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Abstract 7 

Background: Patient-specific instrumentation (PSI) may potentially improve humeral 8 

osteotomy in shoulder arthroplasty. The purpose of this study was to compare the deviation 9 

between planned and post-osteotomy humeral inclination, retrotorsion and height in 10 

shoulder arthroplasty, using PSI versus standard cutting guides (SCG). 11 

Methods: Twenty fresh-frozen cadaveric specimens were allocated to undergo humeral 12 

osteotomy using either PSI or SCG, such that the two groups have similar age, gender and 13 

side. Pre-osteotomy computed tomography (CT) scan was performed and used for the 14 

three-dimensional (3D) planning. The osteotomy procedure was performed using a PSI 15 

designed for each specimen or a SCG depending on the group. A post-osteotomy CT scan 16 

was performed. The pre-osteotomy and post-osteotomy 3D CT scan reconstructions were 17 

superimposed to calculate the deviation between planned and post-osteotomy inclination, 18 

retrotorsion and height. Outliers were defined as cases with one or more of the following 19 

deviations: >5 inclination, >10° retrotorsion, and >3 mm height. The deviation and outliers 20 

in inclination, retrotorsion and height were compared between the two groups.  21 

Results: The deviations between planned and post-osteotomy parameters were similar 22 

among the PSI and SCG groups for inclination (p=0.260), while they were significantly 23 

greater in the SCG group for retrotorsion (p<0.001) and height (p=0.003). There were 8 24 
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outliers in the SCG group, compared to only 1 outlier in the PSI group (p=0.005). Most 25 

outliers in the SCG group were due to deviation >10° in retrotorsion. 26 

Conclusion: After 3D planning PSI compared to SCG reduces the deviation between 27 

planned and post humeral osteotomy retrotorsion and height.  28 

Level of evidence: Basic Science Study; Computer Modeling and Surgical Planning  29 

Keywords: Shoulder Arthroplasty, Patient-specific instrumentation, PSI, Standard cutting 30 

guide, Humeral osteotomy 31 

 32 

 33 

 34 

Humeral osteotomy is a key intraoperative step in shoulder arthroplasty, as it has been shown 35 

to affect shoulder function and long-term survival of total shoulder arthroplasty (TSA)10,18, 36 

as well as range of motion and scapular notching following reverse shoulder arthroplasty 37 

(RSA)19. The accuracy of humeral osteotomy is even more important in stemless shoulder 38 

arthroplasty, where the orientation of the prosthetic head depends entirely on the resected 39 

surface1,17.  40 

 41 

In a comparative study of 125 stemmed and 43 stemless TSAs, Alolabi et al.1 observed 42 

malpositioning of the prosthetic humeral head in 31% and 65% of shoulders respectively, 43 

and noted that the most important cause was improper humeral osteotomy. In a more recent 44 

series of 100 stemless TSAs, Grubhofer et al.12 also observed malpositioning of the prosthetic 45 

humeral head in 65% of shoulders, operated on by experienced surgeons using three-46 

dimensional (3D) preoperative planning but standard cutting guides, most of which were 47 
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attributed to improper humeral osteotomy. In another recent series of 157 stemmed RSAs, 48 

Lädermann et al.20 observed humeral stem malalignment in 47% of shoulders.  49 

 50 

Patient-specific instrumentation (PSI)21,34 and computer-assisted surgery (CAS)27 have both 51 

been shown to improve implant positioning in shoulder arthroplasty, though most studies 52 

focused on glenoid component positioning11,15. The purpose of this study was therefore to 53 

compare the deviation between planned and post-osteotomy humeral inclination, retrotorsion 54 

and height in shoulder arthroplasty using PSI versus standard cutting guides (SCG). The 55 

hypothesis was that PSI compared to SCG would reduce the deviation between planned and 56 

post-osteotomy humeral inclination, retrotorsion and height. 57 

 58 

 59 

Materials and Methods 60 

For this biomechanical study, twenty fresh frozen human cadaveric shoulders, free from 61 

fractures or other bony pathologies were used (mean age of 70.4  7.7 years, 12 males and 8 62 

females). The specimens were allocated to undergo humeral osteotomy using either PSI or 63 

