1	Transcatheter Aortic Valve Implantation in Patients with
2	Rheumatic Aortic Stenosis
3	
4	Taishi Okuno, MD ^{a*} ; Daijiro Tomii, MD ^{a*} ; Eric Buffle, MD ^a ; Jonas Lanz, MD, MSc ^a ;
5	Christoph Ryffel, MD ^a ; Caglayan Demirel, MD ^a ; Suliman Hashemi, MD ^a ; Daniel
6	Hagemeyer, MD ^a ; Athanasios Papadis, MD ^a ; Dik Heg, PhD ^b ; Fabien Praz, MD ^a ; Stefan
7	Stortecky, MD, MPH ^a ; Stephan Windecker, MD ^a ; Thomas Pilgrim, MD, MSc ^a
8	
9	^a Department of Cardiology, Inselspital, University of Bern, Bern, Switzerland;
10	^b CTU Bern, University of Bern, Bern, Switzerland.
11	*Dr. Okuno and Dr. Tomii contributed equally to this work and are joint first authors.
12	
13	Brief title: TAVI in Rheumatic Aortic Stenosis
14	Total word count: 2,997
15	Clinical Trial Registration: <u>https://www.clinicaltrials.gov</u> . NCT01368250.
16	Data availability: The data underlying this article were provided by CTU, University
17	of Bern, by permission. Data will be shared on request to the corresponding author with
18	permission of CTU, University of Bern.
19	
20	
21	Corresponding Author:
22	Thomas Pilgrim, MD, MSc
23	Department of Cardiology
24	Inselspital, Bern University Hospital
25	CH-3010 Bern, Switzerland
26	Phone: 0041 31 632 21 11
27	Fax: 0041 31 632 47 70
28	Mail: thomas.pilgrim@insel.ch

ABSTRACT

30	Background: Rheumatic heart disease (RHD) accounts for the highest number of
31	deaths from valvular heart disease globally. Yet, rheumatic aortic stenosis (AS) was
32	excluded from landmark studies investigating the safety and efficacy of transcatheter
33	aortic valve implantation (TAVI). We aimed to describe clinical and anatomical
34	characteristics of patients with rheumatic AS undergoing TAVI, and to compare
35	procedural and clinical outcomes to patients undergoing TAVI for degenerative AS.
36	Methods: In a prospective TAVI registry, patients with rheumatic AS were identified
37	based on ICD-10 codes and/or a documented history of acute rheumatic fever and/or the
38	World Heart Federation criteria for echocardiographic diagnosis of RHD, and
39	propensity score-matched in a 1:4 ratio to patients with degenerative AS.
40	Results: Among 2,329 patients undergoing TAVI, 105 patients (4.5%) had rheumatic
41	AS. Compared to patients with degenerative AS, patients with rheumatic AS were more
42	commonly female, older, had a higher surgical-risk, and more commonly suffered from
43	multivalvular heart disease. In the unmatched cohort, both technical success (85.7% vs
44	85.9%; P = 0.887) and 1-year cardiovascular mortality (10.0% vs. 8.6%; HR 1.16; 95%

45	CI 0.61-2.18; P=0.656) were comparable between patients with rheumatic and

- 46 degenerative AS. In contrast, patients with rheumatic AS had lower rates of 30-day and
- 47 1-year cardiovascular mortality compared to matched patients with degenerative AS
- 48 (1.9% vs. 8.9%; HRadj 0.18; 95% CI 0.04-0.80; P=0.024, and 10.0% vs. 20.3%; HRadj
- 49 0.44; 95% CI 0.24-0.84; P=0.012, respectively).
- 50 **Conclusion:** TAVI may be a safe and effective treatment strategy for selected elderly
- 51 patients with rheumatic AS.
- 52
- 53 Keywords: rheumatic heart disease, aortic stenosis, transcatheter aortic valve
- 54 implantation.

55 Key Messages

56 What is already known about this subject?

57	Patients	with rheun	natic AS v	were excluded	from 1	landmark	trials, a	and the	available
----	----------	------------	------------	---------------	--------	----------	-----------	---------	-----------

- 58 evidence was limited to small case series and administrative data without granularity on
- 59 imaging features and concomitant valvular disease.

60 What does this study add?

- 61 In this registry-based study of patients undergoing TAVI for native severe AS, patients
- 62 with rheumatic AS had comparable procedural and 1-year and 5-year clinical outcomes
- 63 to patients with degenerative AS despite higher surgical risk and higher prevalence of
- 64 multivalvular heart disease. Furthermore, cardiovascular mortality up to 1 year was
- 65 substantially lower in patients with rheumatic AS compared to propensity-score
- 66 matched patients with degenerative AS.

