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Abstract

Being permanently confronted with an uncertain world, brains have faced evolutionary pres-

sure to represent this uncertainty in order to respond appropriately. Often, this requires visit-

ing multiple interpretations of the available information or multiple solutions to an

encountered problem. This gives rise to the so-called mixing problem: since all of these

“valid” states represent powerful attractors, but between themselves can be very dissimilar,

switching between such states can be difficult. We propose that cortical oscillations can be

effectively used to overcome this challenge. By acting as an effective temperature, back-

ground spiking activity modulates exploration. Rhythmic changes induced by cortical oscilla-

tions can then be interpreted as a form of simulated tempering. We provide a rigorous

mathematical discussion of this link and study some of its phenomenological implications in

computer simulations. This identifies a new computational role of cortical oscillations and

connects them to various phenomena in the brain, such as sampling-based probabilistic

inference, memory replay, multisensory cue combination, and place cell flickering.

Author summary

Activity oscillations are a ubiquitous and well-studied phenomenon throughout the cor-

tex. At the same time, mounting evidence suggests that brain networks perform sampling-

based probabilistic inference through their dynamics. In this work, we present a theoreti-

cal and a computational analysis that establish a rigorous link between these two phenom-

ena: background oscillations enhance sampling-based computations by helping networks

of spiking neurons to quickly reach different high-probability network states, i.e., compu-

tational results.
Such an acceleration of sampling is required for efficient learning and inference in neu-

ral networks. Our results show that oscillations provide this acceleration robustly over
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different frequency bands and in different network conditions. This suggests a similar

functional role of oscillations throughout the cortex. As unspecific background input is

enough to evoke this acceleration, our proposed mechanism has a very general scope. We

show how such a view on oscillations ties in with a multitude of experimental observations

and discuss various opportunities for constraining our model with new experimental

data.
Overall, the mechanism we put forward is general and robust and leads to a new under-

standing of oscillations in the context of sampling-based computations. Our model offers

a computational explanation for many related experimental observations that are linked

to cortical oscillations.

Introduction

The ability to build an internal, predictive model of reality endows an agent with a clear evolu-

tionary benefit. How the mammalian brain accomplishes this feat remains a subject of debate,

but the representation of uncertainty certainly plays a role, considering the probabilistic nature

of sensory data and uncertainty about past and future events. A good representation of an

uncertain reality must allow efficient access to a large variety of plausible beliefs about the envi-

ronmental state.

Distributions over sensory data, characteristic for natural scenes, are complex in the sense

that the coexisting beliefs about the data manifest as numerous deep, dissimilar modes of the

state space—one of the many facets of the curse of dimensionality. In probabilistic models of

such complex data, exact inference becomes intractable, but the distribution can be approxi-

mated by sampling. Rapid convergence towards the target distribution requires the sampler to

switch (or mix) between these modes frequently. However, due to their dissimilarity, this

switching is notoriously difficult for most sampling methods, an issue which is known as the

“mixing problem”.

In this manuscript, we put forward a hypothesis for how the brain can efficiently overcome

this challenge. In doing so, we unify two aspects of cortical dynamics under a common norma-

tive framework: spike-based probabilistic inference and cortical oscillations. Both of these phe-

nomena have been well-studied but have not been explicitly linked in the context of spiking

neural networks. In particular, we consider the interpretation of spiking activity in the cortex

as probabilistic inference via sampling, which has gained ample experimental [1–3] and theo-

retical [4–8] support over the last decade. Mathematically, these models are closely related to

Gibbs sampling, which tends to get stuck in single states of high probability that act as local

attractors.

We propose that this problem of sampling-based representations can be overcome by firing

rate oscillations. Firing rate oscillations over multiple frequency bands are a naturally emerg-

ing phenomenon in spiking networks [9–12] and have been extensively studied in the mam-

malian brain [13, 14]. Notably, they appear to play an important role both during awake

perception [15–17] and during sleep [18, 19], suggesting a fundamental role in cognition and

learning. In previous modeling studies, oscillating changes of neuronal excitabilities have been

shown to be beneficial for mixing [20–24], but how such changes might arise on the cellular

level within networks of spiking neurons has thus far remained unclear.

We propose that the background firing rate of cortical neurons can be interpreted as a

(computational) temperature and can accordingly modify the probability landscape sampled

by cortical circuits. If the background activity is oscillatory, the network temperature changes
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periodically and phase-dependent stationary distributions emerge. By cyclically alternating

between “hot” and “cold” periods, cortical networks can effectively instantiate a tempering

schedule, with hot phases corresponding to flat probability distributions in which the network

can move freely and cold phases representing the multimodal target distribution. This sched-

ule allows networks to escape from local minima and efficiently sample from challenging dis-

tributions characterized by multiple high-probability modes separated by large low-probability

volumes of the state space.

In this work, we provide an analytical treatment of tempering in spiking networks induced

by cortical background oscillations and demonstrate the benefits of this phenomenon in simu-

lations. We explicitly consider current-based and conductance-based synaptic interactions as

well as different network architectures and discuss links to experimental data. These observa-

tions establish a novel connection between multiple observed cortical phenomena, as well as

between these experimental findings and normative theoretical models of brain computation.

Experiments and results

To understand how cortical oscillations affect computation at the network scale, we study

the behavior of single spiking neurons and networks of spiking neurons under variable levels

of background activity. We first consider current-based leaky integrate-and-fire (LIF) neu-

rons, for which we can derive analytical expressions for the neuronal response. We show

how the level of background input affects the input-output relationship of individual neu-

rons (Section Single-neuron statistics). We then discuss the effect of the background activity

on entire networks (Section Temperature in spiking networks), where we show that this local

increase of stochasticity at the single-neuron level gives rise to corresponding changes of the

probability landscape at the network level. In particular, we find that these changes can be

parametrized by a Boltzmann temperature parameter. Moving to recurrent networks as

models of computation in the sensory cortex, we establish a rigorous interpretation of corti-

cal oscillations as a tempering algorithm (Section Temperature in spiking networks). We then

demonstrate the functional advantages of such oscillation-induced tempering for generative

models of the visual hierarchy trained on two different visual datasets (Section Mixing in
high-dimensional multimodal data spaces). Subsequently, we generalize our findings by lift-

ing several previous assumptions regarding neuron and synapse dynamics and parameters

required for mathematical precision. In particular, we extend our simulations to more bio-

logically plausible conductance-based synapses across a range of different parameter regimes

(Section Impact of conductance-based synaptic input). Using these more general models, we

show that, in a sensory disambiguation task, background oscillations have the same effect as

in the previous simulations (Section Background oscillations and behaviorally relevant sam-
pling tasks), and discuss how sampling models based on oscillatory background input can be

linked to experimental data on hippocampal activity within theta cycles (Section Constrain-
ing sampling models with experimental data).

Single-neuron statistics

Cortical neurons are embedded in a noisy environment (Fig 1a). In addition to functional

input Iin, their many presynaptic partners provide them with an effectively stochastic back-

ground [8, 25]. This background activity leads to stochastic single-neuron behavior [26]. To

understand this behavior, we consider a simple LIF neuron model with current-based input

synapses (see Section Neuron models in Methods). The neuron receives a large number of

background inputs, with firing rates νi and synaptic efficacies wi. In line with standard litera-

ture, we model this stochastic background input as uncorrelated Poisson spike trains [27]. We
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first consider the free membrane potential ufree of this neuron, that is, the membrane potential

in the hypothetical case that there is no firing threshold. The steady-state distribution p(ufree)

is well-described by a Gaussian (Fig 1b) with moments

mu≔E ufree½ � ¼ El þ
Iin þ

P
iwinits;i

gl
; ð1Þ

s2

u≔Var ufree½ � ¼
X

i

niw
2

i

t2
s;i

2g2
l ðtm þ ts;iÞ

; ð2Þ

where El and gl are the leak potential and conductance, and τm and τs are the membrane and

synaptic time constants (see Section 4.3 in [28]). Here, ∑i runs over all background presynaptic

partners. Note that excitatory and inhibitory inputs (defined by the sign of the synaptic weight

wi) can cancel each other out in the mean but always add up towards the variance of the free

membrane potential distribution.

Upon introducing a firing threshold, some portion of the free membrane potential proba-

bility density will lie above it, causing the neuron to spike stochastically. The shape of the neu-

ronal response function, i.e., the firing rate in response to a constant input current Iin, depends

strongly on the characteristic time constant of the neuronal membrane. Cortical neurons

under strong presynaptic bombardment have been shown to operate in a high-conductance

regime [29], which greatly reduces the effective membrane time constant τm. Under such con-

ditions, the neuronal response function (Fig 1c) can be well approximated by a logistic

Fig 1. Response functions of neurons in an ensemble. (a) Cortical ensemble of networks. The spike input received by a neuron can be

partitioned into functional (solid black arrows) and background (dashed dark blue arrows) input. The background can be partitioned into an

excitatory and an inhibitory subset (dashed light blue arrows). In the following panels, we consider one such neuron under five different

illustrative background regimes, each of which is assigned a specific color. (b) Steady-state free membrane potential distributions. Shaded areas:

numerical simulation; solid lines: analytical approximation using Eqs 1 and 2. Purple, orange, green: same σu, different μu; blue, orange, red:

same μu, different σu. (c) Corresponding neuronal response functions. Crosses: numerical simulation; solid lines: logistic fit with Eq 3. (d) Slope

parameter β and (e) offset I0 of response functions under various background regimes defined by their respective pairs of excitatory and

inhibitory input rates (νexc, νinh). Dashed isolines indicate configurations of constant slope (cf. Eq 4) or offset, with specific values given as

colorbar ticks. Note the approximate linearity of the contour lines.

https://doi.org/10.1371/journal.pcbi.1009753.g001
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function [7]:

noutðIinÞ ¼
1

1þ expð� bðIin � I0ÞÞ
: ð3Þ

Hence, the neuron’s stochastic response is characterized by two parameters, the offset I0 and

the slope β of the sigmoid. Both of these depend on the background activity. The response

function can be intuitively understood as the area under the free membrane potential distribu-

tion that lies above the firing threshold. Thus, its shape is similar to the integral of p(ufree), its

offset I0 has a similar linear dependence on μu, and its slope parameter β will decrease for

increasing σu. Their exact dependence on the background rates is shown in Fig 1d and 1e. In

particular, the relationship between the slope of the response function and the standard devia-

tion of the free membrane potential distribution is well-approximated by a linear function,

which allows us, in turn, to establish the relationship between the slope parameter β and the

total (i.e., summing over all background presynaptic partners) excitatory and inhibitory back-

ground firing rates νexc and νinh and the corresponding weights wexc and winh using Eq 2:

1

b
/ su /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
excnexc þ w2

inhninh

q

: ð4Þ

To summarize, we have established how the stochastic response of individual LIF neurons

depends on the level of background input. In particular, the background input determines the

slope β of the (logistic) neuronal response function.

Temperature in spiking networks

As discussed in Section Single-neuron statistics, under Poisson background activity, individual

neurons react to their input stimulus in a well-defined stochastic manner. Based on this result,

we show here how the level of background activity influences the stochastic properties of a

recurrently connected network of LIF neurons (Fig 2a).

In a spiking network, the information conveyed by a neuron at any point in time can be

described as binary: the neuron either spikes or it does not. A spike has a twofold effect: it initi-

ates a refractory period and elicits postsynaptic potentials (PSPs) in postsynaptic partner neu-

rons. We can therefore view the binary state z of a neuron being refractory (z = 1) or not

(z = 0) following a spike as corresponding to the state communicated to its downstream part-

ners ([4, 7]; see Fig 2a). Thus, each neuron can be interpreted as sampling from the conditional

distribution p(zk = 1|z\k), i.e., the probability of the kth neuron to be in the state “1” given the

states of all other neurons z\k.

In general, the joint distribution sampled by the network cannot be given in a closed form.

To allow an analytical approach, we begin with a set of assumptions about the neuron and net-

work parameters (see Section Neuron models in Methods and Section Entropy of spiking sam-
pling networks in Methods), but later show that they can be relaxed without affecting the

computational network properties discussed here. For parameters emulating a high-conduc-

tance state [29] the activity of an LIF network can be interpreted as sampling from a joint

Boltzmann distribution [7]

pTðzÞ / expð� EðzÞ=ðkBTÞÞ ; ð5Þ

where EðzÞ ¼ � 1

2

P
kjWkjzkzj �

P
kBkzk represents the energy of a particular joint state z, with

Wkj denoting effective recurrent synaptic weights and Bk effective individual neuron biases.

Here, kB is the Boltzmann constant and T is the ensemble (Boltzmann) temperature. For such
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a network state distribution, the state probability of each neuron k is given by [4, 28]

pðzk ¼ 1jznkÞ ¼
1

1þ exp �
P

j6¼kWkjzj þ Bk

kBT

� � :
ð6Þ

Note that this equation has the same form as the neuronal response function in Eq 3.

