotho 
OR Liberia OR Madagascar OR Malawi OR Mali OR Mauritius OR Mauritania OR Mozambique OR Namibia OR Niger OR 
Nigeria OR Rwanda OR Sao Tome OR Senegal OR Seychelles OR Sierra Leone OR Somalia OR South Africa OR 
Sudan OR South Sudan OR Swaziland OR Togo OR Uganda OR Tanzania OR Zambia OR Zimbabwe ) | HIV Infections 
OR Acquired Immunodeficiency Syndrome | HAART OR ART OR ARV OR antihiv OR antiretroviral | ( drug OR genotype 
OR genetic OR mutation ) AND resistance 
 
 
Database: Google Scholar 
 
antiretroviral|anti hiv|ART|HAART|ARV hiv|"human immunodeficiency virus"|"human immune deficiency virus"|"acquired 
immune deficiency syndrome"|"acquired immunodeficiency syndrome" (drug|mutation|genotype|genetic resistance) africa 
 
 
Result set of 200 includes: 
 
The first 100 results of the search without year restriction (relevancy ranking) -> the results’ publication years range from 
1999-2017. To catch the newer ones, an additional search for publications 2018-19 was performed, from which also the 
first 100 were taken (relevancy ranking).  
 
 
 
************************************************************************************************************************************ 
 
Last but not least: We recommend citation tracking (backward and forward) in Google Scholar or Web of 
Science for included studies. 
 
Please fill in the PRISMA Flow diagram:  
http://prisma-statement.org/prismastatement/flowdiagram.aspx  
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1 Model description

1.1 Modeling the prevalence of NRTI mutations

Main model

We used a mathematical model to estimate the prevalence pm,x(t) of a given NRTI mutation m after a duration
t on a given treatment x. The treatment x consists of the combination of two NRTI drugs. We considered the
e�ect of �ve di�erent NRTI drugs: didanosine (ddI), emtricitabine/lamivudine (FTC/3TC), tenofovir disoproxil
fumarate (TDF), stavudine (d4T) and zidovudine (ZDV). A parameter αm represents the baseline prevalence
(i.e. the prevalence at time t = 0) of the mutation m : pm,x(0) = αm. Assuming that the risk of acquiring
resistance is constant over time, we used an exponential distribution to represent the time to acquire the
mutation m. The prevalence pm,x(t) over time after a given treatment x was described by:

pm,x(t) = 1− (1− αm) · exp (−λm,x · t) , (1)

where λm,x =
∑

j∈x β
j
m represents the combined e�ect of the two NRTI drugs x.

Model accounting for study heterogeneity

The model was �tted to 17 populations collected from 16 studies that reported the prevalence of the eight single
NRTI mutations. We de�ned xji as the proportion of people using the NRTI drug j (j = 1, . . . , 5) in study
i and ti the duration of treatment. To represent the heterogeneity observed between studies, we introduced
a hierarchical study e�ect for the parameters βj

m. It consists of two random e�ects U and Vm that multiply
the parameters βj

m. The random e�ect U does not depend on the mutation and therefore a�ects all the eight
NRTI mutations equally. Such e�ect re�ects the di�erent study characteristics, e.g. levels of adherence, which
in�uenced the level of any resistance mutation. The random e�ect Vm represents the remaining heterogeneity
that is speci�c to the mutation m. To obtain the study-speci�c parameter β̃j

i,m for study i, we multiplied βj
m

by ũi and ṽi,m, which are the realizations of the two random e�ects U and Vm, respectively:

β̃j
i,m = βj

m · ũi · ṽi,m. (2)

We assumed that U and Vm followed log-normal distributions with free variance parameters τ2 and σ2
m respec-

tively. The mean parameters are �xed to −τ2/2 for ui and −σ2
m/2 for vi,m, so that E(U) = 1 and E(Vm) = 1:

U ∼ logN
(
−τ

2

2
, τ2
)
, (3)

Vm ∼ logN
(
−σ

2
m

2
, σ2

m

)
. (4)

If we write Bj
m := βj

m · U · Vm the random variable representing the distribution of βj
m across the studies, we

thus have:

Bj
m ∼ logN

(
−τ

2 + σ2
m

2
+ log(βj

m), τ2 + σ2
m

)
and E(Bj

m) = βj
m. (5)

The prevalence of the mutation m in study i is :

pi,m = 1− (1− αm) · exp


−

5∑

j=1

β̃j
i,mx

j
i · ti


 , (6)

where xji represents the proportion of people treated with NRTI drug j in study i.
Fig 1 displays the hierarchical model with the two heterogeneity levels: 1) study-level and 2) mutation-level.
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Baseline
preva-
lence

Study 1 Study 2 Study I

M1 M2 M8 M1 M2 M8 M1 M2 M8

p1,1 p1,2 p1,8 p2,1 p2,2 p2,8 pI,1 pI,2 pI,8

x1, t1 x2, t2 xI , tI...

... ... ...

α1, α2,· · · , α8

Study char-
acteristics

Study-level
heterogeneity

Mutation-level
heterogeneity

Observed
prevalences

pi,m = 1− (1− αm) · exp
(
−∑J

j=1 β̃
j
i,mx

j
i · ti

)
, where

β̃ji,m = βjm · ũi · ṽi,m ũi ∼ logN
(
− τ2

2 , τ
2
)

ṽi,m ∼ logN
(
−σ

2
m

2 , σ
2
m

)

ũ1 ũ2 ũI

ṽ11 ṽ21 ṽ81 ṽ12 ṽ22 ṽ82 ṽ1I ṽ2I ṽ8I

Fig 1: Hierarchical model developed to represent the study-speci�c prevalences of the 8 NRTI mutations.

1.2 Estimating the prevalence of any TAM mutation

We estimated the prevalence of having at least one of the six TAM mutations (M41L, D67E/G/N, K70E/G/R,
L210W, T215F/I/N/S/Y, K219Q/E) di�erently as for the eight single NRTI mutations. Unlike the eight single
NRTI mutations, modelling the prevalence of any TAMs is more complex as it depends on the prevalence of
six mutations. In addition, only 11 of the 17 study populations reported the prevalence of any TAM. For these
reasons, applying the same model to measure the prevalence of any TAM could provide unreliable estimates of
the parameters αm, β

j
m and σm. We thus used another model that involved less parameters to estimate this

prevalence.
First, we observe:

Pr(any TAM) = 1− Pr(no TAM). (7)

The probability Pr(no TAM) has two natural boundaries determined by the level of correlation of the six
TAM mutations. The lower boundary is reached when the six TAMs are independent. In this case, we have
Pr(no TAM) =

∏6
i=1 Pr(no TAMi) =

∏6
i=1 (1− Pr(TAMi)). We assumed here that TAMs could only be posi-

tively correlated. The higher boundary is reached at Pr(no TAM) = min (P(no TAMi)) = 1−max (Pr(TAMi)),
which occurs when the TAMs are highly positively correlated. To formally express the probability Pr(no TAM)
as a function of the correlations between the single TAMs, we used a multivariate Bernoulli distribution. If
we write pi := Pr(no TAMi) and Xi ∼ Bernoulli(pi), the probability Pr(no TAM) is fully determined by the
correlations between the variables X1, . . . , X6:

Pr(no TAM) = Pr(X1 = 1, . . . , X6 = 1)

= σ1,...,6 +
6∑

i=1

pi · σ{1,...,6}\i +
∑

1≤i<j≤6
pipj · σ{1,...,6}\{i,j}

+
∑

1≤i<j<k≤6
pipjpk · σ{1,...,6}\{i,j,k} + . . .+

6∏

i=1

pi

:= f(p1, . . . , p6, σ), (8)

where σS := E
(∏

i∈S (Xi − pi)
)
corresponds to the correlations (second and higher order) between the variables

comprised in a subset S of {1, . . . , 6} (see [1]).

We wrote σmin and σmax the correlation sets that reach the lower and higher bound, respectively : pmin =
f(p1, . . . , p6, σmin) and pmax = f(p1, . . . , p6, σmax). From Eq 8, we easily see that σmin = 0. To estimate the
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correlations σ between TAMs observed in the studies, we used a scale parameter γ (γ ∈ [0, 1]) that measures
the level of correlation between the six TAMs:

Pr(no TAM) = f(p1, . . . , p6, γ · σmax). (9)

A value γ = 0 corresponds to the situation where the six TAM mutations are independent (i.e. σ = 0), while
γ = 1 corresponds to the situation where probability of any TAM reaches the maximum pmax. From Eq 8, we
also observed:

Pr(no TAM) = f(p1, . . . , p6, γ · σmax) (10)

= pmin + γ · (pmax − pmin). (11)

Therefore, the prevalence of any of the six TAMs in study i were:

Pri(TAM) = 1−
(
pmini + γ · (pmaxi − pmini )

)
, (12)

with pmini =
∏6

m=1(1− pi,m) and pmaxi = 1−max(pi,m).

1.3 Likelihood function for the NRTI mutations

Given the number of participants ni in study i, we assumed that the number ki,m of them with mutation m
and the number ki,TAM with at least one TAM mutation are binomially distributed:

ki,m ∼ Bin(pi,m, ni), (13)

ki,TAM ∼ Bin(Pri(TAM), ni). (14)

The prevalence pi,m of the mutation m in study i is given by Eq 6. It depends on the baseline prevalence αm

of mutation m, the e�ect βj
m of drug j on mutation m, the shared and mutation-speci�c study-perturbations

ui and vi,m, respectively. The prevalence Pri(TAM) of any of the six TAMs in study i is given by Eq 12. It
depends on the prevalences of the 6 TAMs in study i (as given by Eq 6) and on the correlation parameter γ.

We simultaneously estimated the parameters αm, β
j
m, τ , σm and γ with the following likelihood function:

L(αm, β
j
m, τ, σm, γ) =

I∏

i=1

N∏

m=1

Pr (ki,m|ni, pi,m) ·
∏

i∈STAM
Pr (ki,TAM|ni,Pri(TAM)) (15)

where I is the number of studies (here I = 17), N the number of NRTI mutations (here N = 8) and STAM the
indices of the eleven studies reporting the prevalence of any TAM. We implemented the model in a Bayesian
framework using Stan [2]. The prior distributions used for the di�erent parameters are displayed in Table 1.

Table 1: Summary of parameters for NRTI mutations.

Symbol Comment Support Prior

αm Baseline prevalence of mutation m [0− 1] Beta(1, 9)

βj
m E�ect of the NRTI drug j on the prevalence of mu-

tation m
[0−∞[ Exp(1)

τ Overall between-study heterogeneity [0−∞[ Exp(1)

σm Study-heterogeneity for mutation m [0−∞[ Exp(1)

γ Level of correlation between TAM mutations [0− 1] Beta(1, 1)

1.4 Selection of regression variables

In the 17 study populations where the use of NRTI drugs was reported, most of the patients were taking either
ddI or FTC/3TC, combined with one of the three following NRTIs: TDF, ZDV, d4T. As a result, we observe
negative correlations between ddI and FTC/3TC and between any two NRTI drugs among TDF, ZDV and d4T
(Fig 2). These correlations between the di�erent covariates can prevent the model from disentangling the e�ects
of the di�erent NRTI drugs on the mutation prevalence. Therefore, we used a simple variable selection method
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to select covariates that have an e�ect on the occurrence of a mutation. We �rst separated the �ve NRTI drugs
into two groups 1) ddI and FTC/3TC, and 2) TDF, ZDV, d4T. Each group gathers the drugs that show high
correlation between each other, as they are used exchangeably. The selection method removed the covariate with
the most negative e�ect (i.e. the lowest estimated β) for each of the two groups and estimated the prevalences
with the remaining covariates. The rationale of this method is based on two observations. First, NRTI drugs do
not have a negative e�ect on the occurrence of a mutation. Second, for each NRTI mutation, there is at least
one NRTI drug that has minor or no e�ect on the occurrence of the mutation. The estimated prevalences of
the nine NRTI mutations when applying the full model (i.e. without variable selection) are displayed in Section
3.3.
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Fig 2: Correlation between the uses of NRTI drugs across studies. Abbreviation: FTC.3TC, emtricitabine; or
lamivudine; ddI, didanosine; TDF, tenofovir disoproxil fumarate; d4T, stavudine; ZDV, zidovudine.

