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Harvested area did not increase
abruptly—how advancements in satellite-
based mapping led to erroneous
conclusions
Johannes Breidenbach1* , David Ellison2,3,4, Hans Petersson2, Kari T. Korhonen5, Helena M. Henttonen5,
Jörgen Wallerman2, Jonas Fridman2, Terje Gobakken6, Rasmus Astrup1 and Erik Næsset6

Abstract

Key message: Using satellite-based maps, Ceccherini et al. (Nature 583:72-77, 2020) report abruptly increasing
harvested area estimates in several EU countries beginning in 2015. Using more than 120,000 National Forest
Inventory observations to analyze the satellite-based map, we show that it is not harvested area but the map’s
ability to detect harvested areas that abruptly increases after 2015 in Finland and Sweden.
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1 Introduction
Using satellite-based maps, Ceccherini et al. (2020)
report abruptly increasing harvested area estimates in
several EU countries beginning in 2015. They identify
Finland and Sweden as countries with the largest harvest
increases and the biggest potential effect on the EU’s cli-
mate policy strategy. In a response to comments (Palahí
et al. 2021; Wernick et al. 2021) regarding the original
study, Ceccherini et al. (2021) reduce their estimates
markedly but generally maintain their conclusion that
harvested area increased abruptly. Using more than
120,000 field reference observations to analyze the
satellite-based map employed by Ceccherini et al. (2020),
we confirm the hypothesis by Palahí et al. (2021) that it
is not a harvested area but the map’s ability to detect
harvested areas that abruptly increases after 2015. While

the abrupt detected increase in harvest is an artifact,
Ceccherini et al. (2020) interpret this difference as an in-
dicator of increasing intensity in forest management and
harvesting practice.
Ceccherini et al. (2020) use satellite-based Global

Forest Change (GFC) (Hansen et al. 2013) data to esti-
mate the yearly harvest area in each of 26 EU states over
the period 2004 to 2018. They claim that an increase of
harvested areas will impede the EU’s forest-related
climate-change mitigation strategy, triggering additional
required efforts in other sectors to reach the EU climate
neutrality target by 2050.

2 Discussion
In their response to comments, Ceccherini et al. (2021)
carry out a stratified estimate of harvested area for the
combined area of Finland and Sweden with more than
5000 visually classified reference points based on manual
interpretation, using high-resolution aerial images and
Landsat data. They compare the time periods 2011–
2015 and 2016–2018 to find a 35% increase in harvested
area in the second period which is a considerable
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reduction compared to the original article, where a 54%
and 36% increase was reported for Finland and Sweden,
respectively. Although this approach is more robust than
the “pixel counting” (Palahí et al. 2021) of the original
article, as can be seen below, this is still a gross overesti-
mation of the change in harvested area. The main issue
is the use of Landsat to determine the timing of forest
cover losses. Because Landsat became more sensitive in
detecting forest cover loss over time, many losses that
occurred in or before the first period are thus detected
in the second period. This causes errors in the reference
data which propagate in the reported estimate. More-
over, Landsat provides the primary data input for GFC,
which results in circular reasoning when using Landsat
as reference data for GFC. In other words, Landsat can-
not be used to validate a Landsat-based product.
Furthermore, Ceccherini et al.’s (2021) argument that

abrupt changes in harvested area were not observed in
all countries and therefore cannot be caused by data ar-
tifacts is inappropriate because the algorithms used to
create the GFC map are, due to the modeling procedure
applied, inherently non-linear (Hansen et al. 2013). Un-
expected changes can therefore happen in some regions
but not in others.
Finally, Ceccherini et al. (2021) claim inconsistencies

in GFC were unknown. Though inconsistencies in GFC’s
time series have previously been reported (Rossi et al.
2019; Galiatsatos et al. 2020), this may indeed not have
been well-known. However, it is a well-established fact
that Earth observation data and related products can be
unreliable and inconsistent (McRoberts 2011; Olofsson
et al. 2014). Important interpretations and decisions
should therefore not be based on “pixel counting”
estimates.
We employ more than 120,000 field observations from

