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ABSTRACT
Constraining deep-water recycling along subduction zones is a first-order problem to 

understand how Earth has maintained a hydrosphere over billions of years that created 
conditions for a habitable planet. The pressure-temperature stability of hydrous phases in 
conjunction with slab geotherms determines how much H2O leaves the slab or is transported 
to the deep mantle. Chlorite-rich, metasomatic rocks that form at the slab-mantle interface 
at 50–100 km depth represent an unaccounted, H2O-rich reservoir in subduction processes. 
Through a series of high-pressure experiments, we investigated the fate of such chlorite-rich 
rocks at the most critical conditions for subduction water recycling (5–6.2 GPa, 620–800 °C) 
using two different natural ultramafic compositions. Up to 5.7 GPa, 740 °C, chlorite breaks 
down to an anhydrous peridotite assemblage, and H2O is released. However, at higher pres-
sures and lower temperatures, a hydrous Al-rich silicate (11.5 Å phase) is an important car-
rier to enable water transfer to the deep mantle for cold subduction zones. Based on the new 
phase diagrams, it is suggested that the deep-water cycle might not be in secular equilibrium.

INTRODUCTION
Recycling of water to the deep layers of Earth 

along subduction zones impacts a number of key 
plate-tectonics processes such as arc volcanism 
and intermediate-depth earthquakes that are trig-
gered by dehydration reactions (Schmidt and 
Poli, 1998; Hacker et al., 2003). Hydrated ultra-
mafic rocks are considered to be the key lithology 
for this deep-water cycle (Ulmer and Tromms-
dorff, 1995; Rüpke et al., 2004). Previous inves-
tigations have shown that antigorite and chlorite 
are the main hydrous phases in serpentinites up 
to a pressure (P) of 5 GPa (Fumagalli and Poli, 
2005; Till et al., 2012), corresponding to a depth 
of ∼150 km. Experiments in simplified chemical 
systems, MgO-SiO2-H2O (MSH) or MgO-Al2O3-
SiO2-H2O (MASH), provided evidence that there 
are many dense hydrous Mg-silicates that are 
stable at P > 6 GPa for very low geothermal 
gradients (<3.3 °C/km) that would be able to 
transport H2O to the lowermost upper mantle 
(Pawley and Wood, 1995a). However, the narrow 
region between 5 and 6 GPa (150–180 km depth) 
has not been well explored. The phase relations 

between chlorite and antigorite, the dense hy-
drous Mg-silicates, and the anhydrous minerals 
garnet, olivine, pyroxenes, and spinel in peridotite 
will determined how much H2O can reach the 
deep mantle through bypassing the “choke point” 
of Kawamoto et al. (1996). This point describes 
the lowest-temperature occurrence of an anhy-
drous garnet peridotite. Whether H2O is released 
or retained in the subducted slab thus depends 
on the position of this choke point in relation 
to the thermal structure of the subducted slab 
(Iwamori, 2004; Rüpke et al., 2004; Fumagalli 
and Poli, 2005).

H2O budgets at present are calculated mainly 
for typical peridotite compositions (Iwamori, 
2004; Rüpke et al., 2004; van Keken et al., 2011; 
Magni et al., 2014). However, metasomatic chlo-
rite schists can form at the slab-mantle inter-
face by interaction of mafic and pelitic rocks 
with the mantle wedge (Spandler et al., 2008; 
Marschall and Schumacher, 2012). The phase 
relations of such rock types and their capability 
to transport H2O to the deep mantle are unclear 
and are the main focus of this study. The new 
experiments show that Al-rich hydrous silicates 
form at the expense of chlorite in the pressure 

range of 5–6 GPa and thus will influence garnet-
forming reactions and impact the position of 
the choke point. The interplay between modeled 
slab temperatures and our newly determined ex-
perimental phase diagrams for different compo-
sitions provides a basis to assess how much H2O 
returns via arc magmatism in geologically short 
time scales and how much H2O is retained in the 
slab and subducted to the convecting mantle to 
be locked away for hundreds of million years.

APPROACH
Very few experimental results exist for the 

crucial conditions around the choke point in 
complex peridotite compositions (Fumagalli 
and Poli, 2005). In this study, we determined 
the phase relations and key reactions for a mod-
el hydrated peridotite composition enriched in 
chlorite as well as a metasomatic chlorite schist 
composition. The starting material consisted of 
mixes of natural chlorite with different amounts 
of serpentine and tremolite (see the Supplemen-
tal Material1), ensuring H2O saturation at run 
conditions. In total, 29 experiments with run du-
rations between 68 and 168 h were performed in 
a ultrahigh-pressure piston cylinder press (Her-
mann et al., 2016) at conditions between 620 °C 
and 800 °C and 5–6.2 GPa (see the Supplemen-
tal Material; the run products are listed in Table 
S1). Figure 1 displays the investigated pressure-
temperature (P-T) range with the experimental 
parageneses. The arrangement of reactions is 
based on Schreinemakers’ analysis (Zen, 1966), 
with theoretical phase stoichiometries, abbrevia-
tions, and the according chemography presented 
in the Supplemental Material. For simplification, 
the reactions are shown as univariant lines in 
the (C)MASH system and are placed where the 
hydrous phases disappear rather than where the 
product first forms. Average phase compositions 
from the run products are given in Table S2.*E-mail: joerg.hermann@geo.unibe.ch

