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Introduction
The main point of interest of this dissertation is to study theories related
to the theory ATR0 in the realm of second order arithmetic and set theory.
Second order arithmetic constitutes of a collection of axiomatic systems
that formalises the natural numbers and their subsets. It turns out that a
big branch of ordinary mathematics can be formalised within five subsys-
tems of increasing strength, which are sometimes denoted the Big Five:

RCA0 ( WKL0 ⊆ ACA0 ( ATR0 ( Π1
1-CA0.

It can be shown that many mathematical theorems are equivalent to one of
the Big Five’s defining set existence axiom over some base theory, usually
RCA0. Research in that direction is summarised under the programme of
“Reverse mathematics” by Friedman/ Simpson. The textbook by Simp-
son, cf. [Sim09], provides an extensive exploration and overview of this
subject and is referred to frequently. The defining set existence axiom of
ATR0 is arithmetical transfinite recursion, denoted (ATR). ATR0 has proof-
theoretic strength Γ0. Feferman and Schütte characterised Γ0 as the limit
of predicative mathematics, cf. [Fef64, Sch77]. An overview on the topic of
predicativity can be found in [Fef05]. Moreover, ATR0 corresponds to the
foundational program of predicative reductionism, cf. [Sim85, Sim88].

In Part I we choose ACA0 as our base theory. In chapter 2 we then
prove the equivalence of several axiom schemas to (ATR) over ACA0, there-
fore rounding up the general picture. The following axiom schemas are con-
sidered: The schema (FP) introducing fixed points for positive arithmetical
operators; a more general fixed point principle, denoted (M∆1

1-FP), pre-
scribing fixed points for monotone ∆1

1 operators; the schema (w-Σ1
1-TDC),

which is short for weak Σ1
1 dependent choice; the reduction principles

(Σ1
1-Red) and (Π1

1-Red), denoted as, respectively, Π1
1 and Σ1

1 separation
in [Sim09]; and finally, a transfinite recursion principle featuring the itera-
tion of ∆1

1 operators along well orderings, denoted (∆1
1-TR). (Π1

1-Red) is
of special interest since it has very natural set-theoretic counterparts. This
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leads to interesting questions, which are discussed in Part II. Note that
in order to comply with standard notations of set theory, we deviate from
[Sim09] and speak of reduction principles rather than separation principles.

Part I is concluded with an analysis of set-parameter free variants of
ATR0 and related systems. This is the topic of chapter 3. It turns out that
ATR0 is not affected by the removal of set-parameters. We then focus on
a set-parameter free fixed point schema (FP−) and related systems. We
pin down their proof-theoretic strengths by relating these to a variant of
(ATR) among a fixed primitive recursive well ordering.

In Part II we are interested in set-theoretic analogues of questions that
were treated in Part I. To this end, we introduce a range of basic set theories
featuring the natural numbers as urelements and induction principles on
sets and the natural numbers of various strengths. This is done in chapter 4.
To interpret set-theoretic objects within second order arithmetic, we adapt
the method of representation trees given in [Jäg86, Sim09]. As mentioned
before, reduction principles have very natural set-theoretic counterparts.
To this end, we define the schemas (Σ-Red) and (Π-Red) in chapter 6.
Making use of representation trees we can then determine the effect on
proof-theoretic strength when adding these reduction principles to our basic
set theories. Doing so, we obtain theories with the same proof-theoretic
strength as Σ1

1-AC, ATR0 and ATR.
In chapter 7 the set theories BETA0 and BETA are introduced. These

theories are closely related to Simpson’s set-theoretic variant of ATR0. We
are then interested in the effect of adding set-theoretic reduction principles
to BETA0 and BETA. We determine the proof-theoretic strength of the
resulting set theories by establishing connections to certain subsystems of
second order arithmetic. The chapter is then concluded with a brief outlook
on questions related to Kripke-Platek set theory.

In the Appendix A we discuss a technical question regarding the role
of certain variables in the schema (ATR). It is included to provide clarity.

2
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1. Preliminaries
In this chapter we establish the general setting in the context of second
order arithmetic. From the syntactic side we mainly adhere to [Buc05].
Regarding the introduction of subsystems of second order arithmetic, we
follow closely [Sim09]. For more technical details we refer to [TS00], and
for the general background to [End01, Hin18].

1.1. The language L2

In this section we introduce the language L2 of second order arithmetic
together with basic syntactic notions. L2 features the following logical
symbols:

• (propositional) connectives ∧ and ∨,

• the negation symbol ∼ to form negated literals,

• the quantifier symbols ∀ and ∃,

• the set membership symbol ∈,

• the equality symbol =,

• a countable set of number variables Var1 := {νi : i ∈ N},

• a countable set of set variables Var2 := {Vi : i ∈ N},

• auxiliary symbols, e.g., comma and parentheses.

As function and relation symbols we use:

• symbols for primitive recursive (p.r.) functions and relations,

• a unary anonymous relation symbol Q,

• additional relation symbols that are introduced in certain contexts.

5



1. Preliminaries

The p.r. function and relation symbols are inductively defined as follows,
where n and k range over natural numbers (including zero):
• the n-ary zero function symbol 0n is p.r.,

• the unary successor function symbol Succ is p.r.,

• for 1 ≤ i ≤ n the n-ary projection function symbol Pni is p.r.,

• the n-ary function symbol Compn(g, h1, . . . , hk) is p.r. for all k-ary
p.r. function symbols g and n-ary p.r. function symbols h1, . . . , hk,

• the (n+ 1)-ary function symbol Recn+1(g, h) is p.r. for all n-ary p.r.
function symbols g and (n+ 2)-ary p.r. function symbols h,

• the (n + 1)-ary relation symbol Reln+1(g) is p.r. for all (n + 1)-ary
p.r. function symbols g.

Moreover, we will occasionally introduce additional function symbols, de-
pending on the situation. The relation symbol Q serves as an auxiliary
symbol, e.g., in the context of certain variants of arithmetic transfinite
recursion. If no confusion arises, we add and omit parentheses freely for
better readability. The first order language L1 is obtained from L2 by omit-
ting the set variables of Var2. All notions introduced refer to L2, but can
be adapted easily to L1, extensions of L2 with additional relation symbols,
and so on.

Number terms of L2 are introduced as usual and we use Tm(L2) to
denote the set containing all these terms. Numerals are defined by 0 = 00,
1 = Succ(0), 2 = Succ(Succ(0)), and so on. However, if no confusion arises
we simply write 0, 1, 2, etc.. A term in which no variables occur is called
closed. An atomic formula is an expression of the form s = t, t ∈ X or
R(t1, . . . , tn) for any number terms s, t, t1, . . . , tn, set variable X and n-ary
relation symbol R. A literal is either an atomic formula A or an expression
of the form ∼A , where A is an atomic formula. We use s 6= t and t 6∈ X
as abbreviations for ∼(s = t) and ∼(t ∈ X), respectively. Moreover, given
a binary relation symbol R, we write sRt for R(s, t).

We work with formulas in negation normal form that are inductively
defined as follows:
• All literals are formulas,

• if A and B are formulas, then so are (A ∧ B), (A ∨ B), ∀νiA ,
∃νiA , ∀ViA and ∃ViA for all i ∈ N.

6



1.1. The language L2

The following (possibly subscripted) metavariables are used:

• h, i, j, k, l,m, n, u, v, w, x, y, z for number variables,

• H,M,N, P, U, V,W,X, Y, Z for set variables,

• r, s, t for number terms,

• A ,B,C ,D ,F for formulas.

Fml(L2) stands for the set of all formulas of L2. The negation of a formula
A , denoted ¬A , is defined inductively by using De Morgan’s laws, quan-
tifier laws, and demanding ¬B = ∼B, ¬∼B = B in case B is an atomic
formula. For convenience, we also introduce the connectives → and ↔:

(A → B) := (¬A ∨B) and (A ↔ B) := ((A → B) ∧ (B → A )).

We determine that ∀,∃,¬ bind stronger than ∧,∨, which themselves bind
stronger than→,↔. Consider a formula A . The set of all number and set
variables with free occurrences in A is denoted FrVar(A ). A set variable
X is said to occur positively in A if no formula of the form t 6∈ X appears
as a substring of A . In that case we also call A X-positive.

We use vector notation to denote lists of different variables, terms and
other syntactic entities, e.g., ~t = t1, . . . , tn, ~X = X3, . . . , X7. To improve
readability we use various abbreviations when writing down formulas, e.g.,
∀x1∀x2 . . . ∀xn stands for ∀~x and x1, x2 ∈ Y for x1 ∈ Y ∧ x2 ∈ Y . Further
abbreviations such as ∃~x, ∀ ~X, ∃ ~X or (∃x ∈ Y ), (∀x ∈ Y ) are treated
accordingly.

Let A be a formula, s, ~t = t1, . . . , tn terms, and ~x = x1, . . . , xn number
variables. The substitution of ~t for ~x in s, written s(~x/~t), is defined by
simultaneously replacing all occurrences of xi by ti for all i = 1, . . . , n.
Similarly, the substitution of ~t for free occurrences of ~x in A , denoted
A (~x/~t), is the result of simultaneously replacing all free occurrences of xi
in A by ti for all i = 1, . . . , n.

In order to deal with substitution of set variables, we introduce the
notion of class terms. A class term is an expression of the form {x : C } for
any number variable x and formula C . Given a list of variables x1, . . . , xn,
and a list of formulas C1, . . . ,Cn, the substitution of the class terms

{x1 : C1} , . . . , {xn : Cn}

7



1. Preliminaries

for free occurrences of X1, . . . , Xn in A , denoted

A (X1/C1, . . . , Xn/Cn)

is obtained by simultaneously replacing, within A , all occurrences of t ∈ Xi

that are not in the scope of a quantifier ∀Xi or ∃Xi, by Ci(xi/t).
Following [TS00], we identify formulas that only differ in the names of

bound variables. We always assume that variable clashes in substitutions
are avoided by renaming bound variables such that these variables do not
occur in the terms that are to be substituted.

References to substituted variables are often dropped, e.g., we write
A (~t) instead of A (~x/~t). The substitution of X with U in some formula
A can be defined as A (X/F (x)) with F (x) ≡ x ∈ U . In this man-
ner, the substitution of class terms also encompasses the substitution of
set variables with set variables. To simplify the notation, we just write
A (X/U) or A (U) for such substitutions. If M = {n : F (n)} is the class
term with defining formula F (n), we use t ∈M as abbreviation for F (t).
If clear from context, we write A (F (x)) or A (M) instead of A (X/F (x)).
Usually, our axioms make sure that the classes which are considered exist
properly as sets. Occasionally, square instead of round brackets are used
when writing down formulas, e.g., F [m,n,X]. This indicates that only
the displayed variables, m,n,X in the given example, occur freely in the
respective formula. Moreover, we sometimes write t[~x] to indicate that the
variables occurring in the term t are among ~x.

Next, we shall discuss the “underlying logic”. We assume a classi-
cal Hilbert-style system consisting of a set of logical axioms and a set of
(inference) rules. We first discuss the axioms and then turn to the rules.

The logical axioms are divided into tautologies, equality axioms, and
axioms for number quantifiers and set quantifiers. We only consider equal-
ity on the level of number variables. For set variables X,Y , equality will
be defined as:

X = Y :≡ ∀n(n ∈ X ↔ n ∈ Y ).

To define the notion of tautologies we use propositional valuations. Con-
sider the truth values true (>) and false (⊥). A propositional valuation V
is a map from Fml(L2) to {>,⊥} satisfying the following conditions:

• V(∼A ) =
{
> if V(A ) = ⊥,
⊥ otherwise,

in case A is atomic,

8



1.1. The language L2

• V((A ∧B)) =
{
> if V(A ) = V(B) = >,
⊥ otherwise,

• V((A ∨B)) =
{
⊥ if V(A ) = V(B) = ⊥,
> otherwise.

A formula is called tautology if V(A ) = > for all propositional valuations
V. Intuitively, tautologies are formulas that are true by virtue of their
build-up using the propositional connectives ∧, ∨, ∼.

The logical axioms are now given as follows:
Tautologies:

(Taut) A

for all tautologies A .
Eequality axioms:

(Refl) x = x,

(Lit) x = y → (A (z/x)→ A (z/y)),

for all literals A , and number variables x, y, z.
Axioms for number quantifiers:

(A1∀) ∀xA → A (x/t),
(A1∃) A (x/t)→ ∃xA (x),

for all formulas A , number variables x, and term t, free for x in A .
Axioms for set quantifiers:

(A2∃) ∀XA → A (X/U),
(A2∀) A (X/U)→ ∃XA (X),

for all formulas A , set variables X,U , where U is free for X in A .
By definition, a rule is a pair 〈Θ,A 〉 such that Θ∪ {A } is a finite set

of formulas. Given a rule 〈Θ,A 〉, the elements of Θ are called premises and
A is called conclusion. Rules of the form ({A1, . . . ,An} ,A ) are depicted
as

9



1. Preliminaries

A1 A2 · · · An

A

We use rules for modus ponens, number quantifiers and set quantifiers:

Rules for modus ponens:

A A → B
B

for all formulas A ,B.

Rules for number quantifiers:

A → B(R1∀)
A → ∀xB

B → A(R1∃) ∃xB → A

for all formulas A ,B, and number variables x 6∈ FrVar(A ).

Rules for set quantifiers:

A → B(R2∀)
A → ∀XB

B → A(R2∃) ∃XB → A

for all formulas A ,B, and set variables X 6∈ FrVar(A ).

To conclude this section we recall the notion of derivation. Let T be
a set of formulas. A derivation from T is a finite sequence of formulas
D1, . . . ,Dn such that for all i = 1, . . . , n one of the following conditions
holds:

• Di is a logical axiom,

• Di is an element of T,

• Di is the conclusion of a rule such that all premises of that rule occur
in the sequence D1, . . . ,Di−1.

A formula D is called derivable from T if there exists a derivation from T
with last formula D . In that case we write T ` D and D is called a theorem
of T. Moreover, we use wordings such as “T proves D” or “D is provable
from T”.

In general, we identify a formal system FS with the collection of its
non-logical axioms NL(FS). Accordingly, we simply write FS ` D instead
of NL(FS) ` D . Given two system FS1,FS2, we say that FS1 is a subsystem
of FS2, written FS1 ⊆ FS2, if all theorems of FS1 are also theorems of FS2.

10



1.2. Semantics of L2

1.2. Semantics of L2

We briefly introduce semantic notions in order to fix the notation. For
reference we refer to [End01, Hin18]. A structureM (in the language L2)
consists of

• a non-empty set |M|, called the universe ofM,

• a subset SM of the power set of |M|, called set universe ofM,

• a function fM : |M|n → |M| for each n-ary function symbol f ,

• a relation RM ⊆ |M|n for each n-ary relation symbol R.

Given a structureM, anM-assignment is a mapping

V: Var1 ∪Var2 → |M| ∪ SM

such that V(x) ∈ |M| for all number variables x, and V(X) ∈ SM for all
set variables X. The extension V̄ : Tm(L2) ∪ Var2 → |M| ∪ SM of V is
given by extending V on Tm(L2) as usual by ensuring compatibility with
functions and leaving V unchanged on Var2. For any M-assignment W,
a ∈ |M| and y ∈ Var1, we write W(y : a) to denote the M-assignment
satisfying

W(y :a)(x) =
{
a if x = y,

W(x) otherwise,

for x ∈ Var1, and W(y : a)(X) = W(X) for X ∈ Var2. Analogously,
W(Y : A) denotes W with the modified value A ∈ SM at the argument
Y ∈ Var2. All ingredients to define “A is true for V in M” ( or “M
satisfies A for V”), writtenM,V � A , are now available:

• M,V � s = t if V̄(s) = V̄(t),

• M,V � t ∈ X if V̄(t) ∈ V̄(X),

• M,V � R(t1, . . . , tn) if 〈V̄(t1), . . . , V̄ (tn)〉 ∈ RM,

• M,V � (B1 ∧B2) ifM,V � B1 andM,V � B2,

• M,V � (B1 ∨B2) ifM,V � B1 orM,V � B2,

• M,V � ∃xB ifM,V(x :a) � B for some a ∈ |M|,

11



1. Preliminaries

• M,V � ∀xB ifM,V(x :a) � B for all a ∈ |M|,

• M,V � ∃XB ifM,V(X :A) � B for some A ∈ SM,

• M,V � ∀XB ifM,V(X :A) � B for all A ∈ SM.

A formula A is called valid inM, writtenM � A , ifM, V � A holds for
allM-assignments V . A is called valid if A is valid in all structures. A is
satisfiable if there exists a structure N and an N -assignment W such that
M,W � A . Given a formal system T, a structure M is called a model
of T iff all formulas of T are valid inM. Recall that a (formal) system is
just a set of formulas. By applying Gödel’s completeness theorem to the
two-sorted language L2, the following important principle holds: A given
formula A is a theorem of the formal system T iff A holds in every model
of T.

1.3. The system ACA0

With L2 as our underlying language, we now turn to the definition of
our base theory ACA0, which is a subsystem of the formal system Z2 of
second order arithmetic. Recall that we write 0, 1 and so on for numerals
representing the (standard) natural numbers. The axioms of Z2 are as
follows:

Number-theoretic axioms:

• 0n(x1, . . . , xn) = 0,

• Succ(x) 6= 0,

• Succ(x) = Succ(y)→ x = y,

• Pni (x1, . . . , xn) = xi,

• Compn(g, h1, . . . , hk)(x1, . . . , xn)
= g(h1(x1, . . . , xn), . . . , hk(x1, . . . , xn)),

• Recn+1(g, h)(0, x1, . . . , xn) = g(x1, . . . , xn),

Recn+1(g, h)(Succ(m), x1, . . . , xn)
= h(Recn+1(g, h)(m,x1, . . . , xn),m, x1, . . . , xn),

• (Reln+1(g))(x1, . . . , xn+1)↔ g(x1, . . . , xn+1) 6= 0,

12



1.3. The system ACA0

with n, k ranging over natural numbers.

Induction axiom:

∀X(0 ∈ X ∧ ∀n(n ∈ X → Succ(n) ∈ X)→ ∀n(n ∈ X)).

Full comprehension schema:

∃X∀n(n ∈ X ↔ A (n))

for any formula A (n) with X 6∈ FrVar(A ). A (n) may contain additional
free number and set variables. The number variable n does not have to
occur in A (n).

All formal systems in L2 that will be considered are subsystems of
Z2. They will only differ from Z2 in that they lack the full comprehension
axiom schema. Instead, weaker set-existence principle are introduced. It
turns out that a big branch of (ordinary) mathematics can be formalised in
just five subsystems of Z2, featuring set-existence principles of increasing
strength. Even more so, it can be shown that many mathematical theo-
rems formalised this way are equivalent to one of these five set-existence
principles over some base theory. Research endeavours in this direction are
subsumed under the Friedman/ Simpson program of “Reverse Mathemat-
ics”. The textbook by Simpson, cf. [Sim09], provides an extensive overview
of these topics. For crucial contributions by Friedman we refer to [Fri75]
and [Sim85].

Before defining ACA0, we recall some basic formula types. A formula
A is called arithmetical if it contains no bound set variables. A might
contain free number and set variables. A is called Π1

1 or Σ1
1 if it is of the

form ∀XB or ∃XB, respectively, where B is arithmetical. Σ1
k formulas

are of the form
∃X1∀X2∃ . . . XkB

with k alternating set quantifiers and B being arithmetical. Π1
k formulas

are defined analogously, with the alternating quantifiers starting with ∀.
The arithmetical comprehension schema is the restriction of the full

comprehension axiom schema to arithmetical formulas, i.e.,

∃X∀n(n ∈ X ↔ A (n)), (ACA)

where A (n) is arithmetical, with X not occurring freely. As before, A (n)

13



1. Preliminaries

might contain parameters and n might not occur at all in A (n).
ACA0 is the subsystem of Z2 resulting from restricting the full compre-

hension schema to the arithmetical comprehension schema. ACA is ACA0
together with the full induction schema, i.e.,

(A (0) ∧ ∀n(A (n)→ A (Succ(n))))→ ∀nA (n),

where A (n) is any formula.
ACA is an acronym standing for “arithmetical comprehension axiom”.

Other comprehension or induction schemas will be used. We will not define
these separately as the names are usually self-explanatory. Note that in
ACA0 the arithmetical induction schema can be deduced. Occasionally, we
use PA, which is short for Peano arithmetic, to refer to the first order part
of ACA0.

1.4. Mathematical notions within ACA0

In this section several mathematical notions are introduced. All defini-
tions and assertions can be formalised within ACA0. Basically, we follow
[Sim09], but some adjustments are made in order to comply with [Buc05].
In particular, this concerns the coding of sequences and the introduction of
ordinal notation systems. We reserve +, · and < for p.r. symbols defining
the usual addition, multiplication and “less than” relation on the natural
numbers, respectively. Analogously, we define ≤. Within ACA0, two sets
X,Y are equal, written X = Y , if

∀n(n ∈ X ↔ n ∈ Y ).

Nat is the unique set X (up to equality) such that

∀n(n ∈ X ↔ n = n).

A natural number is simply an element of Nat. As expected, Nat together
with 0, 1, addition, multiplication and < forms a commutative ordered
semiring with cancellation. We reserve the symbol N for the natural num-
bers in the sense of our meta theory. Note that in [Sim09], N is used instead
of Nat, and ω instead of N. We reserve ω to be the first limit ordinal.

A central role is occupied by finite sequences. We use a p.r. machinery
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1.4. Mathematical notions within ACA0

to code these. More precisely, we set 〈〉 := 0, and for n > 0 and natural
numbers u0, . . . , un−1,

〈u0, . . . , un−1〉 := prim(0)u0+1 + · · ·+ prim(n− 1)un−1+1,

where prim is the p.r. function enumerating the prime numbers. For every
k ∈ N, the k-ary p.r. function mapping u0, . . . , uk−1 to 〈u0, . . . , uk−1〉 is
p.r.. In addition, we presuppose a unary function symbol lh and the binary
p.r. function symbols ∗, (·)· and const. The function corresponding to lh
gives the length of a finite sequence, ∗ concatenates finite sequences, (·)·
picks elements out of finite sequences, and const is needed for technical
reasons. More precisely, we can prove in ACA0 that:

lh(〈u0, . . . , un−1〉) = n,

i < n→ ((〈u0, . . . , un−1〉)i = ui ∧ ui < 〈u0, . . . , un−1〉),
〈u0, . . . , un−1〉∗〈v0, . . . , vm−1〉 = 〈u0, . . . , un−1, v0, . . . , vm−1〉,

const(w, 〈u0, . . . , un−1〉) = 〈w, u0, . . . , un−1〉.

We use the symbol Seq to denote a unary p.r. relation containing all codes
of finite sequences, i.e., for all natural numbers s,

s ∈ Seq ↔ s = 〈(s)0, . . . , (s)lh(s)−1〉.

As a pairing map we then use the p.r. function mapping u, v to 〈u, v〉. By
the above remarks we can assume that the following properties hold:

• u < 〈u, v〉 and v < 〈u, v〉,

• 〈u1, v1〉 = 〈u2, v2〉 → (u1 = v1 ∧ u2 = v2).

A set X is called finite if ∃k∀n(n ∈ X → n < k). The Cartesian prod-
uct X × Y of two sets X,Y is then defined as {〈u, v〉 : u ∈ X ∧ v ∈ Y }.
Formally, X × Y is still a subset of Nat. A function f : X → Y is a set
f ⊆ X × Y with the usual properties, i.e.,

• (∀x ∈ X)(∃y ∈ Y )(〈x, y〉 ∈ f),

• ∀x, y1, y2(〈x, y1〉 ∈ f ∧ 〈x, y2〉 ∈ f → y1 = y2).

To conclude this section we discuss how to work with orderings in our
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1. Preliminaries

setting. A set X ⊆ Nat×Nat ⊆ Nat is called reflexive if

∀i∀j(〈i, j〉 ∈ X → 〈i, i〉 ∈ X ∧ 〈j, j〉 ∈ X).

If X is reflexive we set field(X) := {i : 〈i, i〉 ∈ X} and

i ≤X j ↔ 〈i, j〉 ∈ X,
i <X j ↔ (〈i, j〉 ∈ X ∧ 〈j, i〉 6∈ X).

X is called a countable linear ordering if X is reflexive and for all i, j, k:

(i ≤X j ∧ j ≤X k)→ i ≤X k,

(i ≤X j ∧ j ≤X i)→ i = j,

i, j ∈ field(X)→ (i ≤X j ∨ j ≤X i).

X is called well-founded if X is reflexive and every subset of field(X) has
a X-minimal element, i.e.,

(∀M ⊆ field(X))(M 6= ∅ → (∃x ∈M)(∀y ∈M)(y ≤X x→ x = y)).