repeated measurements in 44,000 sample plots from the
Finnish and Swedish national forest inventories (NFIs) as
reference data in statistically rigorous estimators in order
to analyze the accuracy of Ceccherini et al.’s (2020) find-
ings (see Appendix and our dataset (Breidenbach et al.
2021b)). We find that GFC’s ability to detect harvested
areas and thinnings abruptly increases after 2015 (Fig. 1).
When the ability to detect harvest improves, the overall
harvested area in GFC will increase, even without a real
change in management activity. As a result, more har-
vested areas and thinnings were detected by GFC after
2015, and this explains why the “harvested area” reported
by Ceccherini et al. (2020) abruptly increases. In other
words, the reported abrupt increase in harvest is to a large
degree simply a technical artifact (bias) caused by the ad-
vancement of GFC over time. Ceccherini et al.'s (2020)
conclusions, however, are the product and direct conse-
quence of an inconsistent time series and are thus both in-
correct and misleading.

Assuming the average proportion of correctly identi-
fied harvested areas before 2015 also applies after 2015,
the GFC area after 2015 can be modeled without this in-
creasing sensitivity. This indicates that the GFC recorded
increases in “harvested area” of 54% and 36% in Finland
and Sweden, reported by Ceccherini et al. (2020) repre-
sents an overestimate of 188% and 851%, respectively,
compared to our reference data (Fig. 2). Because this
modeled area still includes commission error, thinnings,
and other harvests, additional calculations would be re-
quired to provide improved estimates of the actual har-
vested area change (Rossi et al. 2019). We further
highlight that Ceccherini et al.’s (2021) more recent find-
ings do not in any way alter or affect these basic, vali-
dated findings.
In addition to generating harvested area estimates sub-

ject to systematic error, Ceccherini et al. (2020) do not
provide any estimates of uncertainty and further assume
all biomass in their mapped harvested areas was in fact
removed. Given that a considerable share of the har-
vested areas in the period 2016–2018 are thinnings and
not final harvests (Fig. 2), the latter results in even larger
errors with respect to C-losses. Ceccherini et al. (2020)
likewise assume the biomass map they utilize is accurate
and without uncertainty, which is unrealistic (Næsset
et al. 2020). We focus on the problems related to the
harvested area estimate in Ceccherini et al. (2020) as this
is the most fundamental issue and is adequate for illus-
trating the erroneous conclusions drawn by the authors.
We acknowledge the strong desire for sound and inde-

pendently verifiable monitoring strategies driven by their
potential for supporting the promotion of forest-related
climate benefits (Griscom et al. 2017; Bastin et al. 2019;
Brancalion et al. 2019). Without this, much hesitation
has accompanied interest in mobilizing forest resources
behind the climate change mitigation challenge. Earth
observation remote sensing (RS) and related mapping ef-
forts embody the promise of providing very important
tools for monitoring land use change, tropical deforest-
ation, and forest restoration (Hansen et al. 2013; Baccini
et al. 2017; Harris et al. 2021). As such, they likewise
hold the promise of supporting efforts to better integrate
forest resources into the framework of climate change
mitigation strategies.
RS products, however, can be used in ways that poten-

tially result in estimates subject to severe systematic error,
as we have seen in this and other studies (Næsset et al.
2020). Ceccherini et al.'s (2020) claim that a 30% increase
of harvested area in France corresponds with national sta-
tistics has been invalidated by Picard et al. (2021). These
authors find that, despite the already very weak correlation
between national statistics and Ceccherini et al.’s (2020)
results, this “correlation” itself was caused by one single
year that was heavily affected by a storm event. In reliable
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surveys, Picard et al. (2021) were unable to find signs of
increased harvested area in France.
Because RS data measure reflections of electromag-

netic waves (e.g., visual light in the case of optical satel-
lites) rather than the direct object of interest such as
forest cover loss and carbon stock, algorithmic models
are required for interpreting these reflections. Models,
however, are frequently imprecise tools (Box 1976) and
generally require reference data to correct their data
output and thereby provide unbiased estimates (Næsset
et al. 2020; Breidenbach et al. 2021a). The compilation
of RS data results in nice, colorful maps and scientific-
looking figures further distract attention. The collection
of the required reference data, on the other hand, is tedi-
ous, expensive, and their enormous importance not well
understood (McRoberts 2011). Combining the GFC map

with adequate reference data into reliable estimators can
prove very useful for estimating harvested area and re-
lated C-stock losses, as illustrated in various studies
(Turubanova et al. 2018; Rossi et al. 2019; Galiatsatos
et al. 2020; Næsset et al. 2020; Breidenbach et al. 2021a).