1Supplemental Material. Experimental and analytical methods, starting material, and characterization of experimental run products. Please visit https://doi.org/10.1130/
GEOL.S.14346845 to access the supplemental material, and contact editing@geosociety.org with any questions.
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PHASE RELATIONS IN CHLORITE-
PERIDOTITE

In the hydrous chlorite-peridotite system, 
three main dehydration reactions occur at 5 GPa 
(Fig. 1A). At 620 °C, antigorite breaks down, 
and minor new chlorite is formed along the 
reaction

	

antigorite olivine orthopyroxene

chlorite fluid.

→ +
+ + 	

(1)

Garnet first appears in the resulting lherzo-
lites at ∼660 °C during the reaction

	

chlorite clinopyroxene garnet

olivine fluid,

+ →
+ + 	

(2)

followed by the consumption of chlorite in har-
zburgite at 700 °C, by

	

chlorite orthopyroxene garnet

olivine fluid.

+ →
+ + 	 (3)

The presence of minor amounts of Fe (bulk 
Mg# = 0.94) and Cr transforms univariant lines 
into divariant or trivariant fields. For example, 
Fe is preferentially incorporated into garnet, 
leading to its appearance at ∼20–30 °C lower 

temperatures than indicated in the model reac-
tions. The reaction sequence is in agreement 
with previous studies at lower pressures (Fu-
magalli and Poli, 2005). However, previous 
work suggested a strong back-bend of the re-
action in Equation 3, so that chlorite stability 
crosses the antigorite stability field at 5 GPa, 
630 °C (Fig. 1A). This was not observed in our 
study. Instead, a change in slope is related to 
the appearance of the Al-rich, hydrous phase 
Mg-sursassite (MgS; Fig. 2A) along the reaction

	

chlorite orthopyroxene Mg-sursassite

olivine fluid.

+ →
+ + 	

(4)

Mg-sursassite has been observed in the 
MASH system at similar conditions (Artioli 
et al., 1999; Bromiley and Pawley, 2002), but the 
reaction topologies in natural complex systems 
have not been determined so far. It then disap-
pears above 700 °C during the reaction

	

Mg-sursassite olivine orthopyroxene

garnet fluid,

+ +
→ + 	

(5)

leading to a nominally anhydrous garnet perido-
tite. The position of this reaction is in excellent 
agreement with previous reversal experiments 

in the MASH system (Bromiley and Pawley, 
2002).

PHASE RELATIONS IN CHLORITE-
RICH METASOMATIC ULTRAMAFIC 
ROCKS

In ultramafic rocks dominated by chlorite 
(Fig. 1B), pyroxenes are fully exhausted before 
chlorite during the reactions in Equations 2 and 
3. The terminal chlorite breakdown in chlorite-
rich rocks therefore occurs at higher tempera-
tures of 770 °C, 5 GPa:

	

chlorite garnet olivine spinel

fluid,

→ + +
+ 	

(6)

producing an anhydrous, garnet-rich assem-
blage. The terminal chlorite breakdown reac-
tion changes slope at 5.7 GPa with the appear-
ance of another hydrous Al-silicate—the 11.5 Å 
phase (Cai et al., 2015; Gemmi et al., 2016). 
This phase forms needles and laths in the run 
products (Fig. 2B) and has been characterized 
by Raman spectroscopy (Fig. S1) and confirmed 
by X-ray diffraction. The 11.5 Å phase forms 
through the reaction

	
chlorite 11.5 garnet olivine fluid.→ + + +Å �(7)
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Figure 1.  Experimental results: stability fields of parageneses for (A) chlorite-peridotite and (B) chlorite-rich metasomatic rock. Main reac-
tions were deduced from phase analyses using Schreinemakers’ rules (Zen, 1966), and numbers refer to reactions explained in the text. The 
stability fields of the hydrous Al-rich silicates chlorite (Chl), Mg-sursassite (MgS), and 11.5 Å phase are shown. FP05—chlorite breakdown 
after Fumagalli and Poli (2005). Atg—antigorite; Ol—olivine; Opx—orthopyroxene; Cpx—clinopyroxene; Grt—garnet; Spi—spinel; F—fluid.
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At 6 GPa, the 11.5 Å phase is stable up 
to 760 °C, and it was found in another study 
up to 12 GPa, 1000 °C (Cai et al., 2015). It 
contains 12 wt% of H2O and is thus an im-
portant carrier of water in Al-rich, ultramafic 
compositions (Gemmi et al., 2016). The de-
hydration reaction

	

garnet 11.5 spinel olivine

fluid,

+ → +
+

Å

	
(8)

has a positive slope. At 6.2 GPa, 680 °C, the 
chlorite stability has a dramatic back-bend 
related to a change in the chlorite breakdown 
reaction to

	

chlorite Mg-Sursassite 11.5

olivine fluid.