We say that X is a countable well ordering if it is well-founded and a
countable linear ordering. We define WF(X) , LO(X) and WO(X) to be
formulas (with only X as free variable) expressing that X is, respectively,
well founded, a countable linear ordering, and a countable well ordering.
The term “countable ” is usually left out. Observe that WO(X) is Π1

1.
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2. ATR0 and relatives

2.1. The system ATR0

The formal system ATR0 featuring the schema (ATR) of “arithmetical
transfinite recursion” is discussed next. Given a linear ordering W , we
define the classes

(Y )j := {n : 〈n, j〉 ∈ Y } ,
(Y )Wj := {〈m, i〉 ∈ Y : i <W j} .

Note that the defining formula for (Y )Wj is of the form

F (n) ≡ ∃m, i(n = 〈m, i〉 ∧ n ∈ Y ∧ i <W j).

Intuitively, thinking of Y as a hierarchy along W , (Y )j contains the ele-
ments of the j-th level of Y , and (Y )Wj is the disjoint sum of all levels
of Y up to some j ∈ field(W ). By (ACA), these classes exist properly as
sets. The schema (ATR) asserts the existence of a set Y that results from
iterating an operator, given by an arithmetical formula A (n, j,X), along
some well ordering W . To state this rigorously, define HA (W,Y ) to be the
formula expressing that LO(W ) and

Y =
{
〈n, j〉 : j ∈ field(W ) ∧A (n, j, (Y )Wj)

}
.

The bound variable j will be referred to as field variable. Moreover, let
HA (k,W, Y ) be the formula stating that LO(W ), k ∈ field(W ) and

Y =
{
〈n, j〉 : j <W k ∧A (n, j, (Y )Wj)

}
.

Observe that HA (W,Y ) implies

(Y )j =
{
n : A (n, j, (Y )Wj)

}

17



2. ATR0 and relatives

for j ∈ field(W ), and Yj = ∅ otherwise. In particular, Y ⊆ Nat×field(W ).
If A (n, j,X) contains additional parameters other than n,X, these also
occur in HA (W,Y ). However, the field variable j does not occur freely in
HA (W,Y ). Also, since A (n, j,X) is arithmetical, so is HA (W,Y ).

Arithmetical transfinite recursion
The system ATR0 consists of ACA0 plus all formulas of the form

∀W (WO(W )→ ∃YHA (W,Y )) (ATR)

for any arithmetical formula A (n, j,X). A (n, j,X) might contain addi-
tional free set and numbers variables, besides n, j,X. ATR is ATR0 together
with the full induction schema.

Note that we allow the field variable j to occur in A (n, j,X) which is
iterated. It is shown in the appendix that, over ACA0, the schema (ATR)
is equivalent to a version where the field variable must not occur.

2.2. Relatives of ATR0

In [BJ20], several axiom schemas are introduced and shown to be equivalent
to (ATR) over our base theory ACA0. In this section, these results will be
restated and extended, including their proofs. When introducing an axiom
schema (Sch), we write Sch0 for ACA0 +(Sch), i.e., Sch0 denotes the formal
system consisting of ACA0 together with (Sch). Analogously, we set

Sch := ACA + (Sch).

We now present all axiom schemas and put them into context. Over ACA0,
all schemas, except (Σ1

1-Red), turn out to be equivalent to (ATR). The
equivalence proofs will be given in the next section.

Fixed points for positive arithmetical clauses
The schema (FP) consists of all formulas of the form

∃X∀n(n ∈ Y ↔ A (n, Y )), (FP)

where A (n,X) is an X-positive arithmetical formula.
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Interpreting A (n,X) as an operator mapping sets to sets, i.e.,

PA : P(N) −→ P(N)
X 7−→ {n : A (n,X)} ,

the schema (FP) asserts the existence of some fixed point of PA . The
corresponding system FP0 was shown by Avigad in [Avi96] to be equivalent
to ATR0. Note that (ACA) is a special case of (FP).

Fixed points of monotone ∆1
1 clauses

The schema (M∆1
1-FP) consists of all formulas of the form

MonA ,B → ∃Y ∀n(n ∈ X ↔ A (n, Y )), (M∆1
1-FP)

where A (n,X) is a Σ1
1 formula, B(n,X) a Π1

1 formula, and MonA ,B is
defined as the formula

∀n,X(A (n,X)↔ B(n,X)) ∧
∀X,Y (X ⊆ Y → ∀n(A (n,X)→ A (n, Y ))).

The schema (M∆1
1-FP) demands the existence of fixed points for mono-

tone operators that are definable by a ∆1
1 formula. Clearly, every X-

positive formula A (n,X) induces a monotone operator since

∀X,Y (X ⊆ Y → ∀n(A (n,X)→ A (n, Y ))),

hence (M∆1
1-FP) is a generalisation of (FP).

Weak Σ1
1 transfinite dependent choice

The schema (w-Σ1
1-TDC) contains exactly all formulas of the form:

∀j∀X∃!YA (j,X, Y ) ∧WO(W )→
∃Z∀j(j ∈ field(W )→ A (j, (Z)Wj , (Z)j)),

(w-Σ1
1-TDC)

with A (n,X) ranging over Σ1
1 formulas.

As is common, the ∃! quantifier denotes unique existence. The term
“choice” is a bit artificial since the set Z can be shown to be unique by
arithmetical transfinite induction, which is available in ACA0. The name
was chosen in the style of the schema (Σ1

1-TDC), where the uniqueness

19



2. ATR0 and relatives

condition is not requested.

Π1
1 and Σ1

1 reduction
For all Σ1

1 formulas A (n) and all Π1
1 formulas B(n), the schema (Π1

1-Red)
consists of all formulas of the form

∀n(A (n)→ B(n))→
∃Y (∀n(A (n)→ n ∈ Y ) ∧ ∀n(n ∈ Y → B(n))).

(Π1
1-Red)

Similarly, the schema (Σ1
1-Red) contains exactly all formulas of the form

∀n(B(n)→ A (n))→
∃Y (∀n(B(n)→ n ∈ Y ) ∧ ∀n(n ∈ Y → A (n))),

(Σ1
1-Red)

with A (n) and B(n) as above.
In [Sim09], the equivalence of ATR0 and Π1

1-Red0 is shown. Simpson
introduces (Π1

1-Red) and (Σ1
1-Red) as, respectively, Σ1

1 and Π1
1 separation.

However, we will also study variants of these principles in set-theoretic
contexts. Thus, we use a different terminology in order to better distinguish
these variants from usual set-theoretic separation principles.

∆1
1 transfinite arithmetical recursion

For all Σ1
1 formulas A (n, j,X) and all Π1

1 formulas B(n, j,X), the schema
(∆1

1-TR) is the collection of all formulas of the form

∀n, j,X(A (n, j,X)↔ B(n, j,X))→
(WO(W )→ ∃YHA (W,Y ))

(∆1
1-TR)

Analogously to (M∆1
1-FP) being a generalisation of (FP), the above

definition is a strengthening of (ATR) in the sense that the recursion takes
place over ∆1

1 formulas.

2.3. Equivalence proofs
In this section we will show that all axiom schemas introduced in the previ-
ous section are equivalent over ACA0. These results are partially presented
in [BJ20]. In that context, it is convenient to introduce the notion of Σ1

and Π1 formulas.

20



2.3. Equivalence proofs

Definition 2.1. The class of Σ1 formulas is the smallest class of L2 for-
mulas that contains the arithmetical formulas, and is closed under the
connectives ∧ and ∨, existential and universal number quantification, as
well as existential set quantification. The class of Π1 formulas is defined
exactly as the Σ1 formulas, but instead of closure under existential set
quantification, we demand closure under universal set quantification.

We continue by collecting well established results that will play a role
later. These involve some additional axiom schemas presented below.
Comprehension for ∆1

1 formulas: The schema (∆1
1-CA) comprises all for-

mulas of the form

∀n(A (n)↔ B(n))→ ∃X∀n(n ∈ X ↔ A (n)), (∆1
1-CA)

where A (n) is a Σ1
1 formula and B(n) a Π1

1 formula.
Σ1

1 choice: The schema (Σ1
1-AC) comprises all formulas

∀n∃YA (n, Y )→ ∃Y ∀nA (n, (Y )n), (Σ1
1-AC)

with A (n) ranging over Σ1
1 formulas.

Theorem 2.2. The following assertions hold.

(a) (ATR), (FP) and (Π1
1-Red) are equivalent over ACA0.

(b) ATR0 proves the schemas (∆1
1-CA) and (Σ1

1-AC).

(c) Σ1
1-AC proves all instances of (Σ1

1-Red).

(d) For any Σ1
1 formula A (X), ACA0 proves

¬∀X(A (X)↔WO(X)).

For reference we refer to [Avi96, Sim09]. We continue with the follow-
ing observation.

Lemma 2.3. ATR0 ⊆ w-Σ1
1-TDC0.

Proof. Working in w-Σ1
1-TDC0, let A (n, j,X) be an arithmetical formula.

We define the arithmetical formula

B(j,X, Y ) :≡ Y = {n : A (n, j,X)} .
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2. ATR0 and relatives

Note that by (ACA), ∀j∀X∃!YB(j,X, Y ). Next, consider a well ordering
W. Applying (w-Σ1

1-TDC) yields a set Z such that

B(j, (Z)Wj , (Z)j)

for all j ∈ field(W ). By definition of B(j,X, Y ) we have

(Z)j =
{
n : A (n, j, (Z)Wj)

}
. (2.1)

Using (ACA), the set (Z)W := {〈n, j〉 ∈ Z : j ∈ field(W )} exists and satis-
fies HA (W, (Z)W ) by (2.1). This establishes (ATR).

The following corollary will facilitate working with Σ1 and Π1 formulas
on certain occasions. Details can be found in [Sim09]. By Theorem 2.2(b)
and Lemma 2.3 we have w-Σ1

1-TDC0 ` (Σ1
1-AC).

Corollary 2.4. The following assertions are provable in Σ1
1-AC0, and

therefore in particular also in w-Σ1
1-TDC0, ∆1

1-TR0 and Π1
1-Red.

(a) Every Σ1 formula is provably equivalent to a Σ1
1 formula, and every

Π1 formula to a Π1
1 formula. In both cases, the free variables remain

unchanged.

(b) The schema (∆1
1-CA).

The next lemma is rather technical. It enables us to embed M∆1
1-FP0

into w-Σ1
1-TDC0.

Lemma 2.5. Working in w-Σ1
1-TDC0, consider a Σ1

1 formula A (n,X) and
a Π1

1 formula B(n,X) satisfying

(a) ∀n∀X(A (n,X)↔ B(n,X)),

(b) ∀X,Y (X ⊆ Y → ∀n(A (n,X)→ A (n, Y ))).

Let C (W,X) be the formula stating that for all j ∈ field(W ) the following
hold:

(C1) LO(X),

(C2) (X)j = {n : A (n,
⋃
{(X)i : i <W j})},

(C3) ∀i(i <W j → (X)i ⊆ (X)j),
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(C4) ∀n(n ∈ (X)j → (∃k ≤W j)(n ∈ (X)k ∧ n /∈
⋃
{(X)i : i <W k})).

Then w-Σ1
1-TDC0 proves for any set W ,

WO(W )→ ∃Y C (W,Y ).

Proof. Suppose we work in w-Σ1
1-TDC0. Let W be a well ordering. Aiming

for an application of (w-Σ1
1-TDC), we define the formula

D(X,Y ) :≡ ∃U(U = {n : ∃i(〈n, i〉 ∈ X)} ∧ Y = {n : A (n,U)}).

By Corollary 2.4 and (a), (w-Σ1
1-TDC) is applicable to D(X,Y ): First,

note that D(X,Y ) is equivalent to a Σ1 formula and therefore also to a Σ1
1

formula. Moreover, by (∆1
1-CA) and (a), the classes

{n : ∃i(〈n, i〉 ∈ X)} and {n : A (n,U)}

exist properly as sets. It follows that ∀X∃!YD(X,Y ). Thus, there exists
a set Z satisfying

D((Z)Wj , (Z)j) (2.2)

for any j ∈ field(W ). We will show that C (W,Z). Trivially, (C1) holds
since WO(W ). Unwrapping (2.2) gives

∃U(U =
{
n : ∃i(〈n, i〉 ∈ (Z)Wj)

}
∧ (Z)j = {n : A (n,U)}),

which amounts to

(Z)j =
{
n : A

(
n,
⋃
{(Z)i : i <W j}

)}
,

i.e., (C2) holds. Next, (C3) follows immediately by (C2), the assumption
(b), and the trivial observation that for i <W j,⋃

{(Z)k : k <W i} ⊆
⋃
{(Z)k : k <W j}.

Finally, (C4) is a direct consequence of WO(W ): First, observe that the
set

M := {j ∈ field(W ) : n ∈ (Z)j}

exists by (ACA) for any number n. Moreover, if M 6= ∅, setting k to be
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the W -minimal element of M , it follows directly that

n ∈ (Z)k ∧ n /∈
⋃
{(Z)i : i <W k}.

This finishes the proof.

Theorem 2.6. M∆1
1-FP0 ⊆ w-Σ1

1-TDC0.

Proof. Working in w-Σ1
1-TDC0, let A (n,X) be a Σ1

1 formula, and B(n,X)
a Π1

1 formula satisfying

(a) ∀n∀X(A (n,X)↔ B(n,X)),

(b) ∀X,Y (X ⊆ Y → ∀n(A (n,X)→ A (n, Y ))).

Let C (W,X) be as defined in Lemma 2.5 such that w-Σ1
1-TDC0 proves

WO(W )→ ∃Y C (W,Y ).

By Corollary 2.4, the formula ∃Y C (W,Y ) is equivalent to a Σ1
1 formula,

therefore by Theorem 2.2(d), there exists sets R and Z such that

¬WO(R) ∧ C (R,Z).

In particular, LO(R). This will be used throughout in the following. Since
¬WO(R), there exists M ⊆ field(R) such that M 6= ∅ and (∀j ∈ M)(∃i ∈
M)(i <R j). Using M as parameter, we define

U := {i : (∃j ∈M)(j ≤R i)} .

Clearly, U 6= ∅ and U is upwards closed. Furthermore, we set

V := {j : (∀i ∈ U)(j <R i)} .

U and V exist by (ACA). Intuitively, V consists of everything below U .
Obiously, V is downwards closed, U and V are disjoint, and U ∪ V =
field(R). Using (ACA) once more, we consider the sets

T0 :=
⋂
{(Z)i : i ∈ U} and T1 :=

⋃
{(Z)i : i ∈ V }.

We claim that T0 = T1. T1 ⊆ T0 follows immediately by definition and
(C3). Conversely, assume n ∈ T0 and let j ∈ U 6= ∅. In particular, we then

24



2.3. Equivalence proofs

have n ∈ (Z)j . By (C4), there exists k ≤R j such that

n ∈ (Z)k ∧ n /∈
⋃
{(Z)i : i <W k}.

We claim that k ∈ V . To see this suppose i <R k. The above implies
n /∈ (Z)i, hence i /∈ U since n ∈ T0. It follows that

(∀i <R k)(i ∈ V ).

This implies that k ∈ V since otherwise, k would be the R-minimal element
of U . Thus, we have n ∈ T1, which shows that T0 ⊆ T1. Finally, we will
prove that

(c) ∀n(A (n, T0)→ n ∈ T0),

(d) ∀n(n ∈ T1 → A (n, T1)).

For (c) we assume A (n, T0) and consider j ∈ U . Since U has no R-minimal
element, there exists i ∈ U with i <R j. By (b) and definition of T0 we
then get A (n, (Z)i). Using (b) once again gives A (n,

⋃
{(Z)i : i <R j}),

which by (C2) yields n ∈ (Z)j . As j ∈ U was arbitrary, we can conclude
that n ∈ T0. For (d), suppose n ∈ T1, i.e., j ∈ (Z)j for some j ∈ V . By
(C2) we have

A
(
n,
⋃
{(Z)i : i <R j}

)
.

V is downwards closed, hence
⋃
{(Z)i : i <R j} ⊆ T1. Applying (b)

yields A (n, T1). Thus, we showed (d). Since T0 = T1, it follows by (c)
and (d) that T0 is a fixed point for A (n,X). This establishes the schema
(M∆1

1-FP).

Theorem 2.7. w-Σ1
1-TDC0 ⊆ ∆1

1-TR0.

Proof. We work in ∆1
1-TR0 and assume WO(W ). Moreover,

∀j∀X∃!YA (j,X, Y ), (2.3)

where A (j,X, Y ) is some Σ1
1 formula. Define the formulas

B(n, j,X) :≡ ∃Y (A (j,X, Y ) ∧ n ∈ Y ),
C (n, j,X) :≡ ∀Y (A (j,X, Y )→ n ∈ Y ),
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where n does not occur in A (j,X, Y ). By (2.3) we can infer that

∀n, j∀X(B(n, j,X)↔ C (n, j,X)).

Note that B(n, j,X) is Σ1, and C (n, j,X) is Π1. Thus, by Corollary 2.4 we
can apply (∆1

1-TR). So there exists a set Z such that for any j ∈ field(W )

(Z)j =
{
n : B(n, j, (Z)Wj)

}
=
{
n : ∃Y (A (j, (Z)Wj , Y ) ∧ n ∈ Y )

}
.

By (2.3) we then have A (j, (Z)Wj , (Z)j), which validates (w-Σ1
1-TDC).

We continue with deriving ∆1
1-TR0 in Π1

1-Red0. The following two
lemmas will be useful in achieving that.

Lemma 2.8. In ∆1
1-CA0, transfinite induction for ∆1

1 formulas is prov-
able, i.e., for any Σ1

1 formula A (n), and any Π1
1 formula B(n) such that

∀n(A (n)↔ B(n)), we can prove that

(WO(W ) ∧ ∀j((∀i <W j)A (i)→ A (j)))→ ∀nA (n).

Proof. In ∆1
1-CA0, let the formulas A (n) and B(n) be as stated. Assume

WO(W ) and ∀j((∀i <W j)A (i) → A (j)). By (∆1
1-CA), consider the set

M := {n : ¬A (n)}. Suppose M 6= ∅. Then also N := M ∩ field(W ) 6= ∅.
N clearly exists by (ACA). By WO(W ), let k ∈ N be W -minimal in
N . Thus, we have ¬A (k) and (∀i <W k)A (i). By assumption the latter
implies A (k), a contradiction, hence M = ∅, i.e., ∀nA (n).

Lemma 2.9. The following is provable in ∆1
1-CA0, and hence also in

Π1
1-Red0: Given a Σ1

1 formula A (n, j,X) and a Π1
1 formula B(n, j,X)

such that
∀n, j∀X(A (n, j,X)↔ B(n, j,X)),

it follows that

(∀k ∈ field(W ))HA (k,W, (Y )Wk)→ ∃ZHA (W,Z).

Proof. We work in ∆1
1-CA0. Consider a set Y such that

(∀k ∈ field(W ))HA (k,W, (Y )Wk). (2.4)
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In the following, we fix some j ∈ field(W ). Note that for i <W j,

(Y )i = ((Y )Wj)i and (Y )Wi = ((Y )Wj)Wi.

By (2.4) we have in particular HA (j,W, (Y )Wj), hence

(Y )i =
{
n : A (n, j, (Y )Wi)

}
.

If W has no maximal element, the above argument immediately implies
that HA (W,Y ∩ (Nat×field(W ))). Otherwise, let l be the maximum of
W. By Corollary 2.4, using (∆1

1-CA) the following set exists properly:

Z := Y ∪
{
〈n, l〉 : A (n, l, (Y )Wl)

}
.

Note that (Z)Wl = (Y )Wl. The definition of Z immediately yields

(Z)l =
{
n : A (n, l, (Z)Wl)

}
.

As above, we also have (Z)i =
{
n : A (n, i, (Z)Wi)

}
for all i <W l. Alto-

gether, it follows thatHA (W,Z∩(Nat×field(W ))), finishing the proof.

Theorem 2.10. ∆1
1-TR0 ⊆ Π1

1-Red0.

Proof. Working in Π1
1-Red, let A (n, j,X) be a Σ1

1 formula and B(n, j,X)
a Π1

1 formula satisfying

∀n, j∀X(A (n, j,X)↔ B(n, j,X)). (2.5)

Moreover, we consider a well ordering W. Now, we define

D0(m) :≡ ∃n, j∃Y (m = 〈n, j〉 ∧ j ∈ field(W ) ∧
HA (j,W, (Y )Wj) ∧A (n, j, (Y )Wj)),

D1(m) :≡ ∀n, j∀Y (m = 〈n, j〉 ∧ j ∈ field(W ) ∧
HA (j,W, (Y )Wj)→ A (n, j, (Y )Wj)).

By Corollary 2.4, D0(m) is provably equivalent to a Σ1
1, and D1(m) to a

Π1
1 formula by (2.5). Applying (Π1

1-Red), we obtain a set Y such that

(a) ∀m(D0(m)→ m ∈ Y ),

(b) ∀m(m ∈ Y → D1(m)).
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2. ATR0 and relatives

We will show that the following holds for all k:

k ∈ field(W )→ HA (k,W, (Y )Wk).

By Corollary 2.4 and (2.5), the above formula is equivalent to a Σ1
1 and

a Π1
1 formula. We can therefore use transfinite induction along W, cf.

Lemma 2.8. In view of Lemma 2.9, we then get a proper witness for the
given instance of (∆1

1-TR). To carry out the induction, let k ∈ field(W )
and assume that

(∀j <W k)HA (j,W, (Y )Wj).

Let V := {〈i, j〉 ∈W : j <W k}. Since W is a well ordering, so is V and
the above is equivalent to

(∀j ∈ field(V ))HA (j, V, (Y )V j).

Applying Lemma 2.9, we obtain a set Z satisfyingHA (V,Z). This amounts
to HA (k,W,Z). It remains to show that Z = (Y )Wk. Consider j <W k. It
suffices to check that (Z)j = (Y )j . Suppose n ∈ (Z)j , i.e., A (n, j, (Z)Wj).
Observe that HA (j,W, (Z)Wj), hence we have D0(〈n, j〉), which by (a) im-
plies n ∈ (Y )j . Conversely, suppose n ∈ (Y )j . By (b) we have D1(〈n, j〉).
Since HA (j,W, (Z)Wj) we get A (n, j, (Z)Wj), i.e., n ∈ (Z)j . This con-
cludes the induction, and therefore the proof by Lemma 2.9.

Finally, as mentioned in the introduction of M∆1
1-FP0, we can prove

the following.

Proposition 2.11. FP0 ⊆ M∆1
1-FP0.

Proof. Working in M∆1
1-FP0, let A (n,X) be an X-positive arithmetical

formula. By induction on the build-up of A (n,X), it follows that

∀X,Y (X ⊆ Y → ∀n(A (n,X)→ A (n, Y ))),

hence (M∆1
1-FP) is applicable to A (n,X). This yields a fixed point for

A (n,X), establishing (FP).

In view of Theorem 2.2(a), Theorem 2.6, Theorem 2.7, Theorem 2.10
and Proposition 2.11 we get the following result.

28



2.3. Equivalence proofs

Corollary 2.12. Over ACA0, the schemas

(ATR), (FP), (M∆1
1-FP), (w-Σ1

1-TDC), (∆1
1-TR) and (Π1

1-Red)

are equivalent.
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3. ATR0 without set-parameters
In the previous section we showed that certain formal systems featuring
different set-theoretic principles are all equivalent to ATR0. We now turn to
formal systems related to set-parameter free relatives of ATR0. In contrast
to before, we will not prove the equivalence of these systems, but rather
characterise these up to proof-theoretic strength. We start with introducing
the required concepts and defining the relevant systems.

3.1. The systems ATR−0 and ATR−

In this section set-parameter free variants of ATR0 and related systems will
be discussed. The central schema and corresponding formal systems are
defined next.

Arithmetical transfinite recursion without set parameters
The axiom schema (ATR−) consists of all formulas

∀W (WO(W )→ ∃YHA (W,Y )), (ATR−)

where A (n, j,X) is arithmetical with no free set variable occurring freely,
except X. The corresponding systems extending ACA0 is denoted ATR−0 .
ATR− is ATR−0 together with induction for all L2 formulas.

It turns out that ATR−0 is as strong as ATR0. This will be shown in the
next theorem. The proof idea is that when recursively iterating an arith-
metical formula A with set parameters ~U along some well ordering W , the
parameters ~U can be coded into a new well ordering V . Without loss of
generality, we can assume that there is just one parameter U . Intuitively,
V consists of U ordered by ≤, followed by field(W ), ordered by ≤W . The
iteration is then taken along V over a modified formula A ∗ without set
parameters. A ∗ is defined such that when iterated along V , U is getting
copied element by element and can therefore be retrieved. When the itera-
tion arrives at field(W ), the original formula A is being iterated, where U
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3. ATR0 without set-parameters

is retrieved by referring to the respective lower part of the hierarchy. The
proper statement and the formal proof are presented next.

Theorem 3.1. The systems ATR0 and ATR−0 are equivalent.