Since weights and biases can both be interpreted as movements along the Iin-axis of the

neuronal response function, their simultaneous multiplicative scaling by T is equivalent to a

horizontal stretching of the response function. This similarity allows us to identify

b ¼ 1=ðkBTÞ ; ð7Þ

again analogous to statistical physics, for a Boltzmann constant kB that relates the (unitless) ref-

erence temperature T = 1 to a chosen set of neuron and background parameters via the result-

ing response function (here, the unit of kB is nA). Note that the Boltzmann parametrization

with unitless weights Wkj and biases Bj in Eq 6 is different from the synaptic weights and bias-

ing effects in Eq 3 induced by leak, threshold potentials, unbalanced input etc. in the LIF

domain, but they can be linearly mapped such that the sampling distributions match (see Eqs

33 and 34 in Methods for details). Eqs 4 and 7 thus establish an exact relationship between the

ensemble temperature and the background firing rates:

T /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
excnexc þ w2

inhninh
p

: ð8Þ

Fig 2. Effects of oscillatory background activity on sampled distributions. (a) Network dynamics. Each neuron encodes a binary random

variable according to its refractoriness. When the membrane potential (green) is clamped to the reset value, the neuron state (red) is considered

to be z = 1 (z = 0 otherwise). The collection of the resulting network states z forms an estimate for the implemented probability distribution p(z).
(b) Distributions sampled by a 4-neuron network at the three temperatures marked in (c). States are ordered according to their respective

probabilities at the low temperature to emphasize the effect of tempering visually. (c) Time course of excitatory and inhibitory background rates

(dashed and dotted lines, Eq 10), along with the associated temperature (solid line, Eq 4). Note that νexc is scaled by 0.5 and wexc by the square

root of the inverse scaling factor to demonstrate that balance is independent of such a rescaling. (d) Simulated (crosses) vs. calculated (solid line)

entropy course S(t). The slight lag is due to the finite relaxation time constants τs, τref of the network (Eq 35 only holds strictly for quasi-static

temperature changes). (e) Effect of tempering on individual membrane potentials and spiking activity. The background color represents the

corresponding entropy.

https://doi.org/10.1371/journal.pcbi.1009753.g002
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In order to study the effect of pure temperature variations without affecting neuronal off-

sets, excitatory and inhibitory background rates need to be balanced. Such a balance is also

well-documented in vivo [30, 31]. Note that this is not simply achieved by setting wexcνexcτexc

= winhνinhτinh and thus effectively equalizing the effects of excitation and inhibition; while this

would leave μu unchanged, it would still affect I0 (cf. Fig 1b and 1c). A balanced regime can be

achieved by a linear dependence between firing rates (Section Spike response of sampling neu-
rons in Methods), following one of the isolines in Fig 1e, which are well approximated by

ninh ¼ n0 þmnexc : ð9Þ

The exact parameters ν0 and m that are necessary for balance depend on the synaptic time con-

stants and background input weights (see Section Temperature as a function of background
rates in Methods). Following such an isoline then results in a constant I0 and a

ffiffiffi
n
p

dependence

of the (inverse) slope parameter 1/β (see Section Spike response of sampling neuron in Meth-

ods). While this approach enables a strict realization of a Boltzmann temperature, the achieved

effect does not rely strongly on such a balance, as we discuss below (Section Impact of conduc-
tance-based synaptic input). Following Eq 4 we can maintain the balance if we rescale the νexc

and multiply wexc by the square root of the scaling factor, which we apply in Fig 2.

With this definition of temperature, we now turn to its effects on the distribution. In Eq 6,

the ensemble (Boltzmann) temperature T scales the effective weights and biases multiplica-

tively, identically to its effect in statistical physics: as the temperature of an ensemble rises, par-

ticle interactions (here: synaptic weights) and external fields (here: neuronal biases) become

increasingly inconsequential.

We can observe a similar effect on the sampled distribution when modulating the tempera-

ture implemented by the background input (see Fig 2b): at high temperatures, the distribution

becomes flat, while at low temperatures, the high-probability maxima become even more pro-

nounced. Cyclic heating and cooling—enabled here by oscillatory background—can thus alter-

nate between hot phases with equalized state probabilities and cold phases for reading out the

most relevant samples of the correct distribution, where the sampled distribution approxi-

mates the target distribution most closely in the T = 1 crossings (see S1 Fig for the divergence

during one cycle). Such a cycle is often referred to as tempering. We consider a simple sinusoi-

dal oscillation as a basis function for modeling cortical oscillations:

nexcðtÞ ¼
nmax � nmin

2
sin 2pfosctð Þ þ

nmax þ nmin
2

; ð10Þ

with minimum rate νmin, maximum rate νmax, and oscillation frequency fosc. This time course

implicitly also defines νinh(t) through Eq 9, such that in this setup, excitation and inhibition

vary synchronously (see Fig 2c), as observed in vivo (see, e.g., [32]). Note that the network

activity follows the instantaneous level of balanced background input (S2 Fig).

The resulting temperature thus also varies periodically, with the square root of a sine (see

Fig 2c and Eq 8). Moreover, the ensemble temperature controls the entropy of the sampled dis-

tribution, which effectively describes the “disorder” of the network and corresponds to the uni-

formity of the sampled distribution. For higher temperatures, as the sampled distribution

becomes more uniform, the entropy increases (Fig 2d). In high-temperature/high-entropy

states, membrane potentials are extremely noisy, causing neurons to fire randomly and inde-

pendently. In contrast, in low-temperature/low-entropy states, membrane potentials are nearly

constant, and neurons are “frozen” in certain states, firing either persistently or not at all (Fig

2e).
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Mixing in high-dimensional multimodal data spaces

In the following, we discuss the computational role of background oscillations for spiking net-

works trained to represent complex distributions over high-dimensional visual data. Here, we

have chosen two commonly used visual datasets to serve as examples, but our conclusions

hold for arbitrary distributions. As a simplified model of cortical visual hierarchy, we consider

recurrent layered spiking networks consisting of LIF neurons, which we train as simultaneous

generative and discriminative models (Fig 3a). These two forms of computation happen con-

currently and bi-directionally: the label neurons classify the state of the visible layer, while the

visible neurons adapt their states to produce images that are compatible with the class repre-

sented by the label layer. For each class, during the preceding training, probability mass was

built up in the corresponding region of the probability landscape, forming the modes of the

network.

High-dimensional but well-recognizable visual data confronts such networks with two con-

tradictory challenges. On the one hand, they need to produce good samples, i.e., clean images

corresponding to particular sharp high-probability modes separated by large vanishing-proba-

bility volumes of the state space that correspond to out-of-distribution samples. On the other

hand, they need to be able to switch between different modes in order to sample from the tar-

get distribution fully; this is at fundamental odds with the probability landscape described

Fig 3. Background oscillations improve generative properties of spiking sampling networks. (a) Architecture of a hierarchical 3-layer

(visible v, hidden h and label l) network of LIF neurons and example layerwise activity. For a better representation of the visible layer statistics,

we consider neuronal activation probabilities p(v|h) rather than samples thereof, to speed up the calculation of averages over (conditional)

visible layer states. Here, we show a network trained on images from the NORB dataset. (b) Evolution of the activation probabilities of the

visible layer (top) over one period of the background oscillation (bottom). (c) Evolution of the visible layer over multiple periods of the

oscillation compared to a network with constant background input at the reference rate (2 kHz, top) and at a high rate (10 kHz, middle), cf. also

yellow and red lines in (b). The activation probabilities are shown whenever the reference rate (see panel b) is reached. The gray bar denotes the

period shown in (b).

https://doi.org/10.1371/journal.pcbi.1009753.g003
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above. This so-called mixing problem is well-known and quasi-ubiquitous for sampling

models.

One solution to this problem was proposed by [33] in the context of Markov-chain Monte

Carlo sampling for Ising models, which is intimately related to our form of spike-based sam-

pling in both dynamics and sampled distribution [7]. This simulated tempering method

describes a cyclic heating and cooling schedule reminiscent of the periodic temperature varia-

tion induced by cortical oscillations discussed above (Eq 10). In-between readouts at the refer-

ence temperature, a temporary rise in temperature flattens the probability landscape, allowing

the network to escape from local attractors. Thus, Eqs 4, 5 and 10 establish a rigorous analogy

between simulated tempering and cortical oscillations, which thereby take on the computa-

tional role of enabling mixing in challenging real-world scenarios.

To evaluate these effects, we considered two example scenarios based on well-studied visual

datasets: NORB [34] and MNIST [35]. Network training was done using a variant of wake-

sleep learning [36], a contrastive Hebbian scheme inspired by biological phenomenology and

widely used for sampling models (see in particular [37]). A background rate of νexc = νinh = 2

kHz was chosen as reference, implicitly defining the reference temperature T = 1.

For visual datasets, the weakened correlations at higher temperatures correspond to

blurred images. For the network trained on NORB, this is particularly well observable (cf.

Fig 3b). The network produces sharp images at low background rates, whereas the images

become blurred under increased background activity. Note especially how the network

enters a superposition of several “clean” states at higher background rates. Constant back-

ground stimulus cannot reproduce the ease of switching between different image classes

(modes). The network is either stuck in one mode while producing sharp images (T = 1

upper row in Fig 3c) or only able to produce blurred images (T = 2.5 middle row in Fig 3c).

Tempering through background oscillations effectively combines these two regimes, allow-

ing a better sampling of the target distribution at phases where the reference temperature is

reached (lower row in Fig 3c).

The effectiveness of this tempering schedule depends on the parameters of the back-

ground oscillations: νmin, νmax, and fosc. In particular, the frequency fosc plays a critical role,

as it represents a tradeoff between exploration and exploitation of the network’s state space.

Low frequencies guarantee that the network has time to relax towards its momentary station-

ary distribution pT, with fosc! 0 representing the quasi-static limit, i.e., constant back-

ground. This enables accurate sampling from the target distribution at T = 1, as the network

loses memory of previous states occupied at higher temperatures. However, lower oscillation

frequencies come at the cost of slower sampling, as they increase the time between consecu-

tive readouts. Furthermore, frequencies significantly lower than 0.1 Hz are rarely observed

in vivo [14]. In the following, we study the behavior of spiking sampling networks under dif-

ferent background oscillation regimes for a network trained on handwritten digits from the

MNIST dataset.

Two essential quality criteria for any sampling network are its mixing speed and sample

fidelity. In principle, Eq 5 allows an analytical evaluation of these properties, but in practice,

this is unfeasible for high-dimensional distributions. We, therefore, use a sample-based mea-

sure, the indirect sampling likelihood (ISL, see [38]). The ISL accumulates fidelity values for

all generated samples, assigning high values if they are similar to images in the test set and

low values otherwise. Additionally, the rate at which the ISL increases over time implicitly

represents a measure of the mixing speed. We use the distribution of times between label

switches as a more explicit measure of mixing times for different image categories.

Our MNIST-trained network allows a quantitative evaluation of the benefits of oscillation-

induced tempering. In each tempering cycle, around T = 1, one digit stabilizes in the visible
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layer for a wide time window (see S3 Fig). The corresponding network mode is defined by the

label neuron with the highest probability inferred from the hidden layer activity. With oscil-

latory background (Fig 4a), the sampled digits and labels change more frequently as compared

to constant background (Fig 4b). Consequently, the average mode duration, as defined by the

time interval between two mode switches, is shorter for oscillatory background (compare Fig

4c and Fig 4d). Since frequent mode switches are essential to efficiently cover the target distri-

bution, the Kullback-Leibler divergence (DKL) between the target and sampled distribution

also decreases more rapidly with oscillatory background (Fig 4e). Furthermore, the ISL con-

verges to higher values compared to the constant background (Fig 4f), which indicates an over-

all better tradeoff between generating clear examples of the imprinted classes and good mixing

between these classes (also see S4 Fig). Note that tempering can likewise improve the network’s

performance in inference tasks (S5 Fig). For details to DKL, ISL, and the network setup, see

Section Image generation examples: NORB and MNIST in Methods.