SCG, such that the two groups had similar age, gender and side distributions (Table I). 64 

 65 

Cadaveric preparation 66 

All specimens were scanned using computed tomography (CT) (140 kV, 180mAs and an 67 

image of 512 X 512 with 0.5 mm slice interval) to enable 3D planning and confirm that none 68 

had fractures or other bony pathologies. The complete humerus was scanned to enable 69 

measurement of humeral head retrotorsion relative to the trans-epicondylar axis2. Each 70 
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specimen was thawed for 24 hours at room temperature and all adjacent soft tissues were 71 

removed. The glenohumeral joint was disarticulated and the humerus was fixed in an 72 

extremity holder (Sawbones, Vashon Island, WA, USA) (Figure 1). 73 

 74 

Definition of landmarks, axes and planes   75 

The CT images of each shoulder were imported in Digital Imaging and Communications in 76 

Medicine (DICOM) format. Automatic segmented 3D reconstructions with manual 77 

correction (aka semi-automatic) of the proximal and distal humerus were performed using 78 

Mimics 16.0 (Materialise, Leuven, Belgium), validated for anatomic measurements3. The 3D 79 

reconstructions were then imported into SolidWorks 2016 (Dassault Systèmes, Waltham, 80 

MA, USA) which was used to create the reference coordinate system and establish the 81 

following landmarks, axes and planes33. The two most distant points of the medial and lateral 82 

elbow epicondyles were used to define the ‘trans-epicondylar axis’ (TEA)2,33. The mid-83 

epicondylar point was used to define the origin of the reference coordinate system. The 84 

distance between the origin and the superior margin of the humeral head was used to define 85 

the humeral length. Two sets of 3 points were then digitized on cross-sections at 20% and 86 

40% of the humeral length from cranial to caudal, on the inner cortex of the intramedullary 87 

humeral canal26. Each set was used to create a circle, and the centers of the two circles were 88 

used to define the proximal ‘humeral shaft axis’ (HSA)26 (Figure 2). The reference coordinate 89 

system was established with all axes and planes passing through the origin:  90 

(i) Craniocaudal (CC) axis parallel to the HSA 91 

(ii) Transverse plane normal to the CC axis 92 

(iii) Mediolateral (ML) axis using the projection of the TEA onto the transverse plane 93 

(iv) Sagittal plane normal to the ML axis 94 
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(v) Anteroposterior (AP) axis perpendicular to the CC and ML axes26,36 95 

(vi) Frontal plane normal to the AP axis  96 

 97 

The ‘humeral head center’ (HHC) was determined by fitting a sphere to 4 points digitized as 98 

far apart on the articular surface as described by Delude et al7 (Figure 3). The ‘articular 99 

margin plane’33 (AMP) was defined by fitting a plane to 3 points digitized on the anterior, 100 

medial and lateral articular margins of the humeral head as described by Youderian et al38. 101 

The anatomic humeral neck axis (HNA) was defined by the normal to AMP that passes 102 

through HHC26,33.  103 

 104 

Pre-osteotomy humeral anatomy  105 

The pre-osteotomy humeral anatomy was defined as follows (Figure 4): 106 

• Anatomic inclination was the angle between the HSA and HNA26,33  107 

• Anatomic retrotorsion was the angle between the projections of TEA and HNA onto 108 

the transverse plane as described by Raniga et al26  109 

• Anatomic height was measured along the HNA, between the AMP and the humeral 110 

head cortex7,33,38 111 

 112 

Humeral osteotomy planning  113 

Humeral osteotomy was planned in agreement among three experienced and fellowship-114 

trained shoulder surgeons (BJ, RH, MZ) and was identical in both PSI and SCG groups: 115 

• Planned inclination was planned at 135° to the CC axis (135° to the HSA), which is 116 

the default angulation of SCG  117 
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• Planned retrotorsion was adjusted to match pre-osteotomy humeral anatomy  118 

