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Abstract. Observations from the Orbiting Carbon Observa-
tory 2 (OCO-2) satellite have been used to estimate CO2
fluxes in many regions of the globe and provide new insight
into the global carbon cycle. The objective of this study is
to infer the relationships between patterns in OCO-2 obser-
vations and environmental drivers (e.g., temperature, precip-
itation) and therefore inform a process understanding of car-
bon fluxes using OCO-2. We use a multiple regression and
inverse model, and the regression coefficients quantify the
relationships between observations from OCO-2 and envi-
ronmental driver datasets within individual years for 2015–
2018 and within seven global biomes. We subsequently com-
pare these inferences to the relationships estimated from 15
terrestrial biosphere models (TBMs) that participated in the
TRENDY model inter-comparison. Using OCO-2, we are
able to quantify only a limited number of relationships be-
tween patterns in atmospheric CO2 observations and patterns
in environmental driver datasets (i.e., 10 out of the 42 re-
lationships examined). We further find that the ensemble of
TBMs exhibits a large spread in the relationships with these
key environmental driver datasets. The largest uncertainty in
the models is in the relationship with precipitation, particu-
larly in the tropics, with smaller uncertainties for temperature
and photosynthetically active radiation (PAR). Using obser-
vations from OCO-2, we find that precipitation is associated
with increased CO2 uptake in all tropical biomes, a result
that agrees with half of the TBMs. By contrast, the relation-
ships that we infer from OCO-2 for temperature and PAR are
similar to the ensemble mean of the TBMs, though the results
differ from many individual TBMs. These results point to the
limitations of current space-based observations for inferring
environmental relationships but also indicate the potential to
help inform key relationships that are very uncertain in state-
of-the-art TBMs.

1 Introduction

Over the past decade, the field of space-based CO2 moni-
toring has undergone a rapid evolution. The sheer number
of CO2-observing satellites has greatly increased, includ-
ing GOSAT/GOSAT-2 (Kuze et al., 2009; Nakajima et al.,
2012), TanSat (Yang et al., 2018), and OCO-2/OCO-3 (Crisp,
2015; Eldering et al., 2019). This expanding observing sys-
tem provides atmospheric CO2 observations broadly across
the globe, making it possible to estimate the distribution and
magnitude of CO2 fluxes in many regions that have sparse
in situ surface atmospheric CO2 monitoring (e.g., the trop-
ics and the Southern Hemisphere). For example, the OCO-
2 satellite, launched in July 2014, provides ∼ 65 000 obser-
vations per day that pass quality screening (Eldering et al.,
2017); this dense, global set of OCO-2 observations, com-
bined with inverse modeling techniques, has been used to
constrain regional- and continental-scale CO2 sources and

sinks (e.g., Eldering et al., 2017; Liu et al., 2017; Crowell
et al., 2019; Palmer et al., 2019; Byrne et al., 2020a).

Recent advances in OCO-2 retrievals from the NASA
ACOS science team have led to widespread reductions in
observation errors (e.g., O’Dell et al., 2018). Reducing the
errors in satellite observations of CO2 is critical for under-
standing CO2 sources and sinks using inverse modeling, as
even small biases in the observations can have an impact on
the CO2 flux estimate (e.g., Chevallier et al., 2007, 2014;
Feng et al., 2016; Miller et al., 2018). For example, Miller
et al. (2018) evaluated the extent to which OCO-2 retrievals
can detect patterns in biospheric CO2 fluxes and found that
an early version of the OCO-2 retrievals (version 7) is only
equipped to provide accurate flux constraints across very
large continental or hemispheric regions; by contrast, in a
follow-up paper, Miller and Michalak (2020) revisited satel-
lite capabilities in light of recently improved OCO-2 re-
trievals, and the authors argued that new OCO-2 retrievals
can be used to constrain CO2 fluxes for more detailed regions
(i.e., for seven global biomes).

A further challenge is to use these new global satellite
datasets to evaluate and improve process-based estimates of
the global carbon cycle provided by terrestrial biospheric
models (TBMs). TBMs have become an integral tool for un-
derstanding regional- and global-scale carbon dynamics and
for predicting future carbon cycling under changing climate.
With that said, existing TBMs show large uncertainties in
carbon flux estimates at multiple spatial and temporal scales
– at regional and seasonal scales (e.g., Peng et al., 2014;
King et al., 2015), at global and inter-annual scales (e.g., Piao
et al., 2020), and in historical and future projections (e.g.,
Friedlingstein et al., 2006; Huntzinger et al., 2017).

One approach to inform TBM development is to estimate
flux totals using atmospheric observations and compare those
totals against TBMs – to inform the magnitude, seasonal-
ity, or spatial distribution of fluxes (e.g., King et al., 2015;
Bastos et al., 2018). A more challenging approach is to esti-
mate the relationships between CO2 fluxes and environmen-
tal drivers using atmospheric observations and compare those
relationships directly to the relationships in TBMs. We define
the term “environmental drivers” as any meteorological vari-
ables or characteristics of the physical environment that can
be modeled or measured and may correlate with net ecosys-
tem exchange (NEE). Several studies have shown that these
types of comparisons are feasible using in situ atmospheric
observations (e.g., Dargaville et al., 2002; Forkel et al., 2016;
Gourdji et al., 2008, 2012; Piao et al., 2013, 2017; Wang
et al., 2014; Fang and Michalak, 2015; Shiga et al., 2018;
Wang et al., 2020). Among other studies, Fang and Micha-
lak (2015) used in situ atmospheric CO2 observations across
North America and an inverse modeling framework to probe
the relationships between NEE and environmental drivers;
the authors compared these relationships directly to those in-
ferred from several TBMs and found that TBMs have rea-
sonable skill in representing the relationship with shortwave
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radiation but show weak performance in describing relation-
ships with other drivers like water availability. Similarly,
Shiga et al. (2018) used tower-based atmospheric CO2 ob-
servations to explore regional interannual variability (IAV)
in NEE across North America and found that TBMs disagree
on the dominant regions responsible for IAV; this disagree-
ment can be linked to differing sensitivities of CO2 fluxes
to environmental drivers within the TBMs. At an even longer
temporal scale, Wang et al. (2014) employed the atmospheric
CO2 growth rate record from Mauna Loa, Hawaii, USA, and
the South Pole for five decades to explore the sensitivity of
the global CO2 growth rate to tropical temperature; the au-
thors found that existing TBMs do not capture the observed
sensitivity of the growth rate to tropical climatic variability,
implying a limited ability of these TBMs in representing the
impact of drought and warming on tropical carbon dynamics.