Proof. Clearly, ATR−0 ⊆ ATR0. For the converse direction, we work in
ATR−0 . Let W be a well ordering and

A (n, j,X) ≡ A (n, j,X,U0, . . . , Ul)

arithmetical, with only the indicated set variables occurring freely. The
main idea will be to code W and the parameters U0, . . . , Ul into a new well
ordering V . Without loss of generality, we can assume that there is only
one set parameter U besides X. Otherwise, we consider the disjoint union

U :=
{
〈n, 0̄〉 : n ∈ U0

}
∪ . . . ∪

{
〈n, l̄〉 : n ∈ Ul

}
,

where 0, . . . , l are numerals, cf. section 1.1. Obviously, by (ACA), U exists,
and conversely, Ui can be retrieved from U for i = 0, . . . , l.

Our goal is to derive a set Z satisfying HA (W,Z), where A (n, j,X,U)
is arithmetical, with no other free set variables besides X,U . We let

V := {〈〈m, 0〉, 〈n, 0〉〉 : m,n ∈ U ∧m ≤ n}
∪ {〈〈m, 0〉, 〈n, 1〉〉 : m ∈ U ∧ n ∈ field(W )}
∪ {〈〈m, 1〉, 〈n, 1〉〉 : m,n ∈ field(W ) ∧m ≤W n} ,

where, according to our convention, 0 stands for 0 and 1 for 1. Clearly,
V exists by (ACA) and is a well ordering since W is one and every set
is well ordered by ≤; a consequence of the induction axiom. The field of
V consists of the disjoint union of U and field(W ). Next, we define the
arithmetical formula

A ∗(n, j,X) :≡ j = 〈n, 0〉 ∨
∃v(j = 〈v, 1〉 ∧A (n, v, [X]f , [X]p)),

where [X]f and [X]p are defined as

[X]f := {〈n, v〉 : 〈n, 〈v, 1〉〉 ∈ X} ,
[X]p := {n : 〈n, 〈n, 0〉〉 ∈ X} .
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3.1. The systems ATR−0 and ATR−

Clearly, [X]f and [X]p exist as sets by (ACA). The subscripts f and p
stand for, respectively, “field” and “parameter”. Let Y be the result of
applying (ATR−) to V and A ∗(n, j,X), hence Y ⊆ N×field(V ) and for
all (w, k) ∈ field(V ),

(Y )〈w,k〉 =
{
n : A ∗(n, 〈w, k〉, (Y )V 〈w,k〉)

}
.

By definition of V , k ranges over 0, 1. For k = 0 the above unfolds to

(Y )〈w,0〉 = {n : 〈w, 0〉 = 〈n, 0〉} = {w} ,

with w ranging over U . It follows that

[Y ]p = {n : 〈n, 〈n, 0〉〉 ∈ Y } =
{
n : n ∈ (Y )〈n,0〉

}
= U.

If k = 1, by definition of A ∗(n, j,X), we have n ∈ (Y )〈w,1〉 iff

A (n, 〈w, 1〉, [(Y )V 〈w,1〉]f , [(Y )V 〈w,1〉]p).

By properties of Y and V we get

[(Y )V 〈w,1〉]p = [Y ]p = U.

One can easily verify that [(Y )V 〈w,1〉]f = ([Y ]f )Ww as

[(Y )V 〈w,1〉]f =
{
〈n, v〉 : 〈n, 〈v, 1〉〉 ∈ (Y )V 〈w,1〉

}
= {〈n, v〉 : 〈n, 〈v, 1〉〉 ∈ Y ∧ 〈v, 1〉 <V 〈w, 1〉}
= {〈n, v〉 : 〈n, 〈v, 1〉〉 ∈ Y ∧ v <W w}
=
{
〈n, v〉 : 〈n, v〉 ∈ [Y ]f ∧ v <W w

}
= ([Y ]f )Ww.

Moreover, ([Y ]f )w = (Y )〈w,1〉. Altogether, it follows that

([Y ]f )w =
{
n : A ∗(n, 〈w, l〉, ([Y ]f )Ww, U)

}
with w ranging over field(W ). Clearly, [Y ]f ⊆ N×field(W ). Together
with the above, this establishes that [Y ]f is the desired set, finishing the
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3. ATR0 without set-parameters

proof.

The following is an immediate consequence of Theorem 2.2(a) and
Theorem 3.1:

Corollary 3.2. The following equivalences hold:

(a) The systems ATR−0 , ATR0 and FP0 are equivalent.

(b) The systems ATR−, ATR and FP are equivalent.

3.2. Proof-theoretic strength of a theory
In this section, the notion of proof-theoretic ordinal of a formal system will
be introduced. We use ϕ·(·) to denote the Veblen functions. Recall that
ε0 := ϕ1(0) is the first ordinal such that ωε0 = ε0, where ω denotes the first
limit ordinal. Γ0 is the first strongly critical ordinal, i.e., Γ0 is the least α
such that ϕα(0) = α. The order type of a well ordering W is the unique
ordinal α such that there exists an order-preserving bijection between W
and α. Before we can define the proof-theoretic strength of a theory, we
need some additional notions.

Definition 3.3. Let ≺ be a binary p.r. relation. We define the following
L2 formulas:

Prog(≺, X) :≡ ∀w((∀v ≺ w)(v ∈ X)→ w ∈ X),
TI(≺, X) :≡ Prog(≺, X)→ ∀w(w ∈ X).

We now have the ingredients to define the proof-theoretic ordinal of a
formal system.

Definition 3.4. Let T be a formal system in a language L that contains
L1. In particular, L features the p.r. function and relation symbols, as well
as the anonymous unary relation variable Q.

(a) An ordinal α is called provable within T, if there exists a (strict) p.r.
well ordering ≺ of order type α, such that

T ` TI(≺, Q).
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3.2. Proof-theoretic strength of a theory

(b) The proof-theoretic ordinal of T, denoted |T|, is the least ordinal
which is not provable within T.

To actually determine the proof-theoretic strength of a given system,
we will work with the (strict) p.r. well ordering ≺, as introduced in [Buc05].
Henceforth, the meaning of≺ is therefore fixed. The well ordering≺ is large
enough for our purposes. The symbol � denotes the non-strict version of ≺.
We continue with introducing essential notions regarding ≺. All definitions
are made w.r.t. some appropriate formal system T, cf. Definition 3.4. An
ordinal term is a closed number term t such that t ∈ field(�). Any ordinal
term corresponds to an ordinal in the sense of our meta theory. In the
following, Greek letters α, β, γ, µ, ξ are used for number variables. For
convenience, we introduce the additional notions,

α ⊆ X :≡ (∀ξ ≺ α)(ξ ∈ X),
Prog(X) :≡ ∀α(α ⊆ X → α ∈ X),
TI(α,X) :≡ Prog(X)→ α ⊆ X,

WO(α) :≡ ∀X TI(α,X).

Note that in ACA0, WO(α) iff the restriction of ≺ (or rather �) to all
elements below α is a well ordering, as defined in section 1.4. If t is an
ordinal term such that T ` TI(t, Q), according to Definition 3.4, the ordinal
represented by t is provable in T. When working with ≺, we adhere to the
notation common with ordinals. In particular, we use symbols such as 0,
1, ε0 or ϕ1(ε0) for designated ordinal terms representing the corresponding
ordinal. Moreover, following [Buc05], there are p.r. functions · +̂ ·, ω· and
ϕ·(·) representing ordinal addition, taking powers with base ω, and the
binary Veblen functions on field(�). Finally, we note that every α ∈ field(�
) can be written in Cantor normal form, i.e.,

α = ωα1 +̂ . . . +̂ωαm

for unique α1, . . . , αm, where m ≥ 1. There exists binary p.r. function
symbols h and e such that

h(α) = ωα1 +̂ . . . +̂ωαm−1 and e(α) = αm.

35



3. ATR0 without set-parameters

One can then define the p.r. function ϕ̂·(·) satisfying

ϕ̂α(β) = ϕα1(ϕα2(· · · (ϕαm
(β)) · · · )).

This function will be important in the next section.

3.3. The systems FP−0 and pr-ATR−0
As shown in the previous section, removing set-parameters does not affect
ATR0 and ATR. We now turn to a set-parameter free variant of FP0, namely
FP−0 , and pin down a proof-theoretically equivalent variant of ATR−0 , de-
noted pr-ATR−0 , where transfinite recursion is restricted along initial seg-
ments of ≺. The effect of adding full induction will be examined in the
next section.

It turns out that |FP−0 | = |pr-ATR−0 | = ϕε0(0). First, we establish
that FP−0 is a conservative extension of ÎD1, and therefore has the same
proof-theoretic strength. Feferman showed that ÎD1 = ϕε0(0), cf. [Fef82].
Following [Avi96], we proceed by showing that (pr-ATR−) is derivable in
FP−. The section is concluded by showing that ϕε0(0) ≤ |pr-ATR−0 | and
ϕϕ1(ε0)(0) ≤ |pr-ATR−|, where ≤ denotes the usual order relation on the
ordinals. These results will also be used in the next section.

We proceed with stating the exact definitions of the formal systems of
interest.

Arithmetical transfinite recursion along the p.r. well ordering ≺
Let ≺ be the p.r. well ordering fixed in section 3.2. For any number
variable α and formula A (n, j,X) we set

HA (α, Y ) :≡ Y =
{
〈n, ξ〉 : ξ ≺ α ∧A (n, ξ, (Y )≺ξ)

}
,

where (Y )≺ξ := {〈m,µ〉 ∈ Y : µ ≺ ξ}. The axiom schema (pr-ATR−) con-
sists of all formulas

WO(α)→ ∃YHA (α, Y ), (pr-ATR−)

for any number variable α and arithmetical formula A (n, j,X) with only
free set variable X. The system pr-ATR−0 denotes ACA0 together with
(pr-ATR−). pr-ATR− is obtained by adding induction for all L2 formulas
to pr-ATR−0 .
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3.3. The systems FP−0 and pr-ATR−0

Positive arithmetical fixed points without set parameters
The axiom schema (FP−) consists of all formulas

∃X∀n(n ∈ X ↔ A (n,X)), (FP−)

where A (n,X) is arithmetical with X occurring only positively. Moreover,
no set variable besides X is allowed to occur freely in A (n,X). FP−0 is
ACA0 plus (FP−). FP− denotes FP−0 with induction for all L2 formulas.

As mentioned, we use ÎD1 to establish the proof-theoretic ordinal of
FP−0 . Recall that we write F [~x, ~X] to indicate that F (~x, ~X) is a for-
mula with only the indicated variables occurring freely. For any X-positive
arithmetical formula A [n,X], we let PA be a unary relation symbol. The
language LFP

1 is obtained from L1 by adding all these newly defined rela-
tion symbols PA for all A [n,X] as above. The schema (ÎD1) contains all
formulas of the form

∀n(PA (n)↔ A (n, {x : PA (x)})) (ÎD1)

for all X-positive arithmetical formulas A [n,X]. ÎD1 is the formal system
in LFP

1 consisting of PA together with the schema (ÎD1), and induction for
all LFP

1 formulas. In the following, A (n, PA ) stands for A (n, {x : PA (x)}).
(ÎD1) asserts that PA is a fixed point of the formula A [n,X]. It is known
that |ÎD1| = ϕε0(0), cf. [Fef82]. A simple model-theoretic argument shows
that FP−0 is the second order version of ÎD1. Thus, in particular |FP−0 | =
ϕε0(0). Before proving this, we introduce an auxiliary notation.

Definition 3.5.

(a) Let L be a first order language with L1 ⊆ L. If M is a structure
for L and A ⊆ |M|, then L(A) is the extension of L with a fresh
constant c for every c ∈ A. M can then be considered as a structure
for L(A) by interpreting c as c for all c ∈ A.

(b) Let L be a second order language with L2 ⊆ L. IfM is a structure
for L and A ⊆ |M| ∪ SM, then L(A) is the extension of L with a
fresh constant c for every c ∈ A. M then can be considered as a
structure for L(A) by interpreting c as c for all c ∈ A.
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3. ATR0 without set-parameters

Lemma 3.6. Every model of ÎD1 can be extended to a model of FP−0 .
Conversely, every model of FP−0 can be reduced to a model of ÎD1. In both
cases, the interpretation of L1 formulas does not change.

Proof. We start by showing that every model of ÎD1 can be extended to a
model of FP−0 . Consider a modelM of ÎD1. Let S be the collection of all
sets that are definable by LFP

1 (|M|) formulas. This means that A ∈ S iff
there is some LFP

1 (|M|) formula F [n] such that

A = {n :M � F [n]} .

Given a set A ∈ S, we write FA[n] to denote its defining formula with only
free variable n. Adding S toM results in an LFP

2 structure. We show that
this structure is a model of FP−0 .

Concerning (ACA), let A [n] be an arithmetical formula in L2(|M| ∪
SM). We substitute every set constant Z ∈ S occurring in A [n] with
{x : FZ(x)}. The result of this procedure is a LFP

1 (|M|) formula B[n].
The corresponding set of S defined by B[n] is a proper witness for the
given instance of (ACA).

For (FP−) we consider an X-positive arithmetical formula A [n, ~z,X]
in the language L2 with only the indicted variables occurring freely. We
define

A ∗[m,X] = ∃n, ~z(m = 〈n, ~z〉 ∧A [n, ~z,X]).

SinceM is a model of ÎD1, we have

∀m(PA ∗(m)↔ ∃n, ~z(m = 〈n, ~z〉 ∧A (n, ~z, PA ∗))).

Substituting ~z with a matching list of constants ~c from |M|, we can deduce
by the above that

∀n(PA ∗(〈n,~c〉)↔ A (n,~c, PA ∗)).

By definition {n : PA ∗(〈n,~c〉)} is a set of S, and, as shown above, a proper
witness for the instance of FP−0 with formula A [n,~c,X].

Finally, since induction for all LFP
1 (|M|) formulas is valid inM, and S

consists exactly of the sets definable by such formulas, the induction axiom
is valid inM.

For the converse direction, let N be a model of FP−0 . By (FP−),
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3.3. The systems FP−0 and pr-ATR−0

there exists a set ZA in SN such that ZA = {n : A [n,ZA ]} for every
X-positive arithmetical formula A [n,X]. We can now transform N into a
LFP

1 structure N+ by deleting the second order part of N , and interpreting
the relation symbol PNA by the set ZA . Obviously, (ÎD1) is valid in N+.

To deal with induction for LFP
1 formulas, let, e.g., B[n, PA1 , PA2 ] be

a LFP
1 (|N+|) formula with only free variable n. By assumption, induction

for B[n,ZA1 , ZA2 ] is available in N . Thus, by construction, induction for
B[n, PA1 , PA2 ] holds in N+. This finishes the proof.

As mentioned we have the following theorem proven in [Fef82], from
which |FP−0 | can be immediately determined by Lemma 3.6.

Theorem 3.7 (Feferman). |ÎD1| = ϕε0(0).

Corollary 3.8. |FP−0 | = ϕε0(0).

We proceed with deriving (pr-ATR−) in FP−0 . It turns out that Avi-
gad’s proof of the reverse direction in [Avi96] can not be adapted to prove
that pr-ATR−0 proves FP−0 . The proof relies on deriving a fixed point using
a pseudohierarchy, which is not clear how to do in pr-ATR−0 .

Lemma 3.9. The schema (pr-ATR−) is provable in FP−0 .

Proof. Suppose we are working in FP−0 . Let A (n, ξ,X) be an arithmetical
formula with only X as free set variable and assume WO(α). Note that by
our definition of formulas, A (n, ξ,X) is in negation normal form. Given a
set X and number ξ we let

[X]1ξ := {m : ∃n, µ(m = 〈n, µ〉 ∧ µ ≺ ξ ∧ 〈m, 1〉 ∈ X)} ,
[X]0ξ := {m : ∀n, µ(m = 〈n, µ〉 → (µ 6≺ ξ ∨ 〈m, 0〉 ∈ X))} .

By (ACA), these exist properly as sets. Next, we modify A (n, ξ,X) in two
steps. First, we consider a fresh set variable U and replace all subformulas
in A (n, ξ,X) of the form t 6∈ X by t ∈ U . Let A ∗(n, ξ,X,U) denote the
resulting formula. Then we define

A +(n, ξ,X) :≡ A ∗(n, ξ, [X]1ξ , [X]0ξ).

The above procedure can also be applied to ¬A (n, ξ,X). This results
in the formula (¬A )+(n, ξ,X). Observe that X occurs only positively in
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A +(n, ξ,X) and (¬A )+(n, ξ,X). As a next step, we define the formula

B(z,X) :≡ ∃n, ξ, w(z = 〈〈n, ξ〉, w〉 ∧ ξ ≺ α ∧
((w = 1 ∧A +(n, ξ,X)) ∨ (w = 0 ∧ (¬A )+(n, ξ,X)))).

Applying (FP−) to B(z,X) yields a set Z such that

Z = {z : B(z, Z)} .

We will proof that Z is a function assigning 0 or 1 to all pairs 〈n, ξ〉 with
ξ ≺ α. This will be achieved by using transfinite induction to show that
for all ξ ≺ α:

∀n(〈〈n, ξ〉, 0〉 ∈ Z ↔ 〈〈n, ξ〉, 1〉 6∈ Z).

We first observe that by definition of Z, we have that 〈〈n, ξ〉, w〉 ∈ Z iff

(w = 1 ∧A +(n, ξ, Z)) ∨ (w = 0 ∧ (¬A )+(n, ξ, Z)).

Let µ ≺ ξ. By the induction hypothesis we get

〈n, µ〉 6∈ [Z]1ξ ↔ i 6≺ ξ ∨ 〈〈n, µ〉, 1〉 6∈ Z
↔ µ 6≺ ξ ∨ 〈〈n, µ〉, 0〉 ∈ Z
↔ 〈n, µ〉 ∈ [Z]0ξ .

By induction on the build-up of A (n, ξ, Z) we get that either A +(n, ξ, Z)
or (¬A )+(n, ξ, Z) holds, but not both. If A (n, ξ, Z) is of the form t ∈ Z,
where t is some number term, the claim follows by the above since we have

(t ∈ Z)+ ≡ ∃n, µ(t = 〈n, µ〉 ∧ µ ≺ ξ ∧ 〈t, 1〉 ∈ Z),
(t 6∈ Z)+ ≡ ∀n, µ(t = 〈n, µ〉 → (µ 6≺ ξ ∨ 〈t, 0〉 ∈ Z))

≡ ∀n, µ(t = 〈n, µ〉 → (µ 6≺ ξ ∨ 〈t, 1〉 6∈ Z)).

The other cases follow purely by our underlying logic and are straightfor-
ward to verify. This concludes the induction on the build-up. It follows
that w = 0 or w = 1, but not both, hence the transfinite induction is
finished. Thus, Z is a characteristic function as claimed.

Next, we observe that for ξ ≺ α it holds that [Z]1ξ = ([Z]1α)≺ξ and
[Z]0ξ = ([Z]1α)≺ξ, where for any set U , U denotes its complement, i.e.,
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3.3. The systems FP−0 and pr-ATR−0

U = {x : x 6∈ U}. The first assertion follows since:

[Z]1ξ = {m : ∃n, µ(m = 〈n, µ〉 ∧ µ ≺ ξ ∧ 〈m, 1〉 ∈ Z)}
= {〈n, µ〉 : µ ≺ ξ ∧ 〈〈n, µ〉, 1〉 ∈ Z}
=
{
〈n, µ〉 ∈ [Z]1α : µ ≺ ξ

}
= ([Z]1α)≺ξ.

For the second assertion we make a case distinction. Suppose m is not a
pair, i.e., ∀x, y(m 6= 〈x, y〉). Then clearly

m ∈ [Z]0ξ ↔ m ∈ ([Z]1α)≺ξ.

If m is the pair 〈n, µ〉, it follows that

m ∈ [Z]0ξ ↔ (µ 6≺ ξ ∨ 〈m, 0〉 ∈ Z)
↔ (µ 6≺ ξ ∨ 〈m, 1〉 6∈ Z)
↔ m ∈ [Z]1ξ
↔ m ∈ ([Z]1α)≺ξ,

where we used the first assertion, i.e., [Z]1ξ = ([Z]1α)≺ξ, and that Z is a
characteristic function. This establishes the second assertion. Looking
back at the definition of B(z, Z) we can now deduce that

[Z]1α = {〈n, ξ〉 : ξ ≺ α ∧ 〈〈n, ξ〉, 1〉 ∈ Z}
=
{
〈n, ξ〉 : ξ ≺ α ∧A +(n, ξ, Z)

}
=
{
〈n, ξ〉 : ξ ≺ α ∧A ∗(n, ξ, [Z]1ξ , [Z]0ξ)

}
=
{
〈n, ξ〉 : ξ ≺ α ∧A ∗(n, ξ, ([Z]1α)≺ξ, ([Z]1α)≺ξ)

}
=
{
〈n, ξ〉 : ξ ≺ α ∧A (n, ξ, ([Z]1α)≺ξ)

}
.

The above means that HA (α, [Z]1α). Thus, [Z]1α is the desired set and the
proof is finished.

Corollary 3.10. It holds that

|pr-ATR−0 | ≤ |FP−0 | and |pr-ATR−| ≤ |FP−|.
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3. ATR0 without set-parameters

Next, lower bounds for the proof-theoretic strength of pr-ATR−0 and
pr-ATR− will be established. The proof relies on methods given in [Buc05].
The following formulas will be needed:

Sp(X) :≡
{
β : (∀ξ ⊆ X)(ξ +̂β ⊆ X)

}
,

Sp∗(α,X) :≡ {β : (∀ξ ≺ α)(ϕ(e(α), β) ∈ Sp((X)ξ))} ,
R(α,X) :≡ (∀ξ � α)(0 ≺ ξ → (Y )ξ = Sp∗(ξ, Y )),

R(α) :≡ ∃Y ((Y )0 = Q ∧R(α, Y )).

The fact shown below will be useful later. It follows immediately by ob-
serving that for all ξ ≺ α, (X)ξ = ((X)≺α)ξ:

Sp∗(α,X) = Sp∗(α, (X)≺α). (3.1)

Moreover, we will make use of the following theorem, taken from [Buc05].

Theorem 3.11. It is provable in ACA0 that

WO(α) ∧R(α)→ TI(ϕ̂α(0), Q).

Next, we define the formulas

F (n, ξ,X) :≡ (ξ = 0→ n ∈ Q) ∧ (ξ 6= 0→ n ∈ Sp∗(ξ,X)),
H̃F (α, Y ) :≡ (∀ξ � α)((Y )ξ =

{
n : F (n, ξ, (Y )≺ξ)

}
).

Lemma 3.12. ACA0 proves H̃F (α, Y )↔ ((Y )0 = Q ∧R(α, Y )).

Proof. By the definition of F (n, ξ,X) we have

•
{
n : F (n, 0, (Y )≺0)

}
= Q,

and for ξ � 0,

•
{
n : F (n, ξ, (Y )≺ξ)

}
= Sp∗(ξ, (Y )≺ξ) = Sp∗(ξ, Y ),

where the last equation holds because of (3.1). From that the assertion
follows immediately.

Corollary 3.13. ACA0 proves ∃Y H̃F (α, Y )↔ R(α).
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Lemma 3.14. Working in pr-ATR−0 , we can prove that for all α

WO(α)→ TI(ϕ̂α(0), Q).

Proof. Let us work in pr-ATR−0 and assume WO(α). Using (ACA), it fol-
lows that WO(α +̂ 1). Hence, by (pr-ATR−), there exists a set Y with
HF (α +̂ 1, Y ). Clearly, Y also satisfies H̃F (α, Y ), therefore by Corol-
lary 3.13, we have R(α). The claim now follows by Theorem 3.11.

The following are standard results from proof theory and will allow us
to establish the lower bounds for pr-ATR−0 and pr-ATR−.

Theorem 3.15. We have for all ordinal terms a:

(a) ACA0 `WO(a) if a ≺ ε0,

(b) ACA `WO(a) if a ≺ ϕ1(ε0).

Theorem 3.16.

(a) ϕε0(0) ≤ |pr-ATR−0 |.

(b) ϕϕ1(ε0)(0) ≤ |pr-ATR−|.

Proof. To show (a), let a be an ordinal term with a ≺ ϕε0(0). Then there
exists an ordinal term b ≺ ε0 such that a ≺ ϕ̂b(0). In view of Theorem 3.15
and Lemma 3.14 we have that

pr-ATR−0 ` TI(ϕ̂b(0), Q),

and, consequently, pr-ATR−0 ` TI(a,Q). This proves (a).
For (b) we proceed analogously. Now, consider an ordinal term a

with a ≺ ϕϕ1(ε0)(0). There exists an ordinal term b ≺ ϕ1(ε0) such that
a ≺ ϕ̂b(0). We apply Theorem 3.15 and Lemma 3.14, and obtain

pr-ATR− ` TI(ϕ̂b(0), Q).