• Planned osteotomy plane was defined by the planned inclination and retrotorsion, and 119 

planned HNA normal to it and passing through the HHC  120 

• Planned osteotomy level was chosen by scrolling along the planned HNA, from 121 

proximal to distal, until the insertion of the supraspinatus (aka critical point)14 (Figure 122 

4)  123 

 124 

In both groups, the surgical plan was printed for each humerus to provide surgeons a visual 125 

representation of the exact position of the osteotomy. 126 

 127 

Humeral osteotomy procedure 128 

For the PSI group, the pre-osteotomy planning was used to design and manufacture 129 

personalized humeral cutting guides with 4 congruent contact zones to be placed on the 130 

humeral head, its anteroinferior and anterosuperior borders, and on the lateral border of the 131 

bicipital groove (Figure 5). For the SCG group, standard humeral cutting guides (Medacta 132 

international, Castel San Pietro, Switzerland) were placed on the anterior surface of the 133 

proximal humerus (Figure 6). In both groups, osteotomies were performed by one of the three 134 

aforementioned surgeons, using a pair of 2.0-mm pins to place the humeral cutting guides, 135 

and using an oscillating saw. The surgeons were not allowed to correct their humerus cut in 136 

both the SCG and PSI group after the first osteotomy. For each specimen, a post-osteotomy 137 

CT scan was acquired and 3D models were reconstructed in Mimics in the same way as prior 138 

to osteotomy. 139 

 140 
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Comparison between planned and post-osteotomy measurements 141 

The planned and post-osteotomy models were superimposed using SolidWorks to calculate 142 

deviations in inclination, retrotorsion and height using the same anatomic landmarks and 143 

reference coordinates (Figure 7). Three points were digitized on the anterior, medial and 144 

lateral margins of the resected surface38 to define the post-osteotomy plane. The post-145 

osteotomy HNA was established by the post-osteotomy plane that passes through the 146 

anatomic (pre-osteotomy) HHC: 147 

• Post-osteotomy inclination was the angle between the HSA and post-osteotomy 148 

HNA26,33 149 

• Post-osteotomy retrotorsion was the angle between the projections of the TEA and 150 

post-osteotomy HNA onto the transverse plane 151 

• Post-osteotomy height was measured along the post-osteotomy HNA, between the 152 

post-osteotomy plane and the humeral head cortex 153 

 154 

Outliers were defined as cases with one or more of the following deviations: >5 155 

inclination1,17, >10° retrotorsion26, and >3 mm height4,5,21.  156 

 157 

Inter-observer and intra-observer repeatability 158 

For inter-observer repeatability, all measurements were performed by 3 independent 159 

observers (JR, CZ, MZ) that were blinded to one-another. Each observer received simple 160 

instructions on how to perform the measurements in SolidWorks. The observers used the 161 

same methodology as the post-osteotomy measurements. For intra-observer repeatability, 162 

one observer (CZ) repeated the measurements 3 months after the first measurement. 163 
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 164 

Statistical analysis 165 

A sample size calculation indicated that 9 specimens per group were needed to determine a 166 

significance of a difference in the inclination of 35, assuming equal standard deviation of 1, 167 

with a statistical power of 0.90. 168 

Descriptive statistics were used to summarize the data and Shapiro-Wilk test was used to 169 

assess the distribution of the samples. Values were expressed in mean and standard deviation 170 

(SD). Differences between PSI and SCG groups were assessed using Wilcoxon-Mann-171 

Whitney for quantitative variables and Fisher´s exact test for categorical variables with a 172 

significance level of p=0.05. Inter- and intra-observer repeatability were expressed in terms 173 

of intraclass correlation coefficients (ICC), which can be interpreted as follows: <0.40 poor; 174 

0.40–0.59 fair; 0.60–0.74 good, and 0.75–1.00 excellent6. All statistical analysis was 175 

performed using STATA 14.1 (STATACorp, Texas, TX, USA).  176 

 177 

 178 

Results 179 

Inter- and intra-observer repeatability of measurements were excellent for all parameters 180 