1.5 Modeling the prevalence of NNRTI mutations

We used the same mathematical model to estimate the prevalence pm,x(t) of a given NNRTI mutation m after
a duration t on a given NNRTI drug x. We considered the e�ect of two di�erent NNRTI drugs: nevirapine
(NVP) and efavirenz (EFV). Using the aforementioned notations, we derive the prevalence pm,x(t) over time
after a given treatment x (NVP or EFV):

pm,x(t) = 1− (1− αm) · exp (−βx
m · t) . (16)

The prevalence of the mutation m in study i is :

pi,m = 1− (1− αm) · exp


−

2∑

j=1

β̃j
i,mx

j
i · ti


 , (17)
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where xji represents the proportion of people treated with NNRTI drug j in study i.
Again, we assumed that the number ki,m of participants of study i with mutation m is binomially distributed:

ki,m ∼ Bin(pi,m, ni). (18)

We simultaneously estimated the parameters αm, β
j
m, τ , σm by using the following likelihood function:

L(αm, β
j
m, τ, σm) =

I∏

i=1

N∏

m=1

Pr (ki,m|ni, pi,m) , (19)

where I is the number of studies (here I = 13) and N the number of NNRTI mutations (here N = 7).
Table 2 displays the prior distributions assumed for the di�erent parameters.

Table 2: Summary of parameters for NNRTI mutations.

Symbol Comment Support Prior

αm Baseline prevalence of mutation m [0− 1] Beta(1, 9)

βj
m E�ect of the NNRTI drug j on the prevalence of mu-

tation m
[0−∞[ Exp(1)

τ Overall between-study heterogeneity [0−∞[ Exp(1)

σm Study-heterogeneity for mutation m [0−∞[ Exp(1)

1.6 Imputing missing information on ART duration

Among the 17 study populations that were used to estimate the prevalence of the NRTI/NNRTI mutations,
three of them did not report the ART duration [3, 4, 5]. In order not to lose the information given by the three
studies with missing ART duration, we imputed the duration on ART, assuming a gamma distribution with
the same mean and standard deviation as found in the 14 study populations with reported ART duration. The
mean was 25.6 months and standard deviation 15.7 months. The estimated NRTI/NNRTI prevalences when
discarding studies that do not report ART duration are displayed in Section 3.2.
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2 Parameter estimates

2.1 Prevalence of the NRTI mutations

Table 3: Prevalences of the nine NRTI mutations at baseline and after 2 and 3 years on either FTC/3TC +
TDF or FTC/3TC + ZDV.

Mutation Prevalence [95% CrI]

At baseline After 2 years on
FTC/3TC+TDF

After 2 years on
FTC/3TC+ZDV

After 3 years on
FTC/3TC+TDF

After 3 years on
FTC/3TC+ZDV

M41
2.1%

[0.7%,4.3%]
5.5%

[2.4%,19%]
15.9%

[8.8%,29.6%]
7%

[2.8%,26.4%]
22.1%

[11.7%,40.4%]

K65
1.5%

[0.1%,3.2%]
55.2%

[34.3%,79.4%]
1.5%

[0.1%,3.2%]
69.9%

[46.3%,90.6%]
1.5%

[0.1%,3.2%]

D67
5%

[2.4%,8.1%]
5%

[2.4%,8.1%]
25%

[14.8%,39.9%]
5%

[2.4%,8.1%]
33.3%

[19.3%,52.2%]

K70
4.1%

[1.8%,7.1%]
15.1%

[9.5%,25%]
23.8%

[15.8%,36.2%]
19.9%

[12.3%,33.8%]
32%

[20.6%,48.1%]

M184
15.1%

[0.9%,29.9%]
78.3%

[64.7%,90.5%]
73.5%

[57.9%,87.1%]
89.1%

[76.7%,96.9%]
85.2%

[69.8%,95%]

L210
0.6%

[0.1%,1.3%]
0.6%

[0.1%,1.3%]
5.4%

[1.5%,18.3%]
0.6%

[0.1%,1.3%]
7.8%

[2%,25.8%]

T215
0.9%

[0.1%,2.8%]
0.9%

[0.1%,2.8%]
26%

[15.2%,41.1%]
0.9%

[0.1%,2.8%]
36%

[21.5%,54.6%]

K219
1.2%

[0.1%,3.8%]
12%

[7.2%,22%]
17.2%

[10.1%,28.4%]
16.8%

[9.9%,30.6%]
24.2%

[14%,38.9%]

TAM
8.5%

[5.7%,11.7%]
22.9%

[16.1%,34.8%]
45.6%

[34%,59.3%]
29.5%

[20.1%,45%]
49.9%

[38.2%,62.6%]

2.2 Prevalence of the NNRTI mutations

Table 4: Prevalences of the seven NNRTI mutations at baseline and after 2 and 3 years on either EFV or NVP.

Mutation Prevalence [95% CrI]

At baseline After 2 years on
EFV

After 2 years on
NVP

After 3 years on
EFV

After 3 years on
NVP

K101
2.1%

[1.2%,3.4%]
7.5%

[2.3%,24.1%]
18.7%

[5.7%,45.1%]
10.1%

[2.5%,33.1%]
25.8%

[7.3%,58.9%]

K103
16.8%

[8.2%,30.6%]
59.8%

[42.8%,78.8%]
39.3%

[22%,66%]
71.9%

[51.5%,89.3%]
47.8%

[25.6%,78.4%]

V106
9.5%

[5.5%,14.3%]
44.6%

[32.5%,62.6%]
13%

[7.4%,27.8%]
56.7%

[41.2%,75.8%]
14.4%

[7.8%,35%]

V108
5.1%

[3.1%,7.6%]
8.9%

[4.8%,21.4%]
15.3%

[6.3%,35%]
10.7%

[5.2%,28.6%]
19.9%

[7%,46.3%]

Y181
5.5%

[3.1%,8.4%]
9.5%

[4.7%,22.7%]
41.9%

[23.5%,63.1%]
11.2%

[5.1%,30%]
54.4%

[31%,77%]

Y188
5.5%

[3.1%,8.4%]
13.3%

[8.8%,27.1%]
8.1%

[4.5%,21.5%]
16.9%

[10%,36.3%]
9.1%

[4.8%,28.5%]

G190
8.3%

[4.9%,11.9%]
15.4%

[9.5%,25.2%]
35.8%

[22.4%,54.1%]
18.7%

[10.3%,32.6%]
46.2%

[28.8%,67.7%]

2.3 Other parameter estimates
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Table 5: Estimates of other parameters

(a) NRTI mutations

Parameters Median [95% CrI]

τ2 0.5 [0.2,1.25]

σ2
1 0.32 [0,2.07]

σ2
2 0.96 [0.3,2.42]

σ2
3 0.13 [0,0.85]

σ2
4 0.05 [0,0.52]

σ2
5 0.19 [0.03,0.65]

σ2
6 1.61 [0.15,3.56]

σ2
7 0.08 [0,0.73]

σ2
8 0.03 [0,0.36]

τ2/(τ2 + σ2
1) 61.6% [14.8%,99.8%]

τ2/(τ2 + σ2
2) 34.5% [12.2%,70.5%]

τ2/(τ2 + σ2
3) 80.1% [30.3%,99.8%]

τ2/(τ2 + σ2
4) 92.1% [42.2%,100%]

τ2/(τ2 + σ2
5) 72.8% [39%,95.9%]

τ2/(τ2 + σ2
6) 25% [8.1%,79.2%]

τ2/(τ2 + σ2
7) 86.6% [36.6%,99.9%]

τ2/(τ2 + σ2
8) 94.8% [55.4%,100%]

γ 63.2% [54.4%,71.7%]

(b) NNRTI mutations

Parameters Median [95% CrI]

τ2 0.67 [0.25,1.57]

σ2
1 1.74 [0.62,3.41]

σ2
2 0.42 [0.06,1.38]

σ2
3 0.21 [0,1.33]

σ2
4 0.86 [0.01,2.86]

σ2
5 0.25 [0,1.56]

σ2
6 0.66 [0,2.86]

σ2
7 0.03 [0,0.59]

τ2/(τ2 + σ2
1) 28% [10.1%,59.7%]

τ2/(τ2 + σ2
2) 61.2% [28.2%,92.2%]

τ2/(τ2 + σ2
3) 76.7% [23.7%,99.9%]

τ2/(τ2 + σ2
4) 44.7% [13.7%,98.8%]

τ2/(τ2 + σ2
5) 73% [24.8%,99.6%]

τ2/(τ2 + σ2
6) 50.8% [13.2%,99.5%]

τ2/(τ2 + σ2
7) 95.3% [45.4%,100%]
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3 Sensitivity analysis

3.1 Risk of bias

Fig 3 displays the estimated prevalences of the NRTI (Panel A) and NNRTI (Panel B) DRMs after having
removed the studies with high risk of bias.
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Fig 3: Panel A: prevalence of the nine NRTI drug resistance mutations by �rst-line regimen. Points and vertical
lines: median and 95% credibility intervals of baseline prevalence (black), prevalence after 2 years on 3TC/FTC
+ TDF (red) or 3TC/FTC + ZDV (blue). Panel B: prevalence of seven NNRTI drug resistance mutations by
�rst-line regimen. Points and vertical lines: median and 95% credibility intervals of prevalence after 2 years on
EFV (orange) or NVP (green).

3.2 Removing studies with missing information on ART duration

Fig 4 displays the estimated prevalences of the NRTI (Panel A) and NNRTI (Panel B) DRMs after having
removed the studies with missing information on ART duration.
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Fig 4: Panel A: prevalence of the nine NRTI drug resistance mutations by �rst-line regimen. Points and vertical
lines: median and 95% credibility intervals of baseline prevalence (black), prevalence after 2 years on 3TC/FTC
+ TDF (red) or 3TC/FTC + ZDV (blue). Panel B: prevalence of seven NNRTI drug resistance mutations by
�rst-line regimen. Points and vertical lines: median and 95% credibility intervals of prevalence after 2 years on
EFV (orange) or NVP (green).

3.3 No selection of regression variables

Fig 5 displays the estimated prevalences of the NRTI DRMs when we used the �ve NRTI drugs as regression
variables (i.e. we did not apply the selection step).
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1 Model structure

The model is split in 4 dimensions: 1) care stages (8 levels), 2) disease progression, characterised by
the CD4 counts (4 levels), 3) NNRTI resistance, and 4) gender. The eight care stages are "infected but
not diagnosed" (I), "diagnosed but not treated" (D), "started treatment" (T1 and T2, respectively for
�rst and second-line treatment), "suppressed" (S1 and S2) and "failed" (F1 and F2). An individual
is considered as having "started treatment" (T1 or T2) if he initiated treatment less than 3 months
ago. Afterwards, he/she is considered either as suppressed if VL < 1000 cp/ml, or as failed otherwise.
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The four di�erent CD4 strata are represented by the letter i in the equations and are respectively:
CD4 > 500cells/µl (i = 1), 350 < CD4 < 500c/µl (i = 2), 200 < CD4 < 350c/µl (i = 3) and
CD4 < 200c/µl (i = 4). NNRTI resistance is represented by j, and its value is 0 if an individual
is susceptible to NNRTI and 1 otherwise. The gender dimension, represented by k, takes 0 for male
and 1 for female. The indices i, j and k are used in equations in order to specify a particular layer of
each dimension. When an index is missing, it means that we have summed over all the layers that the
dimension contains (e.g. Ik(t) :=

∑
i,j I

i,j,k(t)).