Therefore, pr-ATR−0 ` TI(a,Q), and we are done.

Combing all constituents, we arrive at the final result of this section.

Corollary 3.17. The systems pr-ATR−0 and FP−0 both have proof-theoretic
strength ϕε0(0).
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Proof. Recall that Corollary 3.8 says that |FP−0 | = ϕε0(0). Moreover,
Corollary 3.10 and Theorem 3.16 yield

ϕε0(0) ≤ |pr-ATR−0 | ≤ |FP−0 |.

This proves the assertion.

3.4. The systems FP− and pr-ATR−

Recall that the systems FP− and pr-ATR− are obtained from, respec-
tively, FP−0 and pr-ATR− by adding L2 induction. We now determine the
proof-theoretic strength of these. It turns out that |FP−| = |pr-ATR−| =
ϕϕ1(ε0)(0). By Corollary 3.10 and Theorem 3.16, it suffices to show that
|FP−| ≤ ϕϕ1(ε0)(0). This follows in a straightforward manner from results
in [JS95]. To carry out the details, the systems FP	 and ÊID1 are in-
troduced. Recall that F [~x, ~X] signifies that no variables other than the
ones displayed occur freely in F (~x, ~X). The schema (FP	) consists of all
formulas of the form

∃X∀n(n ∈ X ↔ A [n,X]) (FP	)

for any X-positive arithmetical formula A [n,X]. FP	 denotes ACA plus
(FP	).

Lemma 3.18. Over ACA0, (FP	) and (FP−) are equivalent.

Proof. Suppose we are working in ACA0. It suffices to derive (FP−) using
(FP	). Let A [n, ~m,X] be an X-positive arithmetical formula, where ~m =
m1, . . . ,ml, l ≥ 0. For any set Y , put (Y )~m := {n : 〈n, ~m〉 ∈ Y } and define

B[k,X] :≡ ∃n, ~m(k = 〈n, ~m〉 ∧A (n, ~m, (Y )~m)).

Clearly, (FP	) is applicable to B[k,X], yielding a set Z such that Z =
{k : B[k,X]}. It follows that

(Z)~m = {n : 〈n, ~m〉 ∈ Z}
= {n : A (n, ~m, (Z)~m)} ,

hence (Z)~m is a fixed point for A [n, ~m,X]. This establishes (FP−).
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In order to define ÊID1, we extend L2 with unary relation symbols
PA for all X-positive arithmetical formulas A [n,X]. The resulting lan-
guage is denoted LFP

2 . An LFP
2 formula is called elementary if no bound

set variables occur in it. Note that this does not restrict the occurrence
of free set variables and relation symbols PA . ÊID1 is the formal system
in the language LFP

2 consisting of PA, induction for all LFP
2 formulas, and

elementary comprehension, i.e,

∃X∀n(n ∈ X ↔ A (n)) (ECA)

for all elementary LFP
2 formulas A (n) with X 6∈ FrVar(A ). Moreover, ÊID1

contains the schema (ÎD1), defined in section 3.3, i.e.,

∀n(PA (n)↔ A (n, PA )) (ÎD1)

for all X-positive arithmetical L2 formulas A [n,X].

Corollary 3.19. FP− is a subsytem of ÊID1.

Proof. Clearly, FP	 ⊆ ÊID1 since (ÎD1) implies (FP	) and all other axioms
of FP	 are also axioms of ÊID1. The claim now follows by Lemma 3.18.

From [JS95] we get the following theorem, which together with Corol-
lary 3.19 gives the desired upper bound for FP−0 .

Theorem 3.20 (Jäger, Strahm). |̂EID1| = ϕϕ1(ε0)(0).

Corollary 3.21. |FP−| ≤ ϕϕ1(ε0)(0).

We conclude by stating the main result of this section.

Corollary 3.22. The systems pr-ATR− and FP− both have proof-theoretic
strength ϕϕ1(ε0)(0).

Proof. Corollary 3.10, Theorem 3.16 and Corollary 3.21 yield

ϕϕ1(ε0)(0) ≤ |pr-ATR−| ≤ |FP−| ≤ ϕϕ1(ε0)(0).

Thus, the assertion is established.
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Part II.

Subsystems of Set Theory
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4. Preliminaries
In Part I several principles equivalent to (ATR) were introduced. It is the
goal of Part II to study analogous principles in set-theoretic contexts. For
reference we refer to [Sim09, Bar75, BJ20]. Our set theory features natural
numbers as urelements and will be introduced in this section. Later we will
turn to stronger set theories featuring, among other principles, the Axiom
Beta. Our approach will be equivalent to the one chosen in [Sim09].

4.1. The language Ls

In section 1.1 we introduced the second order language L2. We now turn to
the set-theoretic language Ls. In subsequent sections we will often switch
between Ls and L2. To avoid ambiguities we will speak contextually, e.g., of
Ls formulas, and so on. However, if clear from context we omit mentioning
the language. The first order language Ls comprises of the following logical
symbols:

• (propositional) connectives ∧ and ∨,

• the negation symbol ∼ to form negated literals,

• the quantifier symbols ∀ and ∃,

• the set membership symbol ∈,

• the equality symbol =N,

• a countable set of object variables Vars := {χi : i ∈ N},

• auxiliary symbols, e.g., comma and parentheses.

On the non-logical side we use the following symbols:

• the constant symbol N,

• a constant n for each (standard) natural number n ∈ N,
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4. Preliminaries

• the unary relation symbol S,

• symbols for all p.r. relations,

• a unary anonymous relation symbol Q,

• additional relation symbols introduced contextually.

We consider set theories above the natural numbers as urelements. N
is a set constant for the set of all natural numbers and the relation symbol
S singles out those objects that are sets. Hence, we have S(x) iff x is not an
element of N. The equality symbol =N serves to identify equal urelements.
The equality of arbitrary objects will be defined later.

We have relation symbols for all p.r. functions and a constant n for any
natural number n. In particular, =N will coincide with the p.r. equality
relation on N. Function symbols for p.r. functions of arity greater than 0
are not permitted. This restriction simplifies the translation of Ls into L2,
which will be discussed later.

The set Tm(Ls) of Ls terms is defined as follows:

• All object variables and the constant N are terms.

• The constant n is a term for all n ∈ N.

An atomic formula (of Ls) is an expression of the form s =N t, s ∈ t or
R(t1, . . . , tm) for any terms s, t, t1, . . . , tm and m-ary relation symbol R. A
literal is either an atomic formula A or an expression of the form ∼A ,
where A is an atomic formula. We write s 6∈ t for ∼(s ∈ t), and so on.
Equality of objects, which encompasses natural numbers and sets, will be
defined separately. Formulas are inductively defined as follows:

• All literals are formulas.

• If A and B are formulas, then so are (A ∧B), (A ∨B), ∀χiA , and
∃χiA for all i ∈ N.

Fml(Ls) stands for the set of all Ls formulas. Recall that A (~x) stands
for a formula with the (object) variables in ~x occurring freely. This does
not exclude the occurrence of additional free variables. To exclude addi-
tional free variables we write A [~x]. The following (possibly subscripted)
metavariables are used when working in Ls:

• k, l,m, n, u, v, w, x, y, z for object variables,
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4.1. The language Ls

• q, r, s, t for Ls terms,

• A ,B,C ,D ,F for formulas.

If there is no danger of confusion, we simply speak of variables instead
of object variables. For better readability, parentheses are used freely in
the following. When working in our set theory, we usually write 0, 1, . . .
instead of 0, 1, etc. The negation of a formula A , denoted ¬A , is defined
inductively as in section 1.1. This is also the case for the connectives →
and ↔. Given a term t and a formula A , the expressions (∀x ∈ t)A and
(∃x ∈ t)A , stand for, respectively, the formulas ∀x(x ∈ t→ A ) and ∃x(x ∈
t ∧ A ). Moreover, if t is a term, we write A t for the result of replacing
all unbounded quantifiers ∃x(. . . ) and ∀x(. . . ) in A by, respectively, (∃x ∈
t)(. . . ) and (∀x ∈ t)(. . . ).

Definition 4.1. The class of ∆0 formulas of Ls is defined inductively as
follows:

• Every literal is a ∆0 formula.

• If A and B are ∆0, then so are A ∧ B, A ∨ B, (∀x ∈ t)A and
(∃x ∈ t)A , where the object variable x must not occur in the term t.

Given k ∈ N, a formula is called Σk if it is of the form ∃x1∀x2 · · ·xkA ,
where A is ∆0. Similarly, A is Πk if it is of the form ∀x1∃x2 · · ·xkA , with
A being ∆0. Note that the class of ∆0 formulas is closed under negation.
The negation of a Σk formula is Πk, and vice-versa.

Definition 4.2 (Equality of objects). Given two terms s, t, equality of s, t
is defined as follows:

s = t :≡
{

(s ∈ N ∧ t ∈ N ∧ s =N t)∨
(S(s) ∧ S(t) ∧ (∀x ∈ s)(x ∈ t) ∧ (∀x ∈ t)(x ∈ s)).

Thus, two objects s, t are equal iff they are primitive recursively equal
natural numbers, or they are sets containing the same elements.

As in the case of L2, we make use of classes. For any Ls formula F (x),
the class M = {x : F (x)} is said to exist properly if

∃u(S(u) ∧ ∀x(x ∈ u↔ F (x))),
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4. Preliminaries

with u not occurring freely in F (x). Given a term t and M as above, we
write t = {x : F (x)} or t = M for S(t) ∧ ∀x(x ∈ t↔ F (x)), where t does
not occur freely in F (x). Given a formula A (x), (∀x ∈ M)A (x) is short
for ∀x(F (x) → A (x)), and (∃x ∈ M)A (x) stands for ∃x(F (x) ∧ A (x)).
Moreover, for terms s, t, we write s ⊆ t for S(s) ∧ S(t) ∧ (∀x ∈ s)(x ∈ t).

The empty class ∅ is defined as {x : S(x) ∧ ∼S(x)}. In addition, given
terms s, t, we consider the following classes:

•
⋃
s = {x : (∃y ∈ s)(x ∈ y)},

• {s, t} = {x : x = s ∨ x = t},

• s \ t = {x : x ∈ s ∧ x 6∈ t},

• s ∩ t = {x : x ∈ s ∧ x ∈ t},

• s ∪ t =
⋃
{s, t},

• {s} = {s, s},

• 〈s, t〉 = {{s} , {s, t}},

• s× t = {〈x, y〉 : x ∈ s ∧ y ∈ t},

• dom(s) = {x : ∃y(〈x, y〉 ∈ s)},

• rng(s) = {y : ∃x(〈x, y〉 ∈ s)},

• field(s) = dom(s) ∪ rng(s),

• s−1 = {〈x, y〉 : 〈y, x〉 ∈ s},

• t′(x) =
{
the unique y such that 〈x, y〉 ∈ t if this exists,
∅ otherwise,

• t�s = {〈x, y〉 ∈ t : x ∈ s},

• t′′s = rng(t�s) = {y : (∃x ∈ s)(〈x, y〉 ∈ t)},

• ∈�s = {〈x, y〉 : x ∈ y ∧ y ∈ s}.

Our axioms will guarantee that these classes exist properly.
Similarly as for L2, we assume a classical Hilbert-style system featuring

tautologies, equality axioms for =N restricted to N, and axioms for object
quantifiers as logical axioms. As inference rules we use modus ponens, and
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axioms for object quantifiers, analogous to the rules (A1∀) and (A1∃), cf.
section 1.1.

To conclude this section we briefly discuss the semantics of Ls. A
structureM (in the language Ls) consists of

• a non-empty set |M|, called (object) universe ofM,

• a non-empty set SM ⊆ |M|,

• a binary relation ∈M⊆ |M| × SM,

• an element NM ∈ SM,

• an element nM ∈ |M| \ SM for each constant n,

• anm-ary relation RM ⊆ (|M|\SM)m for eachm-ary relation symbol
R.

Moreover, the following condition must be met:

•
{
a ∈ |M| : a ∈M NM

}
= |M| \ SM.

AnM-assignment is a mapping

V: Vars → |M|.

V(x : a) denotes V with the modified value a ∈ |M| at the argument
x ∈ Vars. Then “A is true for V in M” ( or “M satisfies A for V”),
writtenM,V � A , is defined as usual, cf. section 1.2.

4.2. Basic set theory
In this section, we introduce the system BS of basic set theory and its two
subsystems BS0 and BS1. To do so we work in the language Ls. BS is a set
theory above the natural numbers as urelements and, accordingly, we have
two forms of induction: induction on the natural numbers and ∈-induction.
Even the weakest system BS0 will contain PA.

Recall that Ls does not allow function symbols except the constants
N and n for n ∈ N. As mentioned before, this is for notational simplicity
and does not create a problem. It is well-known that Peano arithmetic PA
can be formulated in the first order language with
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• constants n for all n ∈ N,

• relation symbols for all primitive recursive relations,

as its only non-logical symbols. We assume that Ax(PA) is a sound and
complete axiomatization of PA in this language. We now define the formal
system BS. We use s, t ∈ N to abbreviate s ∈ N ∧ t ∈ N, and so on. The
axioms of BS are grouped as follows:

Number-theoretic axioms:

• For every formula A which is a universal closure of some element of
Ax(PA),

A N (PA)

• Full induction on N: For any Ls formula A (x),

A (0) ∧ (∀x, y ∈ N)(A (x) ∧ RSucc(x, y)→ A (y))
→ (∀x ∈ N)A (x),

(Ls-IN)

with RSucc being the p.r. successor relation.

Ontological axioms: For all terms s, t, t1, . . . , tm:

(O1) s = t→ (A (s)→ A (t)) for all atomic formulas A (x),

(O2) S(s) ∨ S(t)→ s 6=N t,

(O3) S(N),

(O4) n ∈ N for all n ∈ N,

(O5) S(t)↔ t 6∈ N,

(O6) t ∈ N→ s 6∈ t.

(O7) For all m ∈ N and m-ary p.r. relation symbols R, except Q:

R(t1, . . . , tm)→ t1, . . . , tm ∈ N.
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Set-theoretic axioms:

• For all terms s, t,
∃u(u = {s, t}). (Pair)

• Axioms of Rudimentary Closure (RC): For any sets u, v, the following
classes exist properly as sets: u \ v,

⋃
u, u × v, dom(u), ∈� u, u−1,

and

{〈k, 〈l,m〉〉 : 〈k, l〉 ∈ u ∧m ∈ v} ,
{〈k, 〈m, l〉〉 : 〈k, l〉 ∈ u ∧m ∈ v} ,
{y : ∃x(x ∈ u ∧ y = v′′ {x})} .

• Full ∈-induction: For any Ls formula A (x),

∀x((∀y ∈ x)A (y)→ A (x))→ ∀xA (x). (Ls-I∈)

We are especially interested in the subsystems BS0 and BS1 of BS, which are
defined as follows: BS1 is obtained from BS by deleting full ∈-induction.
BS0 is BS1 with (Ls-IN) restricted to ∆0 formulas. The corresponding
induction schema is denoted (∆0-IN).

Note that the empty set ∅ exists properly by the Axioms of Rudi-
mentary Closure. The constants for the natural numbers play the role of
numerals.

Crucially, we can prove ∆0 separation within BS0, i.e.,

Theorem 4.3. For any ∆0 formula A (x) and object v, BS0 proves

∃u(S(u) ∧ ∀x(x ∈ u↔ (x ∈ v ∧A (x)))), (∆0-Sep)

where u does not occur freely in A (x).

Proof. The assertion requires a technically demanding proof. We omit the
details and refer to [Jen72].

L2 formulas are transformed canonically into Ls formulas. To do so,
consider the following partition of the object variables:

{χ2i : i ∈ N} and {χ2i+1 : i ∈ N} .
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To any number variable νi of L2, we associate the object variable χ2i. To
any set variable Vi of L2, we assign χ2i+1. We write x◦ to denote the
object variable assigned this way to the number variable x. Analogously,
X◦ denotes the object variable assigned to the set variable X. Moreover,
for any t[~x] ∈ Tm(L2) with number variables among ~x = x1, . . . , xn, we
define the Ls formula valt[y] with the object variable y not occurring in
x◦1, . . . , x

◦
n inductively as follows:

• If t is a number variable xi of L2, then valt[y] :≡ y =N t◦.

• If t = f(s1, . . . , sm) for some m-ary p.r. function symbol f and L2
terms s1, . . . , sm, then

valt[y] :≡ (∃u1, . . . , um ∈ N) (
∧m
i=0 valsi [ui] ∧ Rf (u1, . . . , um, y)) ,

where Rf is the p.r. relation symbol for the graph of f . Moreover, y
must not be among u1, . . . , um.

Intuitively, valt[y] states that the value of y is t. It takes care of L2 terms by
unwrapping them using the relation symbols Rf . Recall that the function
symbols of L2, i.e., symbols for the p.r. relations and the anonymous rela-
tion symbol Q, are also part of Ls. Finally, the translation of A ∈ Fml(L2)
into A ◦∈ Fml(Ls) is given as follows:

• (s = t)◦ :≡ (∃x, y ∈ N)(vals[x] ∧ valt[y] ∧ x =N y),

• (s ∈ X)◦ :≡ (∃x ∈ N)(vals[x] ∧ x ∈ X◦),

• For all m-ary relation symbols R and m ∈ N:

R(t1, . . . , tm)◦ :≡ (∃x1, . . . , xm ∈ N) (
∧m
i=0 valti [xi] ∧R(x1, . . . , xm)) .

• (B1 �B2)◦ :≡ B◦1 �B◦2 for � ∈ {∧,∨},

• (QxB)◦ :≡ (Qx◦∈ N)B◦ for Q ∈ {∃,∀},

• (QXB)◦ :≡ (QX◦⊆ N)B◦ for Q ∈ {∃,∀}.

Note that the free (object) variables in A ◦are exactly the variables assigned
to the free (number and set) variables in A as described above. Finally,
for any L2 formula A [~x, ~X] with free variables among ~x = x1, . . . , xm,
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~X = X1, . . . , Xm we put

|A |s :≡
∧m
i=1(x◦i ∈ N ∧X◦i ⊆ N)→ A [~x, ~X]◦.

The idea of the above translation is that number variables are interpreted
as elements of N, and set variables as subsets of N. Atomic formulas are
taken care of by involving valt[x]. Observe that A ◦ is ∆0 in case A is
arithmetical. Moreover, Σ1

1 formulas are carried over to Σ1 formulas, and
Π1

1 formulas to Π1 formulas. The following observation will be the basis
for further considerations.

Theorem 4.4. The following hold for any L2 formula A .

(a) ACA0 ` A implies BS0 ` |A |s,

(b) ACA ` A implies BS1 ` |A |s.

Proof. For (a) it suffices to check that the claim holds for all axioms of
ACA0. For any number-theoretic axiom A (~x) the claim holds by defini-
tion of BS0 and A (~x)◦. The induction axiom is taken care of by (∆0-IN).
Similarly, every instance of arithmetical comprehension carries over to an
instance of ∆0 separation, which is available by Theorem 4.3. This shows
(a). Since induction for L2 formulas carries over to (Ls-IN), we also get
(b).

Note that the above transformation basically embeds L2 into Ls. Thus,
we can view L2 as a sublanguage of Ls. In this view, Theorem 4.4 states
that

ACA0 ⊆ BS0 and ACA ⊆ BS1.

4.3. Objects as trees
As was shown in the previous section, L2 can be thought of as a sublan-
guage of Ls. Moreover, we can interpret ACA0 and ACA in, respectively,
BS0 and BS1. Aiming for a reversal, we represent objects of Ls in our
base theory ACA0 with so-called representation trees. In order to identify
representation trees coding the same object, we will make use of isomor-
phisms. However, the existence of these is not provable ad hoc in ACA0. To
overcome this we introduce the formal system ACA+

0 which extends ACA0
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by allowing arithmetical comprehension to be iterated a finite amount of
times. All concepts involved are discussed next.

Definition 4.5. In ACA0, the notions of n-tree and representation tree are
introduced as follows.

(1) T is a n-tree, written Tree(n, T ), iff T is a non-empty tree satisfying
• n = max {lh(σ) : σ ∈ T},

• (∀σ, x, y)(σ∗〈2x+ 1〉 ∈ T ∧ y 6= 2x+ 1→ σ∗〈y〉 6∈ T ),

• (∀σ, x)(σ∗〈x〉 ∈ T → (∀i < lh(σ))(σ)i is even).

(2) T is a representation tree, in symbols Rep(T ), if T is a n-tree for
some natural number n, i.e.,

Rep(T ) :≡ ∃nTree(n, T ).

(3) Given a representation tree T and σ ∈ T , put Tσ := {τ : σ∗τ ∈ T}.
Moreover, σ is called end node (of T ) if Tσ = {〈〉}.

(4) We say that T represents (or codes) a natural number if T is of the
form {〈〉, 〈2n+ 1〉} for some n. Otherwise, T represents a set.

Note that Rep(T ) implies Rep(Tσ). The basic idea is that the natural
number n is represented by the 1-tree {〈〉, 〈2n+ 1〉}. In general, a rep-
resentation tree T stands for the set consisting of all sets represented by
the immediate subtrees of T of the form T 〈2x〉 with 〈2x〉 ∈ T . Working in
ACA0, the assumption (∀σ ∈ T )(lh(σ) ≤ n) allows us to use arithmetical
induction to prove basic properties of n-trees.
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Example 4.6. We list some representation trees and corresponding sets.

〈〉

2 8

0

4

1

〈〉

0

0

5

2

9

6

7

〈〉

2

10

6

4 8

2 4 6

6 12

{∅, {∅} , 0} {{2, 4} , 3} {{{∅}} , ∅, {∅, {∅}}}

Finite ordinals 0, 1, 2, 3, . . . can be represented as follows:

〈〉
〈〉

0

〈〉

0 2

0

〈〉

0 2

0

4

0 2

0

· · ·

In general, the ordinal number corresponding to n ∈ N can be represented
by the following representation tree:

〈〉

0 2

0

0 2n− 2

0 2

0

0 2n− 4

0 2

0

0 2n− 6

59



4. Preliminaries

More formally, the above tree consists of all σ ∈ Seq with lh(σ) ≤ n such
that

(∀i < lh(σ))((σ)i is even ∧ (σ)i > (σ)i+1) ∧ (σ)0 ≤ 2n− 2.

Note that it is not possible to represent the first limit ordinal ω, as the
corresponding representation tree would contain paths of arbitrary length.

Following [Sim09], we introduce a notion of isomorphism that allows
to define object equality and elementhood on the level of representation
trees. The main idea is to identify all elements in a representation tree
which code the same object. The following definitions clarify this.

Definition 4.7. Given a representation tree T , and a set X, we write
Iso(X,T ) to state that X ⊆ T × T and for all σ, τ ∈ T , 〈σ, τ〉 ∈ X iff each
of the following properties is fulfilled:

(1) ∀x(σ∗〈2x〉 ∈ T → ∃y(〈σ∗〈2x〉, τ ∗〈2y〉〉 ∈ X)),

(2) ∀y(τ ∗〈2y〉 ∈ T → ∃x(〈σ∗〈2x〉, τ ∗〈2y〉〉 ∈ X)),

(3) ∀z(σ∗〈2z + 1〉 ∈ T → 〈σ∗〈2z + 1〉, τ ∗〈2z + 1〉〉 ∈ X),

(4) ∀z(τ ∗〈2z + 1〉 ∈ T → 〈σ∗〈2z + 1〉, τ ∗〈2z + 1〉〉 ∈ X).

Moreover, we let CIso(〈σ, τ〉, X, T ) denote the conjunction of (1) to (4)
w.r.t. indicated variables. This formula is introduced to facilitate proving
basic properties of representation trees.

Definition 4.8. In ACA0, we set for all representation trees S and T :

(a) S ⊕ T := {〈〉} ∪ {〈0〉∗σ : σ ∈ S} ∪ {〈2〉∗τ : τ ∈ T},

(b) S =? T :≡ ∃X(Iso(X,S ⊕ T ) ∧ 〈〈0〉, 〈2〉〉 ∈ X),

(c) S ∈? T :≡ ∃X(Iso(X,S ⊕ T ) ∧ ∃x(〈〈0〉, 〈2, 2x〉〉 ∈ X)).

It is obvious that representation trees are closed under ⊕. It remains
to check that =? and ∈? have the desired set-theoretic properties within
a suitable formal system. As mentioned above, we will introduce ACA+

0
for that purpose. However, many useful properties can already be proven
in ACA0, which is what we are doing next. As a first observation, we re-
mark that isomorphisms are well-behaved w.r.t. representation trees coding
natural numbers. The following examples illustrates this.
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Example 4.9. Working in ACA0, let Rn = {〈〉, 〈2n+ 1〉} be the represen-
tation tree coding the natural number n ∈ N. Put

Im,n :=
{
〈σ, τ〉 ∈ (Rm ⊕Rn)2 : lh(σ) = lh(τ)

}
.