67 How might this impact on clinical practice?

- 68 TAVI may be offered as a safe and effective treatment strategy for elderly patients with
- 69 rheumatic AS. Further studies are warranted to explore TAVI in regions of the world
- 70 where an endemic pattern of RHD prevails.

71	Introduction
72	Rheumatic heart disease (RHD) results from a chronic inflammatory response to
73	repeated episodes of untreated streptococcal pharyngitis and accounts for two out of
74	three deaths from valvular heart disease worldwide ¹² . A steady decline in prevalence of
75	RHD in high-income countries over recent decades contrasts with a continuously high
76	burden of disease in low- and middle-income countries.
77	Mitral regurgitation (MR), mitral stenosis (MS) and aortic regurgitation (AR)
78	are the typical manifestations of RHD, while rheumatic aortic stenosis (AS) is
79	comparably less common and frequently combined with other valvular lesions ³⁻⁵ .
80	Transcatheter aortic valve implantation (TAVI) has revolutionized the treatment of
81	patients with symptomatic severe AS. Patients with rheumatic AS were, however,
82	excluded from landmark trials, and the available evidence is limited to small case series
83	and data from insurance claims without granularity on imaging features and
84	concomitant valvular disease ⁶⁻¹⁰ . Primary concerns to expand TAVI to patients with
85	rheumatic AS relate to the typical morphological features of RHD with fibrinous
86	thickening of the leaflets, commissural fusion, limited calcification, and the frequent

87	combination of AS with other valvular lesions less amenable to transcatheter
88	interventions ^{3-5 7 8 11 12} .
89	The aim of the present analysis was to describe clinical and anatomical
90	characteristics of patients with rheumatic AS undergoing TAVI, and to compare
91	procedural and clinical outcomes to patients undergoing TAVI for degenerative AS.
92	
93	Methods
94	Study design and population
95	The study cohort for this retrospective analysis comprised consecutive patients
96	undergoing TAVI at Bern University Hospital from August 2007 to December 2019,
97	who were prospectively enrolled into the Bern TAVI registry, which forms part of the
98	nationwide Swiss TAVI registry (NCT01368250). For the purpose of the present study,
99	patients who underwent TAVI for a degenerated surgical or transcatheter aortic
100	bioprosthesis, patients who underwent TAVI for pure native aortic valve regurgitation,
101	and those without comprehensive data for the diagnosis of RHD were excluded. The
102	registry was approved by the Bern cantonal ethics committee and all participants

provided written informed consent prior to inclusion. The study was conducted incompliance with the Declaration of Helsinki.

105 Diagnosis of RHD

106	Diagnoses of RHD were based on a clinical diagnosis of RHD according to
107	ICD-10 codes (I05, I06, I07, I08, and I09) and/or a documented history of acute
108	rheumatic fever and/or functional and morphological features of RHD as defined by the
109	criteria of the World Heart Federation (WHF) for echocardiographic diagnosis of RHD
110	in individuals >40 years 13 . Patients with 1) moderate or greater MR, 2) mean mitral
111	gradient \geq 4 mmHg, or 3) moderate or greater AR were retrieved for further analysis of
112	morphological features consistent with RHD. A diagnosis of RHD was made in the
113	presence of at least two of the following morphological features of RHD of the mitral
114	value: 1) anterior mitral value leaflet thickening \geq 5 mm, 2) chordal thickening, and 3)
115	restricted leaflet motion (Figure 1, Online Supplement 1). There is no definition of
116	morphological features of the aortic valve for individuals \geq 35 years. A clinical
117	diagnosis of RHD according to ICD-10 codes was further confirmed by the presence of

118	a documented history of acute rheumatic fever or the presence of echocardiographic
119	features of RHD.

- 120 The assessment of the morphological criteria of RHD was individually
- 121 performed by two assessors (T.O. and D.T.). In case of discrepant diagnosis between
- 122 the two investigators, the diagnosis was determined by a third investigator (E.B.).
- 123 Interobserver agreement was excellent between the two primary investigators (Kappa =

124 0.85, p<0.001).