Next, we studied tempering under a range of biologically plausible regimes, with back-

ground rates (per neuron) varying between 0.5 and 30 kHz and oscillation frequencies ranging

from the alpha range to the first slow-wave band [13]. In the landscapes over the mode dura-

tions (Fig 4g) and the ISLs (Fig 4h), we find that the most important prerequisite for effective

tempering is the maximum background rate, as the temperature between readouts has to be

Fig 4. Parameter dependence of tempering effectiveness. (a, c) Visible and label layer activity of an LIF network trained on the MNIST dataset, with

(b,d) showing the corresponding mode duration distributions (the active mode corresponds to the image class and is determined by the most active

label neuron). The network with oscillatory background (red) moves quickly between modes, with correspondingly short mode durations, whereas the

network with constant background activity (blue) switches to the “6” mode after two samples and remains there until the last of the 103 collected

samples. (e) Kullback-Leibler divergence (DKL) between the distribution of sampled modes and the uniform distribution. The sampled distribution

quickly becomes significantly more uniform for the oscillatory (red) compared to the constant (blue) background. (f) Indirect sampling likelihood (ISL)

as a measure of image quality and diversity for the two background settings and, for orientation, for the optimal sampling (OPT, orange) and the

product of marginals (POM, gray). Under this measure, the averaged MNIST images described by the POM are more similar to the entire dataset than

the near-unimodal distribution generated under constant background at T = 1. Similarly, the network with oscillatory background needs several

samples to produce a distribution that is diverse enough to overtake the POM. The mean (solid lines) and standard deviation (shades) over 10 runs of

103 samples are plotted. (g) Average mode duration for different oscillation parameters: The peak background rate νmax represents the most critical

parameter and needs to be high enough to enable good mixing. The minimum background rate νmin and the oscillation frequency fosc are less

important. (h) Same as (g) for the ISL values. The image quality remains consistently high across a wide range of parameter configurations. The data

used for (a-f) corresponds to the simulations marked by the red and blue crosses, respectively. Values represent averages over 10 runs of 104 samples.

https://doi.org/10.1371/journal.pcbi.1009753.g004
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high enough for frequent mode switches. For our networks, this required input rates above 10

kHz (Fig 4g and 4h). On the other hand, the minimum background rates in the cold phases

have a much smaller influence. In general, effective tempering is achieved over a wide range of

oscillation parameters (yellow and light green areas in Fig 4g and 4h) covering all studied fre-

quency bands. Overall, the best performance was achieved in the slow-wave regime.

Impact of conductance-based synaptic input

Up to this point, we have used a mathematically tractable model providing an exact link

between background input and network behavior. This link leads to a clear interpretation of

background oscillations as a schedule of temperature changes within networks of neurons. We

now show that these conceptual results hold over a wider range of neuron and synapse models

with different parameters.

To this end, we relax the assumptions of the previously considered current-based models in

three ways. First, we use conductance-based synaptic interactions, which are known to be a

good description of the behavior of biological neurons but prevent an exact analytical treat-

ment. Second, we drop the assumption that the response functions are tuned such that sam-

pling is unbiased (see above) and consider the general case where the response behavior

changes as the background input rates are varied. Third, we consider a range of physiological

parameter settings, including different ways in which excitatory and inhibitory rates vary over

the oscillatory cycle. By exploring different parameter regimes with few assumptions, we high-

light that the effect of oscillating background input described above holds regardless of the spe-

cific model details and can be expected to shape sampling computations in various brain

networks. As before, we first investigate the properties of individual neurons before moving

on to network-level effects.

Background input scenarios. The behavior of neurons with conductance-based synapses

under synaptic bombardment, in general, differs from the current-based case. In particular, let

us first consider the variance of the membrane potential as a function of the background input

rate and the synaptic efficacies of the background input synapses, see Fig 5a and 5b. As the

growth of this variance underlies the increase of the temperature (see above), this is an impor-

tant indication of the sampling behavior of the neuron. Fig 5a shows that the variance of the

membrane potential grows monotonically with the rate of the background input for current-

based synapses. Interestingly, this is not the case with conductance-based background synapses

(Fig 5b, see also Eq 21 in Section Conductance-based LIF model in Methods). This raises the

question of whether the same, simple relationship between background input rate and sam-

pling temperature is present in the conductance-based case. However, neuron response func-

tions still depend monotonically on the input rates, as the relative impact of inputs is also

weakened by an increasing total conductance. In the following, we show that, as a result, the

influence of background input rates on the effective temperature using conductance-based

neurons matches the influence in the current-based case.

As for current-based neurons (Eq 9), we investigate the impact of the background input

rate by co-varying the excitatory and inhibitory input rates νexc and νinh in a linear manner

using a scaling parameter α such that

nexc ¼ a nexc;1 þ nexc;0 and ninh ¼ a ninh;1 þ ninh;0 ð11Þ

where νexc,1 and νinh,1 are some excitatory and inhibitory base rates, and νexc,0 and νinh,0 are

rate offsets.

By different choices of the base rates νexc,1, νinh,1, rate offsets νexc,0, νinh,0, together with

choices for the excitatory and inhibitory synaptic efficacies of the background input, we obtain
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different scenarios that reflect the diversity and complexity of conductance-based interactions

(see below). We consider α 2 [0.5, 5], which results in background excitatory and inhibitory

input rates� 30 kHz given the base and offset rate values for the different scenarios. These val-

ues are similar to the rate range used in the current-based simulations above and represent a

reasonable assumption for cortical neurons as they typically have a large number of

Fig 5. Background input rate sets the sampling temperature for conductance-based LIF neurons. (a, b) Variance of the free membrane potential for

(a) current-based and (b) conductance-based synaptic interactions as a function of background rate and strength under balanced input rates and

weights. Note that Var[u] is always monotonic in νexc for current-based synapses, which does not hold for the conductance-based case (see the change

of Var[u] along the dashed white lines). (c–e) The following panels show four different biologically interesting scenarios of conductance-based

background input (ordered in columns). In each scenario, excitatory and inhibitory input is varied in different ways depending on a scaling parameter

α (see Eq 11). Furthermore, the synaptic weights for background input are different in each scenario (see Section Conductance-based input scenarios in

Methods). From left to right: μu unbalanced (one of many possible settings in which μu increases), μu balanced at −55 mV (with constant mean

membrane potential close to the firing threshold), high variance (same as the first scenario but with larger synaptic conductances, resulting in a higher

variance of the membrane potential), and low excitation (with a lower increase in excitation compared to inhibition). (c) Excitatory and inhibitory

background input rates as a function of the scaling value α. Note that for the μu balanced at −55 mV scenario the balance can only be achieved for α� 1.

(d) Mean and variance of free membrane potential resulting from background input scaled by α. (e) Temperature values resulting from fitting. Dots

denote mean, whiskers standard deviation over N = 50 independent runs (see Section Fitting of stochastic models in Methods for details). Importantly,

the temperature increases monotonically with α in all cases. The dashed gray line shows fits according to the theoretical prediction (Eq 4), closely

matching mean values. The highlighted values correspond to low (blue, α = 1), medium (α = 3) and high (red, α = 5) background input rates. See

Section Fitting of stochastic models in Methods for a visualization of the resulting stochastic models and the soft threshold values uT. (f) Schematic

drawing of the simple network used to illustrate the effect of changing background input rates on the distribution of network states. The network

consists of four neurons connected with lateral inhibition, resulting in a network state distribution with four distinct modes (one neuron is active while

the others remain silent). Each neuron receives a bias current input (arrows), the amplitude of which defines the probability of the mode corresponding

to this neuron being active. See Section Illustrative sampling task for conductance-based networks in Methods for details. (g) Network state probabilities

for low (α = 1) and high (α = 5) temperatures in a network simulation. Modes are shown in color; mixed states are shown in gray. At high temperatures,

the distribution generally becomes flatter. (h) Entropy of modes at each value of α (in bits, calculated using Eq 35). The entropy increases as the mode

distribution becomes flatter (i.e., closer to a uniform distribution). Note that while the temperature increases in all scenarios (see (e)), the values and

changes of the entropy can vary dramatically.

https://doi.org/10.1371/journal.pcbi.1009753.g005
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presynaptic partners [39]. Using the input rates and the synaptic parameters, it is possible to

calculate the mean μu and variance s2
u as a function of the background input scaling factor α

([28], Section 6.5; [40]).

The four different scenarios (Fig 5c–5e) considered here are:

• μu unbalanced: A general case of realistic synaptic conductances not tuned to any specific

regime with equal excitatory and inhibitory background rates (νexc,1 = νinh,1 = 5 kHz and

νexc,0 = νinh,0 = 0 kHz). Although νexc = νinh in this case (Fig 5c, first column), excitatory and

inhibitory inputs are not balanced as the synaptic time constants differ (see Section Conduc-
tance-based LIF model in Methods). As a result, both μu and s2

u increase over the considered

range of α (Fig 5d, first column).

• μu balanced at −55 mV: This scenario mimics the regime of cortical up-states, where neurons

have membrane potentials close to the firing threshold (here: uth = −50 mV). Balancing neu-

rons in this fashion, i.e., keeping μu at −55 mV regardless of the value of α, can be achieved

with specific choices of νinh,1 and νinh,0 (i.e., νinh 6¼ νexc, see Fig 5c, second column, and Eq 40

in Methods). Note that this balancing requires minimal background input, limiting α to α>
1. Here, the variance s2

u first increases before reaching a peak and slowly decreasing again

(Fig 5d, second column).

• High variance: This case is similar to the first case above but with larger synaptic conduc-

tances for the background input. Larger synaptic conductances give rise to a different

regime, which is approximately balanced (small change of μu for changing α), but differs

from the previous scenarios in two significant ways: first, the overall variance is much higher,

and second, the variance decreases with α (Fig 5d, third column). This scenario uses νexc =

νinh (as the first scenario).

• Low excitation: It is unclear whether in the brain excitatory and inhibitory input levels are

similar, in particular within oscillations, and it has previously been suggested that oscillations

mostly affect inhibition [20]. We, therefore, also consider a scenario in which the inhibitory

rates increase much more strongly than the excitation (Fig 5c, last column). This results in a

marginal effect on the mean free membrane potential, while the variance increases with α
(Fig 5d, last column).

All parameters for the different scenarios are given in Section Conductance-based input scenar-
ios in Methods.

Fitting stochastic models to quantify temperature changes. To gain an understanding

of the stochasticity induced by background activity, we fitted stochastic neuron models to data

produced by conductance-based LIF models with background input. This method allows

quantifying behavior changes regardless of the precise input conditions and neuron parame-

ters, thus making it possible to describe the sampling temperature even when an analytical

treatment is not possible.

To this end, we used the fitting method proposed by [41] to fit a stochastic neuron model

with an exponential escape rate function to the behavior of LIF neuron at the given back-

ground input scenario. Models with an exponential escape rate were shown to match the firing

behavior of cortical pyramidal cells [41] as well as the behavior of simple neuron models when

subjected to background input [42]. Furthermore, an exponential escape function is com-

monly used in theoretical sampling models [4] and is equivalent to the sigmoidal activation

function used in the current-based models. The stochastic model is identical to the LIF neuron

model described above except for a stochastic firing criterion with instantaneous firing
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intensity

rðuÞ ¼
1

Dt
exp

u � uT
T

� �
; ð12Þ

where T is the temperature, uT is the soft threshold (i.e., the value of u where the firing inten-

sity reaches 1/Δt), and Δt is the resolution of the discrete-time simulation.

We performed this fitting procedure for different values of α to examine how the fitted

model parameters change as the background input strength is varied. For every fit, we used a

number of presynaptic spike trains to excite the LIF neuron (see Section Fitting of stochastic
models in Methods) and recorded the firing times. The resulting firing rates varied markedly

(see Section Fitting of stochastic models in Methods), highlighting the different operating

regimes induced by different levels of background input. We fitted exponential firing intensi-

ties to the data (Eq 12). The temperature values resulting from the fitting procedure are shown

in Fig 5e.

We found that in all four scenarios, T increases with α, even when the variance of the mem-

brane potential plateaus or decreases. As shown above, T grows with
ffiffiffi
a
p

in the current-based

case. Fitting the mean temperatures of the fitted models shows that this relationship also

describes the change of the temperature very well in the conductance-based case (Fig 5e,

dashed gray lines), i.e.,

T /
ffiffiffi
a
p

: ð13Þ

These results confirm the role of background rates as an effective ensemble temperature in

conductance-based networks with diverse properties, and this method can be used to quantify

the temperature changes. Depending on the parameters of the background activity, the cov-

ered temperature range can vary significantly, and for realistic parameters, the maximum tem-

perature is limited. This limitation marks a difference to the current-based case, where, in

principle, arbitrarily high temperatures can be reached even with relatively low background

input rates. Nevertheless, as shown in the following, these temperature changes have important

functional consequences at the network level.

Entropy in networks with conductance-based synapses

To confirm that these changes of the stochastic behavior of single neurons result in changes of

the sampling behavior on the network level, we investigated a simple network of conductance-

based LIF neurons. We used a network consisting of four neurons with a winner-take-all struc-

ture, i.e., each neuron had lateral inhibitory connections to the other neurons (see Fig 5f and

Section Illustrative sampling task for conductance-based networks in Methods). Winner-take-

all structures are of particular interest because they are a common cortical motif [43]. Due to

inhibitory competition between the four neurons in the studied network, its probability land-

scape exhibits four distinct and separated modes, each of which corresponding to one of the

four neurons being active while most of the other neurons remain silent. Each neuron was

injected with a constant individual current. The strengths of these currents were different for

different neurons, leading to different probabilities for the four modes. Furthermore, each

neuron received background input, controlled by setting α according to the different

scenarios.

This setup allowed us to test the changes of the probability landscape when the background

input strength changes. We found that in every scenario, the mode distribution becomes more

uniform for high levels of background input (Fig 5g). To quantify the changes, we calculated

the entropy of the mode probabilities (Fig 5h). In each scenario, the entropy increases with α,
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indicating an increase in the sampling temperature. In the high-variance case, the effect is

small but shows the same trend (larger entropy for larger α), which is surprising as the variance

of u decreases as α is increased. This can be explained as follows: even as the variance

decreases, the overall synaptic conductance evoked by background input grows. Therefore, as

α increases, the effect of the background input grows stronger relative to the input from the

recurrent network connections, thus leading to more equal responses.