One can show that for m,n ∈ Nat:

• Rm =? Rn ↔ Iso(Im,n,Rm ⊕Rn)↔ m = n,

• For all representation trees R and n ∈ N: R 6∈? Rn.

In the following, we shall establish further basic properties of repre-
sentation trees and isomorphisms within ACA0. We start by showing that
isomorphisms are unique and form an equivalence relation.

Lemma 4.10. The following is provable in ACA0. Consider a representa-
tion tree T and sets X,Y satisfying Iso(X,T ) and Iso(Y, T ). Then X = Y .
Moreover, X is an equivalence relation on T .

Proof. Working in ACA0, suppose Rep(T ), Iso(X,T ) and Iso(Y, T ). By
Definition 4.5, let n such that (∀σ ∈ T )(lh(σ) ≤ n). First, we show that
X = Y . To do so, define the arithmetical formula

A (k) :≡ ∀σ, τ(k = n .− lh(σ) ∧ 〈σ, τ〉 ∈ X → 〈σ, τ〉 ∈ Y ),

with .− denoting the usual truncated subtraction on N. By arithmetical
induction we will infer ∀kA (k), which immediately implies X ⊆ Y . Thus,
by symmetry, we have X = Y . The details of the induction are given next.
Let 〈σ, τ〉 ∈ X. If k = 0, we must have lh(σ) = n. Thus, σ is an end node.
Since Iso(X,T ) and 〈σ, τ〉 ∈ X, τ must be an end node as well. Hence,
〈σ, τ〉 ∈ Y by definition of Y . For the induction step suppose A (k). To
show 〈σ, τ〉 ∈ Y where lh(σ) = n .− (k+ 1), we check that CIso(〈σ, τ〉, Y, T )
holds, cf. Definition 4.7. We only consider one case, the others can be
treated analogously. Let x such that σ∗〈2x〉 ∈ T . Since 〈σ, τ〉 ∈ X, there
exists y such that 〈σ∗〈2x〉, τ∗〈2y〉〉 ∈ X. Since lh(σ∗〈x〉) = n .−k we obtain
by the induction hypothesis that 〈σ∗〈2x〉, τ ∗〈2y〉〉 ∈ Y . This finishes the
induction.

We proceed with showing that X constitutes an equivalence relation
on T . For reflexivity we show by arithmetical induction that

∀σ(k = n .− lh(σ)→ 〈σ, σ〉 ∈ X)
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for all k. The assertion holds for k = 0 since isomorphisms identify ar-
bitrary end nodes. The induction step follows immediately by verifying
〈σ, σ〉 ∈ X via checking CIso(〈σ, σ〉, X, T ) with the help of the induction
hypothesis.

For symmetry it suffices to show for all k by induction that

∀σ, τ(k = n .− lh(σ) ∧ 〈σ, τ〉 ∈ X → 〈τ, σ〉 ∈ X).

Recall that 〈σ, τ〉 ∈ X implies that τ is an end node, whenever σ is one.
From this the case k = 0 is immediate. For the induction step we use
CIso(〈σ, τ〉, X, T ) and the induction hypothesis to infer CIso(〈τ, σ〉, X, T ).

For transitivity we show by induction that for all k,

∀σ, ρ, τ(k = n .− lh(σ) ∧ 〈σ, ρ〉 ∈ X ∧ 〈ρ, τ〉 ∈ X → 〈σ, τ〉 ∈ X).

Arguing as before, the base case is immediate. For the induction step we
show CIso(〈σ, τ〉, X, T ) using CIso(〈σ, ρ〉, X, T ), CIso(〈ρ, τ〉, X, T ) and the
induction hypothesis. This concludes the proof.

Next, we establish that isomorphisms are closed under certain opera-
tions in ACA0. The necessary definitions are given first.

Definition 4.11. In ACA0, let S, T be representation trees, and X,Y sets
satisfying Iso(X,T ) and Iso(Y, S ⊕ T ). Let σ, τ ∈ S. For α ∈ Tσ ⊕ T τ we
put:

α+ :=


〈〉 if α = 〈〉,
σ∗γ if α = 〈0〉∗γ for some γ ∈ Tσ,
τ ∗γ if α = 〈2〉∗γ for some γ ∈ T τ .

Then we set X〈σ,τ〉 :=
{
〈α, β〉 ∈ (Tσ ⊕ T τ )2 : 〈α+, β+〉 ∈ X

}
.

Moreover, given α ∈ T ⊕ S we let

α−1 :=


〈〉 if α = 〈〉,
〈0〉∗γ if α = 〈2〉∗γ for some γ ∈ S,
〈2〉∗γ if α = 〈0〉∗γ for some γ ∈ T.

Then we put Y −1 :=
{
〈α, β〉 ∈ (T ⊕ S)2 : 〈α−1, β−1〉 ∈ Y

}
.
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Lemma 4.12. Working in ACA0, let S, T be representation trees, and X,Y
sets satisfying Iso(X,T ) and Iso(Y, S ⊕ T ). The following assertions hold:

(a) For all σ, τ ∈ T : Iso(X〈σ,τ〉, Tσ ⊕ T τ ),

(b) Iso(Y −1, T ⊕ S).

In addition, X〈σ,τ〉, Y −1 are uniquely determined.

Proof. All assertions can be directly proven by looking at Definition 4.7
and unwrapping Definition 4.11. It is also clear that the given sets exist
properly using arithmetical comprehension with, respectively, X or Y as
parameter. Uniqueness is immediate by Lemma 4.10.

We continue with discussing a fundamental lemma which provides a
link between isomorphisms and the relations =? and ∈? in ACA0. After
having established the existence of isomorphisms in ACA+

0 , this will facili-
tate proving the set-theoretic properties of representation trees we require.

Lemma 4.13. The following is provable in ACA0. Let T be a representa-
tion tree, and X a set such that Iso(X,T ). For σ, τ ∈ T we then have:

(a) Tσ =? T τ ↔ 〈σ, τ〉 ∈ X,

(b) Tσ ∈? T τ ↔ ∃x(〈σ, τ ∗〈2x〉〉 ∈ X).

Proof. Working in ACA0, consider σ, τ ∈ T . By Lemma 4.12 we have
Iso(X〈σ,τ〉, Tσ⊕T τ ). Moreover, X〈σ,τ〉 is uniquely determined and defined
in terms of X. Looking at Definition 4.8, it suffices to show that

〈〈0〉, 〈2〉〉 ∈ X〈σ,τ〉 ↔ 〈σ, τ〉 ∈ X.

By definition of X〈σ,τ〉, this follows immediately, proving (a).
(b): We argue similarly as for (a). It suffices to show that for all x,

〈〈0〉, 〈2, 2x〉〉 ∈ X〈σ,τ〉 ↔ 〈σ, τ ∗〈2x〉〉 ∈ X.

By construction of X〈σ,τ〉, this is easily verified, showing (b).

Before we can introduce the system ACA+
0 and show that it establishes

the existence of isomorphisms, we need an additional auxiliary notion.

63



4. Preliminaries

Definition 4.14. The following definition is made in ACA0. Let T be a
representation tree and τ ∈ T . Then we set

lh−1
T (τ) := max {lh(σ) : σ ∈ T τ} .

Remark 4.15. For any representation tree T and σ∗〈x〉 ∈ T we have in
ACA0 that

lh−1
T (σ∗〈x〉) < lh−1

T (σ).

Definition 4.16. Let A (n, j, U) be an arithmetical formula of L2 with
potentially other free variables than the ones displayed.

(a) We define H∪A (k, Y ) to be the formula asserting that

Y =
{
〈n, j〉 : j ≤ k ∧A (n, j,

⋃
i<j(Y )i)

}
.

(b) ACA+
0 is the formal system in L2 consisting of ACA0 plus all formulas

of the form
∀k∃YH∪A (k, Y ),

where the formula A (n, j, U) is given as above.

Remark 4.17. Note that ACA+
0 is contained in ACA0 plus induction for

Σ1
1 formulas or in ATR0. Thus, we have

ACA+
0 ⊆ ACA and ACA+

0 ⊆ ATR0.

Theorem 4.18. The following is provable in ACA+
0 for any set T :

Rep(T )→ ∃ZIso(Z, T ).

Proof. We work in ACA+
0 . To prove the assertion we define the arithmetical

formula

A (n, j, Y ) :≡ (∃σ, τ ∈ T )(n = 〈σ, τ〉 ∧ lh−1
T (σ) = j ∧ CIso(n, Y, T )).

Suppose T is a representation tree and let k such that Tree(k, T ). By
definition of ACA+

0 , there exists Y such that

H∪A (k, Y ).
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We claim that Z :=
⋃k
j=0(Y )j satisfies Iso(Z, T ). By construction we have

(Y )j ⊆ T ×T for all j ≤ k. Thus, also Z ⊆ T ×T . It remains to show that
for σ, τ ∈ T :

〈σ, τ〉 ∈ Z ↔ CIso(〈σ, τ〉, Z, T ).

Before proving the above we note that by Remark 4.15 we have

j = lh−1
T (σ) ∧ CIso(〈σ, τ〉, Z, T )→ CIso(〈σ, τ〉,

⋃
i<j(Y )i, T ). (4.1)

Now, assume 〈σ, τ〉 ∈ Z. Then 〈σ, τ〉 ∈ (Y )j for some j ≤ k. H∪A (k, Y )
implies that CIso(〈σ, τ〉,

⋃
i<j(Y )i, T ). It follows that CIso(〈σ, τ〉, Z, T ) since⋃

i<j(Y )i ⊆ Z. Conversely, suppose CIso(〈σ, τ〉, Z, T ). By (4.1) we get

CIso(〈σ, τ〉,
⋃
i<j(Y )i, T ),

which amounts to 〈σ, τ〉 ∈ (Y )j ⊆ Z. This finishes the proof.

Finally, we have all the ingredients to prove the required set-theoretic
properties of representation trees within ACA+

0 . In particular, we can now
show that =? forms an equivalence relation and fulfils extensionality.

Theorem 4.19. Working in ACA+
0 , let R,S, T be representation trees.

Then we can show the following.

(a) =? is an equivalence relation on the class of representation trees.

(b) If S and T are coding sets, then

S =? T ↔ ∀W (W ∈? S ↔W ∈? T ).

(c) R =? S ∧R ∈? T → S ∈? T .

(d) R ∈? S ∧ S =? T → R ∈? T .

(e) S ∈? T ↔ ∃x(S =? T 〈2x〉).

Proof. In the following, we tacitly use Lemma 4.10, Lemma 4.12 and The-
orem 4.18.
(a): Our goal is to show that =? is reflexive, symmetric and transitive.
For reflexivity we show T =? T . Consider X such that Iso(X,T ). Recall
that Iso(X〈〈〉,〈〉〉, T × T ) and 〈〈〉, 〈〉〉 ∈ X. By construction of X〈〈〉,〈〉〉 we
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therefore get 〈〈0〉, 〈2〉〉 ∈ X〈〈〉,〈〉〉, verifying T =? T . For symmetry we
assume S =? T . Let Y such that Iso(Y, S ⊕ T ). By assumption we have
〈〈2〉, 〈0〉〉 ∈ Y . Recall that Iso(Y −1, T⊕S). It follows that 〈〈0〉, 〈2〉〉 ∈ Y −1,
verifying T =? S. For transitivity, assume R =? S and S =? T . Define the
representation tree U as follows

P := {〈〉} ∪ {〈0〉∗ρ : ρ ∈ R} ∪ {〈2〉∗σ : σ ∈ S} ∪ {〈4〉∗τ : τ ∈ T} .

Let Y such that Iso(Y, P ). Note that

P 〈0〉 = R, P 〈2〉 = S, P 〈4〉 = T.

Since R =? S and S =? T , we obtain by Lemma 4.13 that

〈〈0〉, 〈2〉〉, 〈〈2〉, 〈4〉〉 ∈ Y.

It follows that 〈〈0〉, 〈4〉〉 ∈ Y , which by Lemma 4.13 amounts to R =? T ,
as desired.
(b): First, suppose S =? T and let W such that W ∈? S. Let P be the
following representation tree,

P := {〈〉} ∪ {〈0〉∗ρ : ρ ∈W} ∪ {〈2〉∗σ : σ ∈ S} ∪ {〈4〉∗τ : τ ∈ T} .

Note that
P 〈0〉 = W, P 〈2〉 = S, P 〈4〉 = T.

Let Y such that Iso(Y, P ). By assumption, Lemma 4.13 implies that
〈〈2〉, 〈4〉〉 ∈ Y and 〈〈0〉, 〈2, 2x〉〉 ∈ Y for some x. Let y such that

〈〈2, 2x〉, 〈4, 2y〉〉 ∈ Y.

It follows that 〈〈0〉, 〈4, 2y〉〉 ∈ Y , yielding W ∈? S by Lemma 4.13. If
W ∈? T , we can proceed analogously.

For the converse direction, suppose

∀W (W ∈? S ↔W ∈? T ).

Consider Y such that Iso(Y, S ⊕ T ). It suffices to show 〈〈0〉, 〈2〉〉 ∈ Y .
We do so by proving CIso(〈〈0〉, 〈2〉〉, Y, S ⊕ T ). Recall that S, T code sets,
therefore there is no x such that 〈2x + 1〉 ∈ S ∪ T . Now, let x such that
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〈2x〉 ∈ S. By Lemma 4.13 we have S〈2x〉 ∈? S. By assumption S〈2x〉 ∈? T .
Observe that

Y 〈0,2x〉 = S〈2x〉, Y 〈2〉 = T.

Hence, by Lemma 4.13 there exists y such that

〈〈0, 2x〉, 〈2, 2y〉〉 ∈ Y.

If y satisfies 〈2y〉 ∈ T , we can proceed similarly. This establishes

CIso(〈〈0〉, 〈2〉〉, Y, S ⊕ T ),

concluding the proof of (b).
(c): Assume R =? S and R ∈? T . We have to show S ∈? T . Consider

P := {〈〉} ∪ {〈0〉∗ρ : ρ ∈ R} ∪ {〈2〉∗σ : σ ∈ S} ∪ {〈4〉∗τ : τ ∈ T}

and Y with Iso(Y, P ). By assumption and Lemma 4.13 we get 〈〈0〉, 〈2〉〉 ∈ Y
and 〈〈0〉, 〈4, 2x〉〉 ∈ Y for some x. It follows that 〈〈2〉, 〈4, 2x〉〉 ∈ Y , verifying
S ∈? T by Lemma 4.13.
(d): Assume S =? T and R ∈? S. Our goal is to show R ∈? T. Let P, Y
be as above in the proof of (c). By assumption and Lemma 4.13 we obtain
〈〈2〉, 〈4〉〉 ∈ Y and 〈〈0〉, 〈2, 2x〉〉 ∈ Y for some x. By definition of Y , there
exists y such that 〈〈2, 2x〉, 〈4, 2y〉〉 ∈ Y . It follows that 〈〈0〉, 〈4, 2y〉〉 ∈ Y ,
yielding R ∈? T using Lemma 4.13.
(e): Assume S ∈? T . Let Y such Iso(Y, S⊕T ). By assumption, there exists
x such that 〈〈0〉, 〈2, 2x〉〉 ∈ Y . Since (S ⊕ T )〈0〉 = S and (S ⊕ T )〈2,2x〉 =
T 〈2x〉, Lemma 4.13 immediately implies S =? T 〈2x〉. The other direction
is immediate by (d) since T 〈2x〉 ∈? T if T 6= {〈〉}. This is immediate by
Lemma 4.13.

By Theorem 4.19, it follows that =? behaves like equality on the class
of representation trees and is compatible with ∈?. Moreover, ∈? is exten-
sional and for every set coded by some representation tree, the elements of
that set are exactly the sets coded by the immediate subtrees of the given
tree. To conclude this section we prove some additional lemmas that will
enable us to properly interpret (Ls-I∈) in ACA. This will be carried out in
the next chapter.
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Lemma 4.20. Working in ACA0, consider a representation tree T and set
X such that Iso(X,T ). Then we can prove for σ, τ ∈ T that

〈σ, τ〉 ∈ X → lh−1
T (σ) = lh−1

T (τ).

Proof. We work in ACA0. By definition of T , there exists n such that
n = max {lh(τ) : τ ∈ T}. Let A (k) be the formula

∀σ, τ(k = n .− lh(σ) ∧ 〈σ, τ〉 ∈ X → lh−1
T (σ) = lh−1

T (τ)).

By arithmetical induction we show A (k) for all k. From this the claim
follows. Let 〈σ, τ〉 ∈ X. Suppose k = 0. Then lh(σ) = n, therefore σ must
be an end node of T . Since 〈σ, τ〉 ∈ X, this is also the case for τ . It follows
that lh−1

T (σ), lh−1
T (τ) are both 0. For the induction step, suppose A (k)

and k + 1 = n .− lh(σ). By the induction hypothesis we know that{
lh−1
T (σ∗〈x〉) : σ∗〈x〉 ∈ T

}
=
{

lh−1
T (τ ∗〈y〉) : τ ∗〈y〉 ∈ T

}
.

The above implies lh−1
T (σ) = lh−1

T (τ), proving the assertion.

Lemma 4.21. Working in ACA+
0 , let S, T be representation trees. Then

we have
Tree(m,S) ∧ Tree(n, T ) ∧ S ∈? T → m < n.

Proof. Working in ACA+
0 , assume that Tree(m,S), Tree(n, T ) and S ∈? T .

We have to show m < n. Let Y such that Iso(Y, S ⊕ T ). Since S ∈? T we
get

〈〈0〉, 〈2, 2x〉〉 ∈ Y

for some x. Using Lemma 4.20 and Remark 4.15 we obtain

m = lh−1
S⊕T (〈0〉) = lh−1

S⊕T (〈2, 2x〉) < lh−1
S⊕T (〈2〉) = n.

This finishes the proof.
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Second Order Arithmetic

The goal of this chapter is to embed BS0,BS1 and BS into subsystems
of second order arithmetic. A central role will be played by the the-
ory ACA+

0 . It takes care of the number-theoretic axioms, the ontological
axioms, (Pair), and the Rudimentary Closure axioms. For dealing with
(∆0-IN) we add (Σ1

1-AC). Finally, full induction on the natural numbers
and full ∈-induction can be handled in ACA. To achieve all of this, we
translate from Ls to L2 using representation trees. We will then validate
all axioms, or rather their translations, on the class of representation trees.
Please note that ACA+

0 + (Σ1
1-AC) is weaker than ACA w.r.t. proof-theretic

strength, cf. [Buc05].

5.1. Translating from Ls to L2

We will employ representation trees to translate Ls formulas into L2 for-
mulas. Recall that we use χ0, χ1, . . . to denote the object variables of Ls,
and V0,V1, . . . to denote the set variables of L2. The following definition
makes this transformation precise.

Definition 5.1. For every term t of Ls, we associate a term t? of L2 as
follows.

• χ?i := Vi for i ∈ N,

• n? :=
{
〈〉, 〈2n+ 1〉

}
for all (standard) natural numbers n ∈ N,

• N? := {〈〉} ∪ {σ : ∃x(σ = 〈2x〉 ∨ σ = 〈2x, 2x+ 1〉)}.

Technically, the n?’s and N? are class terms. The literals of Ls are trans-
formed as follows.

• (s ∈ t)? :≡ s? ∈? t?,
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5. Interpreting BS, BS1 and BS0 in Second Order Arithmetic

• (s =N t) :≡ ∃x(s? = t? = {〈〉, 〈2x+ 1〉}),

• S(t)? :≡ ∀x(t? 6= {〈〉, 〈2x+ 1〉}),

• Q(t)? :≡ ∃x(t? = {〈〉, 〈2x+ 1〉} ∧Q(x)).

• For any n-ary p.r. relation symbol R,

R(t1, . . . , tn)? :≡ (∃x1, . . . , xn)
(
∧n
i=1 t

?
i = {〈〉, 〈2xi + 1〉} ∧R(x1, . . . , xn)) .

Moreover, the propositional connectives commute with ?, and for the quan-
tifiers we set

• (∃χiA )? :≡ ∃χ?i (Rep(χ?i ) ∧A ?),

• (∀χiA )? :≡ ∀χ?i (Rep(χ?i )→ A ?).

Given a list ~U = U1, . . . , Un of set variables of L2, we use Rep(~U) as
an abbreviation for

Rep(U1) ∧ . . . ∧ Rep(Un).

Finally, for any formula A [~u] of Ls with at most the object variables ~u =
u1, . . . , un free, we associate the L2 formula

|A |2 :≡ Rep(~u?)→ A [~u]?,

where ~u? = u?1, . . . u
?
n.

In the following section we will employ the above transformation to
validate all set-theoretic axioms on the class of representation trees. All
axioms except the induction principles (∆0-IN), (Ls-IN) and (Ls-I∈) can
be taken care of in ACA+

0 . To take care of these, we introduce the system
Σ1

1-AC+
0 .

Definition 5.2. Σ1
1-AC+

0 is the formal system in L2 consisting of ACA+
0

together with the axiom schema (Σ1
1-AC).

Before going into the details of validating all axioms, we discuss how
the above translation affects the complexity of formulas. Before we can
present the lemma dealing with that question, we recall the definition of Σ
and Π formulas of Ls. Moreover, we need to show that translations of Ls
formulas are closed under substitution of representation trees.
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Definition 5.3. The class of Σ formulas is the smallest class of Ls formulas
that contains the ∆0 formulas, and is closed under the connectives ∧ and ∨,
as well as existential quantifiers. The class of Π formulas is defined exactly
as the Σ formulas, but instead of closure under existential quantifiers, we
require closure under universal quantifiers.

Lemma 5.4. The following is provable in ACA+
0 . Consider the Ls formula

A (u1, . . . , un), and a list of object variables v1, . . . , vn. Then we have

n∧
i=1

(u?i =? v?i )→ (|A |2(u?1, . . . , u?n)→ |A |2(v?1 , . . . , v?n)).

Proof. Working in ACA+
0 , the assertion can be proven directly by induction

on the build-up of A (~u). For the atomic cases we use Theorem 4.19 and
the fact that N? and n? properly define representation trees, where n ∈ N.
If A (~u) is built up using propositional connectives or object quantifiers,
the assertion follows by the induction hypothesis.

Lemma 5.5. The following is provable in ACA+
0 .

(a) For any ∆0 formula A , |A |2 is provably equivalent to a Σ1 and a Π1

formula, both having the same free variables as |A |2.

(b) For any Σ formula A , |A |2 is provably equivalent to a Σ1 formula
with the same free variables as |A |2.

(c) For any Π formula A , |A |2 is provably equivalent to a Π1 formula
with the same free variables as |A |2.

Proof. (a): Let A [~u] be a ∆0 formula of Ls with free object variables among
~u = u1, . . . , un. We work in ACA+

0 and proceed by induction on the build-
up of A [~u]. In the following we will always assume that Rep(u?1, . . . , u?n). It
suffices to show the claim for A ?(u?1, . . . , u?n). Suppose that A [~u] is of the
form ui ∈ uj . We show that u?i ∈? u?j is ∆1

1. By definition it is equivalent
to a Σ1

1 formula. By Lemma 4.10 and Theorem 4.18 it is equivalent to the
Π1

1 formula

∀X(Iso(X,u?i ⊕ u?j )→ ∀x(〈〈0〉, 〈2, x〉〉 ∈ X)).
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5. Interpreting BS, BS1 and BS0 in Second Order Arithmetic

For the remaining atomic cases the claim is obvious. Recall that the defin-
ing formulas of the representation trees N? and n? for n ∈ N are arithmeti-
cal.

If A [~u] is a negative literal or of the form B1[~u]�B2[~u] with � ∈ {∧,∨},
the claim follows by the induction hypothesis. Finally, suppose A [~u] is of
the form (Qx ∈ ui)B[x, ~u] with Q ∈ {∀,∃}. It suffices to observe that from
Theorem 4.19(e) and Lemma 5.4 we can infer,

∀X(Rep(X) ∧X ∈? u?i → B?[X,~u?])↔ ∀xB?[u?i
〈2x〉, ~u?],

∃X(Rep(X) ∧X ∈? u?i ∧B?[X,~u?])↔ ∃xB?[u?i
〈2x〉, ~u?].

Note that Rep(X) is arithmetical. This is enough to establish (a).
(b): Let A [~u] be a Σ formula with variables among u = u1, . . . , un. We
proceed inductively as for (a). Assume Rep(u?1, . . . , u?n). We can restrict to
the case that A [~u] is of the form ∃xB[x, ~u]. All other cases are analogously
to or implied by (a). In particular, u?i ∈? u?j is Σ1

1. By the induction
hypothesis, the formula

∃X(Rep(X) ∧B?[X,u?1, . . . , u?n])

is Σ1. This suffices to prove (b).
(c): To establish the claim we can proceed analogously as for (b), the only
interesting case being when A [~u] is of the form ∃xB[x, ~u]. It suffices to
note that we can infer inductively that the formula

∀X(Rep(X)→ B?[X,u?1, . . . , u?n])

is Π1. This finishes the proof.