More recently, a handful of studies have shown that it is
possible to tease out relationships between CO2 fluxes and
environmental drivers using global satellite observations of
CO2 (e.g., Liu et al., 2017; Byrne et al., 2020b). For example,
Liu et al. (2017) used observations from OCO-2 to disentan-
gle the environmental processes related to flux anomalies in
tropical regions during the 2015–2016 El Niño. Byrne et al.
(2020b) assimilated in situ and GOSAT observations of at-
mospheric CO2 and an inverse model framework and found
contrasting environmental sensitivities of IAV in CO2 fluxes
between western and eastern temperate North America.

The goal of this study is to use atmospheric CO2 obser-
vations from OCO-2 to quantify the relationships between
spatiotemporal patterns in CO2 fluxes and patterns in en-
vironmental driver datasets. We conduct this analysis for
years 2015–2018 and focus on relationships that manifest
across an individual year and individual biome. We specif-
ically quantify the relationships using a top-down regres-
sion framework and a geostatistical inverse model (GIM). We
then compare the relationships inferred using OCO-2 obser-
vations against those inferred from 15 state-of-the-art TBMs
from the TRENDY model comparison project (v8, https:
//sites.exeter.ac.uk/trendy (last access: 28 October 2020); see
Table S1 for a full list of TBMs; Sitch et al., 2015; Friedling-
stein et al., 2019). The primary objectives of this analysis
are threefold: (1) evaluate what kinds of environmental re-
lationships we can infer using current satellite observations
from OCO-2, (2) assess where and when TBMs do and do
not show consensus on the relationships between CO2 fluxes
and salient environmental drivers, and (3) compare the rela-
tionships inferred from OCO-2 against those inferred from
TBMs with the goal of informing and improving TBM de-
velopment.

2 Methods

2.1 Overview

We quantify the relationships between CO2 observations
from OCO-2 and environmental driver datasets for different
regions of the globe using a top-down regression framework
and a GIM. We cannot directly observe the relationships be-
tween CO2 fluxes and environmental driver datasets. With
that said, an overarching idea of this study is that these rela-
tionships manifest in atmospheric CO2 observations, and we
can quantify at least some of these relationships using obser-
vations from OCO-2 and a weighted multiple regression. The
coefficients estimated as part of the regression relate patterns
in atmospheric CO2 observations to patterns in the environ-
mental driver datasets.

As part of this analysis, we also explore differences in the
estimated environmental relationships (i.e., regression coef-
ficients) among different years and different biomes. To this
end, we estimate separate regression coefficients for each
of seven different global biomes, and we estimate sepa-
rate coefficients for each individual year of the study pe-
riod (2015–2018). Hence, each coefficient estimated here
represents the relationship between OCO-2 observations and
an environmental driver dataset across an entire year and a
global biome. Miller and Michalak (2020) explored when
and where current OCO-2 observations can be use to detect
variability in surface CO2 fluxes, and the authors argue that,
in most seasons, the satellite can be used to constrain fluxes
from seven large biome-based regions – hence the choice of
the seven biomes used in this study (Fig. 1).

We first conduct this analysis using CO2 observations from
OCO-2. We then conduct a parallel analysis using the out-
puts of 15 terrestrial biosphere models (TBMs) from the
TRENDY model inter-comparison project (v8). The goal of
this step is to compare the environmental relationships (i.e.,
regression coefficients) that we infer from OCO-2 against the
regression coefficients that we estimate from numerous state-
of-the-art TBMs. We can then identify any similarities or dif-
ferences between the TBMs and inferences using OCO-2 ob-
servations. We specifically analyze TRENDY model outputs
for years 2015–2018, the same years as the OCO-2 analysis
described above. To conduct this analysis, we generate syn-
thetic OCO-2 observations using each of the 15 TBMs and
using an atmospheric transport model. We then run the mul-
tiple regression on these synthetic observations. This setup
mirrors that of Fang and Michalak (2015) and creates an
apples-to-apples comparison between the TBMs and OCO-2
observations; in each case, we use atmospheric observations
(either real or synthetic) and use the same set of equations to
estimate the regression coefficients.

The multiple regression used in this study has the follow-
ing mathematical form (e.g., Fang and Michalak, 2015):

z = h(Xβ + ζ )+ ε, (1)
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Figure 1. The seven biome-based regions aggregated from a world biome map in Olson et al. (2001).

where z (n× 1) is a vector of real or synthetic CO2 observa-
tions from OCO-2, X (m×p) is a matrix of environmental
driver datasets (described in Sect. 2.2), and β (p× 1) rep-
resents the regression coefficients that are estimated as part
of the regression. Each column of X represents a different
environmental driver dataset for a specific biome in a spe-
cific year. Note that we estimate all of the coefficients for the
different environmental drivers and different biomes simul-
taneously in the regression model. In addition, ζ (m×1) rep-
resents patterns in the fluxes that cannot be described by the
environmental driver datasets, and these values are unknown.
This component of the fluxes is also commonly referred to as
the stochastic component and is discussed in Sect. 2.5. h() is
an atmospheric transport model (described later in this sec-
tion) that relates surface CO2 fluxes (Xβ + ζ ) to the atmo-
spheric CO2 observations, and ε (n× 1) is a vector of errors
in the OCO-2 observations and/or in the atmospheric model.
The statistical properties of these errors are estimated before
running the regression (described in Sect. 2.4).

Note that this framework assumes linear relationships be-
tween the environmental driver datasets and the OCO-2 ob-
servations. Numerous existing studies have used linear mod-
els to approximate relationships with environmental driver
datasets. For example, studies have used linear models to
compare the relationships between CO2 fluxes and envi-
ronmental driver datasets in TBMs (e.g., Huntzinger et al.,
2011), to infer these relationships using eddy flux observa-

tions (e.g., Mueller et al., 2010; Yadav et al., 2010), and to
infer relationships between atmospheric CO2 observations
and environmental driver datasets (e.g., Gourdji et al., 2012;
Fang et al., 2014; Fang and Michalak, 2015; Piao et al.,
2013, 2017; Rödenbeck et al., 2018).