1.1 Modelling HIV transmission

The number of newly infected individuals per time step (1 month) is split in three parts, characterising
the three di�erent transmission routes: from men to men (men who have sex with men - MSM), from
men to women and from women to men (heterosexual transmission - HET). Let k and k′ respectively be
the gender of a susceptible (HIV-negative) and an infected individual. Assuming a density-dependent
transmission and di�erent risk behaviours between infected individuals knowing or not their status,
the number of individuals of gender k that have been newly infected by individuals of gender k′ is:

∆k,k′ = βuνk,k′
Ik

′,k

Nk′,kSusc
k,k′ + βdνk,k′

Dk′,k + T k′,k
1 + F k′,k

1 + T k′,k
2 + F k′,k

2

Nk′,k Susck,k
′
, (1)

where Ik,k
′
, Susck,k

′
and Nk,k′ represent respectively the number of infected people, the number of

susceptible people and the total number of people of gender k that have unprotected intercourse
with the gender k′, βd and βu the frequency of unprotected intercourse per month, respectively for
infected people knowing their status (diagnosed) and for those who do not (undiagnosed) and νk,k′ the
probability that an unprotected intercourse leads to a new infection between an infected individual of
gender k′ and a susceptible individual of gender k.

As HET and MSM populations were not formally split in the model, we approximated Ik
′,k

Nk′,k by Ik
′

Nk′

(where Ik
′

:=
∑

k I
k′,k and Nk′ :=

∑
kN

k′,k), assuming a similar HIV prevalence in MSM as in the
overall male population. We also replaced Susck,k

′
by ρk,k′Susc

k, where ρk,k′ represents the proportion
of people having sexual intercourse with gender k′ among sexually active people of gender k and where
Susck = Susck,0 + Susck,1. We assumed that ν1,1 = 0 as there is no risk of infection during a sexual
intercourse between two women. The proportion of MSM among men ρ0,0 is 0.05, as reported by Anova
Health Foundation [1]. Similarly, we set the proportion of sexually active women that have a sexual
intercouse with men ρ1,0 to 0.95. Using Eq 1, the number of newly infected individuals of gender k
per time step is:

∆k =∆k,0 + ∆k,1

=βuνk,0ρk,0
Ik

′=0

Nk′=0
Susck + βdνk,0ρk,0

Dk′=0 + T k′=0
1 + F k′=0

1 + T k′=0
2 + F k′=0

2

Nk′=0
Susck

+ βuνk,1ρk,1
Ik

′=1

Nk′=1
Susck + βdνk,1ρk,1

Dk′=1 + T k′=1
1 + F k′=1

1 + T k′=1
2 + F k′=1

2

Nk′=1
Susck.

(2)

We assumed that all newly infected individuals arrive at the �rst CD4 stratum (i = 1). See Eq 18 for
more details.

1.2 Modelling mortality

Mortality rates di�er according to CD4 counts and care stages. We combined the results of two studies
in order to estimate the relative risks for each group[2, 3]. The group of suppressed individuals with
CD4 > 500c/µl is de�ned as the reference as they have the lowest risk. To convert the relative risks
into rates, we used a free parameter µ, which corresponds to the mortality rate of the reference group
(see Table 5).
As [2] observed a high heterogeneity in mortality risk among people with CD4 < 200c/µl depending on
CD4 counts, mortality was modelled di�erently for this class, based on what has already been done in
Thembisa model [4]. Instead of assuming a �xed risk as for the other classes, we allowed the mortality
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rate of the last CD4 stratum (CD4 < 200c/µl) to vary within a range, according to its proportion of
people with very low CD4 counts. The upper level of the range corresponds to the relative risk in the
scenario where all individuals have CD4 < 50c/µl, while the lower level corresponds to the scenario
where all individuals have CD4 > 50c/µl. As we do not have any accurate information over time
about this proportion, we used rate of ART initiation as a proxy. We assumed that average treatment
rate of the 3 previous years determines the proportion of individuals with CD4 > 50c/µl, as shown
in Eq 3. This average corresponds to the increase in treatment rate relative to 2005. We assumed
an exponential decrease of the proportion of people with CD4 < 50c/µl when the treatment rate is
increasing, in line which structure of the compartmental model assuming exponential distribution of
the rates.

pCD4>50(t) = pCD4>50(2005) · exp
(
q · "di�. in 3-year Average"(γ4D→T1

(t))
)

= pCD4>50(2005) · exp

(
q ·
(

36∑

s=1

γ4D→T1

(
t− s

12

)
−

36∑

s=1

γ4D→T1

(
2005− s

12

)))
,

(3)

where pCD4>50(0) := 27% is the proportion of people with CD4 > 50c/µl [5]. Therefore, the relative
mortality risk for people with CD4 < 200c/µl is

µCD4<200(t) = pCD4>50(t) · µ50<CD4<200(t) + (1− pCD4>50(t)) · µCD4<50(t),

where µ50<CD4<200(t) and µCD4<50(t) are relative mortality risks and represent respectively the lower
and upper bounds of µCD4<200(t) (see Table 4).

1.3 Modelling diagnosis and treatment rate

Diagnosis rate

To model the diagnosis rate, we needed to distinguish three di�erent types of testing: 1) testing asymp-
tomatic individuals γkdiag1, 2) testing symptomatic (opportunistic infection - OI) γidiag2 and 3) testing

pregnant women γi,kdiag3. The overall diagnosis rate for a given CD4 stratum i and gender k is thus:

γi,kI→D = γkdiag1 + γidiag2 + γi,kdiag3 [6].

The diagnosis rate γkdiag1 has increased over the years, as a consequence of the augmentation in the
number of HIV-tests performed (in the asymptomatic population). To model the increase over time,
two free parameters are included into the diagnosis rate: one representing the diagnosis rate in 2005 for
men, and one representing its increase between 2005 and 2015. We assumed similar diagnosis rates for
the four CD4 strata. As reported in [6], diagnosis rate varies across gender, being higher for women.
The diagnosis for women is thus: γk=1

diag1 = γk=0
diag1/pI→D, where pI→D is a �xed parameter [6].

The rate of diagnosis due to OI γidiag2 depends on CD4 counts as OI is more likely to occur with low CD4

counts. Following what has been done by Thembisa [4], we set γidiag2 as: γ
i
diag2 = inciOI ·γtest2(t), where

inciOI represents the OI incidence and is set as 0.05/(1000person · year) for ind. with CD4 > 500c/µl,
0.12/(1000py) for ind. with 350 < CD4 < 500c/µl, 0.27/(1000py) for ind. with 200 < CD4 < 350c/µl,
0.9/(1000py) for ind. with CD4 < 200c/µl. γtest2(t) represents the monthly testing rate for individuals
having an OI. To model its increase over time, we used a sigmoid function increasing from 2% in 2005
to 8% in 2015 [4].

γi,kdiag3 model the increased diagnosis rate due to pregnancy. It is set as 0 for men and decreases

with CD4 counts, as fertility rate is lower for women with low CD4 counts. This rate is: γi,kdiag3(t) =

θbirth · θibirth CD4 · γktest3(t), where θbirth = 23/(1000py) is the birth rate in the overall South African
population, θibirth CD4 the decreased in birth rate according to CD4 counts and γktest3(t) the monthly
testing rate for pregnant women [4]. θibirth CD4 is 1 for women with CD4 > 500c/µl, 0.96 for women
with 350 < CD4 < 500c/µl, 0.87 for women with 200 < CD4 < 350c/µl, 0.74 for women with
CD4 < 200c/µl. We used a sigmoid function to model to model the monthly testing rate for pregnant
women. This increases from 4% in 2005 to 8% in 2010 [4].

Treatment rate
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We allowed treatment rate to vary over time and CD4 classes. The treatment rate for the CD4 class i
at time t is :

γiD→T1
(t) = γCD4<200

2005 · religi (t) · rCD4
i · rtime(t), (4)

where γCD4<200
2005 is a free parameter representing the treatment rate for an eligible individual in 2005

with CD4 < 200c/µl, religi (t) the proportion of individuals assumed to be eligible within CD4 class i
at time t, rCD4

i (t) the relative treatment rate for CD4 class i relative to that in CD4 < 200c/µl class
(i = 4), rtime(t) the relative treatment rate at time t relative to that in 2005.
Aside from the free parameter γCD4<200

2005 , the values of all other parameters from Eq 4 are taken
from the Thembisa model [4]. We set rCD4

i to 0.4 for the CD4 > 500c/µl class (i = 1), 0.5 for the
500 > CD4 > 350c/µl class (i = 2), 0.7 for the 350 > CD4 > 200c/µl class (i = 3) and 1 (reference

group) for the CD4 < 200c/µl class (i = 4). The parameter religi (t) models the broadening of eligibility
criteria over time as well as the delay between guideline change and change in practice. The product
religi (t) · rCD4

i (t) is displayed in Figure 1. We used a sigmoid function in order to model the gradual
increase of the treatment rate over time, represented by rtime(t) in the equation. Based on Thembisa
data [4, p.28], the function rtime(t) implies a 17-fold increase between 2002 and 2012. Initiation of

Figure 1: Proportion of eligible individuals across CD4 classes over time multiplied by relative treat-
ment rates (relative to the CD4 < 200 class): religi (t) · rCD4

i .

PI-based treatment as a �rst-line regimen is represented by the rates γiD→T2
. These rates has been

estimated using IeDEA-SA data (see section 3.1).

1.4 Modelling resistance

The resistance dimension consists of two layers: "being NNRTI-susceptible" and "being NNRTI-
resistant". Individuals can enter the resistant layer in two di�erent ways: either by acquiring drug
resistance or by being infected by a resistant strain. Acquisition of NNRTI resistance at a rate σres is
only possible when failing the �rst-line treatment. Alternatively, there is a risk to be directly infected
by a resistant virus, this risk being proportional to the percentage of infectious individuals that are
resistant. Resistant individuals can also revert back to the susceptible layer at a rate σrev when no
more drug pressure is exerted. As time to virological failure is lower for resistant individuals [7], we
added a �xed parameter α in order to express this di�erence. It represents the hazard ratio of the time
to virological suppression (susceptible vs resistant) and has been collected from literature [7]. Similar
di�erences have been observed in time to viral failure between susceptible and resistant individuals.
For the sake of simplicity, we decided to use the same parameter α to model both di�erences, as
estimates found in the literature were within the same range.

Supplementary Material March 24, 2021 4



Anthony Hauser

1.5 Modelling demographic changes

Susceptible people

As the model only describes the HIV-infected population, the susceptible population Susck(t) is not
part of the model. However, as Susck(t) is needed in order to model infections, it is estimated as
follows: Susck(t) = Nk(t) − Infk(t), where Nk(t) is the total number of adults of gender k in South
Africa estimated by the World Health Organisation (WHO) [8] and Infk(t) is the total number of in-
fected adults of gender k calculated by the model (sum over all compartments). We used demographic
data and interpolated them in order to obtain a function Nk(t) that is continuous over time.

Children reaching adulthood

The in�ow of children reaching adulthood (≥ 15 years old) was calculated using [4], [9] and [10].
Thembisa model provides yearly estimates of the number of 15-year olds that are 1) HIV-infected,
2) diagnosed and 3) on ART, strati�ed by gender. NNRTI resistance prevalence in 15-year olds on
ART were estimated by only considering acquisition of NNRTI-resistance during ART. Transmission
of resistance due to the prevention of mother to child transmission (PMTCT) treatment was not con-
sidered, as the national PMTCT programme only started in 2002 in South Africa, and thus does not
have any e�ect on 15-year olds before 2017. Moreover, we did not consider transmission of resistance
from mother to child, as level of resistance was very low in 2002. We considered that 20% of 15-year
olds were on a failing ART [9]. Among them, we considered that 90% were resistant to NNRTI [10].
We interpolated these yearly estimates into continuous monthly estimates.

2 Model equations

2.1 Notations

Eq 6-9 model the di�erence in treatment failure/success rates depending on the absence or presence of
NNRTI-resistance. Table 1 shows the di�erent compartments of the model and model outcomes (see
also Eq 10-17).