Corollary 5.6. The following is provable in Σ1
1-AC+

0 . For any ∆0 formula
A , |A |2 is ∆1

1, i.e., it is provably equivalent to a Σ1
1 and a Π1

1 formula,
both having the same free variables as |A |2.

Proof. We work in Σ1
1-AC+

0 . By Corollary 2.4 it suffices to show that
|A |2 is provably equivalent to a Σ1 and a Π1 formula. This is ensured
by Lemma 5.5(a).

To conclude the section we establish that within ACA0, any formula
A of L2 is (in some sense) equivalent to ||A |s|2. Recall that the involved
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transformations are defined in, respectively, section 4.2 and Definition 5.1.
Intuitively, this means that representation trees faithfully represent natural
numbers and subsets thereof in the context of ACA0. This shall now be
checked in more detail.

Definition 5.7. Working in ACA0, let X be any set. We say that X rep-
resents the number z, written X =obj z, if X = {〈〉, 〈2z + 1〉}. Moreover,
given a set Z, X represents Z, written X =obj Z, if

X = {〈〉} ∪ {〈2z〉 : z ∈ Z} ∪ {〈2z, 2z + 1〉 : z ∈ Z} .

In other words, X represents a number or a set ifX is a fixed representation
tree coding the respective object.

Proposition 5.8. The following is provable in ACA0. Let t[~x] be any term
of L2 with variables among ~x = x1, . . . , xn, and y an object variable of Ls.
Then |valt[y]|2 is equivalent to the formula

(∃u1, . . . , un, v)(y? =obj v ∧
∧n
i=1(x◦i)? =obj ui ∧ v = t[~u]).

Proof. Working in ACA0, the claim follows by induction on the build-up of
t[~x]. Note that if X =obj z for some set X and number z, then both X
and z are uniquely determined. Suppose t[~x] is xi. Then valt[y] ≡ y =N x◦i.
Hence, |valt[y]|2 is equivalent to the formula

∃u, v(y? =obj v ∧ (x◦i)? =obj u ∧ v = u).

From this, the assertion follows easily. Next, suppose that t[~x] is of the form
f(s1[~x], . . . , sm[~x]) for some m-ary p.r. function symbol f . Then valt[y] is
of the form

(∃y1, . . . , ym ∈ N)(
∧m
j=1 valsj

[yj ] ∧ Rf (y1, . . . , ym, y)),

with Rf being the p.r. relation symbol for the graph of f . By the induction
hypothesis we have that for all j = 1, . . . ,m, |valsj

[yj ]|2 holds iff

(∃u1, . . . , un, vj)(y?j =obj vj ∧
∧n
i=1(x◦i)? =obj ui ∧ vj = sj [~u]).

The conjunction of all the above formulas with j ranging over j = 1, . . . ,m
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5. Interpreting BS, BS1 and BS0 in Second Order Arithmetic

is equivalent to

(∃~u,~v)(
∧m
j=1 y

?
j =obj vj ∧

∧n
i=1(x◦i)? =obj ui ∧ vj = sj [~u]),

where ~u = u1, . . . , un, ~v = v1, . . . , vm. By properties of Rf and since
X ∈? N? ↔ ∃z(X =obj z) and ∀z∃X(X =obj z), it is now straightforward
to establish the desired assertion for |valt[y]|2.

Lemma 5.9. Let A be a formula of L2, B its translation into Ls, and
C the translation of B back into L2. Assume further that ~x, ~X lists all
free number and set variables of A , ~y is the list of the corresponding object
variables of B, and ~Z the set variables of C that correspond to ~y. Observe
that C does not contain free number variables. Then ACA+

0 proves that

~Z =obj ~x, ~X → (A ↔ C ).

Proof. Working in ACA+
0 , the assertion can be proved by induction on the

build-up of A [~x, ~X]. Note that if X represents an object, i.e., X =obj z
or X =obj Z for some number z or set Z, then X is uniquely determined
up to isomorphism. Moreover, every number and set is represented by
some unique set. It is now straightforward to carry out the induction
by employing Proposition 5.8, Lemma 5.4 and the following additional
properties:

• X ∈? N? ↔ ∃z(X =obj z),

• Y ⊆? N? ↔ ∃X,Z(X =? Y ∧X =obj Z),

where Y ⊆? N? :≡ (∀T ∈? Y ?)(T ∈? N∗). We omit the details.

5.2. Interpreting (RC) and co.
The main goal of this section is to validate the Rudimentary Closure axioms
of BS in ACA+

0 on the class of representation trees. However, we first deal
with the number-theoretic axioms, the ontological axioms and (Pair).

Lemma 5.10. Let A be any axiom of BS that is either a number-theoretic
axiom, an ontological axiom or an instance of (Pair). Then we can show
that

ACA+
0 ` |A |2.
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5.2. Interpreting (RC) and co.

Proof. We work in ACA+
0 . First, observe that for all representation trees

R,
R ∈? N? ↔ ∃x(R = {〈〉, 〈2x+ 1〉}). (5.1)

This is already provable in ACA0. By (5.2), the claim follows directly by
definition if A is a number-theoretic axiom of BS. Next, suppose that A
is an ontological axiom. For (O1) we note that two representation trees
S, T code the same object iff they either both code a set and S =? T , or
they both code a natural number and S = T . Of course, we also have
S =? T in the latter case. The claim now follows from Theorem 4.19 and
Example 4.6. Looking at Definition 5.1, the translations of (O2), (O3)
are trivially valid. (O4), (O5), (O7) follow from (5.2). For (O6) we use
in addition that R 6∈? {〈〉, 〈2x+ 1〉} for all x and representation trees R,
cf. Example 4.6. It remains to deal with (Pair). To this end, let S, T be
representation trees. By Theorem 4.18, let Y such that Iso(Y, S⊕T ). Using
Theorem 4.19 we immediately obtain that for all representation trees R,

R ∈? S ⊕ T ↔ R =? S ∨R =? T.

Hence, S ⊕ T properly codes the set consisting of the sets coded by S and
T . This finishes the proof.

Lemma 5.11. For every Rudimentary Closure axiom A of BS0,

ACA+
0 ` |A |2.

Proof. In the following we work in ACA+
0 . We start with some preliminary

remarks. Let S, T be representation trees that code sets. In particular,
if 〈x〉 ∈ S or 〈x〉 ∈ T , then x must be even. Suppose that S and T
represent, respectively, the sets u and v. We have to show that there exist
representation trees coding the sets u \ v,

⋃
u, u × v, dom(u), ∈� u, u−1,

and

{〈k, 〈l,m〉〉 : 〈k, l〉 ∈ u ∧m ∈ v} ,
{〈k, 〈m, l〉〉 : 〈k, l〉 ∈ u ∧m ∈ v} ,
{y : ∃x(x ∈ u ∧ y = v′′ {x})} .

In order to show that the given trees properly represent the respective sets,
we will tacitly apply Lemma 4.10, Theorem 4.18 and Theorem 4.19. Given
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5. Interpreting BS, BS1 and BS0 in Second Order Arithmetic

σ ∈ Seq and number n, we use notations such as 〈(σ)i : i > n〉 to denote
the sequence

〈(σ)n+1, (σ)n+2, . . . , (σ)lh(σ)−1〉,

and so on. We now go through all cases.
u \ v: Let Y such that Iso(Y, S ⊕ T ). To code u \ v we first identify

equal elements in u and v, i.e., we let

M := {x : ∃y(〈〈0, x〉, 〈2, y〉〉 ∈ Y )} .

M will be used to identify child nodes of 〈〉 in S that correspond to objects
in u ∩ v. In concrete terms, we define the representation tree

S \ T := {σ ∈ S : (σ)0 6∈M} ,

i.e., we remove branches in S that code objects already coded by T . We
claim that S \ T represents u \ v. To this end we have to show that

R ∈? S \ T ↔ R ∈? S ∧R 6∈? T, (5.2)

where R is an arbitrary representation tree. By definition of M and
Lemma 4.13 we can infer (∀x 6∈M)(S〈x〉 6∈? T ∧ S〈x〉 = (S \ T )〈x〉) and

R ∈? S \ T ↔ (∃x 6∈M)(R =? S〈x〉).

From this the claim follows.⋃
u : To code

⋃
u we proceed as follows. We transform S into the

representation tree S2 such that for all τ, ρ ∈ S:

• lh(τ) = 2→ (τ)1 is even,

• lh(τ), lh(ρ) ≥ 2→ (τ)1 6= (ρ)1.

Using S2 we can then obtain a representation tree
⋃
S coding

⋃
u. The

details are as follows. S2 is constructed in two steps. First, we look at all
τ ∈ S satisfying

lh(τ) = 2 ∧ (τ)1 is odd,

and replace these with, respectively, the sequences 〈(τ)0〉, i.e., the last node
of each such τ is deleted. We denote the resulting representation tree by
S1. In the second step we replace all σ ∈ S1 by the sequence σ∗ of the
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same length, where for all i < lh(σ), (σ∗)i = (σ)i if i 6= 1, and

(σ∗)1 = 2 · 〈(σ)0, (σ)1〉.

We let S2 denote the resulting representation tree. S2 exists by (ACA).
Note that the order in which these step are carried out does not matter.
To code

⋃
u we can now delete the first element in all sequences of S2, i.e.,

we define ⋃
S := {τ ∈ Seq : ∃x(〈x〉∗τ ∈ S2)} .

It is straightforward to show that
⋃
S is a representation tree. Intuitively,

the definition of S2 prepares S before the deletion of all child nodes of 〈〉 in
S. Caution is required for two reasons. First, natural numbers contained
in the set u coded by S must be replaced by ∅. This does not affect

⋃
u.

Moreover, all grandchild nodes of 〈〉 in S must get a different label before
the child nodes of 〈〉 are deleted. Note that

⋃
S = {〈〉} if S codes a natural

number or a set containing only natural numbers. It remains to show that⋃
S properly represents

⋃
u, i.e., for all representation trees

R ∈?
⋃
S ↔ ∃Q(Rep(Q) ∧R ∈? Q ∧Q ∈? S). (5.3)

By construction of
⋃
S we get for w, x with 〈2w, 2x〉 ∈ S,

(
⋃
S)〈2〈2w,2x〉〉 = S〈2w,2x〉.

By Lemma 4.13 we have S〈2w,2x〉 ∈? S〈2w〉 and S〈2w,2x〉 ∈?
⋃
S. With the

help of Theorem 4.19 it is now straightforward to verify (5.3).
u×v : Given representation trees R1, R2, we define 〈R1, R2〉 to be the

representation tree consisting of the sequences

〈〉, 〈0〉, 〈0, 0〉, 〈2〉, 〈2, 0〉, 〈2, 2〉,

plus all sequences of the form

〈0, 0〉∗ρ1, 〈2, 0〉∗ρ1 and 〈2, 2〉∗ρ2

for all ρ1 ∈ R1, ρ2 ∈ R2. By Theorem 4.19 one can easily see that 〈R1, R2〉
codes the Kuratowski pair of the objects coded by R1 and R2. 〈R1, R2〉
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can be sketched as follows:

〈〉

0

0

2

0 2

R1 R1 R2

To represent u× v we define S×T to be the representation tree consisting
of 〈〉 plus all σ ∈ Seq such that there exists 〈x〉 ∈ S and 〈y〉 ∈ T with

(σ)0 = 2 · 〈x, y〉 ∧ 〈(σ)i : i > 0〉 ∈ 〈S〈x〉, T 〈y〉〉.

Recall that x, y must be even. Demanding (σ)0 to be even makes sure that
S × T codes the set consisting of the objects coded by (S × T )2〈x,y〉 for all
x, y with 〈x〉 ∈ S and 〈y〉 ∈ T . Since (S × T )2〈x,y〉 = 〈S〈x〉, T 〈y〉〉, S × T
codes u × v. If S or T codes ∅, S × T = {〈〉}. S × T can be depicted as
follows:

〈〉

2 · 〈x, y〉

0

0

2

0 2

2 · . . . 2 · . . .

S〈x〉 S〈x〉 T〈y〉

Exploiting Lemma 4.13 and Theorem 4.19, and proceeding similarly as in
the previous cases, it is easily verified that S×T properly represents u×v.

dom(u): Some additional notions are required. Let X such that
Iso(X,S) holds. We say that x codes a pair in S, written pair(x, S),
if 〈x〉 ∈ S, and there exist even numbers y1, y2, z1, z2, z3 with y1 6= y2,
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z2 6= z3, 〈〈x, y1, z1〉, 〈x, y2, z2〉〉 ∈ X such that S〈x〉 is of the form

〈〉

y1

z1

y2

z2 z3

S〈x,y1,z1〉 S〈x,y2,z2〉 S〈x,y2,z3〉

(5.4)

Recall that x is even by assumption. The idea is that pair(x, S) states that
the object coded by S〈x〉 is a pair. X identifies subtrees representing the
same object since by Lemma 4.13 we have

S〈x,y1,z1〉 =? S〈x,y2,z2〉.

By Theorem 4.19 it is clear that pair(x, S) has the intended meaning. Note
that pair(x, S) is an arithmetical assertion. Now, in order to define the
representation tree dom(S) coding dom(u), we proceed in two steps. First,
we let M be the set consisting of all pairs 〈x, σ〉 with σ ∈ Seq such that

〈x, y1〉∗σ ∈ S ∧ pair(x, S) ∧ 〈〈x, y1, z1〉, 〈x, y2, z2〉〉 ∈ X

for some y1, y2, z1, z2, z3. Intuitively, M is the disjoint union of all trees

〈〉

z1

S〈x,y1,z1〉
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that are cut out from the following subtree of S,

〈〉

x

y1

z1

y2

z2 z3

S〈x,y1,z1〉 S〈x,y2,z2〉 S〈x,y2,z3〉

where pair(x, S) and 〈〈x, y1, z1〉, 〈x, y2, z2〉〉 ∈ X. Given x, the numbers
y1, y2, z1, z2, z3 are uniquely determined by definition. Secondly, we define
dom(S) to consist of 〈〉 plus all σ∗ ∈ Seq satisfying

∃x, σ(〈x, σ〉 ∈M ∧ lh(σ∗) = lh(σ) ∧
(∀i < lh(σ))((σ)i = (σ∗)i ↔ i 6= 0 ∧ (σ∗)0 = x)).

The idea of the above construction is as follows. M is the disjoint union
of trees coding the wanted elements. However, to put all these trees to-
gether into a proper representation tree we have to relabel nodes in order to
avoid conflicts. The above definition ensures that. Using Lemma 4.13 and
Theorem 4.19 we can therefore verify that dom(S) properly codes dom(u).

∈� u: The intuition behind coding ∈� u is to consider every subtree of
S of the form,

〈〉

x

y

S〈x,y〉
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with x, y being even, and replace that tree by

〈〉

2〈x, y〉

0

0

2

0 2

S〈x,y〉 S〈x,y〉 S〈x〉

Finally, to form ∈� S, all these newly formed trees are glued together. More
formally, ∈� S consists of 〈〉 plus all sequences σ such that

(σ)0 = 2〈x, y〉 ∧ 〈(σ)i : i > 0〉 ∈ 〈S〈x,y〉, S〈x〉〉,

where x, y are such that y is even and 〈x, y〉 ∈ S. The construction makes
sure that subtrees of the form S〈x〉 that code ∅ or natural numbers are
discarded. By Lemma 4.13 and Theorem 4.19 we see that (∈� S)〈2〈x,y〉〉
represents the correct set for each x, y as above. Hence, ∈� S properly
codes ∈� u.

u−1: Put X such that Iso(X,S) holds. To construct S−1 coding u−1,
we let x such that pair(x, S) holds and consider the following tree,

〈〉

x

0

0

2

0 2

S〈x,y2,z3〉 S〈x,y2,z2〉 S〈x,y2,z3〉
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where, by pair(x, S), y1, y2, z1, z2, z3 are uniquely determined such that

〈〈x, y1, z2〉, 〈x, y2, z2〉〉 ∈ X.

Then S−1 is obtained by glueing together the above trees for all x with
pair(x, S). The idea is as follows. If S〈x〉 codes a pair, then the above
tree codes exactly the inverted pair. All other trees of the form S〈x〉 are
discarded. More formally, S−1 consists of 〈〉 plus all σ ∈ Seq such that
there exist x, y1, y2, z1, z2, z3 with

pair(x, S) ∧ 〈〈x, y1, z2〉, 〈x, y2, z2〉〉 ∈ X

and
(σ)0 = x ∧ 〈(σ)i : i > 0〉 ∈ 〈S〈x,y2,z3〉, S〈x,y2,z2〉〉.

The above intuition can be made precise using Lemma 4.13 and Theo-
rem 4.19, therefore S−1 properly codes u−1.

{〈k, 〈l,m〉〉 : 〈k, l〉 ∈ u ∧m ∈ v}: Let M be the set of all numbers of
the form 〈x, 〈y2, z2, z3〉〉 such that

pair(x, S) ∧ z2 6= z3 ∧ 〈y2, z2〉, 〈y2, z3〉 ∈ S.

Let W be the set of all sequences σ such that there exists w, x, y2, z2, z3
with 〈w〉 ∈ T and 〈x, 〈y2, z2, z3〉〉 ∈M so that

(σ)0 = 2〈w, x〉 ∧ 〈(σ)i : i > 0〉 ∈ 〈S〈x,y2,z2〉, 〈S〈x,y2,z3〉, T 〈w〉〉〉.

For better readability, the indices are chosen analogously to (5.4). As in the
previous cases, we can easily convince ourselves that W is a representation
tree coding the desired set.

{〈k, 〈m, l〉〉 : 〈k, l〉 ∈ u ∧m ∈ v}: We proceed similar as in the previous
case and letW be the set of all σ ∈ Seq such that there exists w, x, y2, z2, z3
with

〈w〉 ∈ T ∧ pair(x, S) ∧ z2 6= z3 ∧ 〈y2, z2〉, 〈y2, z3〉 ∈ S,

where

(σ)0 = 2〈w, x〉 ∧ 〈(σ)i : i > 0〉 ∈ 〈S〈x,y2,z3〉, 〈S〈x,y2,z2〉, T 〈w〉〉〉.

As before, one can easily verify that W properly codes the desired set.
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{y : ∃x(x ∈ u ∧ y = v′′ {x})}: Define the sets Y,Z such that, respec-
tively, Iso(Y, T ) and Iso(Z, S ⊕ T ). Now, let M be the set of all pairs
〈x, 〈w, y2, z3〉〉 satisfying

〈x〉 ∈ S ∧ 〈w, y2, z3〉 ∈ T ∧ pair(w, T )

such that there exists y1, z1, z2 with y2 6= y1, z3 6= z2 and

〈〈w, y1, z1〉, 〈w, y, z2〉〉 ∈ Y ∧ 〈〈0, x〉, 〈2, w, y2, z3〉〉 ∈ Z.

Intuitively, 〈x, 〈w, y2, z3〉〉 ∈ M iff T 〈w〉 codes a pair with first component
isomorphic to S〈x〉. The numbers y2, z3 serve to identify the second compo-
nent of the coded pair. Recall that y1, y2, z1, z2, z3 are uniquely determined
by w. M provides all data necessary to obtain the desired set, denoted W .
Namely, we let W consist of all σ ∈ Seq such that

∃x,w, y2, z3(〈x, 〈w, y2, z3〉〉 ∈M ∧ (σ)0 = x ∧ 〈(σ)i : i > 0〉 ∈ T 〈w,y2,z3〉).

It is straightforward to verify that W is a representation tree. For each
subtree of the form S〈x〉, there exists a subtree W 〈x〉 coding v′′ {x}. More-
over, W does not contain any other subtrees. Thus, W codes the desired
set. Similarly as before, this is straightforward to check. As in the previous
two cases, the indices are chosen in accordance with (5.4).

5.3. Interpreting (∆0-IN), (Ls-IN) and (Ls-I∈)
Next, we turn to the induction schemas (∆0-IN), (Ls-IN) and (Ls-I∈). We
introduce an additional notion to facilitate the discussion. Let (Schem)
be an arbitrary axiom schema of Ls. Then |(Schem)|2 is the collection
of all translations of (Schem). More precisely, it is the collection of all
L2 formulas of the form |F |2, where F is some instance of (Schem). As
mentioned before, it turns out that |(∆0-IN)|2, |(Ls-IN)|2 and |(Ls-I∈)|2 are
all provable in ACA. Moreover, |(∆0-IN)|2 is already derivable in Σ1

1-AC+
0 .

In the following we will cover all details and establish these assertions. We
then have all the ingredients to embed BS0 into Σ1

1-AC+
0 , and BS1,BS into

ACA.
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Lemma 5.12. We have the following:

(a) Σ1
1-AC+

0 ` |(∆0-IN)|2.

(b) ACA ` |(Ls-IN)|2.

(c) ACA ` |(Ls-I∈)|2.

Proof. (a): Suppose that A [w, ~u] is a ∆0 formula with free object variables
among w, u1, . . . , un. We look at the following instance of (∆0-IN):

A [0, ~u] ∧ (∀m,n ∈ N)(A [m,~u] ∧ RSucc(m,n)→ A [n, ~u])
→ (∀n ∈ N)A [n, ~u].

Working in Σ1
1-AC+

0 , suppose Rep(u?1, . . . , u?n), A ?[0?, ~u] and that for all
representation trees S, T ∈ N?:

A ?[S, ~u?] ∧ RSucc(S, T )? → A ?[T, ~u?]. (5.5)

We have to show that for all representation trees R ∈? N, it holds that
A ?(R, ~u?). The idea is to apply ∆1

1 induction to a suitable formula. Since
(∆1

1-CA) is provable in Σ1
1-AC0, a subsystem of Σ1

1-AC+
0 , induction for ∆1

1
formulas is available. By Corollary 5.6 we can asssume that A ?(R, ~u?) is
∆1

1. By Theorem 4.19(e) and Example 4.6 we obtain that for all represen-
tation trees R,

R ∈? N↔ ∃m(R = {〈〉, 〈2m+ 1〉}).

Given a representation R ∈? N, we use #(R) to denote the unique m such
that 〈2m+ 1〉 ∈ R. It follows that for all representation trees S, T ∈? N,

RSucc(S, T )? ↔ #(S) + 1 = #(T ). (5.6)

Next, define the formula

B[n, ~u?] :≡ A ?[{〈〉, 〈2n+ 1〉} , ~u?].

Note that B[n, ~u?] is ∆1
1. By what we showed above we have for all repre-

sentation trees R ∈? N?,

A ?[R, ~u?]↔ B?[#(R), ~u?]. (5.7)
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A ?[0?, ~u] is equal to B?[0, ~u]. Looking at (5.5) and (5.6) we obtain

B?[m,~u?] ∧ n = m+ 1→ B?[n, ~u?].

Hence, applying ∆1
1 induction to B?[n, ~u?] we obtain ∀nB[n, ~u?]. Using

(5.7) we can conclude the proof.
(b): The assertion follows in basically the same manner as (a). In fact,
we don’t need to rely on Corollary 5.6. Instead of ∆1

1 induction, we apply
induction for L2 formulas, which is available in ACA.
(c): Let A [w, ~u] be any Ls formula with free object variables w, u1, . . . , un.
We consider the following instance of (Ls-I∈):

∀x((∀y ∈ x)A [y, ~u]→ A [x, ~u])→ ∀xA [x, ~u].

Working in ACA, suppose that Rep(u?1, . . . , u?n) and for all representation
trees T ,

∀S(Rep(S) ∧ S ∈? T → A ?[S, ~u∗])→ A ?[T, ~u∗]. (5.8)

We want to show that A ?[T, ~u∗] for all representation trees T . Since all
representation trees have finite length, we can achieve this by a suitable
induction. Put

B[k, ~u∗] :≡ ∀T (Rep(T ) ∧ k = max {lh(σ) : σ ∈ T} → A ?[T, ~u∗]).

It suffices to show ∀kB[k, ~u∗]. We proceed by <-induction. The base cases
k = 0, 1 are immediate as (5.8) is vacuously true. For the induction step
we fix k > 1 and assume B[l, ~u∗] for all l < k. Let T be a representation
tree such that k+ 1 = max {lh(σ) : σ ∈ T}. In particular, T does not code
the empty set. Let S be a representation tree such that S ∈∗ T . By
Lemma 4.21 we have

max {lh(σ) : σ ∈ S} < max {lh(σ) : σ ∈ T} .

By the induction hypothesis we therefore get

∀S(Rep(S) ∧ S ∈? T → A ?[S, ~u∗]).

Using (5.8) we obtain
A ?[T, ~u∗].
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5. Interpreting BS, BS1 and BS0 in Second Order Arithmetic

Altogether, we derived |A |2[T, ~u∗], which concludes the proof.

Theorem 5.13. Let A be any Ls formula. Then we have

(a) BS0 ` A implies Σ1
1-AC+

0 ` |A |2.