The equations above require an atmospheric transport
model (h()). We use the forward GEOS-Chem model (ver-
sion v9-02; http://www.geos-chem.org, last access: 28 Oc-
tober 2020) in this study, and we further use wind fields
from the Modern-Era Retrospective Analysis for Research
and Applications (MERRA-2) to drive atmospheric transport
within GEOS-Chem (Gelaro et al., 2017). The GEOS-Chem
simulations used here have a global spatial resolution of 4◦

latitude by 5◦ longitude and therefore are best able to capture
broad, regional spatial patterns in atmospheric CO2.

2.2 Environmental driver datasets

We estimate the relationships between OCO-2 observations
(either real or synthetic) and environmental driver datasets
drawn from commonly used meteorological reanalysis. We
specifically consider the following driver datasets as pre-
dictor variables in the multiple regression: 2 m air tempera-
ture, precipitation, photosynthetically active radiation (PAR),
downwelling shortwave radiation, and specific humidity.

We also include a nonlinear function of 2 m air tempera-
ture as an environmental driver dataset in the regression (re-
ferred to hereafter as scaled temperature; plotted in Fig. S1
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and described in detail in Supplement Sect. S3). Numerous
existing studies show that the relationship between tempera-
ture and photosynthesis has a different sign depending upon
the temperature range; at sufficiently warm temperatures, an
increase in temperature yields a decrease in photosynthesis
(e.g., Baldocchi et al., 2017). The scaled temperature func-
tion considered here can account for those differences, and
we find that this function yields a better model–data fit in
the regression analysis than using temperature alone. The
scaled temperature function used here is from the Vegeta-
tion Photosynthesis and Respiration Model (VPRM) (Ma-
hadevan et al., 2008) and describes the nonlinear relationship
between temperature and photosynthesis (Raich et al., 1991).
The function is shaped like an upside-down parabola (shown
in Fig. S1). Furthermore, this type of nonlinear temperature
function has been commonly used in existing TBMs (e.g.,
Heskel et al., 2016; Luus et al., 2017; Dayalu et al., 2018;
Chen et al., 2019).

The environmental driver datasets described above are
drawn from the Climatic Research Unit (CRU) and Japanese
reanalysis (JRA) meteorology product (CRUJRA; Harris,
2019). We use environmental driver data from CRUJRA be-
cause it is the same product used to generate the TRENDY
model estimates. All flux outputs from TRENDY are pro-
vided at a monthly temporal resolution, so we input monthly
meteorological variables from CRUJRA into the regression
framework. Furthermore, we regrid the environmental driver
datasets to a 4◦ latitude by 5◦ longitude spatial resolution be-
fore inputting these datasets into the regression. This spatial
resolution matches the resolution of the atmospheric trans-
port simulations used in this study (described in Sect. 2.1).
The regression coefficients therefore quantify the relation-
ships between OCO-2 observations and patterns in environ-
mental driver datasets that manifest at this spatial and tem-
poral resolution.

We subsequently rerun the regression analysis using en-
vironmental driver datasets drawn from a second meteoro-
logical product. Estimates of environmental driver data like
temperature or precipitation can vary among meteorological
models, and these differences among models are a source of
uncertainty in the estimated regression coefficients. Hence,
the use of a second meteorological product can at least par-
tially account for these uncertainties. We specifically rerun
the regression analysis using environmental driver datasets
drawn from MERRA-2. We choose MERRA-2 because it is
a commonly used, global reanalysis product from the NASA
Global Modeling and Assimilation Office (GMAO). Further-
more, we use wind fields from MERRA-2 to drive all atmo-
spheric transport model simulations in this study (described
in Sect. 2.1), so the use of MERRA-2 for the environmental
driver datasets in the regression creates consistency with the
wind fields in the atmospheric model simulations that sup-
port the regression.

Note that we do not include any remote sensing indices
(e.g., solar-induced chlorophyll fluorescence or leaf area in-

dex) in the present study. Rather, the focus of this study is to
explore environmental drivers of CO2 fluxes and not remote
sensing proxies for CO2 fluxes. Also note that we standard-
ize (i.e., normalize) each of the environmental driver datasets
within each biome and each year before running the regres-
sion, as has been done in several previous GIM studies (e.g.,
Gourdji et al., 2012; Fang and Michalak, 2015). This step
means that all of the estimated regression coefficients (β)
have the same units, are independent of the original units on
the environmental driver data, and can be directly compared
to one another.

2.3 Model selection

We use model selection to decide which environmental driver
datasets to include in the analysis of the OCO-2 observa-
tions and in the analysis of each TBM using synthetic ob-
servations. Model selection ensures that the environmental
driver datasets in the regression (X) do not overfit the avail-
able OCO-2 data (z). The inclusion of additional environ-
mental driver datasets or columns in X will always improve
the model–data fit in the regression, but the inclusion of too
many driver datasets in X can overfit the regression to avail-
able OCO-2 data and result in unrealistic coefficients (β)
(e.g., Zucchini, 2000). In addition, model selection indicates
which relationships with environmental drivers we can con-
fidently constrain and which we cannot given current OCO-2
observations (e.g., Miller et al., 2018). In this study, we im-
plement a type of model selection known as the Bayesian
information criterion (BIC) (Schwarz et al., 1978), and var-
ious forms of the BIC have been implemented in numerous
recent atmospheric inverse modeling studies (e.g., Gourdji
et al., 2012; Miller et al., 2013, 2018; Fang and Michalak,
2015; Miller and Michalak, 2020). Using the BIC, we score
different combinations of environmental driver datasets that
could be included in X based on how well each combination
helps reproduce either the real or synthetic OCO-2 observa-
tions (z, Eq. 1). We specifically use an implementation of
the BIC from Miller et al. (2018) and Miller and Michalak
(2020) that is designed to be computationally efficient for
very large satellite datasets. The BIC scores in this imple-
mentation are calculated using the following equation:

BIC = L+p lnn∗, (2)

where L is the log likelihood of a particular combination of
environmental driver datasets (i.e., columns of X), p is the
number of environmental driver datasets in a particular com-
bination, and n∗ is the effective number of independent ob-
servations. This last variable accounts for the fact that not all
atmospheric observations are independent, and the model–
data residuals can exhibit spatially and temporally correlated
errors (Miller et al., 2018). For all simulations here, we use
an estimate of n∗ for the v9 OCO-2 observations from Miller
and Michalak (2020). The first component of Eq. 2 (L) re-
wards combinations that are a better fit to the OCO-2 ob-
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servations (z), whereas the second component of Eq. (2)
(p lnn∗) penalizes models with a greater number of columns
to prevent overfitting. The best combination of environmen-
tal drivers for X is the combination that receives the lowest
BIC score. Miller et al. (2018) describes this implementation
of the BIC in greater detail, including the specific setup and
equations.