→ +
+ +

Å

	
(9)

The same assemblage has been previously 
observed as a breakdown product of Cr-rich 
chlorite in the CrMASH system at 6 GPa, 
650 °C (Fumagalli et al., 2014), in excellent 
agreement with our study. The intersection 
of the reaction in Equation 9 with the reac-
tion in Equation 4 leads to an invariant point 
that is also present in the chlorite-peridotite 
(Fig. 1A). Phase relations dictate that, at lower 
temperatures than this invariant point, chlorite 
reacts with olivine to produce the 11.5 Å phase 
and orthopyroxene. The 10 Å phase (Pawley 
and Wood, 1995b; Fumagalli et al., 2001) and 
phase HAPY (hydrous Al-bearing pyroxene; 
Gemmi et al., 2011) were not observed in our 
experiments. The terminal chlorite stability 
is ∼70–100 °C higher at 5 GPa than what has 
been reported before (Fig. 1A; Pawley, 2003; 
Fumagalli and Poli, 2005; Till et al., 2012). 
Moreover, the chlorite stability extends to 
∼1 GP higher pressures than those reported in 
previous studies, with important consequences 
for H2O recycling.

IMPLICATIONS FOR H2O RECYCLING 
IN SUBDUCTION ZONES

The new phase relations and previous ex-
perimental results allow construction of a phase 
diagram for hydrous ultramafic rocks in com-
plex systems (Fig. 3). The hydrous Al-rich sili-
cates are stable to higher temperatures than the 
most important hydrous Mg-silicate antigorite, 
which shifts the position of the anhydrous nose 
(shown with the red fields). For peridotite com-
positions, the choke point (green) is defined by 
the intersection of Mg-sursassite and phase A 
[Mg7Si2O8(OH)6] at ∼6.8 GPa, 650 °C (geo-
thermal gradient of 3.1 °C/km). The extended 
chlorite stability determined in our experiments 
in conjunction with the newly defined appear-
ance of the 11.5 Å phase constrain a choke point 
(red) at a significantly higher geothermal gradi-
ent of 4.2 °C/km for metasomatic chlorite-rich 
rocks. We calculated H2O contents for mineral 
assemblages for a harzburgite composition and 
a chlorite-rich metasomatic rock type, and these 
serve as a basis for H2O recycling along differ-
ent geotherms (Fig. 3). The efficiency to trans-
port H2O beyond 200 km depth depends on the 
position of the slab geotherms with respect to 
the extent of the anhydrous nose. The thermal 
models of Syracuse et al. (2010) return the high-
est top slab temperatures, as exemplified by the 
Marianas and Tonga (Pacific Ocean) top slab 
subduction zone geotherms. Rüpke et al. (2004) 
and Magni et al. (2014) both used cooler slab 
geotherms in their modeling of the deep-water 
cycle (Fig. 3).

For all thermal models, subducted serpen-
tinites at the top of the slab pass through the 
anhydrous nose. Such serpentinites derive from 
exposed mantle either in slow-spreading ridges 
or at continental margins, or they were formed 
at the slab interface. H2O stored in hydrous phas-
es at the initiation of subduction is completely 
released through reactions in Equations 1–3 at 

forearc to subarc depths. Thus, H2O release from 
ultramafic rocks situated at the surface of the 
slab is likely returned via forearc hydrothermal 
activity or arc magmatism toward the hydro-
sphere over short geological time scales. For 
such a case, H2O transport to the deep mantle 
is limited to the storage capacity of nominally 
anhydrous minerals of ∼100 ppm H2O during 
breakdown reactions of hydrous phases (Pa-
drón-Navarta and Hermann, 2017). This value 
is similar to that observed in the mantle source of 
mid-oceanic ridge basalt (MORB) (Hirschmann, 
2006), suggesting that the H2O in MORB might 
derive from H2O replenishment of the mantle by 
ancient hot subduction.