125 Data collection and clinical endpoints

126	A web-based database with standardized case report forms is used for
127	prospective data collection. Baseline echocardiographic and computed tomographic
128	(CT) imaging data were independently re-evaluated by dedicated imaging specialists,
129	and integrated into the database. Valve dysfunction (regurgitation and stenosis) was
130	graded according to integrative criteria described by current guidelines ^{14 15} . Aortic
131	valvular complex calcium volume (mm ³) was quantified as previously validated ¹⁶ .
132	Clinical follow-up data at 30 days, 1 year and 5 years were obtained by the use of
133	standardized interviews, documentation from referring physicians, and hospital

134	discharge summaries. Adverse events were reviewed by a dedicated clinical event
135	committee and adjudicated according to the standardized endpoint definitions proposed
136	by the Valve Academic Research Consortium (VARC) ¹⁷ . An independent Clinical
137	Trials Unit is responsible for central data monitoring to verify completeness and
138	accuracy of data and independent statistical analysis.
139	Statistical analysis
140	Categorical variables are reported as frequencies and percentages and compared
141	using the Chi-square test or two-tailed Fisher's exact test. Continuous variables are
142	presented as mean values \pm standard deviation (SD) and compared between groups
143	using two-sample t-test. Time-to-event curves were depicted using the Kaplan-Meier
144	method. Conditional Poisson regression analysis for binary outcome and conditional
145	Cox regression with Breslow method for time time-to-event outcome were used to
146	calculate rate ratios (RR) and hazard ratios (HR), respectively, and 95% confidence
147	intervals (CI). In all time-to-event analyses, data for a patient were censored at the time
148	of the first event that occurred in that patient. All p-values were two-sided, and a p-
149	value < 0.05 was considered significant for all tests.

150	It was anticipated that patients with rheumatic AS and degenerative AS would
151	have significantly different patient baseline demographics. To adjust confounding due
152	to these differences, 1:4 propensity-score matching was used (Online Supplement 2).
153	Absolute standardized differences (ASD) were estimated to assess the balance in
154	baseline demographics. ASD < 0.10 was considered to indicate good balance.
155	Multivariable adjustment was further performed with Society of Thoracic Surgeons
156	Predicted Risk of Mortality (STS-PROM), chronic kidney disease (CKD), body mass
157	index (BMI), chronic obstructive pulmonary disease (COPD), and history of coronary
158	artery bypass graft (CABG) in view of residual imbalances between groups. All
159	statistical analyses were performed with the use of Stata 15.1 (StataCorp, College
160	Station, TX, USA).
161	
162	Results
163	Baseline clinical characteristics
164	Among 2,329 patients undergoing TAVI between August 2007 and December
165	2019, 105 patients (4.5%) were identified to have rheumatic AS (Figure 2). Out of 85

166	patients with a clinical diagnosis of RHD according to ICD-10 codes, 59 did not fulfil
167	the WHF criteria and had no documented history of acute rheumatic fever; thus, they
168	were not included in the rheumatic AS cohort.
169	Baseline characteristics of the unmatched and the matched populations are
170	shown in Table 1. Before propensity-score matching, patients with rheumatic AS were
171	more commonly female (74.3% vs. 50.5%; P <0.001), older (84.2±6.1years vs.
172	82.1±6.1years; P<0.001), had a lower BMI (24.4±5.50kg/m ² vs. 26.7±5.22kg/m ² ;
173	P<0.001), an increased surgical risk (STS-PROM: 7.1 ± 4.5 vs. 5.3 ± 4.0 ; P<0.001), and
174	more advanced heart failure symptoms (NYHA III/IV: 81.0% vs. 68.1%; P=0.005) than
175	patients with degenerative AS. While dyslipidaemia (50.5% vs. 66.3%; P=0.001) and
176	coronary artery disease (48.6% vs. 61.9; P=0.007) were less frequent in patients with
177	rheumatic as compared to degenerative AS, atrial fibrillation (50.5% vs 33.4%;
178	P<0.001), CKD (83.8% vs. 67.6%; P<0.001), and a history of mitral valve surgery
179	(4.8% vs. 1.2%; P=0.013) were recorded more frequently among patients with
180	rheumatic AS. Patients with rheumatic AS were more likely to be treated with oral
181	anticoagulation, particularly with vitamin K antagonists (VKA), than those with