3 Conclusion
We certainly agree with the authors that one of the
more important elements of the Paris Agreement is to
“achieve a balance between anthropogenic emissions by
sources and removals by sinks of greenhouse gases in
the second half of this century” (UN 2015). Based on the
data at hand, however, it would be erroneous to lay
blame for the failure to achieve these goals at the feet of
the forestry sector.

Fig. 1 Proportion and 95% confidence interval of correctly detected areas by GFC given change cause as represented by NFI data. A Finland. B
Sweden. The inverse of the y-axis is the omission error
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We nonetheless remain hopeful future debate over the
role of the European forest sector will remain rooted in
more scientific foundations. Certainly, the use of large-
scale open data in carbon monitoring and reporting, as
Ceccherini et al. (2020) also (as well as many others be-
fore them) propose, represents the next great trend and
should generally be applauded. However, strong system-
atic errors in estimated results clearly need to be
avoided. This demonstrates why work of this kind
should always be accompanied by rigorous collection of
field observations and appropriate statistical estimates.
Future work should therefore continue in the direction
of further combining the use of large-scale, field-based
sampling methods with remote sensing data resources.

4 Appendix
The Finnish NFI
The Finnish NFI (Korhonen 2016) is a systematic na-

tionwide cluster sampling survey composed of

permanent and temporary clusters. In this study, only
data from the permanent clusters were used. Since the
10th NFI (2004–2008), the inventory is continuous with
a 5-year cycle such that 20% of the clusters are measured
in each year. Finland is divided into six regions denoted
as strata, with decreasing sampling intensity towards the
north. In two of these strata, the partly autonomous
Åland islands and the low-productivity, northernmost
Lapland region, the continuous design is not applied and
all plots are measured in a single field season. Because of
this inconsistency, compared to the vast majority of the
NFI data, these two strata were not included in this ana-
lysis. The distance between the permanent clusters
ranges from 12 to 20 km.
Each permanent cluster consists of 10–14 sample

plots. Depending on the sampling stratum, a distance of
250 or 300 m separates adjacent plots. Each sample plot
position is recorded with a high-precision Global Navi-
gation Satellite Systems (GNSS) device. Until 2013, the

Fig. 2 GFC harvested area estimate based on NFI plots with and without correction for an increase in GFC’s detection ability after 2015. The two
top figures provide the uncorrected timeseries of GFC harvested area for A Finland and B Sweden along with their field-observed management
outcomes (final fellings, other harvest, thinnings, no loss recorded in the field = commission error). The area with final fellings is relatively stable
while the area with detected thinnings increases considerably after 2015. The two bottom figures provide the timeseries of GFC harvested area
corrected for GFC’s increased detection ability after 2015 for C Finland and D Sweden. For the period 2016–2018, the area is estimated assuming
the correct detection proportion would have stayed the same as before. Based on these corrected area estimates, there is no abrupt increase in
the harvested area after 2015. See Tables 1 and 2 in the Appendix for standard errors of estimates
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plot design was restricted angle count sampling (ACS)
with a basal area factor (BAF) of 2 and maximum radius
of 12.52 m in southern Finland and a BAF of 1.5 and
maximum radius 12.45 m in northern Finland. Since
2014, tree-level measurements have been carried out on
concentric circular plots with radii of 9.00 and 5.56 m
for trees with a diameter at breast height (dbh) ≥ 95mm
and ≥ 45mm, respectively. Trees with a dbh < 45mm
are still sampled using ACS with a BAF of 1.5. As of
2019, the radius of the smaller circle was changed to
4.00 m.
A large number of forest stand, site, and tree variables