Note that we run model selection for the OCO-2 data
and rerun model selection for each set of synthetic OCO-2
datasets generated using each TBM. As a result, we some-
times select different environmental driver datasets for the
analysis using different TBMs. This setup parallels that of
Huntzinger et al. (2011) and Fang and Michalak (2015).
Furthermore, we use the same set of environmental driver
datasets in each year of the study period (e.g., 2015–2018),
a setup that parallels existing GIM studies that use multiple
years of atmospheric observations (e.g., Shiga et al., 2018).
We estimate different regression coefficients (β) for each
year of the study period, but the actual environmental driver
datasets included in the regression do not change from one
year to the next. An environmental driver dataset is either se-
lected to be included for all years in a specific biome (based
on the BIC scores) or it is not used in any year of the analysis.

2.4 Statistical model for estimating the coefficients (β)

Once we have chosen a set of environmental driver datasets
using model selection, we estimate the coefficients (β) that
relate the real or synthetic OCO-2 observations to these en-
vironmental datasets (e.g., Gourdji et al., 2012; Fang and
Michalak, 2015):

β̂ = (h(X)T9−1h(X))−1h(X)T9−1z, (3)

where9 (n×n) is a covariance matrix that describes model–
data residuals (discussed at the end of this section). Further-
more, the uncertainties in these estimated coefficients can
also be estimated using a linear equation (e.g., Gourdji et al.,
2008; Fang and Michalak, 2015):

V
β̂
= (h(X)T9−1h(X))−1, (4)

where V
β̂

is a p×p covariance matrix.
We test out two different formulations for the covariance

matrix 9 to evaluate the sensitivity of the results to the as-
sumptions made about the covariance matrix parameters. In
one set of simulations, we model 9 as a diagonal matrix.
The diagonal values characterize model–data errors (ε), es-
timated for the version 9 retrievals from the recent OCO-2
model inter-comparison project (e.g., Crowell et al., 2019).
The values have an average standard deviation of 0.98 ppm
and range from 0.29 to 4.8 ppm. In a second set of simu-
lations, we use a more complex and more complete formu-
lation of 9: 9 = h(h(Q)T )+R (e.g., Fang and Michalak,
2015), where R (n× n) characterizes the model–data errors
(described above), and Q (m×m) is a covariance matrix

that describes ζ (the patterns in the fluxes that cannot be de-
scribed by the environmental driver datasets). This formula-
tion is more complete because it fully accounts for the resid-
uals between z and Xβ. However, it is extremely computa-
tionally intensive to estimate the coefficients (β) using this
complex formulation of 9. We cannot explicitly formulate
this more complex version of 9 due to its large size and the
number of atmospheric model simulations (h()) that would
be required. As a result, we find the solution to Eq. (3) using
this complex version of 9 by iteratively minimizing the cost
function for a geostatistical inverse model (GIM) (Sects. 2.5
and S1), a process that takes approximately 2 weeks for each
year of model simulations in the setup used here.

We use both the simple and complex formulations of 9
when analyzing the real OCO-2 observations. Both the sim-
ple and complex formulations of 9 yield similar estimates
for the coefficients β, as discussed in the Results and discus-
sion (Sect. 3.2). When analyzing the 15 TRENDY models,
we only use the simple, diagonal formulation of9 – because
of the prohibitive computational costs that would be required
to run the more complex approach for all 15 TRENDY mod-
els.

Note that we estimate the values of Q, the covariance ma-
trix that describes ζ , using an approach known as restricted
maximum likelihood (RML) estimation (e.g., Mueller et al.,
2008; Gourdji et al., 2008, 2010, 2012). In the Supplement,
we discuss the structure of Q in detail, describe RML, and
compare the estimated parameters for Q against existing
studies.

2.5 Statistical model for estimating CO2 fluxes using
OCO-2 observations

To complement the analysis described above, we take an ad-
ditional step for the real OCO-2 observations of estimating
ζ , patterns in the fluxes that cannot be described by the envi-
ronmental driver datasets, also known as the stochastic com-
ponent of the fluxes (Eq. 1). This step thereby creates a com-
plete estimate of CO2 fluxes using OCO-2 observations. This
additional step accomplishes two goals. First, the fluxes in ζ
can reveal flux anomalies or patterns that are too complex to
quantify using a linear combination of environmental vari-
ables and/or can indicate the strengths and shortfalls of the
regression. Second, by estimating all components of the CO2
fluxes (Xβ and ζ ), we can better evaluate our inferences us-
ing OCO-2 against independent, ground-based observations
of CO2. This independent evaluation is important because
OCO-2 observations and the atmospheric transport model
(i.e., GEOS-Chem) can contain errors.

We generate a complete estimate of the CO2 fluxes (Xβ+
ζ ) by minimizing the cost function for a GIM (e.g., Kitanidis,
1986; Michalak et al., 2004; Miller et al., 2020). We describe
this process in detail in Supplement Sect. S1. This process
requires two covariance matrices (R and Q), and we use the
same parameters for these covariance matrices as described
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above in Sect. 2.4. Note that for the setup here, we estimate ζ
at a spatial resolution of 4◦ latitude by 5◦ longitude to match
that of GEOS-Chem, and we estimate ζ at a daily tempo-
ral resolution to better account for sub-monthly variability in
CO2 fluxes. Also note that minimizing the GIM cost function
yields the same estimate for the coefficients (β) as in Eq. (3),
provided that the covariance matrices in the GIM cost func-
tion and in Eq. (3) are identical. The Supplement Sect. S1
and Miller et al. (2020) describe the process of minimizing
the GIM cost function in greater detail.