183 P=0.001). 184 **Imaging characteristics** 185 Imaging characteristics of the unmatched and the matched populations are 186 shown in Table 2. Multivalvular heart disease was more common among patients with 187 rheumatic AS than patients with degenerative AS. Patients with rheumatic AS had 188 higher prevalence of ≥moderate AR (19.0% vs 8.5%; P=0.001), MR (59.4% vs 21.7%; 189 P<0.001), MS (21.9% vs 1.9%; P<0.001), and tricuspid regurgitation (37.4% vs. 15.8%; 190 P<0.001) than patients with degenerative AS. 191 In echocardiographic assessment, patients with rheumatic AS had a smaller 192 aortic valve area $(0.58\pm0.22 \text{ cm}^2 \text{ vs. } 0.67\pm0.24 \text{ cm}^2; P<0.001)$ and higher pulmonary 193 artery systolic pressures (53.1±15.5mmHg vs. 47.6±16.0mmHg; P=0.001) compared to 194 patients with degenerative AS. Aortic valvular complex calcium volume was not different between groups $(312.6 \pm 337.1 \text{ mm}^2 \text{ vs. } 333.9 \pm 342.6 \text{ mm}^2; \text{ P} = 0.556).$ 195

degenerative AS (Aspirin: 47.6% vs. 59.9%; P=0.014; VKA: 30.5% vs. 17.2%;

196 **Propensity score matching**

197	After propensity-score matching, patients with rheumatic and degenerative AS
198	were well balanced with ASD < 0.10 across all measured baseline characteristics, except
199	for a larger BMI (ASD=0.135), lower rates of CKD (ASD=0.123) and prior CABG
200	(ASD=0.100), and more frequent COPD (ASD=0.136) in patients with rheumatic AS
201	than patients with degenerative AS.
202	Procedural characteristics and technical success
203	Procedural characteristics and outcomes in the unmatched and matched cohorts
204	are shown in Table 3. There were no differences in the primary access site, type of
205	valve implanted, and use of pre-/post-dilation between groups before and after
206	propensity-score matching. Procedural complications were rare with no differences
207	between groups with regards to valve dislocation/embolization, conversion to surgical
208	aortic valve replacement, annular rupture/aortic dissection, cardiac tamponade/rupture,
209	and coronary artery obstruction in both the unmatched and the matched population.
210	VARC-3 technical success was achieved in more than 85% of patients without
211	significant differences between groups both in the unmatched (P=0.887) and matched

212	cohorts (P=0.505). At discharge, there were no significant differences in valve
213	hemodynamics and rates of paravalvular regurgitation between groups.
214	Clinical outcomes
215	Clinical follow-up at 1 year was complete in 2,300 patients (99.0%). Clinical
216	outcomes at 30 days and 1 year in the unmatched and matched cohorts are shown in
217	Table 4. In the unmatched population, there were no significant differences in 30-day
218	cardiovascular mortality (1.9% vs. 2.7; HR 0.71; 95% CI 0.17-2.91; P=0.637) and 30-
219	day stroke rates (2.9% vs. 3.6%; HR 0.80; 95% CI 0.25-2.52; P=0.699). After
220	propensity-score matching, cardiovascular mortality at 30 days was significantly lower
221	in patients with rheumatic AS compared to patients with degenerative AS (1.9% vs.
222	8.6%; HRadj 0.18; 95% CI 0.04-0.80; P=0.024), while numerically lower rates of stroke
223	did not reach conventional levels of statistical significance (2.9% vs. 6.3%; HR _{adj} 0.45;
224	95% CI 0.11-1.89; P=0.180).
225	Cumulative incidences for cardiovascular mortality and stroke in the unmatched
226	and matched cohorts up to 1-year follow-up are depicted in Figure 3. In the unmatched
227	population, there were no significant differences in 1-year cardiovascular mortality

228	(10.0% vs. 8.6%; HR 1.16; 95% CI 0.61-2.18; P=0.656) and 1-year stroke between
229	groups. In the matched cohort, patients with rheumatic AS had lower cardiovascular
230	mortality at 1 year than patients with degenerative AS (10.0% vs. 20.3%; HRadj 0.44;
231	95% CI 0.24-0.84; P=0.012), while there was no significant difference in the 1-year
232	stroke rate between groups (6.2% vs. 8.7%; HR _{adj} 0.66; 95% CI 0.28-1.58; P=0.353).
233	There were no significant differences in the other clinical outcomes between groups
234	both in unmatched and matched cohorts (Table 4).
235	Extended follow-up data until 5 years in the matched cohort are shown in
236	Figure 4. Consistent with the 1-year analysis, patients with rheumatic AS had lower
237	cardiovascular mortality at 5 years than those with degenerative AS. There were no
238	significant differences in the occurrences of structural valve deterioration and repeat
239	aortic valve intervention between groups.
240	
241	Discussion
242	In this registry-based study of patients undergoing TAVI for native severe AS,
243	rheumatic AS was identified in nearly 5% of patients. Compared to patients with