This experiment confirms that changes in the background activity of conductance-based

networks give rise to the same qualitative phenomena as in the current-based case. We next

show the relevance of this effect in a behaviorally relevant sampling task.

Background oscillations and behaviorally relevant sampling tasks

As in networks of current-based neurons, we expect that background oscillations structure

computations into distinct phases when using conductance-based networks, which we investi-

gate next. In contrast to the current-based sampling experiments, we do not restrict ourselves

to the precise conditions required for unbiased sampling and instead consider the more gen-

eral case of arbitrary parameters.

The link between activity levels and sampling temperature described previously suggests

that brain networks alternate between sampling at high temperatures, allowing rapid travers-

ing of the state space for good mixing, and sampling at low temperatures, promoting conver-

gence to states of high probability. We investigated this effect using a stimulus disambiguation

task, in which a network was required to find coherent interpretations for conflicting inputs

across three different sensory modalities (auditory, visual, and somatosensory, Fig 6a). Each

sensory modality (vertical columns in Fig 6a) was represented by a group of three neuronal

assemblies, with each of these assemblies encoding one of three possible interpretations of the

input. To represent mutually exclusive interpretations, the assemblies representing each sen-

sory modality (boxes in Fig 6a) had lateral inhibitory connections, instantiating a winner-take-

all (WTA) network. Assemblies representing the same interpretation across different sensory

modalities were set up as mutually and recurrently excitatory (solid lines in Fig 6a). Thus,

when such a triplet of assemblies across sensory modalities was active, the network encoded a

coherent interpretation of the input. We injected a small bias current into neurons in three

assemblies: the assembly encoding interpretation #1 for the auditory modality, the assembly

for interpretation #2 for the visual modality, and the assembly for interpretation #3 for the

somatosensory modality. As these bias currents were identical, none of the three competing

interpretations was favored, thus leading to sensory ambiguity. To correctly represent such an

ambiguous situation, the network is expected to sample all three interpretations.

Viewed as a sampling task, this encodes a distribution with three high-probability states, in

each of which all assemblies encoding a single, coherent interpretation are active (while all

other assemblies are silent). This triple will then inhibit other assemblies due to the WTA

structures employed for each sensory modality. We say that the network has found a valid

interpretation if one linked assembly triple is active (> 50% of neurons per assembly fired

within the last 10 ms) while all other assemblies remain silent (< 50% of neurons fired; see Sec-

tion Stimulus disambiguation task in Methods for details). As the recurrent connectivity within

each assembly is rather strong, the network tends to lock into one such state, making mixing

difficult. However, as generally no interpretation is preferred over the others, the goal of the

sampling process is to visit all solutions (with visitation frequencies corresponding to their rel-

ative biases) in a reasonable amount of time.

We compared the behavior of the network for oscillating α in the same frequency bands as

above (α 2 [0.5, 5], i.e., total background rates in [2.5, 25] kHz) with a constant-background
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scenario. To allow a fair comparison of oscillating to constant background for both low and

high background activity, we tuned the synaptic parameters, so the variance of the network

firing rates was minimal for different α values (see Section Stimulus disambiguation task in

Methods for details).

Fig 6b shows network activity over the first 500 ms of a simulation run. The network can

jump between attractors and sample different valid interpretations of the ambiguous input. To

test whether oscillating background has an advantage over constant input, we performed

N = 100 simulations lasting 20 s each and calculated the probability for the network state to

encode a valid interpretation at any point in time. Fig 6c shows that background oscillations

structure sampling-based computations by defining times when good solutions can be read

Fig 6. Background oscillations structure computations into sampling episodes in conductance-based networks. (a) Setup of stimulus

disambiguation task. Assemblies (large colored circles) encode interpretation of stimulus spanning three different sensory modalities (auditory, visual,

somatosensory). For each modality, every interpretation is encoded by the activity of a single assembly (different interpretations are represented by

different color hues), with lateral inhibition ensuring that one interpretation is chosen. One assembly per sensory modality receives a bias input,

resulting in ambiguous input. Simultaneous activity of connected assemblies encoding the same interpretation across all modalities encodes selection of

an interpretation (i.e., a solution). All neurons receive oscillatory background input. (b) Network activity with oscillating background input. Top:

background activity scaling by α. Middle: spike raster plot of network activity (color coding of assemblies as in panel a). Bottom: number of solutions

(i.e., interpretations) visited so far. Green bars show times in which the network state encodes a solution. (c) Probability of network state encoding a

solution depending on the phase of the oscillating background input. Gray lines show solution probabilities in networks without oscillating background

activity for different activity levels α 2 {0.5, 2.5, 5}. Inset shows background activity phase for reference. (d) Mean time until the network has visited all

three solutions for oscillating and constant background activity (over N = 100 runs for each case). Bars and whiskers show mean and standard

deviation, respectively. Significance was calculated with Wilcoxon rank-sum test with � ¼̂ p < 10� 10 and n:s: ¼̂ p > 0:05. (e) Time between choosing

distinct solutions (see Section Methods for details). Plot as in panel d with �� ¼̂ p < 10� 100. (f) For constant bias inputs (top, cf. panel a), solutions are

chosen equally often (bottom, means and standard deviations). (g) For different bias inputs (top), the probability of choosing the corresponding

solution matches the input values (bottom). Plot as in panel f.

https://doi.org/10.1371/journal.pcbi.1009753.g006
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out from the network. We find that at certain phases, the network with background oscilla-

tions has a much higher probability of encoding a valid interpretation than medium or high-

level constant background input. Moreover, this probability itself oscillates at the same fre-

quency as the background but with a certain phase lag that depends on the network parame-

ters. In contrast, constant background input produces constant valid-state probabilities, with

minimum and maximum values corresponding to those achieved with background oscilla-

tions. However, constant background also implies a tradeoff between spending time in valid

states and being able to mix between these. For example, networks receiving low background

input produce the same valid-state probability as the maximum value achieved with oscilla-

tions but tend to converge to one solution and stay there for a long time (see S6 Fig), thus

exhibiting much worse mixing behavior.

We quantified mixing by measuring (i) the time it took the network to visit each solution at

least once (Fig 6d), and (ii) the time it took on average to move from one solution to another

(Fig 6e). On both measures, two regimes achieve comparatively high performance: oscillatory

background or constant background at a well-tuned intermediate activity level. However, con-

stant background that is high enough to also facilitate mixing represents a computationally

unreliable regime: solutions are found at random points in time and are comparatively ephem-

eral (cf. S6c and S6d Fig).

In contrast, oscillatory background has a significantly higher probability of producing long-

lived valid solutions at well-defined readout phases of the oscillation. Cortical oscillations thus

provide explicit temporal structure to sampling-based computations in spiking neural net-

works. This structure provides good solutions with high probability while inheriting the good

mixing properties of high-temperature networks.

For these experiments, we used an equal bias input for each of the three interpretations (Fig

6f, top). Thus, each interpretation should occur equally often. We verified this for oscillating

background input (Fig 6f, bottom), where it is indeed the case. In reality, bias input may occur

at any level and the resulting frequency of visiting interpretation states changes accordingly.

We repeated the analysis (N = 100 simulations lasting 20 s) for this case, and found that the vis-

itation levels correspond to the level of bias input (Fig 6g). This shows sampling from a poste-

rior distribution encoding different interpretations of ambiguous input. This highlights a

further advantage of background-oscillation-induced tempering in the context of external evi-

dence and sampling from posterior distributions. Since constant background rates can only

produce constant temperature, increasing their base level to promote mixing necessarily skews

the relative strength of individual attractors by equalizing them (cf. Figs 2, 5g and 5h). Cortical

oscillations, on the other hand, preserve the relative dominance of the different modes in the

readout phases.

Constraining sampling models with experimental data

So far, we have shown that sampling networks benefit from temperature oscillations in a vari-

ety of parameter regimes. To understand the operating regime of the cortex, it is important to

constrain models with experimental data. In this final section, we provide an example of how

such links can be established.

We previously discussed how the probability of a valid interpretation changes over the

phase of the background input oscillation. One possible way to link the sampling models to

experimental data is by considering how the changes within one cycle match recordings from

the brain. One study that touches upon this question is [44], which investigated place-cell flick-

ering in rat hippocampus in relation to theta oscillations. In this experiment, the vector of

place cell activities was shown to encode the current belief about in which of two possible
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chambers the animal was currently situated based on visual cues. The authors computed two

prototype activity vectors that represented chamber 1 and chamber 2, respectively. Even in

unambiguous situations, the activity vector was not static but occasionally switched to the

alternative interpretation for one or a few theta cycles. Typically, the recorded activity was

highly indicative of one of the two interpretations of the sensory cues, but over brief periods,

activity states were present that were a mixture of the two prototypes. Jezek et al. showed that

these mixed interpretations are more likely in the first half of the cycle. These findings are

indicative of a sampling-based representation of the animal location in the hippocampus,

where one sample is drawn within one theta cycle. In addition, the presence of mixed states

indicates a tempering-like sampling procedure where the final sample is formed over a theta

cycle. When modeling this data in our sampling framework, the expected ratio of inhibitory to

excitatory background conductances E½ginh=gexc� is a free parameter that has a profound effect

on the network behavior and the appearance of mixed interpretations. We will see below that

this parameter can be constrained by the experimentally observed theta phase of mixed states.

We considered a circuit model with two assemblies encoding correct and incorrect inter-

pretations of the spatial context, see Fig 7a. Each assembly consisted of 20 conductance-based

LIF neurons with sparse excitatory connections within the assembly (connection probability

0.1) and lateral inhibition between neurons of different assemblies (see Section Relating model
features to experimental data in Methods for details). One of the two assemblies received a pos-

itive bias current in addition, mimicking strong evidence for its interpretation. The model

parameters were chosen such that the flickering was similar to the data shown by [44] at all

ratios E½ginh=gexc�, i.e., occasional switches to the incorrect interpretation appeared in an unam-

biguous situation (strong bias current to one of the two assembles), see Fig 7b. This behavior

arises from the oscillatory background input in conjunction with the recurrent excitation

within and the lateral inhibition between assemblies, leading to a lock-in into one interpreta-

tion (i.e., strong activity of one assembly) per cycle. The assembly encoding the correct inter-

pretation is favored because its neurons receive a bias input current, but due to the stochastic

nature of the network, the incorrect interpretation is also chosen occasionally. Note that the

slightly slower alternating behavior in the data of [44] might arise from additional mechanisms

(see Section Discussion). We next systematically varied the model parameters and found that

the model behavior was robust to the variations (see S7 Fig).

We next varied the mean background conductance ratio in the range E½ginh=gexc� 2 ½0:75; 3�

by changing the synaptic weights of the inhibitory background input. We found that

E½ginh=gexc� shifts the phase between firing rate oscillations of the network and the background

oscillations (Fig 7c). For small values of E½ginh=gexc�, the background input provides mostly

excitation, thus leading to high network activity when the level of background input is high.

For large values of E½ginh=gexc�, the converse holds: the background input now provides mostly

inhibition, therefore, the network activity decreases when the level of background input is

increased. Thus, when increasing the ratio of mean inhibitory and excitatory background

input, we found that the network changes from a regime where high activity occurs when

background input levels are high to a regime where high activity occurs when background

input levels are low. The transition between these two regimes occurred around E½ginh=gexc� ¼
1:8 (Fig 7c). Fitting stochastic models for each value of E½ginh=gexc� showed that at this value,

the activation functions are aligned at 0.5 for all values of α, corresponding to unbiased sam-

pling. This shows that similar to the current-based case, this regime can be achieved by adjust-

ing the balance of excitation and inhibition in the conductance-based case.

We then calculated the probability of mixed interpretations within background input

cycles. To match the procedure of [44], we defined the phase in relation to the network activity
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recorded in the model (Fig 7c). [44] segregated the network activity into cycles using the

recorded firing rate such that the minimum firing rate corresponds to phase zero. We defined

the phase at every value of E½ginh=gexc� accordingly (Fig 7d, insets). We then analyzed the proba-

bility of mixed states in the first and second half of the cycle (as [44]) at every value of

E½ginh=gexc� (Fig 7d and 7e). One can observe a strong dependence of the theta-phase of mixed

states on this ratio. We found that there were two regions matching the situation described in

[44], see Fig 7e. Interestingly, the conductance ratio corresponding to unbiased sampling at

E½ginh=gexc� ¼ 1:8 does not fall into either range. This raises the question of whether synapses

that mediate the effect of background input on cortical assemblies are optimally tuned towards

achieving a balanced regime—i.e., unbiased temperature changes—or whether it is computa-

tionally useful for some cortical functions to tune the effect of oscillatory activity towards

being explicitly biased.