2.6 Analysis using real observations from OCO-2

For analysis using OCO-2 observations, we employ 10 s av-
erages of the version 9 OCO-2 observations (e.g., Crowell
et al., 2019) and include both land nadir- and land-glint-mode
retrievals. Recent retrieval updates have greatly reduced bi-
ases that previously existed between land nadir and land
glint observations (O’Dell et al., 2018). Moreover, Miller
and Michalak (2020) evaluated the impact of these updated
OCO-2 retrievals on the terrestrial CO2 flux constraint in dif-
ferent regions of the globe; the authors found that the in-
clusion of both land nadir and land glint retrievals yielded
a stronger constraint on CO2 fluxes relative to using only a
single observation type.

We also include a column of X in all simulations using real
OCO-2 observations to account for anthropogenic emissions,
ocean fluxes, and biomass burning. This column includes
anthropogenic emissions from the Open-Data Inventory for
Anthropogenic Carbon dioxide (ODIAC) (Oda et al., 2018),
ocean fluxes from NASA Estimating the Circulation and Cli-
mate of the Ocean (ECCO) Darwin (Carroll et al., 2020),
and biomass burning fluxes from the Global Fire Emissions
Database (GFED) (Randerson et al., 2018). We estimate a
single coefficient or scaling factor (β) for this column. These
fluxes are input into the regression at a 4◦ latitude by 5◦

longitude spatial resolution to match that of GEOS-Chem.
The Supplement Sect. S2 contains greater discussion of these
CO2 sources.

2.7 Analysis using the TBMs

We compare the estimated coefficients (β) from real OCO-2
observations against simulations using synthetic OCO-2 ob-
servations generated from 15 different TBMs in TRENDY
(v8). We list out all of the individual models in the TRENDY
comparison in Table S1. Model outputs from the TRENDY
project were provided at a monthly time resolution, and the
spatial resolution varies from one model to another (though
many models have a native spatial resolution of either 0.5◦

latitude–longitude or 1◦ latitude–longitude). We specifically
use TRENDY model outputs from scenario 3 simulations, in
which all TBMs are forced with time-varying CO2, climate,
and land use.

Figure 2. Correlation coefficients (r) between environmental
drivers over temperate forests biome in year 2017 in X (a) and
h(X) (b). We find that the correlation between environmental
drivers (X) are generally low (a), e.g., PAR and scaled tempera-
ture, precipitation, and specific humidity; however, when these en-
vironmental drivers are passed through the transport model h() and
interpolated to the locations of OCO-2 observations, the correlation
between these drivers becomes much stronger (b), indicating high
collinearity.

We generate synthetic OCO-2 observations using each of
these TBM flux estimates. To do so, we first regrid each
of the TRENDY model estimates to a spatial resolution of
4◦ latitude by 5◦ longitude, the spatial resolution of the
GEOS-Chem model. We then run the TRENDY model fluxes
through the GEOS-Chem model for years 2015–2018 and in-
terpolate the model outputs to the times and locations of the
OCO-2 observations.
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3 Results and discussion

3.1 Results of model selection

The model selection results highlight the strengths and limi-
tations of using current OCO-2 observations to estimate rela-
tionships with environmental driver datasets. We use model
selection based on the BIC to determine a set of environmen-
tal driver datasets to include in the analysis using OCO-2
observations and using the TBMs. We only select 10 envi-
ronmental driver datasets when we run model selection on
the OCO-2 observations – both when we use environmental
driver datasets from the CRUJRA and MERRA-2 products.
We are generally able to identify at least one or two key en-
vironmental relationships in each biome using total column
CO2 observations (shown on the x axis of Fig. 3). With that
said, we are only able to quantify relationships with these
few, salient environmental variables. More detailed environ-
mental relationships within each biome are difficult to dis-
cern.

Note that we select a similar number of environmental
driver datasets when using synthetic OCO-2 observations
that are generated from each of the TBMs. We select any-
where between 8 and 13 environmental driver datasets (an
average of 10 datasets) in the analysis using each of the
TBMs. This result indicates consistency between the anal-
ysis using real OCO-2 observations and the analysis using
synthetic OCO-2 observations generated using CO2 fluxes
from each of the 15 different TBMs.

Overall, we have difficulty detecting the unique contribu-
tions of many environmental driver datasets to variability in
the OCO-2 observations. This issue is highlighted by an ex-
amination of colinearity in the regression model. In a re-
gression, we cannot estimate different coefficients (β) for
two predictor variables (i.e., columns of X) that are iden-
tical or nearly identical; the regression cannot be used to
estimate unique coefficients because the predictor variables
themselves are not unique. In regression modeling, this phe-
nomenon is known as colinearity. The coefficients (β) es-
timated for colinear variables are often unrealistic, and the
standard errors or uncertainties in those coefficients (V

β̂
) are

often unexpectedly large (e.g., Ramsey and Schafer, 2012).
Model selection is one way to reduce or remove colinearity;
colinear variables, by definition, do not contribute unique in-
formation to a regression and are therefore rarely selected
using a model selection approach like the BIC. One common
method for detecting colinearity is to estimate the correla-
tion coefficient (r) between different columns of X; a value
greater than ∼ 0.55 can indicate the presence of colinearity
(e.g., Ratner, 2012).