(Table II).  181 

 182 

The deviations between planned and post-osteotomy parameters were similar among the PSI 183 

and SCG groups for inclination (p=0.260), while they were significantly greater in the SCG 184 

group for retorsion (p<0.001) and height (p=0.003) (Table I). The maximum deviations in 185 
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inclination, retrotorsion and height were considerably greater in the SCG group (respectively, 186 

11.1°, 17.4° and 4.5 mm), compared to the PSI group (respectively, 5.6°, 6.7° and 1.3 mm). 187 

 188 

Using the aforementioned definition, there were 8 (80%) outliers in the SCG group, 189 

compared to only 1 (10%) outlier in the PSI group (p=0.005). Most outliers in the SCG group 190 

were due to deviation >10° in retrotorsion (Table III). 191 

 192 

 193 

Discussion 194 

The most important findings of this study were that, in the context of shoulder arthroplasty, 195 

PSI could reduce deviations between planned and post-osteotomy humeral retrotorsion and 196 

height. Moreover, PSI could reduce the proportions of outliers, which are often observed 197 

when using SCG due to deviations between planned and post-osteotomy retrotorsion. These 198 

findings therefore partly confirm the hypothesis of this cadaveric study.  199 

 200 

Both PSI21,34 and CAS27 have shown to improve implant positioning in shoulder arthroplasty. 201 

Many studies validated the use of PSI for glenoid component placement by showing better 202 

accuracy in both TSA and RSA4,11,15,16,21,22,30–32,34. For humeral osteotomy, only one recent 203 

study evaluated the accuracy of PSI for humeral osteotomy during shoulder arthroplasty5. 204 

Cavanagh et al5 compared the deviation between planned and post-osteotomy using PSI 205 

versus CAS on plastic models, and found that CAS reduces deviations in humeral inclination, 206 

but not in retrotorsion and height. In the present study, comparing PSI to SCG, the former 207 

significantly reduced deviations in humeral retrotorsion and height, but did not significantly 208 

reduced deviations in humeral inclination. Comparing the findings of Cavanagh et al. to those 209 
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of the present study suggests that CAS and PSI could be beneficial for different and 210 

complimentary aspects. 211 

 212 

Implant positioning is of paramount importance for the success of shoulder arthroplasty. In 213 

TSA and hemiarthroplasty, non-anatomic reconstruction of the humeral head leads to 214 

changes in shoulder biomechanics13,17,23,29,37 and worse clinical outcomes10,18. Franta et al10 215 

showed that in a series of 282 patients that had unsatisfactory shoulder arthroplasties, 65% 216 

had implant malpositioning. In RSA, implant positioning of the humeral and the glenoid 217 

component affects the range of motion19,24, stability9 and may lead subacromial 218 

impingement35 and scapular notching19. 219 

 220 

Humeral osteotomy influences implant positioning28, especially in modern stemless implants 221 

where the implant poses solely on the resected surface. Alolabi et al1 found that 20.5% of 222 

malpositioning was attributed to improper humeral neck osteotomy in stemmed implants, 223 

compared to 89.3% in stemless implants. In a more recent study, Grubhofer et al12 found that 224 

with 3D preoperative planning but using standard cutting guides, the postoperative center of 225 

rotation deviates by a mean of 4.3mm (range 0-22.5) from the preoperative humeral head 226 

center, mainly attributed to humeral osteotomy. 227 

 228 

The findings of the present study should be interpreted with the following limitations in mind. 229 

First, this is a cadaveric study without clinical and radiological long-term data which does 230 

not allow direct extrapolation of the findings in-vivo. Second, the glenohumeral joint was 231 

disarticulated and the soft tissue attached to the humerus was removed prior to osteotomy. 232 