δ(j) =

{
−1 if j = 0

1 if j = 1 (5)

Impact of resistance on clinical outcome

γi,j=1
T1→S1

(t) = 1/α · γi,j=0
T1→S1

(t) (6)

γi,j=1
T1→F1

(t) = α · γi,j=0
T1→F1

(t) (7)

γi,j=1
F1→S1

(t) = 1/α · γi,j=0
F1→S1

(t) (8)

γi,j=1
S1→F1

(t) = α · γi,j=0
S1→F1

(t) (9)

Number of newly infections between time s− 1 and s (see Eq.2)

∆Inf(s) =

∫ s

s−1

(
βu

1∑

k=0

(
ρk,1−kνk,1−k

Inf1−ku

Nk
Susck + ρk,kνk,k

Infku
Nk

Susck
)

(t)

+ βd

1∑

k=0

(
ρk,1−kνk,1−k

Inf1−kd

Nk
Susck + ρk,kνk,k

Infkd
Nk

Susck

)
(t)

)
dt

(10)
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Notation Description De�nition

Dimensions/Compartments

i index for the 2nd dimension (CD4 counts) i = 1, 2, 3, 4 (4 CD4 strata)

j index for the 3rd dimension (resistance) j = 0: NNRTI-susceptible

j = 1: NNRTI-resistant

k index for the 4th dimension (gender) k = 0: men, k = 1: women

Iijk(t) number of infected (not diagnosed) indiv.

Dijk(t) number of diagnosed (not treated) indiv.

T ijk
1 (t) number of indiv. that have started 1st

line treatment for less than 3 months

Sijk
1 (t) number of suppressed indiv.

on 1st-line treatment

F ijk
1 (t) number of indiv. failing 1st-line treatment

T ijk
2 (t) number of indiv. that have started 2nd

line treatment for less than 3 months

Sijk
2 (t) number of suppressed indiv.

on 2nd-line treatment

F ijk
2 (t) number of indiv. failing 2nd-line treatment

Nk(t) number of adults of gender k [8]

Susck number of susceptible indiv. of gender k by de�nition:

Susck := Nk(t)− Ik(t).

Inf jku (t) number of undiagnosed indiv. Inf jku (t) := Ijk(t)

Inf jkd (t) number of infectious diagnosed indiv. see Eq 14

Model outcomes

∆Inf(t) number of newly infected indiv. between times t see equation 10

and t+ ∆t (∆(t) is the time step: 1 month)

Diag(t) number of indiv. diagnosed see Eq 11

Mort(t) number of AIDS-related deaths see Eq 12

Treat(t) number of indiv. treated see Eq 13

ADR(t) level of ADR (among failed indiv.) see Eq 15

TDR(t) level of TDR (among newly diagnosed indiv.) see Eq 16

Table 1: Description of the compartments and dimensions of the model.

Number of diagnosed HIV-infected individuals at time t

Diag(t) = D(t) + T1(t) + S1(t) + F1(t) + T2(t) + S2(t) + F2(t) (11)

Number of AIDS-related deaths between time s− 1 and s

Mort(s) =

∫ s

s−1

(
µi=4
I · Ii=4 + µi=4

D ·Di=4 + µi=4
T1
· T i=4

1 + . . .+ µi=4
F2
· F i=4

2

)
(t)dt (12)
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Number of individuals on ART at time t

T reat(t) = T1(t) + S1(t) + . . .+ F2(t) (13)

Number of infectious and diagnosed individuals

Inf jkd (t) = Djk(t) + T jk
1 (t) + F jk

1 (t) + T jk
2 (t) + F jk

2 (t) (14)

Acquired NNRTI resistance (in failing patients)

ADR(t) =
F j=1
1 (t)

∑1
j=0 F

j
1 (t)

(15)

Transmitted NNRTI (in newly diagnosed individuals)

TDR(t) =
∆Dj=1(t)∑1
j=0 ∆Dj(t)

(16)

where ∆Dj(t) represent the in�ow of individuals going from Ij to Dj at each time step (newly diag-
nosed individuals).

Contribution of TDR to ADR between times s − 1 and s (see Discussion section in the
manuscript)

ρTDR→ADR(s) =

∑4
i=1

∫ s
s−1

(
γi,j=1
S1→F1

· Si,j=1
1 (t) + γi,j=1

T1→F1
· T i,j=1

1 (t)
)
dt

∑4
i=1

∫ s
s−1

(
γi,j=1
S1→F1

· Si,j=1
1 (t) + γi,j=1

T1→F1
· T i,j=1

1 (t) + σres · F i,j=0
1 (t)

)
dt

(17)
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2.2 ODEs

İijk(t) =− νI,iCD4 · Iijk(t)1i≤3 + νI,i−1CD4 · I(i−1)jk(t)1i≥2

+ βu

(
ρk,1−kνk,1−k

Inf
ij(1−k)
u

Nk
Susck + ρk,kνk,k

Inf ijku

Nk
Susck

)
1i=1

+ βd

(
ρk,1−kνk,1−k

Inf
ij(1−k)
d

Nk
Susck + ρk,kνk,k

Inf ijkd

Nk
Susck

)
1i=1

− γikI→D(t) · Iijk(t)− δ(j) · σrev · Ii1k(t)− µiI · Iijk(t) + ∆Inf I,ijk15years(t),

Ḋijk(t) =− νD,i
CD4 ·Dijk(t)1i≤3 + νD,1

CD4 ·D(i−1)jk(t)1i≥2 − (γikD→T1
(t) + γiD→T2

(t)) ·Dijk(t)

+ γiT1→D · T ijk
1 (t) + γiS1→D · Sijk

1 (t) + γiF1→D · F ijk
1 (t) + γikI→D(t) · Iijk(t)

− δ(j) · σrev ·Di1k(t)− µiD ·Dijk(t) + ∆InfD,ijk
15years(t),

Ṫ ijk
1 (t) =

(
νT1,i−1
CD4 · T (i−1)jk

1 (t)− ν̃T1,i−1
CD4 · T ijk

1 (t)
)
1i≥2 +

(
ν̃T1,i
CD4 · T

(i+1)jk
1 (t)− νT1,i

CD4 · T
ijk
1 (t)

)
1i≤3

− (γijT1→S1
+ γijT1→F1

+ γijT1→D) · T ijk
1 (t) + γikD→T1

(t) ·Dijk(t)− µiT1
· T ijk

1 (t) + ∆InfT1,ijk
15years(t),

Ṡijk
1 (t) =− ν̃S1,i−1

CD4 · Sijk
1 (t)1i≥2 + ν̃S1,i

CD4 · S
(i+1)jk
1 (t)1i≤3

− (γijS1→F1
+ γijS1→D) · Sijk

1 (t) + γijT1→S1
· T ijk

1 (t) + γijF1→S1
· Sijk

1 (t)− µiS1
· Sijk

1 (t),

Ḟ ijk
1 (t) =νF1,i−1

CD4 · F (i−1)jk
1 (t)1i≥2 − νF1,i

CD4 · F
ijk
1 (t)1i≤3 + δ(j) · σres · F i0k

1 (t)

− (γijF1→S1
+ γikF1→T2

+ γijF1→D(t)) · F ijk
1 (t) + γijS1→F1

· Sijk
1 (t) + γijT1→F1

· T ijk
1 (t)

− µiF1
· F ijk

1 (t),

Ṫ ijk
2 (t) =

(
νT2,i−1
CD4 · T (i−1)jk

2 (t)− ν̃T2,i−1
CD4 · T ijk

2 (t)
)
1i≥2 +

(
ν̃T2,i
CD4 · T

(i+1)jk
2 (t)− νT2,i

CD4 · T
ijk
2 (t)

)
1i≤3

− (γijT2→S2
+ γijT2→F2

) · T ijk
2 (t) + γikF1→T2

· F ijk
1 (t) + γiD→T2

·Dijk(t)− µiT2
· T ijk

2 (t),

Ṡijk
2 (t) =− ν̃S2,i−1

CD4 · Sijk
2 (t)1i≥2 + ν̃S2,i

CD4 · S
(i+1)jk
2 (t)1i≤3

− γijS2→F2
· Sijk

2 (t) + γijT2→S2
· T ijk

2 (t) + γijF2→S2
· F ijk

2 (t)− µiS2
· Sijk

2 (t),

Ḟ ijk
2 (t) =νF2,i−1

CD4 · F (i−1)jk
2 (t)1i≥2 − νF2,i

CD4 · F
ijk
2 (t)1i≤3

− γijF2→S2
· F ijk

2 (t) + γijS2→F2
· Sijk

2 (t) + γijT2→F2
· T ijk

2 (t)− µiF2
· F ijk

2 (t).

(18)

2.3 Starting values

Model simulation started in 2005. The distribution of the infected individuals over the 128 compart-
ments at the start of the simulation were chosen as follows. As reported by Thembisa, there were 4.4
million adult people living with HIV in 2005 in South Africa, 1.7 million of them were men. These
individuals were distributed across 3 of the 8 care stages: infected (I), diagnosed (D) and treated with
�rst-line (T1). 72% were in I, 26% in D and 2% in T1. The distribution of individuals across the four
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CD4 classes has been determined by running with di�erent distributions across CD4 classes and by
keeping the one with the best �t. For infected I individuals, we chose a homogeneous distribution,
i.e. the same number of individuals in the four CD4 classes. For diagnosed and treated individuals
(D and T1), the fourth CD4 class (CD4 < 200c/µl) has the most individuals. It has twice as many
individuals as in the third CD4 class, which has twice as many as in the second CD4 class, which has
twice as many as in the �rst one. Finally, we assumed that 1% of infected individuals were resistant
to NNRTI. For sake of simplicity, this percentage did not depend on CD4 counts or on care stages.

3 Calibration and model simulation

We calibrated the model in two successive steps. First, IeDEA data were used to estimate the majority
of the rates with survival analysis. Second, we �tted our model to Thembisa data using a maximum
likelihood approach. A few parameters, mainly the ones related to resistance, were collected from
literature. For more details, see Table 4.

3.1 Survival analysis

To estimate the majority of the rates that are related to continuum of care or disease progression, we
used data from IeDEA-SA, a network collecting individual information about HIV-infected patients
from several cohorts in Southern Africa. After having selected only adults from the 5 South African
cohorts and discarded patients with erroneous information, we ended up with information about 54'016
patients. This includes 1) start/end of drug regimen, 2) VL measurements, 3) CD4 counts measure-
ments and 4) outcome (i.e. death).
Let A and B be two compartments of the model and rA→B the rate corresponding to the movement
from A to B. When a linear interaction (dBdt = rA→B ·A) is chosen, the compartmental model assumes
that the time TA→B spent in A before switching to B is exponentially distributed with mean r−1A→B:
TA→B ∼ Exp(rA→B). Therefore, we estimated the di�erent rates summarised in the section below by
using survival analysis and assuming a exponentially distributed times.

Rates related to movement between CD4 classes

All the rates that are related to the progression of the disease (switch to another CD4 class) within the
same care stage are estimated with IeDEA data. As the time spent on one care stage before switch-
ing to another stage is generally long, the interval censoring approach provided accurate estimates of
almost all rates. As no reliable data exist about untreated individuals (I and D), the progression in
CD4 counts for I and D was estimated from literature [11].

Rates related to movement between care stages

Rates that model HIV-transmission, diagnosis and treatment initiation were not estimated with IeDEA
data and have already been described in Section 1. For all the other rates that are related to contin-
uum of care, we adapted the survival analysis method to handle the sparsity of IeDEA data. First,
as few VL measurements are reported per individuals, some steps are missing in the IeDEA data,
e.g. some individuals passing directly from "diagnosed" (D) to "suppressed" (S1), which implies that
treatment start is missing in the database. In this case, we aimed to reconstruct the history of care of
these patients based on the sparse information we had from IeDEA. In this example, as no rate exists
between D and S1, we should assume that the individual stayed at T1 before going to S1. Therefore,
the information provided by IeDEA data could here help us to estimate two rates: γD→T1 and γT1→S1 .
Second, we also modi�ed the method in order to take into account the risk of bias caused by the sparsity
of the CD4 measurements. As an example, let's suppose that we want to estimate the suppression rate
γ1T1→S1

for individuals with CD4 > 500c/µl. If the CD4 counts fell below 500c/µl between the last
time he has been reported at T1 and the �rst time he was at S1, it is impossible to know whether the
patient got suppressed when his CD4 counts was below or above 500c/µl. Therefore, information about
this patient cannot be used to inform any of the two rates γ1T1→S1

or γ2T1→S1
. Although the quality of

the estimates remains good for most of them due to the high number of individuals, rejecting those
patients could introduce a bias. We tried to correct for this bias by adapting the standard method.
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Let's consider the rate γ1T1→S1
. First, we estimated this rate without CD4 strati�cation: γ̂T1→S1 .