In summary, we found that a simple circuit model can reproduce theta cycle mediated

place cell flickering in the hippocampus. In our model, the inhibition/excitation ratio of the

background input determines the theta-phase relation of the network tempering dynamics.

This relation is consistent with experimental data from [44] in an unbalanced regime. We

emphasize that this experiment only provides a first example of linking sampling models to

Fig 7. Relating model features to experimental data. (a) Simple network model reproducing place-cell flickering behavior. The model consists of two

assemblies of spiking neurons with recurrent excitation and lateral inhibition. Assemblies 1 (blue) and 2 (red) encode the correct and incorrect

interpretation of the spatial context, respectively. Neurons in assembly 1 receive a bias input current, and all neurons receive oscillatory background

input. (b) Example model activity (cf. Fig 3c in [44]). Assembly firing rates encoding correct and incorrect interpretations of context are shown in blue

and red, respectively. The model behavior holds as the ratio of the mean inhibitory to excitatory background conductance is varied (plot shows

E½ginh=gexc� 2 f0:75; 1:5; 2:25; 3g). (c) As E½ginh=gexc� changes, the minimum firing rate shifts along the background input phase. The background input

cycles are defined here as having their onset time (phase zero) when the input rate is at its minimum, i.e., the maximum input occurs at phase π. (d)

Probability of mixed interpretations during a cycle. Solid line shows mean, shaded area standard deviation over N = 100 network runs of 50 s each.

Insets show background input (left) and network firing rate (right, cf. panel b). To match [44], the phase is reordered for every value of E½ginh=gexc�, so

that phase zero is aligned with the minimum firing rate in the network (see right inset). (e) Mixed state probability in the first and second half of

network activity cycle as the mean background conductance ratio is varied. Green shading shows areas in which the mixed probability is larger in the

first half of the cycle, matching the results of [44].

https://doi.org/10.1371/journal.pcbi.1009753.g007

PLOS COMPUTATIONAL BIOLOGY Cortical oscillations support sampling-based computations in spiking neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009753 March 24, 2022 19 / 41

https://doi.org/10.1371/journal.pcbi.1009753.g007
https://doi.org/10.1371/journal.pcbi.1009753


experimental data. More data is needed to fully constrain sampling models of the cortex. In

particular, experiments establishing more direct links between neuronal properties and sam-

pling model features such as probability distributions or sampling temperatures represent a

necessary prerequisite for a quantitative understanding of sampling computations in the brain.

Discussion

Oscillatory activity is a naturally emerging phenomenon in spiking neuronal networks. As it is

well-known that background input increases the variability of neuronal firing, oscillatory back-

ground implies oscillatory variability. In the context of ensemble theory, this creates a direct

link to the notion of temperature. We have shown that the level of background input deter-

mines the sampling temperature in networks of LIF neurons and demonstrated that this effect

leads to functional advantages in sampling networks when oscillatory background input is

present. This finding holds in the case of current-based synaptic interactions, for which we

have presented an analytical treatment of cortical oscillations as tempering, as well as for con-

ductance-based synaptic interactions, for which we have studied a broad range of physiologi-

cally relevant parameters in computer simulations. We have furthermore shown that

oscillations improve sampling from the distribution represented by the network (i.e., a prior

distribution, see Figs 3 and 4) as well as for dealing with uncertainty evoked by input (i.e., pos-

terior distributions, see Fig 6 and S5 Fig). Our results suggest that the ubiquity of oscillations

in human and animal brains provides a clear benefit for behaviorally relevant computations,

which is elucidated by considering the analogy to simulated tempering.

Related theoretical work

Our considerations rest on the assumption that for fixed parameters, spiking networks sample

from a stationary distribution. This assumption has been shown to hold under only mild con-

straints for a large class of neuron and network models in [45]. They also showed that in the

presence of periodic input, a phase-specific stationary distribution exists, influenced by the

network parameters and the properties of the inputs. The existence of such a distribution natu-

rally leads to questions about its specific nature, given specific ensemble dynamics such as

those arising in networks of connected LIF neurons and its functional properties for cortical

computation. In this work, we have shown that the phase-dependent component is a tempera-

ture scaling of a Boltzmann distribution, with periodic background alternating between its

exploration and exploitation.

An alternative way of promoting mixing was proposed by [37]. There, short-term synaptic

plasticity was shown to weaken local attractors. This mechanism has a similar effect but is dif-

ferent from a change in temperature. Since this form of plasticity only affects active synapses,

it only suppresses active local modes rather than flattening the entire distribution. These

dynamics ensure that local modes can be abandoned quickly, as synapses can be weakened sig-

nificantly by only a few spikes, but they come at the cost of changing the sampled distribution.

In contrast, cortical oscillations induce a well-defined temporal structure that promotes an

undistorted readout. For mathematical tractability, we first considered LIF neurons with cur-

rent-based synaptic interactions and network structures that are easily amenable to contrastive

Hebbian training. We then showed that our results hold for a larger class of biological settings

by considering conductance-based synapses and competing neural assemblies. This suggests

that the computational role we propose for cortical oscillations is generalizable to a diverse set

of cortical structures and their associated functions. Indeed, it has already been observed that

oscillations appear to have a similar function throughout the cortex [46].
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A similar function of brain rhythms related to slower oscillations was proposed by [21],

who suggested on theoretical grounds that during the hippocampal theta cycle, modulation of

GABAB synapses performs a process similar to simulated annealing in a model of population

dynamics. Such a mechanism was shown to be advantageous for sequence disambiguation

[20]. In this work, we propose that temperature control takes place on the level of individual

neurons via input regardless of the synapse type. Thus, the mechanism we propose for incor-

porating such annealing in neural networks has a much more general scope. [23] showed the

benefits of rhythmic changes of neuron excitability in a model of probabilistic memory recall,

resulting in a similar kind of annealing as in our model. Our work shows how such a schedule

of excitability changes arises in spiking neural networks via background input, thus suggesting

an implementation of this mechanism on the cellular level.

One key aspect of previous models is their reliance on excitability modulation of a limited

subset of inputs (e.g., recurrent vs. feedforward inputs, [23]). While distinct modulations

might arise in biological neurons when inputs target different neuronal compartments, our

model shows that this constraint is not necessary to leverage the computational benefits of

oscillations as global changes of neuronal input-output behavior suffice. Our model also does

not rely on a specific synapse or receptor type, and the proposed mechanism can play out

across different oscillatory frequency bands, thus giving our results a very general scope.

The results in this work suggest that oscillations of the background input promote mixing.

Previous theoretical work has shown that other sampling methods such as Langevin [47] and

Hamiltonian Monte Carlo [24] sampling can also serve this purpose. These studies use rate-

based models to sample from continuous-valued probability distributions such as multivariate

Gaussians. Our models differ from this approach in two important ways. First, the sampling

models based on firing rates [24, 47] require specifically tuned network weights to accomplish

rapid sampling. We have shown that oscillating background input can speed up mixing with-

out requiring specifically tuned weights, thus providing our proposed mechanism with a

broader scope. Second, our model is based on more complex network state distributions,

defined over binary-valued random vectors instead of continuous values. Importantly, these

values relate directly to spiking activity. Langevin sampling and Hamiltonian Monte Carlo are

not directly applicable to this case. However, it could still be the case that these mechanisms

complement each other in the cortex, potentially acting on different timescales.

Related experimental work and model predictions

Across the entire spectrum of cortical rhythms, individual components of these oscillations are

characterized by their frequency and amplitude. We have shown that an effective tempering

schedule can be achieved for sinusoidal waves across a wide range of frequencies and ampli-

tudes, roughly corresponding to the range lying between slow and alpha waves [13]. For higher

modulatory frequencies, the sampling quality quickly deteriorates as the internal network

dynamics cannot react quickly enough to the changes in temperature. However, the soft

upper-frequency limit is not fixed and depends on model parameters and the network distri-

bution. In particular, the speed at which the network can change its state depends on the ratio

of the dominant time constants of individual neurons and synapses (here on the order of 10

ms) to the duration of a cycle. For faster dynamics, as often observed in vivo (e.g., membrane

time constants, [48]; synaptic time constants, [49, 50]; refractory periods, [51, 52]), corre-

spondingly faster oscillations can be accommodated. For example, oscillations in the gamma

band could be employed by ensembles with synaptic time constants and refractory times in

the order of a few milliseconds, as discussed in recent sampling-based modeling approaches

[24, 53]. Thus, this form of tempering can be exploited both for inference in the awake state,

PLOS COMPUTATIONAL BIOLOGY Cortical oscillations support sampling-based computations in spiking neural networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009753 March 24, 2022 21 / 41

https://doi.org/10.1371/journal.pcbi.1009753


where oscillations are typically fast, and during sleep, for functions such as memory retrieval

and consolidation [17–19, 54].

Concerning experimental neuroscience, the suggested computational mechanisms relate to

various physiological and psychophysical phenomena, ranging from single-neuron activity to

behavior. The tempering in our model modulates the gain of the neuronal transfer functions,

similar to the stochastic sampling of a scene through an oscillatory modulation of attentional

gain [17, 55], particularly through top-down input [56, 57]. The stochasticity in our model by

which stored memories are selectively recalled is mirrored in the randomness of hippocampal

replay during sleep that goes beyond the more typical behavior [58], or in free memory recall

in humans [59]. The oscillatory recall that supports cognitive computation in our model can

also be related to creative thinking [60], to midbrain oscillatory activity during stimulus disam-

biguation [61], to mind wandering [62] and to local sleep [63].

The oscillation frequency, and thus the rate of temperature change, carries another subtle

effect. For slow waves, the effect of a single transition from maximum to minimum tempera-

ture is similar to simulated annealing [64]. As the network effectively has more time to relax

towards its corresponding thermodynamic equilibrium, it will, at least statistically, tend

towards the global minimum energy state. On the other hand, faster oscillations are more akin

to tempered transitions [65, 66]. Indeed, the extreme scenario of quenching (extremely rapid

cooling) could be implemented by switches between synchronized cortical up and down states

[11, 30, 31]. Thus, different oscillatory phenomena in the brain can shift the focus from finding

a small set of maximum probability modes to finding a larger range of relevant modes. Simi-

larly, the oscillation amplitude can also control the effective breadth of the exploration space,

with larger maximum rates promoting larger jumps between more dissimilar network states.

The benefits of cortical oscillations also extend to other facets of Bayesian inference. For

example, when the state distribution is constrained by partial observations, such as in our cue

disambiguation task, tempering helps explore the conditional distribution and find multiple

ways to solve this pattern completion problem. Similarly, this can help find multiple solutions

to a given problem, such as assigning multiple categories to particular input patterns. Impor-

tantly, this also highlights the potential benefits of background oscillations during learning

(see also [67]), where exploration plays an essential role.

Our results demonstrate that oscillations provide an additional benefit to improved mixing:

they serve as a reference for reading out computational results, reducing the amount of data

requiring processing, and facilitating the temporal organization of neural computations. Fur-

thermore, they can also serve as a means of input filtering, increasing susceptibility to coherent

stimuli [68]. In general, it is well known that information encoding via a background oscilla-

tion can be found in the brain, for example, in the hippocampus [69], where place cells convey

information by firing earlier or later relative to the theta rhythm. A similar form of coding

takes place in our models, as the network distribution changes during each cycle of the back-

ground input.

Furthermore, cyclic background input results in the network generating a stream of candi-

date solutions, with one such state arriving in each cycle. This leads to a form of computing in

discrete steps, as computations are structured into episodes defined by background oscilla-

tions. A similar type of structured computation has been suggested to take place in monkey

and human visual brains during the processing of visual inputs [70]. These experiments

showed that shifts in attention were aligned to beta-band oscillations, and every shift took

place within a single cycle. In our model, we find similar shifts of the state taking place within

each cycle as the temperature decreases.

Temperature changes from oscillations predict that the time course of the network state

variability is coupled to the oscillation phase, as we have shown in our model. This suggests
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that a similar coupling could be found in sampling-based computations in the brain. [44] have

given a hint that this can indeed be the case in hippocampal circuits by showing that ambigu-

ous interpretations of the network input are more likely in the first half of the theta cycle. We

have shown how a simple model can reproduce these findings. However, this data is rather

coarse, and our results also suggest that a similar behavior can emerge in multiple operating

regimes (cf. Fig 7e). Thus, more detailed experimental data are required to constrain sampling

models based on background oscillations adequately.

In particular, experimental data could elucidate whether cortical networks are tuned to an

unbiased sampling regime. In our model, achieving unbiased sampling requires tuning of neu-

ron parameters and the background oscillation time course. While our analysis based on a

simple model of the results of [44] suggested that such a tuning might not be present, a model

more closely matching biological networks would help to either corroborate this finding or

provide more insight into how such a tuning might be achieved in brain networks. The closer

matching could be achieved, for example, by incorporating additional features such as short-

term plasticity, neuronal adaptation, and more specific inhibition; see [71] for an example). In

general, the balance between excitation and inhibition is of renewed interest in this context, as

it connects directly to experimental data. Individual neurons or neuron populations can, for

example, use unbalanced rates to implement biases for their associated random variables.