We find substantial colinearity in the regression analy-
sis (Fig. 2). This colinearity likely plays an important role
in the model selection results, in addition to errors in the
OCO-2 observations and errors in the GEOS-Chem model;
it represents an important but potentially overlooked chal-

lenge in relating satellite-based CO2 observations to pat-
terns in environmental drivers. The environmental driver
datasets are passed through the GEOS-Chem model (h())
and interpolated the locations of OCO-2 observations as
part of the regression (h(X), Eqs. 1 and 3). In other words,
these driver datasets are input into GEOS-Chem in place of
a traditional CO2 flux estimate. This step is necessary so
that the environmental driver datasets can be directly com-
pared against patterns in the OCO-2 observations. The driver
datasets (i.e., columns of X) that we use in the regression
are generally unique from one another (i.e., have unique spa-
tial and temporal patterns). However, the differences among
many driver datasets disappear once those datasets have been
passed through GEOS-Chem. Figure 2 displays the corre-
lation coefficients (r) among environmental driver datasets
from MERRA-2 for temperate forests, both before (Fig. 2a)
and after (Fig. 2b) those driver datasets have been passed
through GEOS-Chem and interpolated to the OCO-2 obser-
vations. The correlation coefficients increase substantially
from the former to the latter case. This colinearity is inde-
pendent of errors in the OCO-2 observations and indicates a
hard limit on the number of relationships with environmen-
tal driver datasets (i.e., coefficients) that we can quantify in
the regression. In other words, model selection results are at
least partially limited by the limited sensitivity of OCO-2 ob-
servations to variations in these environmental driver datasets
– either due to atmospheric smoothing and/or due to limita-
tions in the availability of OCO-2 observations in some re-
gions of the globe. This limitation is in addition to the un-
certainties due to errors in the OCO-2 observations and the
GEOS-Chem model, which also have a critical impact on in-
ferences about CO2 fluxes using OCO-2 observations (e.g.,
Chevallier et al., 2007, 2014; Miller et al., 2018).

3.2 Environmental relationships inferred using
observations from OCO-2

We are able to quantify the relationships between OCO-2
observations and several key environmental driver datasets.
Figures 3 and 4 display the estimated coefficients from the
regression analysis using observations from OCO-2. Across
extratropical biomes, PAR is the most commonly selected
variable. This result reflects the fact that light availability is
a key factor that drives CO2 flux variability in mid-to-high
latitudes (e.g., Fang and Michalak, 2015; Baldocchi et al.,
2017). As expected, the estimated coefficients for PAR are
negative, indicating that an increase (or decrease) in PAR in
the model is associated with a decrease (or increase) in NEE
and an increase (or decrease) in carbon uptake. Note that in
this study negative values for NEE refer to CO2 uptake while
positive values refer to net CO2 release to the atmosphere.

By contrast, precipitation and scaled temperature are
the most commonly selected environmental driver datasets
across tropical biomes. The magnitude of the coefficients for
each of these two variables is similar in most biomes, indi-
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cating that patterns in both have similarly important associ-
ations with patterns in CO2 fluxes. Specifically, a negative
coefficient assigned to scaled temperature indicates that an
increase in air temperature is associated with increased car-
bon uptake when air temperatures are cool and reduced car-
bon uptake when air temperatures are hot; the scaled tem-
perature function has the shape of an upside-down parabola,
and temperature thus has a different association with CO2
fluxes depending upon whether the air temperature is above
or below the optimal temperature for photosynthesis (e.g.,
Fig. S1). Indeed, high temperatures in the tropics often ex-
ceed the optimal temperature for photosynthesis (e.g., Bal-
docchi et al., 2017), which reduces carbon uptake (e.g.,
Doughty and Goulden, 2008). Furthermore, negative coef-
ficients for precipitation indicate that an increase in precipi-
tation is associated with an increase in carbon uptake, which
is in line with current knowledge that water availability fa-
cilitates photosynthesis across seasonal to annual temporal
scales, especially in arid or semiarid regions (e.g., Gatti et al.,
2014; Jung et al., 2017).

In addition to this regression analysis, we use a GIM to
estimate the stochastic component of the fluxes (ζ , Eq. 1) –
patterns in the fluxes that are implied by the OCO-2 obser-
vations but do not match any existing environmental driver
dataset. To this end, Fig. 5 shows the mean contribution of
each environmental driver variable and the stochastic com-
ponent to the GIM across years 2015–2018 using MERRA-2
for the environmental driver datasets. The magnitude of the
stochastic component in this plot is small relative to the con-
tribution of different environmental variables and relative to
the contribution of anthropogenic sources. Furthermore, the
stochastic component contains very diffuse spatial patterns,
and these very broad patterns do not imply any clear defi-
ciency in the other components of the GIM. For example, the
regression component of the GIM (Xβ̂) accounts for 89.6 %
of the variance in the estimated fluxes, and the stochas-
tic component conversely accounts for only 10.4 % of the
flux variance. Furthermore, the regression component, when
passed through the GEOS-Chem model, matches OCO-2 ob-
servations nearly as well as the full posterior flux estimate
(Figs. S2 and S13). This result shows that a limited number
of environmental driver datasets can adeptly reproduce broad
patterns in CO2 fluxes across continental and global spatial
scales but reinforces the conclusion that current OCO-2 ob-
servations are not sufficient to disentangle more complex en-
vironmental relationships.

In all of the simulations using OCO-2 observations, we es-
timate a scaling factor (β) for anthropogenic, biomass burn-
ing, and ocean fluxes of near one, indicating that these source
types have a magnitude that is broadly consistent with atmo-
spheric observations. Specifically, the estimated scaling fac-
tor estimated ranges from 0.97 to 1.05, depending upon the
year and simulation. Note, however, that we estimate a single
scaling factor for all of these source types combined and are
unable to confidently constrain separate scaling factors for

Figure 3. Estimated coefficients (β) from the TRENDY models
(blue), from the ensemble mean of the TRENDY models (black),
and from the analysis using OCO-2 (red). Each blue or red dot in-
dicates the mean value across all 4 years of the study period. Gray
bars indicate the full range of uncertainties in the coefficients. To
construct these gray bars, we calculate the uncertainties in the coef-
ficients estimated for each individual TBM (or for the real OCO-2
data) using Eq. (4). They gray bars encapsulate all of the uncertainty
bounds from all of these individual model calculations. Further-
more, the analysis of OCO-2 includes simulations using MERRA-
2 meteorology with a simple formulation of 9 (red square), using
CRUJRA meteorology and a simple formulation of9 (red dot), and
using MERRA-2 and a complex formulation of 9 (the same used
in the GIM, red triangle). The coefficients from the analysis using
OCO-2 (red) are broadly within the range of the estimates in TBMs
(blue). We further calculate the coefficient of variation (CV) of co-
efficients for each environmental driver within the TBMs (b), and
we find that the largest CVs are from the coefficients for precipita-
tion.
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Figure 4. This figure is similar to Fig. 3 but shows results for individual years. There are no noticeable shifts in the coefficient estimates
between El Niño (2015–2016; a–b) and non-El Niño years (2017–2018; c–d) from the analysis using OCO-2 (red). Some individual TBMs
show differences of up to 50 % in the estimated coefficient among years, though many individual TBMs do not.

each source, a topic discussed in greater detail in the Supple-
ment Sect. S2.