(b) BS1 ` A implies ACA ` |A |2.

(c) BS ` A implies ACA ` |A |2.

Proof. Note that (b) follows immediately from (c). For each assertion it
suffices to prove the claim for all axioms of the respective set theory. This
is taken care of by Lemma 5.10, Lemma 5.11 and Lemma 5.12.
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6. Adding Σ and Π reduction
In Part I we studied several principles over ACA0 and proved their equiv-
alence to (ATR). Among these principles, Σ1

1 and Π1
1 reduction have very

natural set-theoretic counterparts. It is the goal of this section to study
these within BS and its subsystems.

6.1. Π and Σ reduction
In this section we will extend BS and its subsystem with set-theoretic
analogues of Π1

1 and Σ1
1 reduction, cf. section 2.2.

The schemas of Π and Σ reduction are given as follows.

Π and Σ reduction.
For all Σ formulas A (x) and all Π formulas B(x), the schema (Π-Red)
comprises all formulas of the form

(∀x ∈ a)(A (x)→ B(x))→
∃y((∀x ∈ a)(A (x)→ x ∈ y) ∧ (∀x ∈ y)(x ∈ a ∧B(x))).

(Π-Red)

Similarly, the schema (Σ-Red) consists of all formulas

(∀x ∈ a)(B(x)→ A (x))→
∃y((∀x ∈ a)(B(x)→ x ∈ y) ∧ (∀x ∈ y)(x ∈ a ∧A (x))).

(Σ-Red)

In fact, the set-theoretic reduction principles introduced above are rather
the counterparts of Π1 and Σ1 reduction in L2, henceforth termed (Π1-Red)
and (Σ1-Red), respectively, cf. also Definition 2.1. These schemas are de-
fined exactly as (Π1

1-Red) and (Σ1
1-Red), but with Π1 and Σ1 formulas

playing the role of, respectively, Π1
1 and Σ1

1 formulas. By Theorem 2.2 and
Corollary 2.4 we obtain that:
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6. Adding Σ and Π reduction

• Over Σ1
1-AC0, (Σ1

1-Red) and (Σ1-Red) are equivalent,

• Over ACA0, (Π1
1-Red) and (Π1-Red) are equivalent.

Thus, on the side of second order arithmetic, we have equivalences in all
interesting cases, as will become clear below. However, on the set-theoretic
side we have to stick to the schemas (Π-Red) and (Σ-Red) since they offer
more flexibility in our context. In particular, they both yield ∆ separation
over BS0, i.e., for all Σ formulas A (x) and Π formulas B(x),

(∀x ∈ a)(A (x)↔ B(x))→ ∃y∀x(x ∈ y ↔ (x ∈ a ∧A (x))).

From that, lower bounds for (Σ-Red) over BS0 and BS1 can be read off
immediately.
Lemma 6.1. We have the following inclusions:

∆1
1-CA0 ⊆ BS0 + (Σ-Red) and ∆1

1-CA ⊆ BS1 + (Σ-Red).

Proof. Recall that we can view L2 as a sublanguage of Ls by mapping
any L2 formula A to A ◦, cf. section 4.2. Note that (∆1

1-CA) instances be-
come instances of ∆ separation under this translsation. Thus, the assertion
follows directly by the above discussion and Theorem 4.4.

In case (Π-Red) is available, we can do more.
Lemma 6.2. We have the following inclusions:

ATR0 ⊆ BS0 + (Π-Red) and ATR ⊆ BS1 + (Π-Red).

Proof. It is clear that, modulo our translation of L2 into Ls, instances of
(Π1

1-Red) become special cases of (Π-Red). Since (ATR) is equivalent to
(Π1

1-Red) over ACA0, cf. Theorem 2.2, the assertion follows immediately by
Theorem 4.4.

We will show that the bounds given above are sharp w.r.t. proof-
theoretic strength. In order to deal with (Σ-Red) we establish that, working
in Σ1

1-AC0, (Σ1-Red) is valid on the collection of representation trees.
Lemma 6.3. Let A (X) be a Σ1 formula of L2 and B(X) a Π1 formula of
L2. Working in Σ1

1-AC0, assume that S is a representation tree such that

∀x(〈2x〉 ∈ S ∧B(S〈2x〉)→ A (S〈2x〉)).

88



6.1. Π and Σ reduction

Then there exists a representation tree T such that:

(a) ∀x(〈2x〉 ∈ S ∧B(S〈2x〉)→ 〈2x〉 ∈ T ∧ S〈2x〉 = T 〈2x〉),

(b) ∀x(〈2x〉 ∈ T → 〈2x〉 ∈ S ∧ S〈2x〉 = T 〈2x〉 ∧A (T 〈2x〉)).

Proof. Suppose we work in Σ1
1-AC0. By Theorem 2.2 and Corollary 2.4,

(Σ1-Red) is at our disposal. We put

A ′(z) :≡ ∃x(z = 2x ∧A (S〈2x〉)),
B′(z) :≡ ∃x(z = 2x ∧ 〈2x〉 ∈ S ∧B(S〈2x〉)).

By assumption, A ′(z) is Σ1 and B′(z) is Π1. Moreover, we have

∀z(B′(z)→ A ′(z)).

Applying (Σ1-Red) with S as parameter gives a set Y such that

∀z(z ∈ Y → A ′(z)) ∧ ∀z(B′(z)→ z ∈ Y ). (6.1)

By (ACA) we put

T := {〈〉} ∪ {σ ∈ S : 1 ≤ lh(σ) ∧ (σ)0 ∈ Y } .

We claim that T is a representation tree with the desired properties. With-
out loss of generality we can assume that S codes a set. Then it is clear
that T is a representation tree because S is one. We have to show that
(a) and (b) hold. For (a), let x such that 〈2x〉 ∈ S and B(S〈2x〉). Then
we have B′(2x), hence 2x ∈ Y by (6.1). By definition of T , it follows
that 〈2x〉 ∈ T and S〈2x〉 = T 〈2x〉. This shows (a). For (b), consider x
satisfying 〈2x〉 ∈ T . By definition of T , this immediately yields 〈2x〉 ∈ S
and S〈2x〉 = T 〈2x〉. Moreover, we have 〈2x〉 ∈ Y , hence by (6.1) we also get
A ′(2x), i.e., A (S〈2x〉). This amounts to (b) and concludes the proof.

In order to take care of (Π-Red) we establish (Π1-Red) on the class
of representation trees within ATR0. The proof follows the same pattern
as above. Together with Lemma 5.5, we then have the necessary tools to
interpret (Σ-Red) and (Π-Red) properly within, respectively, Σ1

1-AC0 and
ATR0.
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Lemma 6.4. Let A (X) be a Σ1 formula of L2 and B(X) a Π1 formula
of L2. Working in ATR0, suppose that S is a representation tree such that

∀x(〈2x〉 ∈ S ∧A (S〈2x〉)→ B(S〈2x〉)).

Then there exists a representation tree T such that:

(a) ∀x(〈2x〉 ∈ S ∧A (S〈2x〉)→ 〈2x〉 ∈ T ∧ S〈2x〉 = T 〈2x〉),

(b) ∀x(〈2x〉 ∈ T → 〈2x〉 ∈ S ∧ S〈2x〉 = T 〈2x〉 ∧B(T 〈2x〉)).

Proof. We work in ATR0. Recall that we can make use of (Π1-Red), cf.
Theorem 2.2 and Corollary 2.4. We let

A ′(z) :≡ ∃x(z = 2x ∧ 〈2x〉 ∈ S ∧A (S〈2x〉)),
B′(z) :≡ ∃x(z = 2x ∧B(S〈2x〉)).

By assumption, A ′(z) is Σ1 and B′(z) is Π1. Moreover, we have

∀z(A ′(z)→ B′(z)).

Applying (Π1-Red) with S as parameter gives a set Y such that

∀z(A ′(z)→ z ∈ Y ) ∧ ∀z(z ∈ Y → B′(z)). (6.2)

Using (ACA) we define

T := {〈〉} ∪ {σ ∈ S : 1 ≤ lh(σ) ∧ (σ)0 ∈ Y } .

We show that T has the desired properties. We can suppose that S codes
a set. Clearly, T is then a proper representation tree. It remains to show
that (a) and (b) hold. For (a) let x such that 〈2x〉 ∈ S and A (S〈2x〉). Then
we have A ′(2x), hence 2x ∈ Y by (6.2). By definition of T , it follows that
〈2x〉 ∈ T and S〈2x〉 = T 〈2x〉. This shows (a). To establish (b), let x such
that 〈2x〉 ∈ T . By definition of T this yields 〈2x〉 ∈ S and S〈2x〉 = T 〈2x〉.
Furthermore, we have 〈2x〉 ∈ Y , therefore by (6.2) we also obtain B′(2x),
i.e., B(S〈2x〉). This proves (b), finishing the proof.
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6.2. Results
Except for the case BS0 + (Σ-Red), which is discussed in [BJ20], we can
now determine the effect of adding (Σ-Red) and (Π-Red) to our basic set
theories w.r.t. proof-theoretic strength.

Theorem 6.5. For all formulas A of Ls we have:

(a) BS + (Σ-Red) ` A =⇒ Σ1
1-AC ` |A |2.

(b) BS0 + (Π-Red) ` A =⇒ ATR0 ` |A |2.

(c) BS + (Π-Red) ` A =⇒ ATR ` |A |2.

Proof. For each assertion, it suffices to prove the claim for all axioms of
the respective set theory. As in section 5.3, we use |(Schem)|2 to denote
the translation of an axiom schema (Schem) of Ls into L2. By Lemma 5.5
we can ensure that our translation carries Σ and Π formulas of Ls over
to, respectively, Σ1 and Π1 formulas of L2 in the given contexts. We now
prove all assertions. For (a) we use Theorem 5.13(c), which only leaves
(Σ-Red). By Lemma 5.5(b) and Lemma 6.3, Σ1

1-AC0 proves all instances
of |(Σ-Red)|2. For (b) we note that Σ1

1-AC+
0 is contained in ATR0, cf.

Theorem 2.2. By Theorem 5.13(a) we are only left with |(Π-Red)|2. This
is provable in ATR0 by Lemma 5.5(c) and Lemma 6.4. For (c) we employ
Theorem 5.13(c) and deal with |(Π-Red)|2 as for (b).

Corollary 6.6. We have the following proof-theoretic equivalences:

(a) |Σ1
1-AC| = |BS1 + (Σ-Red)| = |BS + (Σ-Red)|.

(b) |ATR0| = |BS0 + (Π-Red)|.

(c) |ATR| = |BS1 + (Π-Red)| = |BS + (Π-Red)|.

Proof. Recall that |Σ1
1-AC| = |∆1

1-CA| = ϕε0(0), cf. [Buc05]. Referring to
Lemma 5.9, the corollary is a direct consequence of Lemma 6.1, Lemma 6.2
and Theorem 6.5.

For completness we mention the result regarding the proof-theoretic
strength of BS0 + (Σ-Red) presented in [BJ20]. We omit the details as the
proof deviates from our thematic focus. It involes a combination of partial
cut elimination and the method of asymmetric interpretations. The main
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idea is to reduce suitable fragments of BS0 +(Σ-Red) to substructures that
are provided in Σ1

1-AC0 by the class of all k-trees for some fixed (standard)
natural number k.

Theorem 6.7. The following proof-theoretic equivalences hold:

|PA| = |∆1
1-CA0| = |Σ1

1-AC0| = |BS0 + (Σ-Red)| = ε0.

Proof. See [BJ20], section 9.3.5.
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7. Adding Axiom Beta
In this chapter we expand our setting to obtain theories linked to Simpson’s
ATRset

0 and related theories. ATRset
0 is formulated in a set-theoretic language

without urelements. It builds upon a basic set theory, which includes the
Axiom of Infinity, and in which the existence of the first limit ordinal ω
is provable. ATRset

0 is then obtained by adding the Axiom Beta and the
Axiom of Countability. Adapted to our context, we introduce a slightly
modified variant of BS0, denoted BS2, as our new base theory. Building on
BS2, the Axiom Beta is added to obtain the theory BETA0. Here, we follow
the nomenclature of subsystems of second order arithmetic. The Axiom
of Countability is not included in BETA0. It will be added contextually,
whenever needed. Adding Countability leads to a theory equivalent to
ATRset

0 . As in the previous chapter, we are then interested in the effect of
adding reduction principles to BETA0 and related theories.

7.1. The systems BETA0 and BETA
Definition 7.1. BS2 is the formal system in Ls which consists of BS0 plus
(∆0-I∈). Alternatively, BS2 is obtained from BS1 by adding (∆0-I∈) and
restricting (Ls-IN) to (∆0-IN).

In order to introduce the Axiom Beta, the Axiom of Countability and
the Axiom of Infinity, a couple of additional mathematical notions are
needed, cf. [Sim09].

• Rel(r)↔ r ⊆ rng(r)× dom(r), i.e., r is a relation,

• Fcn(f)↔ Rel(f)∧∀x, y1, y2(〈x, y1〉 ∈ f ∧〈x, y2〉 ∈ f → y1 = y2), i.e.,
f is a function,

• Inj(f) ↔ Fcn(f) ∧ ∀x1, x2, y(〈x1, y〉 ∈ f ∧ 〈x2, y〉 ∈ f → x1 = x2),
i.e., f is an injection,
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• s ≈ t ↔ ∃f(Inj(f) ∧ dom(f) = s ∧ rng(f) = t), i.e., s and t are
equinumerous,

• Trans(t)↔ ∀x, y((x ∈ y ∧ y ∈ t)→ x ∈ t), i.e., t is transitive,

• Ord(t)↔ Trans(t)∧ ∀x, y((x ∈ t∧ y ∈ t)→ (x ∈ y ∨ x = y ∨ y ∈ x)),
i.e., t is an ordinal,

• Succ(t)↔ Ord(t) ∧ ∃v(t = v ∪ {v}), i.e., t is a successor ordinal,

• Lim(t)↔ Ord(t) ∧ t 6= ∅ ∧ ¬ Succ(t), i.e., t is a limit ordinal,

• FinOrd(t)↔ Ord(t)∧ ∀v(v ∈ t∪ {t} → (v = ∅ ∨ Succ(v))), i.e., t is a
finite ordinal,

• Fin(t)↔ ∃v(t ≈ v ∧ FinOrd(v)), i.e., t is a finite set,

• HFin(t)↔ ∃v(t ⊆ v ∧Trans(v)∧Fin(v)), i.e., t is hereditarily finite,

• Ctbl(t) ↔ ∃f(Inj(f) ∧ dom(f) = t ∧ ∀y(y ∈ rng(f) → FinOrd(y))),
i.e., t is countable,

• HCtbl(t)↔ ∃v(t ⊆ v∧Trans(v)∧Ctbl v), i.e., t is hereditarily count-
able.

Here, f, r, s, t range over terms. Working in BS0, note that r is a relation
iff

(∀x ∈ r)(x is an ordered pair 〈u, v〉 with objects u, v).

It is straightforward to show that the above assertion is ∆0. A relation r
is said to be regular if

∀u(S(u) ∧ u 6= ∅ → (∃x ∈ u)(∀y ∈ u)(〈y, x〉 6∈ r)).

Intuitively, a relation r is regular iff every non-empty subset of its field
has an r-minimal element. Finally, we can turn to defining the additional
axioms and corresponding theories.
Axiom Beta: For every regular relation r, there exists a collapsing function
f , i.e., f is a function with dom(f) = field(r) and

f ′x = f ′′ {y : 〈y, x〉 ∈ r} (Beta)

for all x ∈ field(r).
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Axiom of Countability:

∀u(S(u)→ u is hereditarily countable). (C)

Axiom of Infinity:

∃u(S(u) ∧ ∅ ∈ u ∧ (∀x, y ∈ u)(x ∪ {y} ∈ u)). (Inf)

Definition 7.2. BETA0 is the formal system in the language Ls consist-
ing of BS2 together with (Beta). The system BETA is obtained from BS
by adding (Beta). Equivalently, BETA matches BETA0 plus (Ls-I∈) and
(Ls-IN).

Note that our object coding via representation trees is not sufficient
any more, as the existence of ω is provable in BETA0. However, this does
not create a problem as we can relate BETA0 to the well-known set theory
ATRset

0 by Simpson.
Lemma 7.3. Working in BETA0 the existence of ω, i.e., the first limit
ordinal, can be proved. Moreover, there exists functions corresponding to
the usual addition and multiplication on ω.
Proof. By (O3) and (RC), the class N × N exists properly as set. By
(∆0-Sep), there exists a set r such that

r = {〈m,n〉 : m,n ∈ N ∧m < n} ,

where < is the usual p.r. less relation on the natural numbers. Clearly, r is
a regular relation since every subset of N has a minimal element w.r.t. <.
This is an immediate consequence of (∆0-IN). According to Axiom Beta, r
has a collapsing function f . Put ω := rng(f). By (RC), ω exists properly.
It remains to show that ω has the desired properties. For transitivity,
consider x, y such that x ∈ ω and y ∈ x. By definition, let m ∈ N such
that x = f ′m. By construction of f and since y ∈ x we can infer that
y = f ′n for some n ∈ N with n < m. It follows that y ∈ ω. Following a
similar pattern, it is straightforward to show that ω is linearly ordered by
∈ as this property is inherited from <. This proves that ω is an ordinal.

We content ourselves with proving the existence of a function corre-
sponding to addition. For multiplication the strategy is the same. For
notational simplicity we work with p.r. function symbols. Strictly speak-
ing, we only have symbols for p.r. relations at our disposal, but since graphs
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of p.r. function are p.r., this abuse of notation does not pose a problem.
By (RC) the class ω3 = (ω × ω) × ω exists properly. By (∆0-Sep) we can
define addition as the set of all 〈〈u, v〉, w〉 ∈ ω3 such that

(∃m,n, k ∈ N)(u = f(m) ∧ v = f(n) ∧ w = f(k) ∧ k = m+ n),

with the collapsing function f of r serving as parameter. This concludes
the proof.

7.2. Relation to ATRset
0 and ATRset

Simpson introduced a set-theoretic counterpart to ATR0, denoted ATRset
0 ,

cf. [Sim09], VII.3. ATRset
0 is formulated in a set-theoretic language without

urelements, which can be viewed as a sublanguage of our language Ls.
Keeping this in mind, the following theorem establishes a precise relation
between BETA0 and ATRset

0 .

Theorem 7.4. We have the following inclusions:

(a) BETA0 is a subsystem of ATRset
0 .

(b) ATRset
0 \ (C) is a subsystem of BETA0.

Proof. (a): We work in ATRset
0 and show that every axiom of BETA0 is

derivable. Referring to [Sim09], Lemma VII.3.7 and Theorem VII.3.9, it
is clear that N can be represented by ω. Moreover, the constants n for
n ∈ N, and all p.r. relation symbols can be faithfully represented on ω.
We content ourselves with deriving (∆0-IN) and (∆0-I∈). All remaining
axioms of BETA0 are clearly valid in ATRset

0 . Since ω plays the role of N,
(∆0-IN) is an immediate consequence of (∆0-I∈). Thus, it suffices to derive
(∆0-I∈). To this end, consider the ∆0 formula A (x) and suppose that u is
a set satisfying A (u). By (C), let v be transitive such that u ⊆ v. Using
(∆0-Sep), let w = {x ∈ v ∪ {u} : A (x)}. Note that v ∪ {u} is transitive.
By assumption, A (u) holds, therefore w 6= ∅. Using (Reg), let z ∈ w such
that (∀y ∈ z)(y 6∈ w). Thus, we have A (z) and, by transitivity of v ∪ {u},
(∀y ∈ z)¬A (y). This establishes (∆0-I∈), concluding the proof of (a).
(b): We work in BETA0 and only consider the Axiom of Regularity and
the Axiom of Infinity. All other axioms of ATR0 \ (C) are clearly valid in
BETA0. For the Axiom of Regularity, let v 6= ∅. Taking the contraposition
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of (∆0-I∈) applied to the formula x 6∈ v and using that v 6= ∅, there exists
x ∈ v such that

(∀y ∈ x)(y 6∈ v).

This proves the Axiom of Regularity. For the Axiom of Infinity we have to
show that there exists a set u such that

∅ ∈ u ∧ (∀x, y ∈ u)(x ∪ {y} ∈ u).

Using Ax(PA), let E be the p.r. relation symbol on N such that nEm iff
there exists m1 > m2 > . . . > mj with

m = 2m1 + . . .+ 2mj

and n = mi for some 1 ≤ i ≤ j. By (∆0-IN), the relation E is regular and
field(E) = N. Thus, Axiom Beta yields a function f such that dom(f) = N
and for all n ∈ N,

f ′n = f ′′ {m : mEn} .

Put u = rng(f). We show that u validates the Axiom of Infinity. First,
observe that

f(0) = f ′′ {m : mE0} = f ′′∅ = ∅.

Thus, ∅ ∈ u. Next, suppose x, y ∈ u, i.e., there exists k, l ∈ N such that

x = f(k) ∧ y = f(l).

We let

h =
{
k lEk,

k + 2l otherwise.

It follows that f(h) = x ∪ {y}. Observe that h = k + 2l for h ∈ N is
obviously expressible in BETA0. Hence, the above abuse of notation does
not pose a problem. This establishes (b).

By the above theorem, BETA0 + (C) is equivalent to ATRset
0 . In that

sense, urelements become superfluous and it does not matter whether we
use urelemens or ordinals to represent natural numbers. As mentioned
earlier, our notion of representation tree is inappropriate for representing
Axiom Beta. This can be overcome by making use of suitable trees as
introduced in [Sim09], Definition VII.3.10.
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Definition 7.5. Given any formula A of Ls, we use ‖A ‖2 to denote its
translation into L2 as introduced in [Sim09], Definition VII.3.15.

Following [Sim09], we now have all means to link ATR0 and BETA0.
For completeness we cover all details.

Lemma 7.6. Within BS2, the class of ordinals is linearly ordered by ∈.

Proof. Irreflexivity is a direct consequence of (Reg) and (Pair). Transitivity
follows since ordinals are transitive. For totality, consider α 6= β. Without
loss of generality, α \ β 6= ∅. By (Reg), let x∗ ∈ α \ β such that

(∀y ∈ α \ β)(y 6∈ x∗). (7.1)

By (7.1) and Trans(α) we obtain x∗ ⊆ α ∩ β. Moreover, α ∩ β ⊆ x∗ since
otherwise x∗ ∈ β by totality of ∈�α and since β is transitive. If β ⊆ α we
are done. Suppose this is not the case, then arguing as above yields a set
y∗ ∈ β with y∗ = α ∩ β, hence y∗ = x∗. But then x∗ ∈ β, contradicting
x∗ 6∈ β. Thus, we must have β ⊆ α. It follows that β = x∗ ∈ α.

Definition 7.7. Working in ACA0, let X,Y be well orderings. We write f :
|X| = |Y | to indicate that f is a function f : field(X)→ field(Y ) such that
(∀k ∈ field(Y ))(∃i ∈ field(X))(f(i) = k) and ∀i, j(i ≤X j ↔ f(i) ≤Y f(j)),
i.e., f is an order-preserving bijection from X to Y . We write f : |X| < |Y |
if f : |X| = | {l ∈ field(Y ) : l <Y k} | for some k ∈ field(Y ), and f : |X| >
|Y | if f : | {i ∈ field(X) : i <X j} | = |Y | for some j ∈ field(X). Moreover,
|X| = |Y | if there exists some f such that f : |X| = |Y |, and |X| < |Y |
if f : |X| = |Y | for some f . Additional notations such as |X| ≤ |Y |,
|X| > |Y |, f : |X| ≥ |Y | and so on, are to be understood accordingly.

Theorem 7.8. Over ACA0, the schema (ATR) is equivalent to the com-
parability of well orderings, CWO for short, i.e.,

∀V,W (WO(V ) ∧WO(W )→ |V | ≤ |W | ∨ |V | ≥ |W |).

Proof. See [Sim09], Theorem V.6.8.

Theorem 7.9. We have the following interpretability results.

(a) Every axiom of ATR0 is a theorem of BETA0.

(b) If A is an axiom of BETA0, then ‖A ‖2 is a theorem of ATR0.
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Proof. (a): Recall that we can view L2 as a sublanguage of Ls. By The-
orem 4.4 we then have ACA0 ⊆ BS0. Hence, it suffices to show that all
instances of (ATR) are provable in BETA0. Referring to Theorem 7.8
we will instead derive CWO. We closely follow [Sim09]. Working in
BETA0, assume that x, y ⊆ N are well orderings, cf. section 1.4. Put
rx = {〈n,m〉 : n <x m}. Since x is a well ordering, the relation rx is
regular. By Axiom Beta, let fx be the collapsing function of rx. Put
αx = rng(fx). One can easily verify that αx is an ordinal. Moreover,
fx : |field(x)| = |αx|, i.e., fx is an order-preserving bijection from field(x)
to αx. Analogously, we can define ry, fy and αy. By Lemma 7.6 we have
αx ⊆ αy or αy ⊆ αx. If αx ⊆ αy we can set

g =
{
〈m,n〉 : m ∈ field(x) ∧ n ∈ field(y) ∧ f ′xm = f ′yn

}
.