Moreover, we expect that different networks tune their background inputs to different bal-

ances, depending on which biases are beneficial for their respective tasks.

The experiments of [44] provide evidence for a sampling-based representation of spatial

beliefs in the hippocampus, with one sample drawn in each theta cycle. Our model of these

results is also based on this basic idea. Another important account of place cell activity states

that the activity within different parts of each theta cycle corresponds to different places of the

animal within its movement trajectory (e.g., [69, 72]). This view is consistent with a sampling

strategy that samples trajectories (temporal sequences) instead of static values, where one tra-

jectory sample is drawn per cycle. While the analysis of trajectory sampling in spiking neural

networks is beyond the scope of this work, we note that the general sampling framework can

be extended to temporal sequences [45] in which a phase-dependent probability distribution

arises from external, phase-dependent input. A model of such a form of sequence sampling

could be used for both modeling the phase-dependent activity of neurons encoding previously

visited locations [69] as well as for sampling possible future trajectories [72]. For the latter case

of sampling diverse sequences within one theta cycle, faster background oscillations (e.g.,

alpha-band), superimposed on the theta activity, could provide rapid sequential annealing to

the individual sequence elements. The extension of our model in these directions is an interest-

ing avenue for future research.

In general, our model relates to simple experimental observations at multiple levels. For

example, with respect to the activity of single neurons or small populations, the strength and

frequency of cortical oscillations should directly influence the decorrelation of neuronal activ-

ity (see also S4 Fig). At a more behavioral level, oscillatory changes in background activity

would influence the frequency of perceptual switches. For example, for multi-stable or incom-

plete images (such as those in S5 Fig), perceptual switches should happen in phases of high

activity (i.e., during cortical up-states), as measured, for example, by EEG data. We would thus

predict a monotonic relationship between the frequency of switches between up and down

states and the frequency of perceptual switches.

In this work, we have used sinusoidal modulations of the background rates. This represents

a natural choice, as any other periodic waveform can be described via Fourier synthesis over

such elementary waveforms. Particular time courses of the background input would influence

and possibly even benefit computations in the network, depending on the circumstances and
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nature of the task that needs to be solved. For example, prolonging the low-temperature phase

could allow valid samples to be read out over a longer period of time. In contrast, more fre-

quent high-temperature phases would prevent the network from clinging to a possibly wrong

belief. The background rates could even take on only two distinct values and alternate between

high background activity (resulting in a high temperature, allowing the network to traverse the

state space) and low background activity (where the network converges onto a single mode).

This provides a link to experiments that study the computational role of cortical on/off states.

For example, [73] report that monkeys are more likely to correctly recognize subtle visual cues

if they happen during on-states. This aligns with our proposed computational role of cortical

background activity, as networks need a stronger background to be able to change their cur-

rent belief and react to small changes in their input. Note also that these different phases need

not be strictly cyclic but might underlie external control, allowing external circuitry to flexibly

guide computations in cortical networks according to momentary cognitive demands.

Applications

Recent years have seen an increasing interest in using spike-based computation on specialized

hardware to perform energy-efficient computations [74]. This has spurred efforts to develop

models which allow efficient learning and inference with spiking neural networks. Some of

these platforms explicitly exploit the stochasticity of their components for computation [75,

76]. By offering a mechanism for modulating neuronal stochasticity, the oscillatory back-

ground can enhance computation in stochastic neuromorphic networks, for example, in gen-

erative spiking models [8, 77].

Periods of faithful matching between the sampled and target distribution mark the implicit

time windows in which computational results can be read out and manifest as constrained

intervals of the entire cycle (also see Fig 6c, S1 and S3 Figs). However, it is important to note

that the length of these time windows depends on the underlying distribution, the time course

of the background modulation, and the time constants in the network. The time window sug-

gests that such oscillations may also improve the performance of networks used for constraint

satisfaction problems [78–80]. These are solved by shaping the stationary distribution of the

network so that solution states have a high probability. However, it is not clear at any given

point in time whether the current state is a solution candidate or a transitional state. In con-

trast, in an oscillation-driven tempering schedule, it is known that solutions are likely at low-

temperature phases.

Overall, the parallels with a variety of empirical phenomena and the advantages for spike-

based sampling demonstrated here make neuronal oscillations not only a likely mechanism for

supporting stochastic computations in the brain but also a useful tool for fulfilling this same

function in biologically inspired neural networks.

Methods

Neuron models

Current-based LIF model. The membrane potential u of a current-based leaky integrate-

and-fire (LIF) neuron evolves according to

Cm
du
dt
¼ glðEl � uÞ þ IðtÞ ; ð14Þ

with membrane capacitance Cm, leak potential El and leak conductance gl. The resulting mem-

brane time constant is τm = Cm/gl. When the membrane voltage u reaches a threshold value vth

from below, a spike is emitted and the membrane potential is fixed to a reset value vreset� vth
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for the refractory time τref (see Table 1). The input current I(t) is a sum of synaptic currents

IðtÞ ¼ IrecðtÞ þ IinðtÞ þ IbgðtÞ ; ð15Þ

where we distinguish between functional input Irec, synaptic background input Ibg and any other

form of bias input Iin (see Fig 1a). Assuming exponential synaptic kernels, the input current obeys

dI
dt
¼

Iin � I
ts
þ
X

j

wjSjðtÞ ; ð16Þ

where wj and τs respectively denote the synaptic weight and time constant. The sum goes over all

presynaptic spike sources j, including both background and recurrent input, with the correspond-

ing spike trains SjðtÞ ¼
P

fdðt � tðf Þj Þ, where tðf Þj denotes the f th spike time of spike source j.
Without loss of generality, we endow each neuron with a single excitatory and a single

inhibitory Poisson source characterized by rates νexc and νinh and corresponding connection

strengths wexc and winh.

The resulting distribution of the free membrane potential ufree (no spiking, vth!1) is well

described by a Gaussian with moments given by Eqs 1 and 2 (for more details see Section 4.3

in [28]). In general, more background input, originating from either larger weights wexc, |winh|

or higher frequencies νexc, νinh, increases the variance. The resulting neuronal response func-

tion can be calculated from this distribution using a recursive approach [7]. In the high-con-

ductance state [29], the membrane time constant becomes small, leading to a more symmetric

response function, which is well-approximated by a logistic function (Eq 3). In the interpreta-

tion of spiking neurons as binary random variables, the neuronal response becomes an expres-

sion for the conditional probability of a neuron to be in state “1” given the states of its

presynaptic partners p(zk = 1|z\k). Neuron parameters are given in Table 1.

Conductance-based LIF model. We performed additional experiments with conduc-

tance-based models to investigate the behavior in this more biologically realistic case. In this

model, u(t) evolves according to

Cm
du
dt
¼ � gl u � Elð Þ � gexc u � Eexcð Þ � ginh u � Einhð Þ ; ð17Þ

where gexc(t) and ginh(t) are the excitatory and inhibitory conductances at time t, and Eexc and

Einh are the excitatory and inhibitory reversal potentials, respectively. Just like in the current-

based case, synaptic kernels are modeled as exponential:

dgexc
dt
¼ �

gexc
texc
þ
X

j2PREexc

wjSjðtÞ
dginh
dt
¼ �

ginh
tinh
þ
X

j2PREinh

wjSjðtÞ ð18Þ

where the sums run over the sets of excitatory and inhibitory presynaptic spike sources, wj is

the quantal synaptic conductance of the synapse with the presynaptic neuron j, τexc and τinh

are the time constants of excitatory and inhibitory synapses, respectively, and SjðtÞ ¼
P

fdðt � tðf Þj Þ is the spike train of the presynaptic neuron j. The spiking mechanism is equiva-

lent to the current-based case. The neuron parameters are given in Table 1.

Table 1. Neuron parameters.

model Cm (pF) gl (nS) El (mV) Eexc (mV) Einh (mV) τexc (ms) τinh (ms) vth (mV) vreset (mV) τref (ms)

current-based 200 2000 −50 10 10 −50 −55.1 10

conductance-based 250 25 −65 0 −80 2 3 −50 −65 3

https://doi.org/10.1371/journal.pcbi.1009753.t001
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Unlike in the current-based case, the variance of the free membrane potential has a non-

monotonic dependence on background rates ν, becoming inversely proportional with ν for

intense background input. This is a consequence of the decreased effective membrane time

constant

E teff½ � ¼
Cm

gl þ E½gexc� þ E½ginh�
¼

Cm
gl þ wexctexcnexc þ winhtinhninh

ð19Þ

which also decreases the amplitude of the spike-induced PSP. The resulting membrane poten-

tial distribution is still a Gaussian with moments (Section 4.3 in [28, 40]):

mu ¼ E½u�COBA ¼
glEl þ

P
x2fexc;inhgwxnxtxEx

gl þ
P

x2fexc;inhgwxnxtx
and ð20Þ

s2
u ¼ Var½u�COBA ¼

X

x2fexc;inhg

nxw2
xðEx � E½u�Þ

2

2ðE½teff � þ txÞ
E½teff �tx

Cm

� �2

: ð21Þ

The variance depends non-monotonically on the input rates as both E½teff � and E½u� depend

on νx.
In the low-input limit (gl� gexc, ginh), τeff is largely independent of the synaptic conduc-

tance, and the generated membrane distribution p(u) behaves similarly to the current-based

case. In particular, the variance increases with both increasing input rates νexc and νinh and

increasing synaptic weights wexc and winh (see Eq 2). In the high-conductance limit, i.e., gl�

gexc, ginh and thereby E½teff � ! 0, the variance becomes largely independent of the synaptic

strengths and inversely proportional to the input rates νexc and νinh (see Section 4.3 in [28]):

limP
x2 exc;inhf g

nx!1

Var u½ �COBA ¼
P

x2 exc;inhf g
w2

xnxtx Ex � E u½ �ð Þ
2

P
x2 exc;inhf g

wxnxtx

� �2
/

1
P

xnxtx
: ð22Þ

However, functional synaptic input also has a decreasing effect with increasing background

conductance. The result of these two opposing phenomena is that the effect of increasing back-

ground rates on the neuronal response function in the conductance-based case matches the

one for current-based neurons (see Eqs 3 and 12 and Fig 5e).

Spike response of sampling neurons

In the experiments underlying Fig 1, we connect a current-based sampling neuron with one

excitatory and one inhibitory Poisson source with weights wexc and winh, where wexc = −winh,

and vary the corresponding firing rates νexc and νinh. Background input parameters are listed

in Table 2. We can freely choose the mapping of background rates to the Boltzmann tempera-

ture. For simplicity, we chose T = 1 in the lower range of physiological values, such that the

readout can happen at low points in the oscillation cycle:

T ¼ 1 , nexc ¼ ninh ¼ 2 kHz ð23Þ

which results in a slope of β = 1.39 nA−1 and an offset of I0 = 1.34 nA (see Fig 1d and 1e). Since

shifting the offset implies a change of the neuronal bias, we only have one degree of freedom

when changing the temperature T. We, again arbitrarily, choose the excitatory rate νexc. The

relationship νinh = h(νexc) is then found by interpolating the measured response functions
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from Fig 1e. In practice, this function can be approximated with the linear fit in Eq 9 with ν0 =

−0.13 kHz, m = 1.04 and the coefficient of determination r2 = 0.999 98 (Fig 8a). Choosing

inhibitory and exitatory rate combinations along this line, keeps the offset current constant

and varies solely the temperature (Fig 8b), which results into response functions with constant

inflection point and varying slope (Fig 8c).

The five explicitly marked background configurations shown in Fig 1b–1e are given in

Table 3.