Note that the inferences described here are also broadly
consistent with independent, ground-based atmospheric ob-
servations. We specifically model atmospheric CO2 using
fluxes estimated from the GIM and compare against regular
aircraft observations, campaign data from the Atmospheric
Tomography Mission (ATom; Wofsy et al., 2018), and obser-
vations from the Total Carbon Column Observing Network
(TCCON; Wunch et al., 2011). In most instances, the model
result matches the observations to within the errors specified
in the inverse model (i.e., to within the errors specified in
the R covariance matrix), and the model–data comparisons
do not exhibit any obvious seasonal biases. Furthermore, we
also model XCO2 using the outputs of the regression analy-
sis (Xβ̂), and these outputs also show good agreement with
OCO-2 observations (Fig. S13). The Supplement Sect. S4,
Figs. S2–S13, and Tables S2–S3 describe these comparisons
in greater detail.

3.3 Comparison between inferences from OCO-2 and
TBMs

The environmental relationships (i.e., coefficients) estimated
for the TBMs show a substantial range (Figs. 3 and 4); this
spread highlights uncertainties in state-of-the-art TBMs and
indicates that there is an opportunity to help inform these re-
lationships using atmospheric CO2 observations. On the one
hand, we are only able to infer a limited number of environ-
mental relationships using current observations from OCO-2,
and this fact limits the extent to which we can inform TBM
development using available space-based CO2 observations.
On the other hand, we can infer relationships with several
key environmental drivers (e.g., Fig. 3), and TBMs disagree
on relationships with even these key drivers. This result thus
indicates the limitations of this analysis but also its strengths.
Specifically, Figs. 3 and 4 graphically display these results
from the regression analysis – the coefficients estimated us-
ing OCO-2 observations compared to those estimated from
the TRENDY models. The coefficients from the OCO-2 anal-
ysis are almost always within the range of those estimated
using the ensemble of TBMs. With that said, the coefficients
estimated for many of the TBMs are far from the value esti-
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Figure 5. The contribution of different environmental driver datasets to the flux estimate from the GIM. Panel (a) displays the 4-year
mean flux estimate (including both the regression and stochastic components of the flux estimate; units of µmol m−2 s−1) and panel (b) the
contribution from anthropogenic, biomass burning, and ocean fluxes. Contributions from different environmental drivers, including scaled
temperature (c), precipitation (d), and PAR (e), describe most of spatiotemporal variability in terrestrial biospheric CO2 fluxes, whereas the
stochastic components (ζ ) (f) only account for a small portion of flux variability. Note that the inverse modeling results shown in this figure
use environmental driver data from MERRA-2. Also note that the color bars used in panels (a)–(b), (c)–(e), and (f) are different. White colors
in panels (c)–(e) indicate that not all environmental drivers are selected in all biomes.

mated using OCO-2, implying that observations from OCO-
2 can be used to inform the relationships within numerous
individual models. Note that in Figs. 3 and 4 the x axis is
ordered based upon the environmental driver variables that
are selected using OCO-2, and we show the estimated coef-
ficients for TBMs in which the listed environmental driver
variable is also chosen using model selection. Furthermore,
the coefficients shown for the TBMs in Figs. 3 and 4 are cal-
culated using environmental driver datasets from CRUJRA.
Figure S14 displays the results for the TBMs using environ-
mental driver data from MERRA-2, and the results look sim-
ilar to those using CRUJRA.

We specifically find large differences between the analysis
using OCO-2 and the TBMs for relationships with precipi-
tation. The relationships between precipitation are arguably
more uncertain within the TBMs than the relationships with
other environmental variables (Fig. 3a) and are more uncer-
tain in tropical biomes than temperate ones. This statement
is particularly apparent when we examine the coefficient of
variation for each relationship (Fig. 3b). The coefficient of
variation is a measure of the uncertainty relative to the mag-
nitude of the mean, and Fig. 3b shows the standard deviation
in the coefficients from the 15 TBMs divided by the mean co-

efficient from the ensemble of TBMs. In addition, the TBMs
are evenly split on whether the relationship with precipitation
is positive or negative across tropical biomes, and our anal-
ysis using OCO-2 observations agrees with models that esti-
mate a negative relationship (i.e., precipitation is associated
with greater CO2 uptake). There is substantial disagreement
on the magnitude of this relationship, even among models
that yield a negative relationship; the estimate using OCO-2
observations falls in the midrange of these TBMs for both
tropical biomes.

More broadly, the TBMs simulate very different water cy-
cling through each ecosystem, in spite of the fact that each
model uses the same precipitation inputs from CRUJRA.
These broader differences in water cycling within the TBMs
may help explain the large uncertainties in the relationships
between CO2 and precipitation and highlight an important
source of uncertainty within these models. Specifically, we
find that estimated evapotranspiration (ET) across the TBMs
differs by almost a factor of 3 among models in some seasons
and biomes, and annual ET ranges from 375 to 700 mm over
northern hemispheric tropical grasslands (Fig. 6a) and from
530 to 1010 mm over northern hemispheric tropical forests
(Fig. 6b). These large differences in ET estimates reinforce
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Figure 6. Four-year-averaged evapotranspiration (ET) estimates
from a suite of 15 TBMs (blue) and from the ensemble mean (black)
for northern hemispheric tropical grasslands (a) and for northern
hemispheric tropical forests (b). Annual ETs show large differences
in magnitude across the TBMs for both tropical biomes.

the very different responses of tropical ecosystems in these
models (both tropical forests and tropical grasslands) to pre-
cipitation inputs.