are assessed on each plot. The tree-level measurements
are used to estimate stem volume and biomass. At re-
inventory, trees are re-measured and, if logged, har-
vested trees and time of logging are estimated and re-
corded. In this study, “logging-type” is defined as (1)
final felling consisting of clear cutting, cutting for nat-
ural regeneration and cutting before deforestation, (2)
thinning (first thinning and later thinnings), and (3)
other harvests (removal of seed trees, salvage cutting
tree removal along ditches and other locations). Time of
logging is defined by harvest season, not calendar years,
and the harvest season starts on the 1st of June.
For this study, the last calendar year of a harvest sea-

son determined the loss year, and forest cover losses
have been assessed since 2008 using 33,846 observations
from 15,565 permanent sample plots visited from 2009
to 2019. The NFI data used represent a total land area
including wetlands of 27 Mha.
The Swedish NFI
The Swedish NFI (Fridman et al. 2014) is a systematic

nationwide cluster sampling survey composed of per-
manent and temporary clusters. In this study, only data
from the permanent clusters were used. The inventory is
continuous with a 5-year cycle such that 20% of the clus-
ters are measured in each year. Sweden is divided into
five strata, with decreasing sampling intensity towards
the north. The distance between clusters ranges from 11
to 26 km.
Each permanent cluster consists of 4–8 sample plots.

Depending on the sampling stratum, a distance of 300 to
1200 m separates adjacent plots. Each sample plot pos-
ition is recorded with a hand-held GNSS device. A con-
sistent plot design has been applied in the time period
considered and tree-level measurements are carried out
on concentric circular plots with radii of 10.0, 3.5, and
1.0 m for measurements of trees with a dbh ≥ 100 mm, ≥
40mm, and ≥ 0 mm dbh, respectively.
A large number of forest stand, site, and tree variables

are assessed on each plot. The tree-level measurements
are used to estimate stem volume and biomass. At re-
inventory, trees are re-measured and, if logged, volume
loss, logging type and time of logging are estimated and

recorded. In this study, “logging-type” is defined as (1)
final felling consisting of clear cutting, cutting for nat-
ural regeneration and cutting before deforestation, (2)
thinning (first thinning and later thinnings), or (3) other
harvests (removal of seed trees, salvage cutting, other
tree removal). Time of logging is defined by harvest sea-
sons, not calendar years, where harvest season is defined
as the time between the start of the vegetation period
(between end of April and end of May, depending on re-
gion) in one calendar year to the start of the vegetation
period in the next calendar year. The first three harvest
seasons before the measurement of the plot are deter-
mined using this method and prior harvests are grouped
into one harvest class.
For this study, the first calendar year of a harvest sea-

son determines the loss year and forest cover losses have
been assessed since 2004 using 91,304 observations from
28,544 permanent sample plots visited from 2004 to
2019. The NFI data used represent all of Sweden; a total
land area including wetlands of 45 Mha.
GFC data and determination of the loss year
We intersected the GFC map version 1.6 used by Cec-

cherini et al. (2020) with the center coordinates of the
NFI plots. The GFC loss year, if available, was then at-
tributed to the respective NFI period. Because the NFI-
based loss year is estimated, we replaced the NFI loss
year by the GFC loss year where both were observed for
individual plots. We use the NFI plots to analyze which
changes in the forest can be detected by GFC. In other
words, we use the field observations as ground-truth to
evaluate how well GFC captures harvests over time.
Estimators
The estimators and notation used here closely follow

Breidenbach et al. (2021a) but deviate in important ways
when it comes to the application. The estimators are re-
peated here for completeness and with minor adjust-
ments for this context.
The estimates utilizing only NFI data are based on the

basic expansion (BE) estimator, i.e., the sum of total esti-
mates within each NFI stratum (region)

t̂τ ¼
X

h
t̂h ð1Þ

where t represents the total of a variable of interest, the
“^” identifies this as an estimate of a population param-
eter and h indexes the strata. Uncertainty can be esti-
mated by the variance estimator