Temperature as a function of background rates

The relationship between our temperature definition and the background rates can be approx-

imated by linking the probability density function of the membrane potential to the derivative

of the logistic response function. In the diffusion approximation, the free membrane potential

distribution is Gaussian:

f u; mu; suð Þ ¼
1
ffiffiffiffiffiffi
2p
p

su

exp �
ðu � muÞ

2

2s2
u

� �

: ð24Þ

In the high-conductance state, the cumulative distribution function (CDF) has a very simi-

lar shape to the (logistic) response function (Eq 3). In particular, they have approximately the

same derivative at their inflection point (for details, see [7]). With the parameter transforma-

tion uin = Iin/gl and β = βugl, where βu is the slope in the potential domain, the response func-

tion reads:

noutðuinÞ ¼
1

1þ expð� buin=glÞ
: ð25Þ

Table 2. Hierarchical network parameters.

network number of neurons νexc,min (kHz) νexc,max (kHz) νinh,min (kHz) νinh,max (kHz) fosc (Hz) wexc (nA) winh (nA)

response function (see Fig 1) 1 0.5–30 0.5–30 0.4–31 0.4–31 const. 0.5 -0.5

entropy (see Fig 2) 4 0.25 10 0.1 10.3 1 1.0 -0.5

NORB (see Fig 3) (3600, 500, 10) 0.5 20 0.4 20.6 1 0.5 -0.5

MNIST (see Fig 4) (784, 400, 10) 0.5 22 0.4 22.7 2 0.5 -0.5

https://doi.org/10.1371/journal.pcbi.1009753.t002

Fig 8. Changing the temperature of the system. The linear relationship νinh(νexc) in (a) can keep the offset of the response function constant (solid line

in (b)), while only changing the slope of activation functions and thereby the temperature of a network (dashed line line in (b)). This relationship also

reflects the relative strengths of afferent excitatory and inhibitory weights. (c) Three example activation functions with constant offset for different

background rates. Colors correspond to those in panel a. Here, we emphasize the binary-state interpretation by plotting p(z = 1|Iin) = νoutτref (cf. Fig 1c).

https://doi.org/10.1371/journal.pcbi.1009753.g008
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The slope of the CDF at its inflection point is

@uFju¼0
¼ f ju¼0

¼
1
ffiffiffiffiffiffi
2p
p

su

; ð26Þ

whereas for the activation function it is

@uin
noutjuin¼0

¼
b expð� buin=glÞ

glð1þ expð� buin=glÞÞ
2

�
�
�
�
uin¼0

¼
b

4gl
: ð27Þ

Equating the two creates a direct correspondence between the inverse temperature β and

the width σu of the free membrane potential distribution:

b suð Þ �
4glffiffiffiffiffiffi
2p
p

su

: ð28Þ

In our case, with wexc = winh, τexc = τinh and 1/kB = βref, plugging in the expression for σu from

Eq 2, the more precise expression for the temperature in Eq 7 is given by

T ¼
bref
b
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nexc þ ninh

nexc;ref þ ninh;ref

s

; ð29Þ

where νexc,ref and νinh,ref are the excitatory and inhibitory reference rate corresponding to T = 1.

Entropy of spiking sampling networks

Networks of current-based LIF neurons can sample, to a very good approximation, from

binary Boltzmann distributions

p zð Þ ¼
1

Z
exp

� EðzÞ
kBT

� �

ð30Þ

with energy function

E zð Þ ¼ �
1

2

X

k;j

Wkjzkzj �
X

k

Bkzk : ð31Þ

where Wkj is a symmetric zero-diagonal matrix and Bk a bias vector [7]. The associated neuro-

nal response function represents a conditional state probability and reads

pðzk ¼ 1jz kÞ ¼
1

1þ expð�
P

jWkjzj � BkÞ
: ð32Þ

Table 3. Background parameters for the colored response functions and membrane potential distributions in Fig 1.

color νexc (kHz) νinh (kHz)

blue 1.000 1.000

orange 2.000 2.000

red 4.000 4.000

green 2.848 1.232

purple 1.232 2.848

https://doi.org/10.1371/journal.pcbi.1009753.t003
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The synaptic strength wkj and input current Iin,k in the equivalent LIF network can be

related to the Boltzmann parameters Wkj and Bk via the slope of the response function β
(cf. Eq 3):

wkj ¼
Wkj

b

glðts � tmÞ

ts 1 � exp � 1ð Þð Þ � tm 1 � exp tref
tm

� �� � ; ð33Þ

Iin;k ¼
Bk

b
þ I0 : ð34Þ

Biases are implemented via a shift of the leak potential El. The entropy is given by

SðpTÞ ¼
X

z

� pTðzÞ log pTðzÞ : ð35Þ

Depending on the base of the logarithm, the unit of S is either nats or bits.

Parameter choice of the Boltzmann distribution. For the entropy scaling in Fig 2, we

use a 4-neuron network with random weights and biases distributed according to

Ŵkj / N ð0:0; 0:5Þ Wkj ¼
Ŵkj þ Ŵ jk

2
Bk / N ð0:0; 0:5Þ ; ð36Þ

where N ðm; sÞ is the normal distribution with mean μ and standard deviation σ. The third and

fourth neuron’s bias is set to ±1 to ensure one leak-over-threshold and one leak-below-thresh-

old neuron for Fig 2e.

Image generation examples: NORB and MNIST

The layer sizes of our hierarchical networks are given in Table 2.

NORB. In order to reduce the pixelation in Fig 3a we do not plot the visible state v 2
{0, 1}3600 directly but instead show the activation probability p(v) that is imprinted by the

instantaneous state of the hidden layer:

pT¼1ðvjhÞ ¼
1

1þ expð� Wvhh � BvÞ
: ð37Þ

The temperature schedule of the oscillating background case can be found in Table 2. For

the static background input we use the reference configuration (Eq 23) and retrieve samples

every 1/fosc = 1 s in order to get an equal-time comparison.

MNIST. In Fig 4 we use a similar network structure to the one in Fig 3, with parameters

from [37]. Background configurations are varied according to Eq 9 as before and sine parame-

ters are given in Table 2.

Kullback-Leibler divergence. The Kullback-Leibler divergence is a standard measure of

the discrepancy between two probability distributions. Intuitively, it measures how many bits

are wasted when encoding a distribution Q according to the optimal encoding for distribution

P. For a discrete probability distribution P with respect to another Q, this divergence is defined

as:

DKL PjjQð Þ ¼
X

i

PðiÞ log
PðiÞ
QðiÞ

� �

: ð38Þ
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Note that Q must be strictly positive, whereas P may have states with zero probabilities associ-

ated with it.

Indirect sampling likelihood. We quantitatively evaluate how well the samples generated

by our networks reflect the target distribution by calculating the indirect sampling likelihood

(ISL) described in [38]. The ISL measures the similarity between the generated samples and

samples from the dataset that were not shown during training (test set). Each test sample yj
and generated sample xi is a d-dimensional binary vector, whereby each xi is given by the

instantaneous visible layer activity v 2 {0, 1}d.

For retrieving the ISL, a density model P is trained on N generated samples, and the likeli-

hood of each test sample under P is calculated. For d-dimensional binary vectors, a non-

parametric kernel density estimator is suitable:

PðyÞ ¼
1

N

XN

i¼1

Yd

j¼1

g
1yj¼xij ð1 � gÞ

1yj 6¼xij ; ð39Þ

which is essentially a mixture model representing the xi. The hyperparameter γ 2 [0.5, 1)

determines how much the empirical distribution over xi is smoothed out (we use γ = 0.95).

The two exponents denote identity functions that compare an individual test to a generated

sample and count the identical and different pixels, respectively. Intuitively, the ISL penalizes

each test sample far from any generated sample.

In Fig 4f, we plot logPðyÞ averaged over all test samples versus the number of samples. This

time course reveals how many main modes of the target distribution are well covered and how

fast. Note that the ISL does not necessarily evaluate how diverse the network output is, but

rather how well the test set is covered—repetitive samples would yield a high ISL compared to

a not very diverse test set.

For orientation, we show the ISL curves for the optimal sampler (OPT) and the product of

marginals (POM) (see Fig 4f). The optimal sampler draws randomly, without replacement,

from a pool of 105 images that were generated with Adaptive Simulated Tempering (AST)

[36], a complex algorithm that is constructed for optimal mixing properties. The POM sampler

generates examples by independently sampling each vector component from its respective

intensity distribution over the training set. Hence, the marginal probability distribution for

each component is preserved, and correlations between components, i.e., the overall structure,

are discarded. Note that since these off-class samples overlap significantly with all image clas-

ses, they can be associated with higher ISL values than a series of samples from a single mode.

One known drawback of the ISL is that it does not represent an accurate reflection of a

human’s perceptual judgment of image quality [81]. Therefore, we additionally checked the

sampling quality by eye and evaluated the activation probability of the visible layer as shown in

Fig 4a and 4b. Based on this, we picked a point on the fosc = 0.5 Hz plane with an intermediate

ISL value for display in Fig 4a, 4b, 4e and 4f.

Mode duration as a measure of mixing speed. We calculate the mode duration as the

average time between two mode switches, where the current mode is defined as the most active

label unit, as measured by its probability inferred from the hidden layer activity. The label

layer reflects the network’s interpretation of its own current visible state v and as such requires

the network to be self-consistent. In practice, we did not find significant deviations (see Fig 4a

and 4b) from this assumption. Due to computational constraints, we only simulated 1000 s in

a single run and averaged over multiple simulations for improved statistics. Note that conven-

tionally, mixing speed is measured by the area under the autocorrelograms of the network neu-

rons’ activity, where a smaller area corresponds to faster mixing. For comparison, we also

recorded this measure from the inferred spike probabilities of the label neurons, which
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confirmed the speed-up in mixing with oscillations (see S4 Fig). However, when classes are

discrete, like in the MNIST data set, mode durations are a sufficient and intuitive measure of

mixing speed.

Conductance-based input scenarios

Fig 5a and 5b show the different behaviors of Var[u] using the neuron parameters given in

Table 1. For the conductance-based models, we investigated four scenarios for conductance-

based background input chosen to cover a range of behaviors of E½u� and Var[u] for increasing

background input frequencies νexc and νinh (see Impact of conductance-based synaptic input).
This is accomplished by different ways of changing the rates νexc and νinh with the scaling

parameter α (see Eq 11) and different values of the background input weights wexc and winh.

All parameters are given in Table 4.

Using Eq 20, we can balance the membrane potential at a target value of û ¼ � 55mV by

choosing νinh,1 and νinh,0 (see Eq 11 and Table 4) so νinh changes as

ninh ¼ nexc
texcwexcðEexc � ûÞ
tinhwinhðû � EinhÞ

þ
glðEl � ûÞ

tinhwinhðû � EinhÞ
: ð40Þ

Fitting of stochastic models

To assess the effect of background input on individual neurons’ temperature in the conduc-

tance-based case, we generated data using realistic inputs to conductance-based LIF neurons

and used the fitting method described by [41] to obtain a stochastic model.

The stochastic model is identical to the LIF neurons (i.e., membrane potential generation,

refractoriness after spike) except for the deterministic spike generation mechanism, which is

replaced by a stochastic spike criterion using an instantaneous firing intensity of

rðtÞ ¼
1

Dt
exp

uðtÞ � uT
T

� �

ð41Þ

where T and uT are parameters (temperature and soft threshold) obtained from the fitting

method. Spikes are drawn from a Poisson process with this instantaneous intensity. In our dis-

crete-time simulations, we calculate the probability of a spike within each simulation time step

Δt, which is

Prðspike in ½t; t þ Dt�juðtÞÞ ¼ 1 � expð� rðtÞDtÞ ; ð42Þ

and draw spikes accordingly.

To fit this model to data recorded from the simulated conductance-based LIF neurons, we

estimated the spiking probability given the membrane potential u using a stimulus consisting

of 100 inputs (80% excitatory), each firing according to a Poisson process with fstim = 5 Hz.

Each input had a synaptic weight drawn from a uniform distribution in [0, wstim,max] where

wstim,max is a maximum conductance value (see Table 4) adjusted for each scenario so the LIF

Table 4. Background input parameters for the different conductance-based input scenarios.

scenario νexc,1 (kHz) νexc,0 (kHz) νinh,1 (kHz) νinh,0 (kHz) wexc (nS) winh (nS) wstim,max (nS)

μu unbalanced 5 0 5 0 0.5 0.5 30

μu balanced at −55 mV 5 0 7.3 −6.7 0.5 0.5 70

high variance 5 0 5 0 2.5 3.75 70

low excitation 1 0 5 0 1 3.75 70

https://doi.org/10.1371/journal.pcbi.1009753.t004
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neuron fires at a reasonable rate (i.e., 50 Hz< f< 150 Hz, see Fig 9a). This stimulus was pre-

sented to the deterministic LIF models while recording the output spike times. An identical

spike train was then presented to a passive version of the stochastic neurons (no firing mecha-

nism, i.e., its membrane potential is the free membrane potential) which was also reset at every

spike of the deterministic model. Binned histograms of u of the passive model at all times and

at spike times of the original model allow estimating the firing probability p(spike|u) (Fig 9b;

see [41]). To fit the model, we insert Eq 41 into Eq 42 and reformulate the result to get

u � uT
T
¼ log � log 1 � p spikejuð Þð Þð Þ ; ð43Þ

where we perform linear regression on the right-hand side to get values of T and uT. The shape

of p(spike|u) is roughly bell-shaped. We found that the best fits result from using only the val-

ues of p(spike|u) from u< arg maxu p(spike|u) for fitting as the values above the peak show

increasing background.

We performed this fitting N = 50 times with a simulation durations of 100 s in every run and

report the mean and standard deviation of the resulting values of uT and T (Figs 5e and 9c).