Next, we compared the weighted average of the rate strati�ed by CD4 with its estimate without CD4
strati�cation, by taking the ratio:

c :=
γ̂T1→S1(∑4

i=1 ωi · γ̂iT1→S1

)
/
∑
ωi

. (19)

This constant c represents the bias made when estimating γ̂T1→S1 by CD4 strati�cation. To correct
for this bias, we therefore multiplied the previously estimated rates γ̂iT1→S1

by c: c · γ̂iT1→S1
. Table 2

shows estimates of the rates that are related to the progression of the disease and Table 3 estimates of
the rates that are related to the continuum of care.

Parameter Description Values

CD4 class

1→ 2 2→ 3 3→ 4

1/νICD4 Time before leaving one CD4 class to another one

(estimated from [11]) 60 36 42

1/νDCD4 idem (estimated from [11]) 60 36 42

1/νT1
CD4 idem 28 18 45

1/νF1
CD4 idem 17 11 16

1/νT2
CD4 idem 28 18 45

1/νF2
CD4 idem 15 14 11

1← 2 2← 3 3← 4

1/ν̃T1
CD4 idem 13 22 115

1/ν̃S1
CD4 idem 15 13 10

1/ν̃T2
CD4 idem (set as 1/ν̃T1

CD4) 13 22 115

1/ν̃S2
CD4 idem 14 13 8

Table 2: Inverse of the rates (in month) related to disease progression estimated with survival analysis
and IeDEA data. Because no or too little data were available to measure them accurately, two rates
(1/νICD4 and 1/νT2

CD4) were approximation by other similar rates.

3.2 Likelihood maximisation

Four di�erent rates - transmission rate, diagnosis rate, ART initiation rate and mortality rate - were
estimated during the second phase. These four rates were modelled with 7 parameters (see Table
5). Estimates from the �rst phase (Table 2 and 3) and from literature (Table 4) were used to run
the model. We used an maximum likelihood approach to �t four model outcomes to outcomes from
Thembisa model (see Eq 20). The four model outcomes are: the number of yearly new infection ∆Inf ,
the number of undiagnosed individuals Diag, the number of treated individuals Treat and the number
of AIDS-related deaths Mort.
We used the optim function in R together with the L-BFGS-B method. This method allowed us to
provide lower and upper bounds for each parameters. These bounds were chosen in order to include
all reasonable values. As optimisation of the likelihood function might give di�erent results depend-
ing on the starting values of the parameters, di�erent starting values were randomly chosen within
the range de�ned by the lower and upper bounds. We selected the set of parameters that maxi-
mized the likelihood over the simulations that converged. Calculations were performed on UBELIX
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Parameter Description Values

CD4 class

1 2 3 4

1/γT1→S1 Time from T1 to S1 6 9 9 14

1/γT1→F1 Time from T1 to F1 23 22 15 13

1/γS1→F1 Time from S1 to F1 621 460 225 87

1/γF1→S1 Time from F1 to S1 28 46 48 53

1/γF1→T2 Time from F1 to T2 94 161 65 35

1/γT2→S2 Time from T2 to S2 5 8 4 4

1/γT2→F2 Time from T2 to F2 20 24 12 8

1/γS2→F2 Time from S2 to F2 59 43 40 21

1/γF2→S2 Time from F2 to S2 2 10 6 12

1/γT1→D Time from T1 to D (stop treatment) 414 322 172 156

1/γS1→D Time from S1 to D (stop treat.) 2069 1241 759 368

1/γF1→D Time from F1 to D (stop treat.) 621 478 285 129

1/γT2→D Time from T2 to D (stop treatment) 414 322 172 156

1/γS2→D Time from S2 to D (stop treat.) 2069 1241 759 368

1/γF2→D Time from F2 to D (stop treat.) 621 478 285 129

1/γD→T2 Time from D to T2 1149 2759 2989 425

Table 3: Inverse of the rates (in month) related to continuum of care estimated with survival analysis
and IeDEA data.

(http://www.id.unibe.ch/hpc), the HPC cluster at the University of Bern.

logL =
2015∑

i=2005

logPoisson (∆Infdata(t), λ = ∆Inf(t))

+
2015∑

i=2005

logPoisson (Diagdata(t), λ = Diag(t))

+
2015∑

i=2005

logPoisson (Mortdata(t), λ = Mort(t))

+

2015∑

i=2005

logPoisson (Treatdata(t), λ = Treat(t))

(20)
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Parameter Description Values Ref

Resistance parameters

1/σres Time to acquire resistance (in month) 5 [12, 13, 14, 15, 16]

1/σrev Time to revert back to "drug-susceptible" (in month) 120 [17]

α Hazard ratio of "being suppressed" between 2 [7]

drug-susceptible and drug-resistant individuals

Other parameters

pI→D ratio of diagnosis rate between 0.8

asymptomatic men and women

ν0,0 probability that a male infects a male (per act) 0.8% [18]

ν0,1 probability that a male infects a female (per act) 0.3% [18]

ν1,0 probability that a female infects a male (per act) 0.3% [18]

ρ0,0 percentage of MSM 5% [1]

µi relative mortality risk [2] [3]

(Ref: suppressed indiv. with CD4>500) CD4 class

1 2 3 4

µiI/D: not treated (I and D) 1.6 2 4.6 40.9-134.4

µiT1/T2
: started treatment (T1 and T2) 2.5 2.6 3.1 10-50.7

µiS1/S2
: suppressed (S1 and S2) 1 1.3 2 8.3-41.7

µiF1/F2
: failed (F1 and F2) 3.9 3.9 4.3 11.8-59.7

Table 4: Parameters collected from literature.

Parameter Description Values

βu number of unprotected sexual acts per month 3.3

(for undiagnosed individual)

βd number of unprotected sexual acts per month 1.8

(for diagnosed individual)

γI→D(2016)/γI→D(2005) Ratio of diagnosis rates between 2005 and 2016 7.7

1/(12 · γI→D(2005)) time to diagnosis in 2005 22.8

in asymptotic HIV-infected men (in year)

1/(12 · γD→T1(2005)) time to ART initiation in 2005 (in year) 7.8

q parameter linking the increase of treatment rate with 0.05

the decrease of the prop. of ind. with CD4 < 50 cell/µl (see Eq 3)

µ0 Mortality risk (in (month · 1000 people)−1) 0.16

for a suppressed individual with CD4 > 500 cell/µl

Table 5: Parameters estimated during the second-phase calibration (likelihood maximisation). Rates
are in month−1.

4 Results

4.1 Best �ts

Figure 2A-D shows the 10 best �ts among those that converged. Figure 2E-F shows ADR and TDR
levels over time as estimated by the model using the formulas 15 and 16 respectively. The table 6
shows some characteristics of the studies that are used in Figure 2E-F.
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Figure 2: The plots A, B, C and D correspond to the four indicators used during the �tting procedure:
A. the number of newly infected per year, B. the number of undiagnosed individuals, C. the number
of AIDS-related deaths per year and D. the percentage of infected individuals that are on ART. ADR
and TDR levels are displayed in Figure E. and F. respectively. Note, however, that these two latter
indicators are not used during the �tting procedure. The lines correspond to the best model �t while
the grey area is delimited by the lower and upper bounds of the 10 best �ts, whose variation is due to
di�erent starting points (see Section 3.2).

4.2 Sensitivity analysis

In the sensitivity analysis, we perturbed 200 times seven parameters using a Latin Hypercube Sam-
pling method (see Table 7). As varying the transmission-related parameters may modify the overall
transmission rate, an adjustment is made to have a transmission rate similar to the baseline model.
Sensitivity analysis were run for the baseline model as well as for each counterfactual scenario (10
di�erent scenarios in total). 100% sensitivity ranges are displayed in Figures 2 and 3 and Table 1 of
the main paper.
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Where Level CI (95%) sample size Year Reference

ADR levels

Cape Town 88% 80.3%− 93.3% 110 2002-2007 [12]

8 over the 9 South African provinces 95.4% 93.7%− 96.7% 788 2013-2014 [19]

(no data from Northern Cape province)

TDR levels

South Africa (meta-analysis) 0%− 10.1% not given 41− 1719 2005-2014 [20]

(total: 5064)

Table 6: Cross-sectional studies used to compare resistance outcomes of the model (levels of ADR and
TDR over time).

Parameters Value Lower Bound Upper bound

Resistance-related parameters

1/σres 5 3 9

1/σrev 125 36 200

α 2 1 5

γT1→D, γS1→D, γF1→D rate γ γ 2 · γ
(see Table 3)

Transmission-related parameters

ρ0,0 5% 1% 10%

ν0,0/ν0,1 2.7 1 5

Ratio between HIV prevalence 1 1 3

in MSM and in HET

Table 7: Parameter ranges used in sensitivity analysis.
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1 Adapted MARISA model

1.1 MARISA model

MARISA is a mechanistic, compartmental model developed to capture the dynamics of HIV NNRTI resistance
among adults in South Africa over the years 2005-2016. It models the continuum of care - including NNRTI-based
�rst-line and PI-based second-line regimens -, the disease progression, acquisition and transmission of NNRTI-
resistance, and its impact on the e�cacy of NNRTI-based regimen. The model was calibrated using di�erent
sources of data: 1) cohort data about more than 30,000 people living with HIV from IeDEA collaboration [1],
2) data from literature, and 3) general HIV estimates at the country scale produced by the Thembisa model.
The Thembisa model is a compartmental model providing UNAIDS with estimates on the South African HIV
epidemic [2].
We adapted this model to investigate the impact of the introduction of DTG-based regimens in South Africa from
2020. The changes include 1) incorporating DTG-based regimen into the continuum of care, 2) distinguishing
between DTG-eligible and -ineligible individuals, and 3) adding a NRTI-resistance dimension.

1.2 Adapted MARISA model

The adapted MARISA model is split in 5 dimensions: 1) care stages (15 levels), 2) disease progression, charac-
terised by the CD4 counts (4 levels), 3) sex (2 levels), 4) NNRTI resistance (2 levels) and 5) NRTI resistance
(2 levels).
The �rst dimension of the model accounts for the whole continuum of care (see Fig A). The �rst three com-
partments model respectively HIV-infection of susceptible individuals and diagnosis (with a distinction between
DTG-eligible and -ineligible women). We then considered the three di�erent regimens - NNRTI-based, PI-based
and DTG-based -, again with a distinction by DTG-eligibility for individuals on a NNRTI-based regimen. For
each of the three regimens, three compartments are used to model treatment initiation ("Treat init.") with sub-
sequent virological suppression ("Supp") or failure ("Fail"). "Treat init." compartments represent individuals
who initiated treatment less than 3 months ago. Before 2020, all individuals receive a NNRTI-based �rst-line
regimen and switch to the second-line PI-based regimen in case of prolonged failure. From 2020, the DTG-based
regimen is used as a �rst-line regimen for all DTG-eligible individuals. From this time, DTG-eligible individuals
who are currently on NNRTI-based regimen can transition to DTG-based regimen. PI-based regimen is still
used as a second-line regimen, either for DTG-ineligible patients failing NNRTI-based ART, or for patients
failing DTG-based ART.
The second dimension splits individuals in 4 classes according to CD4 counts: 1) CD4 > 500 cells/µL, 2)
350 < CD4 < 500 cells/µL, 3) 200 < CD4 < 350 cells/µL and 4) CD4 < 200 cells/µL. The third dimension
makes the distinction between male and female. The fourth and �fth dimensions respectively model NNRTI- and
NRTI-resistance. They each have two layers that distinguish between NNRTI-/NRTI-susceptible and -resistant
individuals. We used the following indices to indicate a layer of a dimension: j for the second dimension
(j = 1, 2, 3, 4), k for the third dimension (k = 1, 2), l for the fourth dimension (l = 1, 2) and m for the �fth
dimension (m = 1, 2).
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Fig A: Adapted MARISA model. Only the �rst (continuum of care) and the third (sex) dimensions are repre-
sented.