Chlorite-rich metasomatic rocks form 
10–100-m-thick layers at the slab-mantle in-
terface (Spandler et al., 2008; Marschall and 
Schumacher, 2012). The coldest geotherm 
for Tonga (Syracuse et al., 2010) passes right 
through the choke point for this rock type. Us-
ing the thermal models of Rüpke et al. (2004), 
oceanic lithosphere that is older than 80 Ma will 
bypass the anhydrous nose (Fig. 3). This high-
lights the sensitivity of the interplay between 
the choice of thermal models and H2O trans-
port to the deep mantle. For the case of Tonga, 
with convergence rates of 17 cm/yr, 100 m of 
chlorite schist would transport 5.1 Gg of H2O 
per kilometer of slab length per year, whereas 
70 m of sediments (Plank and Langmuir, 1998) 
with phengite as the H2O carrier (bulk rock with 
1 wt% H2O) would only transport 0.35 Gg H2O/
km slab length/yr. An assumed 1 km of altered 
oceanic crust transformed into lawsonite-eclog-
ites with 0.1 wt% H2O (Schmidt and Poli, 1998) 
would transport 0.6 Gg H2O/km slab length/yr, 
which will completely dehydrate with ongoing 
subduction. At the transition of chlorite to the 
11.5 Å phase, a large amount of ∼7.5 wt% H2O 
is released at ∼180 km depth. However, 3.6 wt% 
H2O is retained in the 11.5 Å phase, correspond-

A B

Figure 2. Textural relationships of run products. (A) Chlorite (Chl), Mg-sursassite (MgS), and the 11.5 Å phase are in textural equilibrium in run 
341 at 6.2 GPa, 640 °C, documenting H2O transfer between hydrous Al-rich phases. (B) The 11.5 Å phase coexists with garnet (Grt) and olivine 
(Ol) in run 335 at 6.0 GPa, 700 °C. Scale bar is 10 µm.
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ing to 1.65 Gg H2O/km slab length/yr. This il-
lustrates that chlorite-rich metasomatic rocks are 
the most effective rock type at the slab-mantle 
interface to transport H2O to the deeper mantle 
in cold subduction zones.

Temperatures in the interior of the subducted 
slab are much colder than at the slab surface 
(Syracuse et al., 2010). Figure 3 displays the 
geotherm at 7 km slab depth for the Marian-
as subduction zone, which corresponds to the 
slab Moho in a fast-spreading environment. 
Serpentinized mantle rocks intruded by gab-
broic dikes and bodies are common in the top 
4 km of crust in slow-spreading ridges and at 
continental margins (Dilek and Furnes, 2014). 
Chlorite-rich rocks that formed at the contact 
of mafic to ultramafic rocks in such settings 
most likely bypass the anhydrous nose. So far, 
there are no quantifications for the volumes of 
chlorite-rich rocks that form in these environ-

ments, representing an unaccounted reservoir in 
the deep-water cycle.

The bending of the oceanic lithosphere 
when it enters the subduction zone can lead 
to partial serpentinization at 7–10 km depth 
(Ranero et al., 2003). The comparison between 
seismic velocities in such mantle rocks away 
from and near trenches indicates that serpen-
tinization at the bending of plates may vary 
from <4% up to a maximum of 20% for the 
top few kilometers of mantle (Grevemeyer 
et al., 2018). Such serpentinites will undergo 
one major (antigorite out, ∼7 wt% H2O re-
leased) and one minor (MgS out, ∼0.8 wt% 
H2O released) dehydration reaction. H2O con-
tents will decrease from ∼12 to 4.7 wt% that 
is incorporated into phase A and transported to 
the deeper mantle (Rüpke et al., 2004; Karlsen 
et  al., 2019). Considering 2 km of mantle 
with 10% serpentinization, 5.3 Gg H2O/km 

slab length/yr are transported beyond 200 km 
depths for the Tonga subduction zone.

CONCLUSIONS
Our study shows that deep-water recycling is 

sensitive to four key variables: ultramafic rock 
composition (influencing the position of the anhy-
drous nose), distribution of these rocks in the slab, 
degree of hydration with depth, and slab geo-
therms. Indeed, changes in these variables need 
to be considered for the entire evolution of Earth 
to assess whether the deep-water cycle is in secu-
lar equilibrium. The initiation of cold subduction 
from ca. 620 Ma onward (Brown, 2006) coupled 
with H2O transport in metasomatic chlorite-rich 
rocks likely have resulted in an increased amount 
of water reaching the deep mantle. This process 
might have caused a lowering of sea level by 
hundreds of meters (Rüpke et al., 2004; Karlsen 
et al., 2019) in the past 500 m.y., and opens up 
the possibility that the deep-water cycle today is 
not in secular equilibrium.
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with the blue arrow (Syracuse et al., 2010). Red arrows refer to thermal model of Rüpke et al. 
(2004). Abbreviations are as in the Figure 1 caption. A—Phase A [Mg7Si2O8(OH)6].
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