244	degenerative AS, patients with rheumatic AS were more commonly female, older, and
245	had a higher surgical risk and higher prevalence of multivalvular heart disease.
246	Nevertheless, patients with rheumatic AS were found to have comparable rates of
247	technical success as patients with degenerative AS. Furthermore, cardiovascular
248	mortality was substantially lower in patients with rheumatic AS compared to
249	propensity-score matched patients with degenerative AS.
250	The prevalence of rheumatic AS documented in our cohort is consistent with
251	data from the Euro Heart Survey on valvular heart disease. Among 5,001 patients from
252	92 centers in 25 European countries, RHD accounted for approximately 10% of patients
253	with AS and peaked during the sixth decade of life ¹⁸ . In contrast, Medicare data from
254	the United States indicate that less than 1% of patients underwent TAVI for rheumatic
255	AS ⁸ . Several factors need to be considered in the interpretation of the reported
256	prevalence of RHD. First, the methods used for the identification of patients with RHD
257	were different across studies. While diagnosis was based on a combination of clinical
258	context, echocardiographic findings and surgical presentation in the Euro Heart
259	Survery ¹⁸ , the study from the United States relied on ICD-10 codes ⁸ . In the present

260	study, ICD-10 codes were also considered; however, the final diagnosis was based on a
261	documented history of acute rheumatic fever and/or the standardized WHF criteria for
262	echocardiographic diagnosis of RHD ¹³ . Second, RHD typically presents with MR, MS
263	or AR in middle age. Manifestation of isolated rheumatic AS in octogenarians is
264	comparably rare. Furthermore, rheumatic AS commonly presents with multivalvular
265	heart disease qualifying for surgical valve replacement rather than transcatheter
266	intervention ^{4 5 19} . In the present study of selected patients undergoing TAVI,
267	concomitant clinically relevant AR was documented in 20%, MR in 60%, MS in 20%,
268	and tricuspid regurgitation in 40% of patients with rheumatic AS. And third, although
269	the prevalence of RHD in Switzerland was substantially higher in the first half of the
270	20 th century when current TAVI candidates were children, RHD is now comparably rare
271	in affluent regions of the world. However, RHD among TAVI candidates may increase
272	in significance in the forthcoming years as a consequence of expansion of TAVI to
273	younger patients and immigration from low-and middle income countries ²⁰ ; most
274	importantly however, RHD will come to the spotlight with dissemination of TAVI to
275	middle-income countries ²¹ . Affordable transcatheter heart valves (THV) developed in

276	emerging countries ^{22 23} may open the door to this technology for the rest of the world ²⁴
277	and catalyse the expansion of TAVI to patients with RHD.
278	In the present study, procedural outcomes including technical success and valve
279	performance were similar in patients with rheumatic and degenerative AS. Post-
280	inflammatory commissural fusion and fibrinous thickening of the aortic valve with
281	limited calcification ^{12 25} raised concerns about adequate anchoring of THVs, and was
282	one of the reasons why this population has been excluded from major randomized trials ⁹
283	^{10 12} . However, in the present study, patients with rheumatic AS had a similar amount of
284	aortic valvular complex calcification compared to patients with degenerative AS. This
285	observation is consistent with the results of a previous case series of rheumatic AS
286	reporting a mean Agatston score of the aortic valvular complex of 2061 ± 864^7 , and is
287	also corroborated by the findings of a histopathological study that found no significant
288	differences in the severity and localization of calcification between cases of rheumatic
289	and degenerative AS ²⁶ . While patients identified to have RHD in our cohort were safely
290	and effectively treated with conventional THV systems, it is important to note that they
291	are not representative for the majority of young patients with RHD. Dedicated devices

292	may need to address higher prevalence of AR in patients with RHD. A THV system
293	with self-locating inflatable balloon trunks and antigen-depleted and antigen-masked
294	bioprosthetic leaflets specifically designed for patients with RHD showed promising
295	results in a preclinical study ²⁷ .
296	In the unmatched cohort, rates of cardiovascular mortality and disabling stroke
297	were comparable in patients with rheumatic and degenerative AS despite a higher
298	surgical risk and higher prevalence of multivalvular disease in patients with RHD.
299	Similarly, in an analysis from the Medicare health claims database, rheumatic AS
300	patients had comparable mortality at a median follow-up of 17 months as degenerative
301	AS patients despite higher prevalence of heart failure, prior ischemic stroke, atrial
302	fibrillation and lung disease. Of note, the latter study lacks detailed imaging data on
303	multivalvular disease, which significantly affects patient outcomes following TAVI ¹¹ .
304	In previous analyses, we demonstrated an increased risk of cardiovascular mortality in
305	TAVI patients with concomitant primary MR as compared to patients with no or
306	functional MR ²⁸ , in patients with degenerative or rheumatic MS as compared to patients
307	with no MS ²⁹ , and in patients with valvular atrial fibrillation as compared to patients