This defines a proper function since fx and fy are uniquely determined by
(∆0-I∈). It follows that g : |x| ≤ |y|. Similarly, αy ⊆ αx implies |x| ≥ |y|.
This shows CWO, establishing (a).
(b): Let A be an axiom of BETA0. Using Theorem 7.4(a), A is a theorem
of ATRset

0 . Referring to [Sim09], Lemma VII.3.20 the claim follows.

This theorem can be easily extended to BETA. To achieve this we have
to replace (ATR) by (BI) on the side of second order arithmetic.

Definition 7.10. Given an L2 formula A (i), let TI(A , X) be the formula

∀j((∀i <X j)A (i)→ A (j))→ ∀jA (j).

The schema (BI) of bar induction consists of all formulas

∀X(WF(X)→ TI(X,A )),

where A ranges over all L2 formulas. For the definition of WF(X) we refer
to section 1.4.

Theorem 7.11. The following assertions hold.

(a) Every axiom of ACA0 + (BI) is a theorem of BETA.

(b) If A is an axiom of BETA, then ‖A ‖2 is a theorem of ACA0 + (BI).

Proof. It is a classic result that all instances of (BI) can be proved by means
of (Beta) and (Ls-I∈), cf. [Jäg86]. Together with Theorem 4.4(a) this shows
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(a). For (b) we use Theorem 7.4(a) and refer to [Sim09], Theorem VII.3.34
and Exercise VII.3.38.

We continue by stating the so-called quantifier theorem, which links
formulas of L2 with formulas of Ls. The theorem is based on [Sim09], The-
orem VII.3.24. The first assertion can also be obtained from corresponding
results in [Jäg79, Jäg86].

Theorem 7.12. For any natural number n ∈ N we have the following:

(a) Each Σ1
n+2 formula of L2 is equivalent – provably in BETA0 – to a

Σn+1 formula of Ls.

(b) If A is a Σn formula of Ls, then ‖A ‖2 is equivalent – provably in
ATR0 – to a Σ1

n+1 formula of L2.

(c) If A is a Σ formula of Ls, then ‖A ‖2 is equivalent – provably in
∆1

2-CA0 – to a Σ1
2 formula of L2.

Proof. (a) and (b) follow as in [Sim09], Theorem VII.3.24. For (c) we work
in ∆1

2-CA0 and proceed by induction on the build-up of A . If A is an
atomic formula or built-up using connectives, we can proceed as in the
proof of [Sim09], Theorem VII.3.24. item 1. Next, suppose that A is of
the form (∀vi ∈ vj)B. By the induction hypothesis ‖B‖2 is equivalent
to a formula of the form ∃X∀Y C (X,Y, Vi, Vj) with C (X,Y, Vi, Vj) being
arithmetical. By [Sim09], Lemma VII.3.17. ‖A ‖2 is equivalent to the
formula

∀n(〈n〉 ∈ Vj → ∃Vi(Vi =∗ V 〈n〉j ∧ ∃X∀Y C (X,Y, Vi, Vj))).

Pulling out quantifiers, ‖A ‖2 is equivalent to the formula

∀n∃Vi∃X∀Y (〈n〉 ∈ Vj → Vi =∗ V 〈n〉j ∧ C (X,Y, Vi, Vj)).

Note that Vi =∗ V 〈n〉j contains an existential quantifier as it is of the form

∃Z(Iso(Z, Vi ⊕ V 〈n〉j ) ∧ 〈〈0〉, 〈1〉〉 ∈ Z).
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By some further manipulations ‖A ‖2 is equivalent to

∀n∃Vi∃X∀Y (〈n〉 ∈ Vj →

Iso((X)0, Vi ⊕ V 〈n〉j ) ∧ 〈〈0〉, 〈1〉〉 ∈ (X)0 ∧ C ((X)1, Y, Vi, Vj)).

By [Sim09], Theorem VII.6.9. the schema (Σ1
2-AC) is available in ∆1

2-CA0.
Thus, ‖A ‖2 is equivalent to

∃W∀n∃X∀Y (〈n〉 ∈ Vj →

Iso((X)0, (W )n ⊕ V 〈n〉j ) ∧ 〈〈0〉, 〈1〉〉 ∈ (X)0 ∧ C ((X)1, Y, (W )n, Vj)).

It is now easy to see that ‖A ‖2 is equivalent to a Σ1
2 formula. More

precisely, the ∀n quantifier in the above formula can be pulled inwards
by applying (Σ1

2-AC) once more. The remaining existential set quantifiers
∃W and ∃X can be combined as above using the pairing function. This
concludes the case. The remaining cases, i.e., A being of the form ∃viB
or (∃vi ∈ vj)B follow in a similar manner. This shows (c).

Recall that we use |T | to denote the proof-theoretic ordinal of a given
formal system T. We end the section by mentioning several proof-theoretic
results.

Theorem 7.13. We have the following results regarding proof-theoretic
strength.

(a) |BETA0| = |ATR0| = Γ0.

(b) |ATR| = Γε0 .

(c) |BETA| = |ACA0 + (BI)| = Ψ(εΩ+1). (Bachmann-Howard ordinal)

Proof. (a) follows from Theorem 7.9 and the well-known fact that Γ0 is
the proof-theoretic ordinal of ATR0. For (b) we refer to [JKSS99, JS00].
Finally, (c) follows from Theorem 7.11 and standard proof-theoretic results
that tell us that Ψ(εΩ+1), i.e., the Bachmann-Howard ordinal, is the proof-
theoretic ordinal of ACA0 + (BI).
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7.3. Adding Σ and Π reduction
The goal of this section is to discuss the effect of adding reduction principles
to BETA0 and related systems. As in chapter 6 we are interested in (Π-Red)
and (Σ-Red), i.e., Σ and Π reduction. We start by listing some additional
axiom schemas of L2 and Ls that are crucial in this context.

Comprehension schemas (∆1
2-CA) and (Π1

2-CA)
For all Σ1

2 formulas A (n) and all Π1
2 formulas B(n) of L2,

∀n(A (n)↔ B(n))→ ∃X∀n(n ∈ X ↔ A (x)), (∆1
2-CA)

where X must not occur freely in A (n).
For all Π1

2 formulas A (n) of L2,

∃X∀n(n ∈ X ↔ A (n)), (Π1
2-CA)

with X not occurring freely in A (n).

Π1
2 and Σ1

2 reduction
For all Σ1

2 formulas A (n) and all Π1
2 formulas B(n) of L2, the schema

(Π1
2-Red) consists of all formulas of the form

∀n(A (n)→ B(n))→
∃Y (∀n(A (n)→ n ∈ Y ) ∧ ∀n(n ∈ Y → B(n))).

(Π1
2-Red)

Analogously, the schema (Σ1
2-Red) contains exactly all formulas of the

form

∀n(B(n)→ A (n))→
∃Y (∀n(B(n)→ n ∈ Y ) ∧ ∀n(n ∈ Y → A (n))),

(Σ1
2-Red)

with L2 formulas A (n) and B(n) as above.
As before, we write ∆1

2-CA for the theory ACA0 +(∆1
2-CA), and so on,

cf. section 2.2. To deal with Π1
2 and Σ1

2 reduction we use additional results.

Theorem 7.14 (Buchholz-Schütte, Simpson).

(a) ACA0 + (Σ1
2-Red) is equivalent to ∆1

2-CA0.

(b) ACA0 + (Π1
2-Red) is equivalent to Π1

2-CA0.
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Proof. A proof for (a) can be found in [BS88]; (b) is mentioned in [Sim09],
Exercise VII.6.14.

Recall that by Theorem 2.2, (Π1
1-Red) is equivalent to (ATR) over

ACA0. Moreover, we have the following.

Theorem 7.15 (Simpson). The theory ACA0 + (BI) proves all instances
of (ATR).

Proof. The assertion is an immediate consequence of [Sim09], Corollary
VII.2.19.

By Theorem 7.9 and Theorem 7.11 combined with Theorem 7.12(a)
we can infer

ATR0 + (Σ1
2-Red) ⊆ BETA0 + (Σ-Red),

ACA0 + (BI) + (Σ1
2-Red) ⊆ BETA + (Σ-Red),

ATR0 + (Π1
2-Red) ⊆ BETA0 + (Π-Red),

ACA0 + (BI) + (Π1
2-Red) ⊆ BETA + (Π-Red).

Together with Theorem 7.14 we can estimate the effect of adding
(Σ-Red) and (Π-Red) to, respectively, BETA0 and BETA from above.

Theorem 7.16. We have the following inclusions.

(a) ∆1
2-CA0 ⊆ ACA0 + (Σ1

2-Red) ⊆ BETA0 + (Σ-Red).

(b) ∆1
2-CA0 + (BI) ⊆ ACA0 + (Σ1

2-Red) + (BI) ⊆ BETA + (Σ-Red).

(c) Π1
2-CA0 ⊆ ACA0 + (Π1

2-Red) ⊆ BETA0 + (Π-Red).

(d) Π1
2-CA0 + (BI) ⊆ ACA0 + (Π1

2-Red) + (BI) ⊆ BETA + (Π-Red).

To show that these bounds are sharp w.r.t. proof-theoretic strength, we
first observe by Theorem 7.12(c) and Theorem 7.14 that for every (closed)
instance A of (Σ-Red) and (Π-Red), the corresponding L2 formula ‖A ‖2 is
derivable in, respectively, ATR0 + (Σ1

2-Red) and ATR0 + (Π1
2-Red). There-

fore, by Theorem 7.9 and Theorem 7.11 we obtain the following for all
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sentences A of Ls:

BETA0 + (Σ-Red) ` A =⇒ ATR0 + (Σ1
2-Red) ` ‖A ‖2,

BETA + (Σ-Red) ` A =⇒ ACA0 + (Σ1
2-Red) + (BI) ` ‖A ‖2,

BETA0 + (Π-Red) ` A =⇒ ATR0 + (Π1
2-Red) ` ‖A ‖2,

BETA + (Π-Red) ` A =⇒ ACA0 + (Π1
2-Red) + (BI) ` ‖A ‖2.

Using Theorem 7.14 once more we immediately get the following result.

Theorem 7.17. The following hold for every sentence A of Ls:

(a) BETA0 + (Σ-Red) ` A =⇒ ∆1
2-CA0 ` ‖A ‖2.

(b) BETA + (Σ-Red) ` A =⇒ ∆1
2-CA0 + (BI) ` ‖A ‖2.

(c) BETA0 + (Π-Red) ` A =⇒ Π1
2-CA0 ` ‖A ‖2.

(d) BETA + (Π-Red) ` A =⇒ Π1
2-CA0 + (BI) ` ‖A ‖2.

Referring to [Sim09], Lemma VII.3.19., we combine Theorem 7.16 and
Theorem 7.17 to determine the proof-theoretic strength of (Σ-Red) and
(Π-Red) added to BETA0 and BETA.

Corollary 7.18. The following proof-theoretic equivalences hold:

|BETA0 + (Σ-Red)| = |∆1
2-CA0|,

|BETA + (Σ-Red)| = |∆1
2-CA0 + (BI)|,

|BETA0 + (Π-Red)| = |Π1
2-CA0|,

|BETA + (Π-Red)| = |Π1
2-CA0 + (BI)|.

This clarifies the picture for (Σ-Red) and (Π-Red) in the context of
BETA0 and its extensions. The situation becomes completely different when
we move to Kripke-Platek set theory. The next section will provide a short
oversight, whereby we refer to further work which is to be published.

7.4. Moving to Kripke-Platek set theory
By adding collection for ∆0 formulas we basically arrive in the realm of
Kripke-Platek set theory. More precisely, up to equivalence, Kripke-Platek
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set theory KP can obtained from BS by adding (Inf) and the schema of ∆0
collection, i.e.,

(∀x ∈ a)∃yA (x, y)→ ∃z(∀x ∈ a)(∃y ∈ z)A (x, y)

for all ∆0 formulas A (x, y). Note that BS includes the natural numbers
as urelements. However, these are not needed anymore when adding (Inf).
Similarly, we obtain KP0, i.e., KP with regularity restricted to sets, as

KP0 ≡ BS2 + (Inf) + (∆0-Col).

Thus, recalling section 7.3, KP0 + (Beta) and KP + (Beta) are equivalent
to the theories ATRset

0 \ (C) + (∆0-Col) and ATRset \ (C) + (∆0-Col), re-
spectively. However, when Axiom Beta is missing, the situation turns out
to be very different. This is because ATRset

0 and KP are not compatible.
More precisely, it can be shown that

KP ⊆ ATRset and ATRset
0 ⊆ KP.

It is a very natural question in our context to determine the effect of adding
reduction principles to KP and KP0 as in previous sections. First answers
to such questions and related open problems are discussed in [BJar].
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ATR0 without field variable
In section 2.1 the system ATR0 featuring arithmetical transfinite recursion
was introduced. The definition includes a so-called field variable. It turns
out that this variable can be omitted without loss of generality. This is
also true for variants of ATR0 without set parameters. The corresponding
systems and equivalence proofs shall be presented next.

For any arithmetical formula A (n,X), let H◦A (W,Y ) be the formula
asserting that LO(W ) and

Y =
{
〈n, j〉 : j ∈ field(W ) ∧A (n, (Y )Wj)

}
.

In contrast to HA (W,Y ) as introduced in section 2.1, the field variable j
is not allowed to occur in the formula A (n,X) over which is iterated. Of
course, additional parameters of A (n,X) also occur in H◦A (W,Y ).

Arithmetical transfinite recursion without field variable
The axiom schema (oATR) consists of all formulas

∀W (WO(W )→ ∃YH◦A (W,Y )),

where A (n,X) is arithmetical. The corresponding systems extending, re-
spectively, ACA0 and ACA, with (oATR) are denoted oATR0 and oATR.
(oATR) is defined in compliance with the original schema of arithmetic
transfinite recursion as defined in [Sim09]. However, several applications of
arithmetic transfinite recursion in [Sim09] seem to rely on the field variable.
With the considerations presented here, we aim to clarify the situation.

Arithmetical transfinite recursion w/o set-parameters and field variable
The axiom schema (oATR−) consists of all formulas

∀W (WO(W )→ ∃YH◦A (W,Y )),
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where A (n,X) is arithmetical and X is the only set variable allowed to oc-
cur freely in A (n,X). The corresponding systems extending, respectively,
ACA0 and ACA, with (oATR−) are denoted oATR−0 and oATR−.

Theorem A.1. The systems ATR0 and oATR0 are equivalent.

Proof. Clearly, oATR0 ⊆ ATR0 since the schema (ATR) is more general
than (oATR). For the converse direction, suppose we are working in oATR0.
Let W be a well ordering and consider an arithmetical formula A (n, j,X).
Our goal is to prove the existence of a set Z satisfying HA (W,Z). To
achieve this we define the formula

A ∗(n,X,W ) :≡ ∃k,m,w
(
n = 〈m,w〉 ∧HierW (k,X) ∧(

(w = 0 ∧ ¬A (m, k,X−1)) ∨
(w = 1 ∧A (m, k,X−1))

))
where

X−1 := {〈m, j〉 : 〈〈m, 1〉, j〉 ∈ X} ,
HierW(k,X) :≡

(
X = ∅ ∧ k = min(W )

)
∨
(
X 6= ∅ ∧

∀x(x ∈ X → ∃m, l(x = 〈m, l〉 ∧ l <W k)) ∧
∀l(l <W k → ∃m(〈m, l〉 ∈ X))

)
,

and min(X) denoting the minimal element of X. Let Y be the result
of applying (oATR) to A ∗(n,X,W ) (with W as additional parameter).
Consider j ∈ field(W ). By arithmetical transfinite induction along W we
shall show that

(Y )j 6= ∅ ∧ ∀k(HierW (k, (Y )Wj)↔ k = j).

In case j = min(W ), then (Y )Wj = ∅. The above then holds since we have
for all k that HierW (k, ∅) iff k = min(W ), and so

(Y )min(W ) = {n : A ∗(n, ∅,W )}
= {〈m, 0〉 : ¬A (m,min(W ), ∅)} ∪ {〈m, 1〉 : A (m,min(W ), ∅)}
6= ∅.

Next, assume j 6= min(W ). By the induction hypothesis and since Y ⊆
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Nat× field(W ), it follows that

∀l(((Y )Wj)l 6= ∅ ↔ l <W j),

hence
∀k(HierW (k, (Y )Wj)↔ k = j). (A.1)

By definition we have n ∈ (Y )j iff n is a pair 〈m,w〉 such that for some
k ∈ field(W ) it holds that HierW (k, (Y )Wj) and

(w = 0 ∧ ¬A (m, k, ((Y )Wj)−1)) ∨ (w = 1 ∧A (m, k, ((Y )Wj)−1)).

By (A.1), it follows that 〈m,w〉 ∈ (Y )j iff

(w = 0 ∧ ¬A (m, j, ((Y )Wj)−1)) ∨ (w = 1 ∧A (m, j, ((Y )Wj)−1)).

Thus, (Y )j is non-empty. This concludes the induction.
It remains to check that Y −1 is a set of the desired form. A simple

calculation shows that for j ∈ field(W ):

((Y )Wj)−1 =
{
〈m, i〉 : 〈〈m, 1〉, i〉 ∈ (Y )Wj

}
= {〈m, i〉 : 〈〈m, 1〉, i〉 ∈ Y ∧ i <W j}
=
{
〈m, i〉 : 〈m, i〉 ∈ Y −1 ∧ i <W j

}
= (Y −1)Wj .

By what we showed in the above induction, it follows that

(Y −1)j =
{
m : 〈m, j〉 ∈ Y −1}

= {m : 〈〈m, 1〉, j〉 ∈ Y }
= {m : 〈m, 1〉 ∈ (Y )j}
=
{
m : A (m, j, ((Y )Wj)−1)

}
=
{
m : A (m, j, (Y −1)Wj)

}
,

hence Y −1 is an appropriate hierarchy.

Theorem A.2. The systems ATR−0 and oATR−0 are equivalent.

Before turning to the prove of the above theorem, we need two tech-
nical lemmas. These shall be presented and proved next.
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Lemma A.3. Working in ACA0, consider a formula A (n, j,X), a well
ordering W and a set Y . Setting

A ∗(n, j,X) :≡ n = 0 ∨ ∃m(n = m+ 1 ∧A (m, j,X∗))

where X∗ := {〈n, j〉 : (n+ 1, j) ∈ X}, it follows that

HA ∗(W,Y )→ HA (W,Y ∗).

Proof. Suppose HA ∗(W,Y ). Y ∗ ⊆ Nat×field(W ) clearly exists as a set
by (ACA). Note that ((Y )Wj)∗ = (Y ∗)Wj . For any number n and j ∈
field(W ) we have

Y ∗j = {n : 〈n, j〉 ∈ Y ∗}
= {n : 〈n+ 1, j〉 ∈ Y }
=
{
n : A ∗(n+ 1, j, (Y )Wj)

}
=
{
n : A (n, j, ((Y )Wj)∗)

}
=
{
n : A (n, j, (Y ∗)Wj)

}
.

This establishes HA (W,Y ∗).

Lemma A.4. Working in ACA0, consider a formula A (n, j,X), a well
ordering W and a set Y . Setting

V := {〈0, 0〉} ∪ {〈0, i+ 1〉 : i ∈ field(W )} ∪ {〈i+ 1, j + 1〉 : i ≤W j} ,
Y • := {〈n, j〉 : 〈n, j + 1〉 ∈ Y } ,

and A •(n, j,X) :≡ A (n, j − 1, X•), it follows that

HA •(V, Y )→ HA (W,Y •).

Proof. Assume HA •(V, Y ). By (ACA), Y • ⊆ Nat×field(W ) exists as a
set. Our goal is to show HA (W,Y •). Since W is a well ordering, so is V .
By definition of A •(n, j,X) we have for j ∈ field(W ):

(Y )j+1 =
{
n : A (n, j, ((Y )Vj+1)•)

}
.

It remains to check that Y • iterates A (n, j,X) along W . Let n be any
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number and j ∈ field(W ). We first observe that

((Y )Vj+1)• =
{
〈n, i〉 : 〈n, i+ 1〉 ∈ (Y )V j+1}

= {〈n, i〉 : 〈n, i+ 1〉 ∈ Y ∧ i+ 1 <V j + 1}
= {〈n, i〉 : 〈n, i+ 1〉 ∈ Y ∧ i <W j}
= {〈n, i〉 : 〈n, i〉 ∈ Y • ∧ i <W j}
= (Y •)Wj .

It is now easy to verify that

(Y •)j = {n : 〈n, j〉 ∈ Y •}
= {n : 〈n, j + 1〉 ∈ Y }
=
{
n : A (n, j, ((Y )V j+1)•)

}
=
{
n : A (n, j, (Y •)Wj)

}
,

hence Y • is a hierarchy of the proper form.

Proof of Theorem A.2. oATR−0 ⊆ ATR−0 follows immediately by definition.
For the converse direction we work in oATR−0 . LetW be a well ordering and
A (n, j,X) arithmetical with no other set variable occurring freely besides
X. The goal is to prove the existence of a set Z satisfying HA (W,Z). By
the last two lemmas we can assume without loss of generality that

∀j∀X
(
{n : A (n, j,X)} 6= ∅

)
, (A.2)

and that the minimum of W , denoted min(W ), is 0. Define the ordering
W4 such that 〈i1, i2〉 ≤W4 〈j1, j2〉 iff

(i2 ≤W i1 ∧ j2 ≤W j1) ∧
(
(i1 <W j1) ∨ (i1 = j1 ∧ i2 ≤W j2)

)
.

Note that W is a well ordering, field(W4) = {〈j1, j2〉 : j2 ≤W j1}, and
min(W4) = 〈0, 0〉. Next, we let

A d(n,X) :≡
(
∀k¬D(k,X) ∧A (n, 0, Xd)

)
∨
(
∃k(D(k,X) ∧A (n, k,Xd))

)
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where

D(k,X) :≡ ∃m, l
(
〈m, 〈k, l〉〉 ∈ X

)
∧ ∀m

(
〈m, 〈k, k〉〉 6∈ X

)
,

Xd := {〈m, l〉 : 〈m, 〈l, l〉〉 ∈ X} .

Applying (oATR−) to A d and W4 yields a set Y of the form

Y =
{
〈n, j〉 : j ∈ field(W4) ∧A d(n, (Y )W

4j)
}
.

Consider j ∈ field(W4). If ∀k¬D(k, (Y )W4j) holds, then by definition of
A d(n,X), it follows that

(Y )j =
{
n : A (n, 0, ((Y )W

4j)d)
}
,

hence by (A.2), (Y )j 6= ∅. Otherwise, if k is such that D(k, (Y )W4j), then
by (A.2) and definition of A d(n,X) we obtain

∅ 6=
{
n : A (n, k, ((Y )W

4j)d)
}
⊆ (Y )j ,

and so (Y )j 6= ∅. Thus, we showed

(∀j ∈ field(W4))(Y )j 6= ∅. (A.3)

Next, we point out some crucial properties of D(n,X). Let h ∈ field(W ).
First, observe that ∀k¬D(k, ∅). Moreover, if k 6∈ field(W ) and X ⊆
Nat×field(W4), ¬D(k,X) follows. From (A.3) we can now deduce

∀k¬D(k, (Y )W
4〈h,0〉).

Moreover, if h, i 6= 0 and i ≤W h we get by (A.3) that

∀k
(
D(k, (Y )W

4〈h,i〉)↔ k = h
)
.

The two properties above together with the definition of A d(n,X) yield
the following for all h ∈ field(W ):

A d(n, (Y )W
4〈h,h〉)↔ A (n, h, ((Y )W

4〈h,h〉)d).

112



Furthermore, a simple calculation shows that ((Y )W4〈h,h〉)d = (Y d)Wh:

((Y )W
4〈h,h〉)d =

{
〈n, l〉 : 〈n, 〈l, l〉〉 ∈ (Y )W

4〈h,h〉
}

= {〈n, l〉 : 〈n, 〈l, l〉〉 ∈ Y ∧ 〈l, l〉 <W4 〈h, h〉}
= {〈n, l〉 : 〈n, 〈l, l〉〉 ∈ Y ∧ l <W h}
=
{
〈n, l〉 : 〈n, l〉 ∈ Y d ∧ l <W h

}
= (Y d)Wh.

We now have all the ingredients to establish that Y d is the desired set:

(Y d)h = {n : 〈n, 〈h, h〉〉 ∈ Y }
=
{
n : A d(n, (Y )W

4〈h,h〉)
}

=
{
n : A (n, h, ((Y )W

4〈h,h〉)d)
}

=
{
n : A (n, h, (Y d)Wh)

}
.

This concludes the proof.
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