This could create a less representative situation of the challenges faced during humeral 233 
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osteotomy in real world. This was done because by removing the soft tissue, we could isolate 234 

the effect of the different guides on the osteotomy without the soft tissue effect that varies 235 

from specimen to specimen. Additionally, we think that the use of fresh frozen cadavers gives 236 

more representative and realistic results compared to sawbones. Third, this study only 237 

analyzed the accuracy of the humeral osteotomy during shoulder arthroplasty, but other 238 

factors such as implant size and position may also influence the outcomes were not 239 

considered1,10,12,17,25,29. Fourth, the present study utilized the three dots method to define the 240 

articular margin plane. Although this methodology has been previously used38, this method 241 

has shortcomings and other methods to define this plane could be considered33. Finally, the 242 

authors deemed it important to report the utility and reliability of PSI and SCG on shoulders 243 

with no osteoarthritis to establish normal values, and with osteotomies by 3 experienced 244 

shoulder specialists to eliminate potential sources of errors at the initial step. Nevertheless, 245 

further studies should investigate the reproducibility of PSI in shoulder with osteoarthritic 246 

deformities. Furthermore, there is no consensus regarding the exact position of the implants, 247 

and clinical randomized studies are required to determine whether a change of >5 248 

inclination1,17, >10° retrotorsion26, and >3 mm height4,5,21 could influence clinical outcomes.  249 

 250 

 251 

Conclusions 252 

Compared to SCG, PSI could reduce deviations between planned and post-osteotomy 253 

humeral retrotorsion and height in the context of shoulder arthroplasty. Moreover, PSI could 254 

reduce the proportions of outliers, which are often observed when using SCG due to 255 

deviations between planned and post-osteotomy retrotorsion.   256 
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 397 

Legends for figures and tables 398 

 399 

Figure 1: 400 

For cadaver preparation, the glenohumeral joint was disarticulated and the humerus was 401 

fixed in an extremity holder. 402 

 403 

Figure 2:  404 

a. The two most distant points of the medial and lateral elbow epicondyles were used to 405 

define the ‘trans-epicondylar axis’ (TEA). Two sets of 3 points were then digitized on cross-406 

sections at 20% and 40% of the humeral length. Each set was used to create a circle, and the 407 

centers of the two circles were used to define the proximal ‘humeral shaft axis’ (HSA). b. 408 

The reference coordinate system was established with all axes and planes passing through 409 

the origin: (i) Craniocaudal (CC) axis (green arrow) parallel to the HSA; (ii) Transverse plane 410 

normal to the CC axis; (iii) Mediolateral (ML) axis (blue arrow) using the projection of the 411 
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TEA onto the transverse plane; Anteroposterior (AP) axis (red arrow) perpendicular to the 412 

CC and ML axes. 413 

 414 

Figure 3:  415 

The ‘humeral head center’ (HHC) was determined by fitting a sphere on the articular 416 

surface. The ‘articular margin plane’ (AMP) was defined by fitting a plane to 3 points 417 

digitized on the anterior, medial and lateral articular margins of the humeral head. The 418 

anatomic ‘humeral neck axis’ (HNA) was defined by the normal to AMP that passes 419 

through HHC.  420 

 421 

Figure 4: 422 

a. Anatomic inclination was the angle between the HSA and HNA. Anatomic height was 423 

measured along the HNA, between the AMP and the humeral head cortex. b. Anatomic 424 

retrotorsion was the angle between the projections of TEA and HNA onto the transverse. c. 425 

Planned inclination was planned at 135°. Planned osteotomy plane was defined by the 426 

planned inclination and retrotorsion, and planned HNA normal to it. Planned osteotomy 427 

level was chosen by scrolling along the planned HNA, from proximal to distal, until the 428 

critical point. 429 

 430 

Figure 5:  431 

a. For the PSI group, the pre-osteotomy planning was used to design and manufacture 432 

personalized humeral cutting guides with 4 congruent contact zones to be placed on the 433 

humeral head, its anteroinferior and anterosuperior borders, and on the lateral border of the 434 

bicipital groove. b. The PSI was placed manually and was secured using a pair of 2.0-mm 435 

pins. c. The oscillating saw was used over the flattened surface of the guide. 436 

 437 

Figure 6:  438 

a. For the SCG group, standard humeral cutting guides were used. b. The guide was placed 439 

manually in the anterior surface of the proximal humeral head and was secured using a pair 440 

of 2.0-mm pins. c. The oscillating saw was used over the flattened surface of the guide. 441 

 442 
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Figure 7:  443 

The planned and post-osteotomy models were superimposed to calculate deviations in 444 

inclination, retrotorsion and height using the same landmarks and reference coordinates. 445 

Table I:  446 

Demographic data, planned, postoperative and deviation values between PSI and SCG 447 

group. 448 

 449 

Table II:  450 

Inter-observer and intra-observer repeatability 451 

 452 

Table III: Outliers 453 
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Table I: Demographic data, planned, postoperative and deviation values between PSI and SCG group.       