The stochastic models were evaluated by simulating 1000 deterministic and 1000 stochastic

versions of the model for 1 s using a new stimulus. From these runs, the time-varying firing

intensities νLIF(t) and νfit(t) were estimated. A criterion for the quality of fit between the fitted

and original models was calculated as

Md ¼
2
R
nLIFðtÞnfitðtÞdtR

n2
LIFðtÞdt þ

R
n2
fitðtÞdt

ð44Þ

Fig 9. Details of stochastic model fitting. (a) Firing rate in response to stimulus used for fitting. Dots denote mean, fliers standard deviation over

N = 50 independent runs. (b) Result of fitting the stochastic model (see Eq 12) for different values of α. The parameters of ρ (including the temperature

T, Fig 5e) were obtained by averaging the results of N = 50 independent fits. (c) Soft threshold values resulting from fitting. (d) Quality of fit as

described by Md criterion (see Methods), measuring match of firing intensities of LIF model and stochastic models resulting from fitting. The fit models

reproduce spiking behavior reasonably well (Md = 1 indicates a perfect match, Md = 0 indicates no overlap of PSTHs).

https://doi.org/10.1371/journal.pcbi.1009753.g009
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for every model. This similarity criterion, which determines how well the firing intensities

match, is inspired by [42] (The Md criterion as stated by [42, Eq. 16] seems to contain an error,

therefore, it is slightly adapted here, so its properties match those discussed by Mensi et al., i.e.,

a value of 1 indicates a perfect match, while a value of 0 indicates no match, e.g., if νfit(t)� 0).

We found that the stochastic models were generally capable of reproducing the LIF behavior

reasonably well (i.e., Md > 0.5 for most models, see Fig 9d). The quality of the fit generally

decreases when the variance is high (all models in the high variance scenario, large α in the

remaining scenario). We used the results from fitting only for elucidating the temperature

effect in networks of LIF neurons with background input, so any errors resulting from imper-

fect fits did not carry over to the experiments showing the functional advantages of back-

ground oscillations (where we again used LIF neurons and spiking background input for our

simulations).

Illustrative sampling task for conductance-based networks

To illustrate the effect of the background input activity on the sampling behavior of an SNN

with conductance-based LIF neurons, we used a simple winner-take-all (WTA) network. The

model consisted of 4 neurons receiving bias input by injecting currents of amplitudes Iin = [40,

60, 80, 40] pA, respectively (Fig 5f). Each neuron additionally received input from an external

neuron (Poisson spiking at f = 75 Hz, synaptic conductance win = wstim,max, see above and

Table 4). Neurons had inhibitory lateral connections (conductance winh = 3win).

We ran this network for 100 s. From the spikes of each neuron, we computed network states

by setting the state zj of each neuron j to 1 if the neuron fired within the last 10 ms and other-

wise to 0 (see [2]). This allowed us to estimate the fraction of time the network spent in each

state (Fig 5g). Note that here, the duration of zj = 1 after a spike does not coincide with the

refractory period or the synaptic time constant.

We used only the modes (states in which one neuron was exclusively active, i.e., zj = 1 for

some j = j0 and zk = 0 for all k 6¼ j0) to compute the entropy (Fig 5h).

Stimulus disambiguation task

We illustrate the advantage of oscillatory background input using a biologically relevant task

with several distinct modes which are far apart in the state space, thus making mixing hard.

The circuit consisted of 3 winner-take-all (WTA) groups (Fig 6a). Every group contained 3

assemblies, each formed by 3 neurons with strong recurrent connectivity (all neuron pairs

bidirectionally connected) and lateral inhibition (bidirectional connections between all neuron

pairs that are not part of the same assembly). Between groups, the nth assemblies were bidirec-

tionally linked: in every assembly, 2 (different) neurons were connected to the other 2 assem-

blies (see Fig 6a). One assembly in each group received additional bias input (Fig 6f and 6g).

This results in a stimulus disambiguation task with conflicting input. The synapse parameters

are given in Table 5.

We found that using the parameters of each of the scenarios led to complete silence in the

network for either low or high background input. To obtain network activity for all values of

Table 5. Connection parameters for conductance-based stimulus disambiguation experiments.

connection g (nS) Esyn (mV) syn. delay (ms)

between assemblies 17 0 2

within assemblies 8.5 0 2

inhibitory 17 −80 0.1

https://doi.org/10.1371/journal.pcbi.1009753.t005
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α, we adjusted the parameters of the background input. Starting from the μu unbalanced sce-

nario, we increased the inhibitory background input conductance while keeping the excitatory

conductance constant. The variance of the network firing rate (for oscillating background

input) decreased until a ratio of winh/wexc = 1.35, after which it increased again. We chose the

value at the minimum (i.e., winh = 0.675). This results in network activity also for low and high

constant background input, which allows us to compare the effect of background oscillations

to constant input without favoring the former. As there are no input units exciting the network

and the background input to each neuron is insufficient to evoke network activity, it was nec-

essary to inject a current into each neuron, so the neurons did not remain silent. At winh =

0.675, we used Iin = 350 pA, which resulted in a mean firing rate of f� 17 Hz (with oscillating

background input).

The circuit defines a sampling problem with 3 modes, i.e., interpretations. Network states

were defined to encode the nth interpretation if the nth assembly in each group was simulta-

neously active while all other assemblies remained inactive. An assembly was regarded as

active at every point in time if 50% of its neurons (i.e., at least 2 of the 3 neurons within an

assembly) fired within the last 10 ms; otherwise, it was regarded as inactive. This definition

allows one to characterize the network state at each time step of the discrete-time simulation as

a state either encoding a particular interpretation or none.

Background activity was provided to the network via Poisson sources. Each neuron

received independent background input, with rates scaled by α as in previous experiments (as

in the μu unbalanced scenario, see the first column in Fig 5c–5e and Table 4). The scaling fac-

tor α was sinusoidally modulated over time, with α(t) 2 [0.5, 5] and modulation frequency fosc

= 10 Hz (see Fig 6b top). We compared the results in this case to the results when α was kept

constant (α 2 {0.5, 2.5, 5}). S6 Fig shows sample behavior for the different cases, highlighting

the different behavioral regimes (e.g., locking into one solution for α� 0.5, see Background
oscillations and behaviorally relevant sampling tasks).

To estimate the probability of the network state encoding a solution, we repeated N = 100

simulation runs lasting 20 s each for all four background input setups. For the constant α
cases, we report the fraction of network states that encode one of the 3 solutions over all runs.

For the oscillatory case, we estimated the fractions of states encoding any interpretation as

mean and standard deviation over the 100 runs and plot mean and standard deviation (Fig

6c). Here, we used a bias input of 40 nS for the 3 biased assemblies.

We then tested the mixing behavior in two ways. First, we estimated the time it took to find

all solutions by running the network N = 100 times for 20 s for each of the four background

input setups. Second, we recorded how long it took for the network state to visit each of the 3

solutions at least once in each of these simulations (Fig 6d shows mean and standard devia-

tion). If the simulation time was not enough for the network to visit all solutions, the runs

were discarded (this only occurred for uneven input and α = 0.5, where about 1/3 of the runs

were discarded). We also estimated the time it took to switch between solutions (i.e., the mode

duration) over these simulation runs. Switching times were defined as the difference between

the time the network state changed to any solution state and the time the network state next

changed to a solution state for a different solution (i.e., difference between solution state onset

times, Fig 6e shows mean and standard deviation). Significance values were calculated using

the Wilcoxon rank-sum test.

Fig 6f shows mean and standard deviation of the fraction of valid states for each interpreta-

tion for these N = 100 runs. To test whether the interpretations are visited according to the

bias input, we set different currents for the three biased assemblies and repeated this analysis

(Fig 6g).
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Relating model features to experimental data

To relate the behavior of the conductance-based model to the experimental data from [44], we

constructed a circuit consisting of 2 assemblies with recurrent connectivity (p = 0.1 for one

synapse between each pair of distinct neurons, w = 2.5 nS, E = 0 mV, synaptic delays randomly

chosen from a uniform distribution in [1, 3] ms) and lateral inhibition (p = 0.5 for one synapse

between each pair of distinct neurons, w = 5 nS, E = −80 mV, synaptic delay 0.1 ms). One of

these assemblies encoded the correct interpretation of the spatial context; neurons in this

assembly received a bias input of 10 pA. Background input (oscillating at 8 Hz, i.e., at a

medium to high theta frequency) was given to each neuron as in the stimulus disambiguation

task. We varied the ratio of inhibitory to excitatory synaptic background input weight in [0.5,

2] as this results in different activity regimes (see above). This leads to E½ginh=gexc� 2 ½0:75; 3�.

This model again required current injection due to the stark influence of the background

input (S8 Fig shows the resulting firing intensity behaviors of stochastic models fitted to LIF

neurons at 3 values of the conductance ratio). The injected current required scaling depending

on the conductance ratio (current linearly interpolated from Iin = 40 nS at E½ginh=gexc� ¼ 0:75

to Iin = 880 nS at E½ginh=gexc� ¼ 3). This model showed flickering behavior similar to the data

shown in [44] along the entire parameter range, see Fig 7b.

Fig 7c shows the firing rate of the neurons in the model over the phase of the background

input (mean values over N = 100 runs lasting T = 50 s). At every conductance ratio, we defined

the start of the cycle according to the minimum firing rate of the network (as in [44]). We cal-

culated mixed network states (defined as states in which both assemblies were more than 20%

active, similar to [44]) over the phase (Fig 7d shows mean and standard deviation over the 100

runs for 3 conductance ratios). Fig 7e shows how the mean probability of mixed states within

the first and second half of the cycle change over the parameter range. We also fitted stochastic

models to data at each conductance ratio and found that the response functions intersect at

p = 0.5 around E½ginh=gexc� ¼ 1:8.

Simulation details

The simulations of sampling experiments with current-based neurons were performed with

sbs [82] version 1.8.2 with slight modifications. This framework was executed with PyNN [83]

version 0.9.1 and NEST [84] version 2.14.0 with a time resolution of Δt = 0.1 ms.

The simulations using conductance-based models were performed using Brian2 [85] ver-

sion 2.4.2 with a time resolution of Δt = 0.05 ms.

Supporting information

S1 Fig. Divergence from target distribution during one oscillation period. Time course of

the Kullback-Leibler divergence to the target distribution together with the time course of the

temperature demonstrated at the network in Fig 2. The KL-divergence is high for both high

temperatures (red dot, quasi-uniform distribution) and low temperatures (blue dot, quasi-sin-

gle state distribution), indicating that the distributions at these temperatures differ. The diver-

gence is small at the two crossings of T = 1, indicating high fidelity representations. The yellow

dot indicates the time of the readout.

(PDF)

S2 Fig. Layerwise spike activity. (a-c) Spike activity in label, visible and hidden layer of the

NORB network in Fig 3 as a function of the phase of the background oscillation. The mean fir-

ing rate per neuron oscillates in all three layers in phase with the background.

(PDF)
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S3 Fig. Probability of the label layer. Exemplary time course of the inferred activity per label

neuron over time (lower plot) and the associated state of the visible layer (top bar) of the

MNIST network in Fig 4. Spike probability is high and unique during the low activity phases

(around the T = 1 readout, vertical lines) and lower and distributed over several labels during

the high activity phases. The network is typically in a stable response state for a certain time win-

dow around the readout. The length of this time window depends on the depth of the modes.

(PDF)

S4 Fig. Layerwise autocorrelograms indicate improved mixing. (a) Mean Pearson autocor-

relation coefficient calculated from the inferred spike probability of the label layer neurons of

the MNIST network in Fig 4—for oscillating background (red) and constant background at

T = 1 (blue). (b) Same as (a), for the visible neurons. Autocorrelation is reduced more quickly

for the oscillating setup, leading to a smaller area under the curve, indicating faster mixing.

(PDF)

S5 Fig. Inference task with ambiguous input. Superposition of the first 5421 images of class 8

(a) and class 9 (b) of the MNIST training data set. (c) Superposition of images in a and b. (d)

Biases of the network to clamp visible layer to the upper part of the image in c and emulate an

ambiguous input. (e) Distribution over the inferred labels of the MNIST network from Fig 4

in a 100-cycles run averaged over ten random seeds. The imprinted labels 8 and 9 dominate

the distribution—the posterior distribution—illustrating the uncertainty of the input. With

oscillating background input, the distribution is more balanced. Thus, oscillations can help in

inference tasks. Note that the network simultaneously completes the lower part of the ambigu-

ous input image in the visible layer—shown as the inferred visible layer activity for constant

background in (f) and oscillating background in (g).

(PDF)

S6 Fig. Background oscillations structure computations into sampling episodes in conduc-

tance-based networks: Example network activity. (a) Sample activity for oscillating back-

ground input (see Fig 6b for details). (b-d) Sample activity for constant background input with

α 2 {0.5, 2.5, 5}.

(PDF)

S7 Fig. Relating model features to experimental data: Robustness of model. For four values

of E½ginh=gexc� (rows, as in Fig 7b), we show activity for systematic variations of the model

parameters. In each row, the plot on the left corresponds to the plot in Fig 7b with the base

parameters indicated. On the right, each column shows sample activity when one of these

parameters (see column title) is varied by multiplying it with 0.8 (top panels within each row)

or 1.2 (bottom panels within each row). Variations of the inhibition have the largest impact on

the model behavior, with decreased inhibition leading to simultaneous activity of both assem-

blies in some cases.

(PDF)

S8 Fig. Relating model features to experimental data: Additional information. Firing inten-

sity behavior of individual neurons determined by fitting stochastic models (as in Fig 9b) dras-

tically changes as the mean background conductance ratio E½ginh=gexc� is increased.

(PDF)
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