V̂ð̂tτÞ ¼
X

h
V̂ð̂thÞ ð2Þ

and the standard error SEð�Þ ¼
ffiffiffiffiffiffiffiffiffi
V̂ð�Þ

q
. Estimates in

the figures are accompanied by a 95% confidence inter-
val (CI) calculated as CI ¼ t̂� 2SEð�Þ.
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The total within a stratum is estimated using nh clusters
indexed by i within the sample of clusters sh located
within the stratum. The design of the NFI clusters is fixed,
resulting in single-stage cluster sampling. To simplify the
notation and improve readability, we drop the subscript h
indexing the strata using the estimators in this section

t̂h ¼ t̂ ¼ λ

X

i∈s

miyi
X

i∈s

mi

ð3Þ

where λ is the area of the stratum and yi is the mean
over the variable of interest observed on mi plots of the
ith NFI cluster. To estimate the population parameter of
interest for a certain domain such as the area of final
felling in a certain year, a domain indicator variable Id is
used. This domain indicator is 1 if the plot belongs to
the domain of interest and 0 otherwise such that

yi ¼
Pmi

j Idyij
mi

ð4Þ

where yij is the observed value of the variable of interest on
the jth plot of the ith cluster (Mandallaz 2008, p. 65). In the
case of area estimation, yij is an n-vector of ones. (In the case
where other variables would be of interest such as carbon
stocks, yij is the observed carbon stock on the plot scaled to
per-hectare values.) The number of plots mi is typically fixed
within a stratum but can vary due to the irregular shape of
the stratum. In other words, mi is the number of plots on
land which usually is constant but can vary for clusters lo-
cated close to the coast or along stratum borders.
To develop the variance estimator of the total, it is

convenient to write the total estimator as

t̂ ¼ λŶ ¼ λ

P
i∈smiyiP
i∈smi

ð5Þ

where Ŷ is the mean over all plots irrespective of the
cluster structure (Mandallaz 2008, p. 66). This is the ra-
tio of two random variables because mi is not fixed.
Therefore, variance is estimated as

V̂ðŶÞ ¼ 1
nðn−1Þ

X
i∈s
ðmi

�m
Þ2ðyi−ŶÞ

2 ð6Þ

where n is the number of observations (clusters), �m ¼ 1
nP

i∈smi is the average number of plots per cluster (Man-
dallaz 2008, p. 68). The variance of the total is then esti-
mated by multiplying the squared area of the stratum
with the variance estimate of the mean

V̂ð̂tÞ ¼ λ2V̂ðŶÞ: ð7Þ
We assume simple random sampling and accept that

the variance estimates are likely conservative due to the

systematic distribution of the clusters in the NFIs. Other
options are possible (Magnussen et al. 2020) but will not
generally change our case or conclusions.
Application of the estimators
The loss year, determined by GFC if available or other-

wise determined by the field crews, was the primary do-
main of interest (d). All sample plots that covered a loss
year were used for estimating the variables of interest.
For example, for estimates of the domain of interest
“final felling area for the loss year 2018,” all sample plots
measured in 2018 and 2019 were used and the indicator
variable was set to 1 for sample plots with loss year 2018
and final felling was recorded based on the particular
logging type. The indicator variable was set to 0 for all
other plots. Because GFC information was not used in
this estimate apart from adjustments to the felling year,

we refer to this estimator as t̂
NFI
τ .

Correspondingly, for estimating the area of final felling
detected by GFC, the indicator variable was set to 1 for
sample plots with the GFC-based loss year 2018 and
final felling recorded as the logging type. The indicator
variable was set to 0 for all other plots. We refer to this

estimator as t̂
GFC
τ .

The proportion of correctly detected final fellings
(thinnings, or other harvests) by GFC is a ratio of the
two estimates (Mandallaz 2008, p. 68)

r̂τ ¼ t̂
GFC
τ =̂t

NFI
τ ð8Þ

with variance

V̂ðr̂τÞ ¼ 1

ð̂tτNFI
=λÞ

2 X
h
V̂ðr̂hÞðλh=λÞ2 ð9Þ

where λh is the area of the hth stratum and

V̂ðr̂hÞ ¼ 1
nhðnh−1Þ

X
i∈sh

ðmi

�mh
Þ2ðyGFC

i −r̂τy
N FI
i Þ2 ð10Þ

where yGFCi is yi [eq. (4)] resulting in t̂
GFC
τ and yNFIi is yi

[eq. (4)] resulting in t̂
NFI
τ .