2 Parameters and rates of the adapted MARISA model

2.1 Rates related to continuum of care and disease progression

Rates related to disease progression νCD4 and ν̃CD4 as well as rates related to continuum of care γ, which
respectively model transition from one to another CD4 class and transition from one to another care stage, were
estimated using observational cohort data from IeDEA-SA collaboration. Survival analyses were performed
using information of more than 30'000 patients from South Africa. Mean estimates and 95% con�dence intervals
(95%CI) are reported in Table A and B.
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Table A: Rates related to disease progression. Rates are in month−1.

Parameter Description Values [95% CI]

Parameters related to disease progression
CD4 class

1→ 2 2→ 3 3→ 4

1/νICD4 Average time to progress from one to another CD4
class, at I (taken from [3])

60 36 42

1/νDCD4 Average time to progress from one to another CD4
class, at D (taken from [3])

60 36 42

1/νT1

CD4 Average time to progress from one to another CD4
class, at T1

47 [42,54] 30 [28,34] 60 [55,66]

1/νF1

CD4 Average time to progress from one to another CD4
class, at F1

18 [16,20] 15 [14,16] 22 [21,24]

1/νT2

CD4 Average time to progress from one to another CD4
class, at T2

32 [14,72] 22 [12,43] 33 [17,64]

1/νF2

CD4 Average time to progress from one to another CD4
class, at F2

14 [8,26] 15 [8,27] 16 [10,25]

1← 2 2← 3 3← 4

1/ν̃T1

CD4 Average time to progress from one to another CD4
class, at T1

16 [15,17] 16 [15,17] 18 [17,19]

1/ν̃S1

CD4 Average time to progress from one to another CD4
class, at S1

17 [16,17] 14 [14,14] 9 [9,10]

1/ν̃T2

CD4 Average time to progress from one to another CD4
class, at T2

16 [9,27] 19 [11,31] 41 [23,73]

1/ν̃S2

CD4 Average time to progress from one to another CD4
class, at S2

17 [13,21] 14 [11,17] 7 [6,10]

Table B: Rates related to transition between care stages. Rates are in month−1.

Parameter Description Values [95% CI]

Parameters related to care stages
CD4 class

1 2 3 4

1/γT1→S1 Time from T1 to S1
3.4

[3.3,3.6]
3.5

[3.3,3.7]
3.6

[3.4,3.7]
3.9

[3.8,4.1]

1/γT1→F1
Time from T1 to F1

23.4
[20.1,27.3]

22.8
[19.6,26.4]

18.9
[17.5,20.4]

12.9
[12.3,13.5]

1/γS1→F1 Time from S1 to F1
176.3

[157,197.9]
133.8

[118.6,150.8]
62.1

[57,67.6]
22.1

[20.2,23.9]

1/γF1→S1
Time from F1 to S1

6.4
[5.5,7.4]

12.9
[11,14.9]

14.3
[12.9,15.9]

18.2
[16.3,20.2]

1/γF1→T2
Time from F1 to T2

467.5
[243,898.9]

376
[240.4,589.9]

258.9
[200.7,334.6]

166.4
[140,199]

1/γT2→S2 Time from T2 to S2
3.8

[2.7,5.2]
3.8

[2.6,5.5]
4

[3,5.3]
5

[4,6.4]

1/γT2→F2
Time from T2 to F2

14.3
[7.8,26.8]

14
[7.3,27]

11.8
[7.8,18]

7.6
[5.9,9.9]

1/γS2→F2
Time from S2 to F2

61.4
[30.8,122.8]

40.9
[21.4,78.9]

40
[21.4,74.3]

19.1
[9,40]

1/γF2→S2 Time from F2 to S2
2.3

[1.1,4.1]
12.9

[3.2,51.3]
5.5

[2.8,11.3]
11.7

[4.8,28]

2.2 Diagnosis, treatment initiation and switching rates

Diagnosis rates depend on sex and CD4 class and treatment initiation rates depend on CD4 class. They have
been described in details in [4], S1 File, Section 1.3. In the adapted MARISA model, we assumed that diagnosis
rates are constant from 2016, while the treatment initiation rate has been adapted in order to model the impact
of the Treat-All policy. We increased treatment initiation rates for the �rst three CD4 count classes from 2017
to 2022 in order to have identical rates from 2022, irrespective of CD4 counts (see Fig B). To ensure a proportion

p1 of DTG-eligible women, two diagnosis rates are used γk,eligI→D := p1 · γkI→D, γ
k,inel
I→D := (1− p1) · γkI→D, in order
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to distribute women into the two DTG-eligibility classes.

0.00

0.25

0.50

0.75

1.00
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r iel
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(t
) 

r iC
D

4

CD4 class

200<CD4<350

350<CD4<500

CD4<200

CD4>500

Fig B: religi (t) · rCD4
i represents the level of treatment eligibility religi (t) multiplied by rCD4

i , representing the
lower treatment initiation rate of CD4 class i relative to the CD4 class i = 4. These two components are parts
of the overall treatment initiation rate γiD→T1

(t) = γCD4<200
2005 · religi (t) · rCD4

i · rtime(t).

We rescaled the switching rates from unsuppressed NNRTI-based regimen to PI-based regimen γ
k,elig/inel
F1→T2

in

order to re�ect PI-coverage in South Africa (∼ 4% in 2016 according to [5]). The new rates γ
k,elig/inel
F1→T2

can be
found in Table B.

2.3 Resistance rates

Two rates model the �ow between the two NNRTI-resistance layers: the reversion rate σrev and the rate of
acquiring NNRTI-resistance σNNRTI

res . Reversion to wild-type occurs when no more drug pressure is exerted, i.e.
in the "Infected" and "Diagnosed" compartments. An individual can acquire NNRTI-resistance when failing
�rst-line regimen. Both parameters σrev and σNNRTI

res were collected from literature and can be found in Table
C.
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Table C: Parameters collected from literature. As mortality estimates in the fourth CD4 class vary according
to the proportion of people with CD4 < 50 cells/µL, lower and upper bounds are given (see [4] S1 File Section
1.2 for more details). The mortality risk µj

X in CD4 class j (i = 1, . . . , 4) and care stage X (X = I,D, T1, . . .)

is given by: µj
X = µ0 · µ̃j

X .

Parameter Description Values Ref

Resistance parameters
1/σNNRTI

res Time to acquire NNRTI-resistance (in month) 5 [6, 7, 8, 9, 10]
1/σNRTI

res Time to acquire NRTI-resistance (in month) 40 [11]
1/σrev Time to revert back to wild-type (in month) 125 [12]
α1 Impact of NNRTI-resistance on NNRTI-based ART 1.97 [13, 14]
α2 Impact of NNRTI-resistance on NNRTI-based ART 3.24 [13, 14]
α3 Impact of NRTI-resistance on DTG-based ART 1 [15, 16, 17]
α4 Scaling factor for the e�cacy NNRTI-based 1.62 [1]

regimen (see Section 2.4)
α5 Scaling factor for the e�cacy DTG-based 0.85 [18]

regimen (see Section 2.5)

Other parameters
ν0,0 probability that a male infects a male (per act) 0.8% [19]
ν0,1 probability that a male infects a female (per act) 0.3% [19]
ν1,0 probability that a female infects a male (per act) 0.3% [19]
ρ0,0 percentage of MSM 5% [20]
µ̃i relative mortality risk [21] [22]

(Ref: suppressed indiv. with CD4>500) CD4 class
1 2 3 4

µ̃i
I/D: not treated (I and D) 1.6 2 4.6 40.9-134.4

µ̃i
T1/T2

: started treatment (T1 and T2) 2.5 2.6 3.1 10-50.7

µ̃i
S1/S2

: suppressed (S1 and S2) 1 1.3 2 8.3-41.7

µ̃i
F1/F2

: failed (F1 and F2) 3.9 3.9 4.3 11.8-59.7

For the sake of simplicity and in view of the scarcity of evidence on the impact of NRTI-resistance on DTG-
based regimen, the dimension modelling NRTI-resistance has only two layers that distinguish between NRTI-
resistant and NRTI-susceptible individuals. NRTI resistance is de�ned as having both the K65R and the M184V
mutations, which confers high level of resistance to tenofovir (TDF) and lamivudine/emtricitabine (3TC/FTC),
respectively. In view of the low level of NRTI pre-treatment drug resistance (PDR) [12, 23], we assume that
NRTI resistance is not transmitted. The rate σNRTI

res models the process of acquiring NRTI-resistance, which
occurs when individuals are failing �rst-line NNRTI-based regimen. We calibrated σNRTI

res using results from a
meta-analysis that estimates the prevalence of NRTI resistance mutation after 3 years on a failing NNRTI-based
�rst-line regimen [11]. This meta-analysis found that 75% of them had the K65R mutation and 73% the M184V
mutation. Assuming no association between the two mutations as suggested by [24], we inferred σNRTI

res so that
54.8% (i.e. 75% ·73%) of individuals failing NNRTI-based regimen were resistant to NRTI after 3 years of ART.
We found σNRTI

res = 1/40 months−1 (see Table C).

2.4 Impact of NNRTI-resistance on NNRTI

Unlike the previous MARISA model, the adapted MARISA used two parameters α1 and α2 to model the impact
of NNRTI resistance on NNRTI treatment response. Both parameters increase the previously estimated rates of
failure γT1→F1 , γS1→F1 and decrease the suppression rates γT1→S1 and γF1→S1 for NNRTI-resistant individuals,
but at di�erent treatment stages. While α1 represents the impact of NNRTI resistance among individuals having
just started treatment (less than 3 months), α2 models this impact at the later stage of treatment. In order that
the MARISA model achieves the same suppression level with these modi�ed rates as estimated from IeDEA-SA
cohort data, we used a third scaling parameter α4 which increases the overall suppression rates and decreases
the failing rates. The di�erent failing and suppression rates according to CD4 class j and NNRTI-resistance
status l are given in Eq 1-8. The rates γT1→F1 , γT1→S1 , γS1→F1 and γF1→S1 represent the overall suppression
and failure rate for NNRTI-based ART, as estimated with IeDEA cohort data (see Tables A and B).

γj,l=0
T1→F1

= 1/α4 · γT1→F1 (1)

γj,l=1
T1→F1

= α1/α4 · γT1→F1 (2)
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γj,l=0
T1→S1

:= 1/3− γj,l=0
T1→F1

(3)

γj,l=1
T1→S1

:= 1/3− γj,l=1
T1→F1

(4)

γj,l=0
F1→S1

= α4 · γF1→S1 (5)

γj,l=1
F1→S1

= α4/α2 · γF1→S1
(6)

γj,l=0
S1→F1

= 1/α4 · γS1→F1
(7)

γj,l=1
S1→F1

= α2/α4 · γS1→F1
(8)

The three parameters α1, α2 and α3 were simultaneously calibrated using two di�erent kinds of data. To
identify α1 and α2, we used estimates from two studies that compared level of NNRTI failure between NNRTI-
susceptible and NNRTI-resistant individuals. Both studies reported a hazard ratio (HR) of ART failure between
NNRTI-resistant and NNRTI-susceptible people of 3.13. To identify α4, we used the overall suppression level
of 88% for NNRTI-based regimen, as estimated from IeDEA cohort data. The values of the three parameter
estimates are given in Table C. The higher estimated value of α2 compared with α1 (α1 = 1.97, α2 = 3.24)
re�ects the long-term impact of NNRTI-resistance on the NNRTI-treatment response.