   PSI group (n=10)  SCG group (n=10)    

   mean SD Range  mean SD Range   p value* 

     n (%) min max  n (%) min max     

Demographics  
           

 Age  
70.7 ±7.5 (59 - 84)  70.1 ±8.3 (58 - 80)  0.867 

 Male gender  
6 (60%)    6 (60%)    

 

 Right side  
5 (50%)    5 (50%)    

 

Inclination (°)  
     

 
    

 

 Pre-osteotomy  
133.2 ±2.3 (128.9 - 135.1)  134.4 ±3.0 (131.1 - 139.9)  0.523 

 Planned osteotomy  
135.0 ±0.0 (135.0 - 135.0)  135.0 ±0.0 (135.0 - 135.0)  1.000 

 Post-osteotomy  
134.0 ±3.4 (129.4 - 137.7)  136.4 ±5.9 (127.6 - 146.1)  0.579 

 Deviation (post minus planned)  1.9 ±1.5 (0.6 - 5.6)  3.8 ±3.4 (0.5 - 11.1)  0.260 

Retrotorsion (°)  
          

 

 Pre-osteotomy  
32.9 ±6.4 (19.8 - 40.2)  27.7 ±10.6 (19.3 - 36.2)  0.101 

 Planned osteotomy  
32.8 ±6.2 (20.0 - 40.0)  27.8 ±5.6 (19.5 - 35.0)  0.072 

 Post-osteotomy  
33.9 ±8.3 (18.6 - 44.7)  30.0 ±10.3 (14.1 - 45.5)  0.364 

 Deviation (post minus planned)  
2.6 ±2.2 (0.0 - 6.7)  11.7 ±3.8 (5.1 - 17.4)  <0.001 

Height (mm)  
          

 

 Pre-osteotomy  
17.1 ±2.7 (12.5 - 21.2)  16.8 ±3.8 (10.1 - 22.7)  0.813 

 Planned osteotomy  
17.1 ±2.4 (12.5 - 19.5)  16.7 ±2.8 (11.0 - 20.0)  0.768 

 Post-osteotomy  
17.1 ±2.6 (11.4 - 19.8)  17.4 ±3.2 (12.5 - 21.4)  0.844 

 Deviation (post minus planned)  
0.6 ±0.5 (0.1 - 1.3)  2.1 ±1.2 (0.3 - 4.5)  0.003 

Abbreviations: SD, Standard Deviation; min, Minimum Value; max, maximum value               

*Wilcoxon-Mann-Whitney test             
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Table II: Inter-observer and intra-observer repeatability          

   Inter-observer   Intra-observer  

   ICC 95% CI p value  ICC 95% CI p value 

Inclination  0.96 (0.89 - 0.98) <0.001  0.89 (0.76 - 0.96) <0.001 

Retrotorsion  0.99 (0.99 - 0.99) <0.001  0.98 (0.97 - 0.99) <0.001 

Height   0.99 (0.98 - 0.99) <0.001   0.97 (0.94 - 0.99) <0.001 

ICC (intraclass correlation coeficient) 

ICC can be interpreted as follows: < 0.40 poor; 0.40–0.59 fair; 0.60–0.74 good, and 0.75–1.00 excellent 
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Table III: Outliers            

   PSI group  SCG group  

   n=10 (%)  n=10 (%) p value* 

Any of the 3 parameters  1 (10%)  8 (80%) 0.005 

Inclination (deviation >5°)  1 (10%)  2 (20%) 0.531 

Retrotorsion (deviation >10°)  0 (0%)  6 (60%) 0.011 

Height (deviation >3 mm)   0 (0%)   1 (10%) 0.305 

*Fisher's Exact test      
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