While our approach is suitable for assessing the ac-
curacy of GFC, it is not optimal for estimating actual
harvested area for two reasons. First, the use of the
GFC loss year can introduce bias in estimates if the
GFC loss year has a systematic error. Second, official
NFI statistics include measurements from both per-
manent and temporary sample plots and utilize stand-
level observations around the sample plots for area
estimation rather than only plot-level measurements.
We have employed this approach because plot-level
measurements conceptually match the pixel-level GFC
data better than stand-level observations.
Standard errors for estimates in Fig. 2
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Table 1 Standard errors for estimates in Fig. 2—Finland

Year Status Standard error (%)

2018 Thinning 24

2017 Thinning 17

2016 Thinning 20

2015 Thinning 27

2014 Thinning 27

2013 Thinning 38

2012 Thinning 35

2011 Thinning 34

2010 Thinning 30

2009 Thinning 30

2008 Thinning 41

2018 Other harvests 75

2017 Other harvests 47

2016 Other harvests 58

2015 Other harvests 41

2014 Other harvests 46

2013 Other harvests 38

2012 Other harvests 39

2011 Other harvests 58

2010 Other harvests 35

2009 Other harvests 42

2008 Other harvests 31

2018 Final felling 17

2017 Final felling 14

2016 Final felling 14

2015 Final felling 12

2014 Final felling 12

2013 Final felling 15

2012 Final felling 16

2011 Final felling 15

2010 Final felling 13

2009 Final felling 15

2008 Final felling 13

2018 No loss recorded by NFI 45

2017 No loss recorded by NFI 21

2016 No loss recorded by NFI 26

2015 No loss recorded by NFI 38

2014 No loss recorded by NFI 18

2013 No loss recorded by NFI 33

2012 No loss recorded by NFI 22

2011 No loss recorded by NFI 22

2010 No loss recorded by NFI 19

2009 No loss recorded by NFI 17

2008 No loss recorded by NFI 21
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Table 2 Standard errors for estimates in Fig. 2—Sweden

Year Status Standard error (%)

2018 Thinning 38

2017 Thinning 22

2016 Thinning 27

2015 Thinning 41

2014 Thinning 27

2013 Thinning 36

2012 Thinning 38

2011 Thinning 62

2010 Thinning 29

2009 Thinning 32

2008 Thinning 39

2007 Thinning 50

2006 Thinning 29

2005 Thinning 28

2004 Thinning 39

2018 Other harvests 51

2017 Other harvests 34

2016 Other harvests 27

2015 Other harvests 32

2014 Other harvests 50

2013 Other harvests 45

2012 Other harvests 31

2011 Other harvests 50

2010 Other harvests 39

2009 Other harvests 45

2008 Other harvests 22

2007 Other harvests 34

2006 Other harvests 36

2005 Other harvests 28

2004 Other harvests 30

2018 Final felling 16

2017 Final felling 12

2016 Final felling 10

2015 Final felling 9

2014 Final felling 12

2013 Final felling 11

2012 Final felling 10

2011 Final felling 10

2010 Final felling 10

2009 Final felling 12

2008 Final felling 9

2007 Final felling 11

2006 Final felling 10

2005 Final felling 11

Table 2 Standard errors for estimates in Fig. 2—Sweden
(Continued)

Year Status Standard error (%)

2004 Final felling 10

2018 No loss recorded by NFI 31

2017 No loss recorded by NFI 18

2016 No loss recorded by NFI 20

2015 No loss recorded by NFI 19

2014 No loss recorded by NFI 21

2013 No loss recorded by NFI 20

2012 No loss recorded by NFI 19

2011 No loss recorded by NFI 15

2010 No loss recorded by NFI 20

2009 No loss recorded by NFI 18

2008 No loss recorded by NFI 16

2007 No loss recorded by NFI 21

2006 No loss recorded by NFI 17

2005 No loss recorded by NFI 19

2004 No loss recorded by NFI 18
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