Indeed, existing studies have indicated large uncertainties
in the responses of tropical forests to water availability (e.g.,
Restrepo-Coupe et al., 2016) and have offered several possi-
ble explanations. Soil depths and rooting distribution are par-
ticularly challenging to model in tropical ecosystems, yield-
ing uncertainties in the relationship between water availabil-
ity and CO2 fluxes (e.g., Baker et al., 2008; Poulter et al.,
2009). For example, Poulter et al. (2009) argued that current
TBMs tend to underestimate soil depths in tropical forests,
which are critical to guarantee soil water access and to ac-
curately simulate dry-season photosynthesis in TBMs. The
treatment of irrigation and other land management practices
also differs among models and creates further uncertainty
(e.g., Le Quéré et al., 2018; Pan et al., 2020). To compli-
cate matters, the role of precipitation in carbon dynamics can
vary depending on broader environmental conditions and the

timescales considered (e.g., Baldocchi et al., 2017). For ex-
ample, excess precipitation is associated with limited light
availability in regions like the humid tropics and can raise
the water table to a level that inhibits respiration. With that
said, short-term rain events have been shown to boost respi-
ration (e.g., Baldocchi, 2008).

Like precipitation, relationships with PAR are also highly
uncertain in the simulations using TBMs. Most models yield
relationships with the same sign, but those relationships vary
widely in magnitude. By contrast, results using OCO-2 ob-
servations are very similar to the ensemble mean of the
TBMs. This result is particularly interesting given that the
individual TBMs do not show consensus with one another.
The differences among the TBMs likely stem from the fact
that these TBMs exhibit widely varying seasonal cycles and
peak growing season uptake across extratropical biomes. For
example, in temperate forests (e.g., Fig. S17), the maximum
monthly carbon uptake differs by a factor of 8 among the
TBMs, and a handful of TBMs estimate a very different sea-
sonal cycle than the bulk of the TBMs with maximum uptake
during the middle of the growing season.

In contrast to the discussion of precipitation and PAR, ex-
isting TBMs yield much better agreement on the relation-
ships between CO2 and scaled temperature (Fig. 3). In tropi-
cal biomes, nearly all TBMs agree on the sign of the relation-
ship, and the estimates using OCO-2 observations are within
the range of those estimated using TBMs. Interestingly, the
uncertainty bounds on the coefficient estimate using OCO-2
are not that much smaller than the range of coefficients from
the ensemble of TBMs, both for tropical grasslands and es-
pecially for tropical forests. This result points to relatively
good consensus in modeled relationships with temperature
for tropical grasslands and forests – both using TBMs and
OCO-2 observations. However, it also indicates that atmo-
spheric observations from OCO-2 potentially have less op-
portunity to inform these relationships than for precipitation
or PAR where TBMs do not show consensus.

The comparisons described above are largely from biomes
centered in the tropics and midlatitudes and include few com-
parisons for high-latitude biomes (e.g., the boreal forest or
tundra biomes). For example, we do not select any environ-
mental driver variables for the tundra biome using OCO-2
and only select PAR in boreal forests. OCO-2 observations
are sparse across high latitudes both due to the lack of sun-
light in winter and due to frequent cloud cover in many high-
latitude regions. We also only select PAR in boreal forests in
simulations using 2 of the 15 TBMs. This result also reflects
the limited availability of OCO-2 observations over high-
latitude regions; for the analysis here, we create synthetic
OCO-2 observations using each TBM and apply model se-
lection to each of these synthetic OCO-2 datasets. Hence, the
sparsity of OCO-2 observations not only affects the model
selection results using real OCO-2 observations but also af-
fects the analysis shown in Figs. 3 and 4 using the TBMs.
The fact that PAR is selected for so few TBMs is not a reflec-
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tion on the important role of PAR across the boreal forest in
many TBMs.

Note that the analysis described above is based upon the
mean relationships that we infer for years 2015–2018. We
also explored how these relationships in the models vary
during El Niño (2015–2016) and non-El Niño years (2017–
2018) (Fig. 4). The relationships that we estimate do not fun-
damentally change between El Niño and non-El Niño years
and neither does the spread among the models. This result in-
dicates two conclusions: (1) there is not a fundamental shift
in these relationships between El Niño versus non-El Niño
years, suggesting that it is not the change in environmen-
tal relationships but the change in environmental variables
themselves that correlates with the change in flux estimates;
and (2) the uncertainties in the relationships, as estimated
by the TBMs, are not higher in El Niño versus non-El Niño
years. With that said, the magnitude of the estimated coeffi-
cient does change in some models between El Niño and non-
El Niño years; the changes in the coefficients are generally
less than 50 % in most models, and the models do not show
a consistent direction of change between El Niño and non-El
Niño years.

4 Conclusions

In this study, we use 4 years of observations from OCO-2
and a top-down statistical framework to evaluate the rela-
tionships between patterns in atmospheric CO2 observations
and patterns in environmental driver datasets that are com-
monly used in modeling the global carbon cycle. We are able
to quantify a limited number of these environmental relation-
ships using observations from OCO-2. In spite of these limi-
tations, we are still able to identify relationships with a small
number of salient environmental driver datasets, and state-
of-the-art TBMs do not show consensus on some of these
key relationships, indicating an opportunity to inform these
relationships using atmospheric CO2 observations.

We subsequently compare inferences using OCO-2 against
inferences from 15 state-of-the-art TBMs that have model
outputs available for the same set of years. For the broad
regions and time span explored in this study, we find neg-
ative relationships between patterns in OCO-2 observations
and patterns in precipitation; this result agrees with half of
the TBMs, which do not show consensus on relationships
with precipitation. By contrast, TBMs exhibit much greater
skill in describing relationships with scaled temperature, as
implied by the relatively good agreement among TBMs. In
fact, the uncertainties in the temperature relationship across
tropical biomes, as estimated using OCO-2 observations, are
nearly as large as the range of estimates using TBMs.

More broadly, state-of-the-art TBMs disagree on the con-
tribution of individual biomes to the global carbon balance, a
result highlighted in several studies (e.g., Poulter et al., 2014;
Sitch et al., 2015; Ahlström et al., 2015; Piao et al., 2020). In

order to reduce these uncertainties, scientists will likely need
to reconcile differences in the environmental processes that
drive these CO2 flux estimates. Existing studies have used
in situ atmospheric observations to help quantify and evalu-
ate these relationships across the extratropics (e.g., Fang and
Michalak, 2015; Hu et al., 2019). However, this task is much
more challenging across regions of the globe with sparse in
situ observations, including most of the tropics. In spite of
the limitations described in this study, the advent of satellite-
based CO2 observations like those from OCO-2 provides a
new opportunity to constrain these environmental relation-
ships and thereby provide unique atmospheric constraints on
the global carbon cycle.
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