2.5 DTG-e�cacy and impact of NRTI-resistance on DTG

In this updated MARISA model, we also model the potential impact of NRTI-resistance on DTG-based regimen.
We used the same suppression and failure rates for DTG-based regimen as for NNRTI-based one, but replace the
scaling factor α4 by α5, to take into account the di�erence in treatment e�cacy between NNRTI and DTG. The
scaling factor α5 was calibrated to re�ect results of the NAMSAL study [18], which observed a crude odds ratio
(OR) of failure of 1.46 between NNRTI- and DTG-based regimens, after 48 weeks of treatment. To do so, we
�tted the OR calculated by the MARISA model to the OR observed in NAMSAL studies, taking into account
the di�erent baseline characteristics (distribution of CD4 counts and level of baseline NNRTI-resistance) of the
NNRTI- and DTG-groups. After these adjustments, we found an OR of 1.02 between the two groups, assuming
that they are both susceptible to their respective ART regimen (i.e. no NNRTI-resistance). This decrease in
OR after adjustment is due to the fact that the NNRTI-group in the NAMSAL had lower baseline CD4 counts
and that part of them had baseline NNRTI-resistance. Other e�cacies of DTG-based regimens, corresponding
to ORs of 2 and 5, were investigated in the sensitivity analysis (see Section 5).
As a simplifying assumption, all individuals that transitions to DTG-based regimen are considered to have
received a NNRTI-drug combined with TDF and 3TC/FTC and to keep this NRTI-backbones combination after
transitioning to DTG-based regimen. This assumption is motivated by the expected reluctance of clinicians to
prescribe zidovudine (AZT) for TDF-experienced individuals transitioning to DTG due to its side e�ects. In
the case where NRTI backbones would be adapted when transitioning to DTG, the model might overestimate
the impact of NRTI resistance on DTG-based regimen. We applied the same approach to model the impact of
NRTI resistance on DTG-based regimen as we did to model the impact of NNRTI resistance on NNRTI-based
regimen. The suppression and failure rates for NRTI-resistant individual starting a DTG-based regimen are
respectively divided and multiplied by a factor α3. The di�erent failing and suppression rates according to CD4
class j and NRTI-resistance status m are given in Eq 9-16.

γj,m=0
T3→F3

= 1/α5 · γT1→F1
(9)

γj,m=1
T3→F3

= α3/α5 · γT1→F1 (10)

γj,m=0
T3→S3

:= 1/3− γj,l=0
T1→F1

(11)

γj,m=1
T3→S3

:= 1/3− γj,l=1
T1→F1

(12)

γj,m=0
F3→S3

= α5 · γF1→S1
(13)

γj,m=1
F3→S3

= α5/α3 · γF1→S1
(14)

γj,m=0
S3→F3

= 1/α5 · γS1→F1
(15)
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γj,m=1
S3→F3

= α3/α5 · γS1→F1 (16)

In the main analysis, we calibrated α3 so that the odds ratio (OR) of DTG-failure between NRTI-susceptible
and -resistant individuals takes two particular values : OR=1, OR=2. Higher impact of NRTI-resistance on
DTG-based regimen (OR=5) is investigated in the sensitivity analysis, together with di�erent DTG-e�cacies
(see Section 5).

2.6 Other parameters: HIV transmission and mortality

The MARISA model accounts for both heterosexual and homosexual HIV-transmission, with di�erent risks
of transmission per intercourse. We also assumed that undiagnosed individuals have a more risky behaviour.
Parameters related to HIV-transmission were either collected from literature (see Table C) or estimated using
results from Thembisa model (see Table D). We assumed that mortality depends on both the CD4 counts and
the treatment stage. Relative mortality estimates were collected from literature (see Table C) and a scaling
parameter, representing the mortality risk among suppressed invidual with CD4>500 copies/ml, was �tted
to HIV-mortality estimate provided by the Thembisa model. More information about HIV-transmission and
mortality can be found in S1 Text of [4].

Table D: Parameters estimated from outputs of the Thembisa model.

Parameter Description Values
βu Number of unprotected sexual acts per month 3.1

(for undiagnosed individual)
βd Number of unprotected sexual acts per month 1.24

(for diagnosed individual)
γI→D(2016)/γI→D(2005) Ratio of diagnosis rates between 2005 and 2016 4.4
1/γI→D(2005) Time to diagnosis in 2005 (in month) 26
1/γD→T1

(2005) Time to ART initiation in 2005 (in month) 60
µ0 Mortality risk (in (month · 1000 people)−1) 0.08

for a suppressed individual with CD4 > 500 cells/µL
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3 Model simulation

3.1 Prospective scenarios

We simulated 2 di�erent scenarios:

1. DTG only used in �rst-line regimen of ART-initiators and, as second-line, in patients failing NNRTI-based
ART (γD→T3 and γF1→T3 in Fig A),

2. DTG used as initial �rst-line regimen (for ART-initiators), with all patients on NNRTI-based regimens
being switched to a DTG-based regimen (all the red arrows).

Within these 2 scenarios, 4 sub-scenarios investigated the impact of di�erent percentages p1 of DTG-prescription
for women: a) no women (0%), b) women outside reproductive age (17.5%), c) women outside reproductive
age or using contraception (63%), and d) all women (100%). Percentage in b) is calculated with the help of
IeDEA-SA cohorts [1] which estimated that 17.5% of adult women under ART were older than 49. Percentage
in c) is calculated with the help of both IeDEA-SA estimate and World Bank [25], which estimated that 54.6%
of women aged 15-49 in South Africa were using any contraception method in 2015:

p1 :=P(women eligible for DTG)

=1− P(15 ≤ age ≤ 49 & no contraception|women on ART)

=1− P(15 ≤ age ≤ 49|women on ART) · P(no contraception|15 ≤ age ≤ 49 & on ART)

=1− (1− 0.175) · (1− 0.546) = 63%.

(17)

As no information about contraceptive prevalence in South African adult women on ART have been found, we
approximated it by the contraceptive prevalence in the general South African adult women population (see 17).
By de�nition, the percentage p0 of DTG-eligible men is 100%.

3.2 Sensitivity analysis

In the sensitivity analysis, we perturbed eight parameters 200 times using a Latin Hypercube Sampling method
(see Table E). Table E displays the main values of the eight parameters, which were informed from literature
and lower and upper bounds, chosen to re�ect plausible values of the parameters. As varying the transmission-
related parameters may modify the overall transmission rate, an adjustment is made to have a transmission
rate similar to the baseline model. We ran the sensitivity analysis for each prospective scenario (13 di�erent
scenarios in total).

Table E: Parameter ranges used in sensitivity analysis. Lower and upper bounds for α1 and α2 were determined
in order to have an OR of ART failure between NNRTI-susceptible and -resistant individuals of 1 and 5,
respectively. For α5, lower and upper bounds were determined in order to have an OR between NNRTI- and
DTG-failure of 1 and 2, respectively.

Parameter De�nition Value Lower
bound

Upper
bound

Resistance-related parameters
1/σNNRTI

res Time to acquisition of NNRTI resistance (months) 5 3 9
1/σrev Time to reversion to wild-type virus (months) 125 36 200
α1 Impact of NNRTI resistance on NNRTI-based ART 1.97 1 (OR=1) 3.1

(OR=5)
α2 Impact of NNRTI resistance on NNRTI-based ART

(see Eq 1-8)
3.24 1 (OR=1) 5.1

(OR=5)
α5 Scaling factor for the e�cacy DTG-based ART 0.85 0.84

(OR=1)
1.25
(OR=2)

Transmission-related parameters
ρ0,0 Percentage of MSM 5% 1% 10%
ν0,0/ν0,1 Increase in risk of transmission in MSM (see Table C 2.7 1 5
- Ratio between HIV prevalence in MSM and in HET 1 1 3
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4 Model ODEs

4.1 Description of the compartments

Table F describes the compartments used in the model, while model ODEs are given in Equations 19.

Table F: Description of the compartments used in the model.

Notation Description De�nition

Dimensions/Compartments
j index for the 2nd dimension (CD4 counts) j = 1, 2, 3, 4 (4 CD4 strata)
k index for the 3rd dimension (sex) k = 0: men, k = 1: women
l index for the 4th dimension (NNRTI-resistance) l = 0: NNRTI-susceptible

l = 1: NNRTI-resistant
m index for the 5th dimension (NRTI-resistance) m = 0: NRTI-susceptible

m = 1: NRTI-resistant
Ijklm(t) number of infected (not diagnosed) indiv.

Djklm
elig (t), number of diagnosed (not treated) indiv.

Djklm
inel (t) for resp. DTG-eligible and -ineligible ind. (by def. Dj0lm

inel (t) = 0)

NNRTI-based treatment

T jklm
1,elig(t), number of indiv. that have started NNRTI-based treatment for less than 3 months

T jklm
1,inel(t) for resp. DTG-eligible and -ineligible ind. (by def. T j0lm

1,inel(t) = 0)

Sjklm
1,elig(t), number of suppressed indiv. on NNRTI-based treatment

Sjklm
1,inel(t) for resp. DTG-eligible and -ineligible ind. (by def. Sj0lm

1,inel(t) = 0)

F jklm
1,elig(t), number of indiv. failing NNRTI-based treatment

F jklm
1,inel(t) for resp. DTG-eligible and -ineligible ind. (by def. F j0lm

1,inel(t) = 0)

PI-based treatment

T jklm
2 (t) number of indiv. that have started PI-based treatment for less than 3 months

Sjklm
2 (t) number of suppressed indiv. on PI-based treatment

F jklm
2 (t) number of indiv. failing PI-based treatment

DTG-based treatment

T jklm
3 (t) number of indiv. that have started DTG-based treatment for less than 3 months

Sjklm
3 (t) number of suppressed indiv. on DTG-based treatment

F jklm
3 (t) number of indiv. failing DTG-based treatment

Aggregated compartments
Susck number of susceptible indiv. of sex k
Infklu (t) number of undiagnosed indiv. Infklu (t) := Ikl(t)
Infkld (t) number of infectious diagnosed indiv.
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4.2 Model ODEs

The rates γ represent the transition between care stages, νCD4 the transition between CD4 stages and µij the
mortality. The rate σrev represents reversion of NNRTI-resistance when no more drug pressure is exerted, while
σNNRTI
res and σNRTI

res represents the rates of acquiring NNRTI resistance and NRTI resistance, respectively, when
an individual is failing NNRTI-based treatment. To model new infections, we used βu and βd the respective
monthly number of sexual contacts among undiagnosed and diagnosed individuals, ρk,k the assumed proportion
of heterosexual individuals within men and women and νk,k′ the probability of HIV transmission per sexual act.
Finally, we also used a function δ(x), which is given by :

δ(x) =

{
−1 if x = 0,

1 if x = 1.
(18)

İjklm(t) =− νI,jCD4 · Ijklm(t)1j≤3 + νI,j−1CD4 · I(j−1)klm(t)1j≥2

+ βu

(
ρ1−k,kν1−k,k

Susck
Nk

Inf (1−k)lu + ρk,kνk,k
Susck
Nk

Infklu

)
1j=1

+ βd

(
ρ1−k,kν1−k,k

Susck
Nk

Inf
(1−k)l
d + ρk,kνk,k

Susck
Nk

Infkld

)
1j=1

− γjkI→D(t) · Ijklm(t)− δ(l) · σrev · Ijk1m(t)− µj
I · Ijklm(t),

Ḋjklm
elig (t) =− νD,j

CD4 ·Djklm
elig (t)1j≤3 + νD,j

CD4 ·D
(j−1)klm
elig (t)1j≥2

− (γj,eligD→T1
(t) + γjkD→T2

(t) + γjkD→T3
(t)) ·Djklm

elig (t)

+ pkγ
jk
I→D(t) · Ijklm(t)− δ(l) · σrev ·Djk1m

elig (t)− µj
D ·Djklm

elig (t),

Ḋjklm
inel (t) =− ν

D,j
CD4 ·Djklm

inel (t)1j≤3 + νD,j
CD4 ·D

(j−1)klm
inel (t)1j≥2

− γj,inelD→T1
(t) ·Djklm

inel (t)

+ (1− pk)γjkI→D(t) · Ijklm(t)− δ(l) · σrev ·Djk1m
inel (t)− µj

D ·Djklm
inel (t),

Ṫ jklm
1,elig(t) =

(
νT1,j−1
CD4 · T (j−1)klm

1,elig (t)− ν̃T1,j−1
CD4 · T jklm

1,elig(t)
)
1j≥2

+
(
ν̃T1,j
CD4 · T

(j+1)klm
1,elig (t)− νT1,j

CD4 · T jklm
1,elig(t)

)
1j≤3

− (γjlT1→S1
+ γjlT1→F1

) · T jklm
1,elig(t) + γjkD→T1

(t) ·Djklm
elig (t)− µj

T1
· T jklm

1,elig(t)

Ṡjklm
1,elig(t) =− ν̃

S1,j−1
CD4 · Sjklm

1,elig(t)1j≥2 + ν̃S1,j
CD4 · S

(j+1)klm
1,elig (t)1j≤3

− γjlS1→F1
· Sjklm

1,elig(t) + γjlT1→S1
· T jklm

1,elig(t) + γjlF1→S1
· F jklm

1,elig(t)− µ
j
S1
· Sjklm

1,elig(t)

− γS1→S3
(t) · Sjklm

1,elig(t),

Ḟ jklm
1,elig(t) =ν

F1,j−1
CD4 · F (j−1)klm

1,elig (t)1j≥2 − νF1,j
CD4 · F jklm

1,elig(t)1j≤3

+ δ(l) · σNNRTI
res · F jk0m

1,elig (t) + δ(m) · σNRTI
res · F jkl0

1,elig(t)

− (γjlF1→S1
+ γj,eligF1→T2

(t)) · F jklm
1,elig(t) + γjlS1→F1

· Sjklm
1,elig(t) + γjlT1→F1

· T jklm
1,elig(t)

− µj
F1
· F jklm

1,elig(t)− γ
j
F1→T3

(t) · F jklm
1,elig(t),

Ṫ jklm
1,inel(t) =

(
νT1,j−1
CD4 · T (j−1)klm

1,inel (t)− ν̃T1,j−1
CD4 · T jklm

inel (t)
)
1j≥2

+
(
ν̃T1,j
CD4 · T

(j+1)klm
1,inel (t)− νT1,j

CD4 · T jklm
1,inel(t)

)
1j≤3

− (γjlT1→S1
+ γjlT1→F1

) · T jklm
1,inel(t) + γjkD→T1

(t) ·Djklm
inel (t)− µ

j
T1
· T jklm

1,inel(t),
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Ṡjklm
1,inel(t) =− ν̃

S1,j−1
CD4 · Sjklm

1,inel(t)1j≥2 + ν̃S1,j
CD4 · S

(j+1)klm
1,inel (t)1j≤3

− γjlS1→F1
· Sjklm

1,inel(t) + γjlT1→S1
· T jklm

1,inel(t) + γjlF1→S1
· F jklm

1,inel(t)− µ
j
S1
· Sjklm

1,inel(t),

Ḟ jklm
1,inel(t) =ν

F1,j−1
CD4 · F (j−1)klm

1,inel (t)1j≥2 − νF1,j
CD4 · F jklm

1,inel(t)1j≤3

+ δ(l) · σNNRTI
res · F jk0m

1,inel(t) + δ(m) · σNRTI
res · F jkl0

1,inel(t)

− (γjlF1→S1
+ γj,inelF1→T2

) · F jklm
1,inel(t) + γjlS1→F1

· Sjklm
1,inel(t) + γjlT1→F1

· T jklm
1,inel(t)

− µj
F1
· F jklm

1,inel(t),

Ṫ jklm
2 (t) =

(
νT2,j−1
CD4 · T (j−1)klm

2 (t)− ν̃T2,j−1
CD4 · T jklm

2 (t)
)
1j≥2+

(
ν̃T2,j
CD4 · T

(j+1)klm
2 (t)− νT2,j

CD4 · T jklm
2 (t)

)
1j≤3

− (γjT2→S2
+ γjT2→F2

) · T jklm
2 (t) + γj,eligF1→T2

(t) · F jklm
1,elig(t) + γj,inelF1→T2

· F jklm
1,inel(t)

− µj
T2
· T jklm

2 (t),

Ṡjklm
2 (t) =− ν̃S2,j−1

CD4 · Sjklm
2 (t)1j≥2 + ν̃S2,j

CD4 · S
(j+1)klm
2 (t)1j≤3
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· Sjklm

2 (t) + γjT2→S2
· T jklm

2 (t) + γjF2→S2
· F jklm

2 (t)− µj
S2
· Sjklm

2 (t),

Ḟ jklm
2 (t) =νF2,j−1

CD4 · F (j−1)klm
2 (t)1j≥2 − νF2,j

CD4 · F jklm
2 (t)1j≤3

− γjF2→S2
· F jklm

2 (t) + γjS2→F2
· Sjklm

2 (t) + γjT2→F2
· T jklm

2 (t)− µj
F2
· F jklm

2 (t),

Ṫ jklm
3 (t) =

(
νT1,j−1
CD4 · T (j−1)klm

3 (t)− ν̃T1,j−1
CD4 · T jklm

3 (t)
)
1j≥2

+
(
ν̃T1,j
CD4 · T

(j+1)klm
3 (t)− νT1,j

CD4 · T jklm
3 (t)

)
1j≤3

− (γj0T3→S3
+ γj0T3→F3

) · T jklm
3 (t) + γjkD→T3

(t) ·Djklm
elig (t)− µj

T1
· T jklm

3 (t)

+ γjF1→T3
(t) · F jklm

1,elig(t),

Ṡjklm
3 (t) =− ν̃S1,j−1

CD4 · Sjklm
3 (t)1j≥2 + ν̃S1,j

CD4 · S
(j+1)klm
3 (t)1j≤3

− γj0S3→F3
· Sjklm

3 (t) + γj0T3→S3
· T jklm

3 (t) + γj0F3→S3
· F jklm

3 (t)− µj
S1
· Sjklm

3 (t)

+ γS1→S3
(t) · Sjklm

1,elig(t),

Ḟ jklm
3 (t) =νF1,j−1

CD4 · F (j−1)klm
3 (t)1j≥2 − νF1,j

CD4 · F jklm
3 (t)1j≤3

− (γjmF3→S3
+ γjF1→T2

) · F jklm
3 (t) + γjmS3→F3

· Sjklm
3 (t) + γjmT3→F3

· T jklm
3 (t)

− µj
F1
· F jklm

3 (t). (19)
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5 Sensitivity analysis and additional results

The main sensitivity analysis re�ects the uncertainty about eight parameters related to resistance and HIV-
transmission. The 95% sensitivity ranges in 2040 for each scenario are shown in Fig 3 of the main manuscript.
The evolution of uncertainty over time is represented in Fig C, which displays the 95% sensitivity ranges from
2005 to 2040 for each scenario. The di�erence in NNRTI TDR levels over time between the di�erent scenarios of
DTG-introduction and the scenario where DTG is not introduced is displayed in Fig D with the 95% sensitivity
ranges. Fig E diplays the predicted percentage of women failing NNRTI-based ART after 1 and 2 years of ART
in 2025 and 2035, depending on the scenario of the rollout of DTG-based ART. Finally, we simulated three
sensitivity analyses in order to investigate 1) the impact of the Treat-All policy, 2) the impact of treatment
interruption, and 3) the impact of NRTI-resistance and higher e�cacy of DTG.
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Fig C: Level of NNRTI PDR according to di�erent levels of DTG-eligible women (colors), and di�erent strategies
of DTG-introduction. Panel A: no DTG-introduction; panel B: DTG used as a �rst-line regimen; panel C: DTG
used for all patients; panel D: DTG used for all patients, assuming an OR of failure of 2 when having NRTI-
resistance. The solid lines correspond to the simulations with the �xed parameter values and the shaded areas
represent the 95% sensitivity ranges.
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Fig D: Di�erence in level of NNRTI PDR from 2020 to 2040 between the di�erent strategies of DTG-introduction
and the scenario where DTG is not introduced. Panel A: DTG used as a �rst-line regimen; panel B: DTG used
for all patients; panel C: DTG used for all patients, assuming an OR of DTG-failure of 2 when having NRTI-
resistance. The solid lines correspond to the simulations with the �xed parameter values and the shaded areas
represent the 95% sensitivity ranges.
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Fig E: Predicted percentage of women failing NNRTI-based ART after 1 and 2 years of ART in 2025 and 2035,
depending on the scenario of the rollout of DTG based-ART.

5.1 E�ect of no Treat-All policy

We previously assumed that the Treat-All policy increased the treatment initiation rates for people with CD4 >
200 cells/µL from 2017 to 2022. Here, we investigated the scenario where the Treat-All policy does not have
any impact on the treatment initiation rates (which is equivalent to assuming no Treat-All policy, see FigF).
Globally, assuming a Treat-All policy increases the levels of NNRTI PDR for each scenario, but does not change
our conclusion (see FigG).

0.00

0.25

0.50

0.75

1.00

2005 2010 2015 2020 2025
Calendar year

r iel
ig

(t
) 

r iC
D

4

CD4 class

1: CD4>500

2: 350<CD4<500

3: 200<CD4<350

4: CD4<200

Scenario

Treat−All

no Treat−All

Fig F: religi (t) · rCD4
i represents the level of treatment eligibility religi (t) multiplied by rCD4

i , representing the
decrease in treatment initiation rate in CD4 class i relative to the fourth CD4 class (CD4 < 200 cells/µL). In
the scenario where we assumed no impact of the Treat-All policy on the treatment initiation rates, the rates
remain unchanged from 2016.
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Fig G: Levels of NNRTI resistance when assuming increase in treatment initiation rates due to the Treat-All
policy ("Baseline Model") and when assuming identical treatment initiation rates from 2017 ("No Treat-All
policy"). Dolutegravir is introduced in 2020 under three scenarios: DTG as �rst-line regimen for ART-initiators
(panel A), DTG for all patients (panel B), DTG for all patients, assuming an OR of failure of 2 when having
NRTI-resistance (panel C), and with di�erent eligibility criteria for women (colors).
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5.2 E�ect of treatment interruption

We introduced treatment interruption rates for the three ART regimens. Table G shows these rates estimated
from IeDEA-SA data [1]. The introduction of treatment interruption did not substantially change the results
(see Fig H).

Table G: Treatment interruption rates. Rates are in month−1

Parameter Description CD4 class
1 2 3 4

1/γT→D Time from T1/T2/T3 to D 414 322 172 156
1/γS→D Time from S1/S2/S3 to D 2069 1241 759 368
1/γF→D Time from F1/F2/F3 to D 621 478 285 129
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Fig H: Levels of NNRTI resistance using the baseline model ("Baseline Model") and when including treatment
interruption ("Treatment interruption"). Dolutegravir is introduced in 2020 under three scenarios: DTG as �rst-
line regimen for ART-initiators (panel A) or DTG for all patients (panel B), DTG for all patients, assuming
an OR of failure of 2 when having NRTI-resistance (panel C), and with di�erent eligibility criteria for women
(colors).
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5.3 E�ect of NRTI-resistance and higher e�cacy of DTG

We assessed the impact of NRTI resistance and higher e�cacy of DTG-based regimen on the level of NNRTI
PDR. We investigated three di�erent scenarios regarding the impact of NRTI-resistance: 1) no impact (i.e OR
of failure between NRTI-resistant and NRTI-susceptible individuals equals 1), 2) OR=2, and 3) OR=5. A
meta-analysis comparing DTG-monotherapy with DTG-dual therapy found an odds ratio of failure of 13.9 after
48 weeks (8.9% vs 0.7% of failure, respectively) [17] However, we expect lower di�erence between NRTI-resistant
and -susceptible individuals, as some activity of the NRTI-backbones are observed even in resistant individuals
[15]. Another study comparing DTG-e�cacy according to the presence of speci�c NRTI-mutations found a HR
of 3.23 (95%CI: 0.27-38.40) when having the K65R mutation and a HR of 0.99 (95%CI: 0.19-5.21) when having
the M184V, suggesting low impact of NRTI-resistance on DTG-failure [16].
We also investigated three di�erent scenarios regarding the e�cacy of DTG compared with NNRTI: 1) OR of
failure between NNRTI- and DTG-based regimen of 1.02, 2) OR=2, and 3) OR=5. The �rst scenario refers to
the results of the NAMSAL study after the adjusting for CD4 counts (see Section 2.5). The two other scenarios
were investigated in view of the higher e�cacy of DTG compared with NNRTI found in some studies [26].
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