308	with non-valvular atrial fibrillation and no atrial fibrillation ³⁰ . Nevertheless, patients
309	with rheumatic AS, who frequently presented with multivalvular disease, had
310	comparable clinical outcomes as patients with degenerative AS. Furthermore, when
311	propensity-score matched to degenerative AS patients with similar prevalence of
312	multivalvular heart disease, patients with rheumatic AS had significantly lower
313	cardiovascular mortality. The reason for this finding resorts to speculation. A selection
314	of patients with slower progression of RHD may explain both the late presentation in
315	their eighties and the lower impact of multivalvular disease on overall prognosis
316	compared to patients with degenerative aetiology.
316 317	compared to patients with degenerative aetiology. Study Limitations
317	Study Limitations
317 318	Study Limitations The findings of our cohort study are exploratory and need to be interpreted in
317318319	Study Limitations The findings of our cohort study are exploratory and need to be interpreted in light of several limitations. First, the diagnosis of RHD was carefully verified based on
317318319320	Study Limitations The findings of our cohort study are exploratory and need to be interpreted in light of several limitations. First, the diagnosis of RHD was carefully verified based on established criteria; however, the criteria were not designed to differentiate between

324	RHD patients with assessable short-axis views (n=37), the assessment was frequently
325	impossible due to unavailability or poor quality of images. The assessment of
326	commissural fusion of the aortic valve is further compromised due to the presence of
327	degenerative changes and severe stenosis (Online Supplement 3). Although
328	commissural fusion of the aortic valve was observed in all but one of assessable cases
329	($n=48/49$), a typical less-calcified triangular orifice with commissural fusion was
330	observed in only one in five of the cases. Patients identified to have RHD in our TAVI
331	registry are, thus, highly selected individuals and not representative for RHD patients in
332	other regions of the world. The findings of octogenarians with rheumatic AS
332333	other regions of the world. The findings of octogenarians with rheumatic AS undergoing TAVI are therefore not generalizable to younger RHD patients with non-
333	undergoing TAVI are therefore not generalizable to younger RHD patients with non-
333 334	undergoing TAVI are therefore not generalizable to younger RHD patients with non- calcified fibrotic AS. Second, the number of patients with rheumatic AS in our cohort
333334335	undergoing TAVI are therefore not generalizable to younger RHD patients with non- calcified fibrotic AS. Second, the number of patients with rheumatic AS in our cohort was modest. Conversely, our registry yields detailed imaging data and granularity in
333334335336	undergoing TAVI are therefore not generalizable to younger RHD patients with non- calcified fibrotic AS. Second, the number of patients with rheumatic AS in our cohort was modest. Conversely, our registry yields detailed imaging data and granularity in terms of procedural success and long-tern clinical outcome. The robustness of the

340	score matching, unmeasured confounding may have affected our findings and cannot be
341	ruled out.
342	Conclusion
343	TAVI may be a safe and effective treatment strategy for selected elderly patients
344	with rheumatic AS. Further studies are warranted to explore TAVI in regions of the
345	world where an endemic pattern of RHD prevails.
346	

347	Contributors: T.O., D.T., T.P. conceived the study. T.O., T.P. had responsibility for the
348	design of the study. T.O., D.T., T.P., E.B., J.L., C.R., C.D., S.H., D. Hagemeyer, A.P., D.
349	Heg, F.P., S.S., S.W. were responsible for the acquisition of data. D. Heg, T.O. did the
350	analysis and interpreted the results in collaboration with T.P., D.J. and all other authors.
351	T.O., D.T., T.P. wrote the first draft of the report. All authors critically revised the report
352	for important intellectual content and approved the final version.
353	Acknowledgements: None
354	Sources of Funding: None
355	Competing interests:
355 356	Competing interests: Dr. Windecker reports research and educational grants to the institution from Abbott,
356	Dr. Windecker reports research and educational grants to the institution from Abbott,
356 357	Dr. Windecker reports research and educational grants to the institution from Abbott, Amgen, Astra Zeneca, BMS, Bayer, Biotronik, Boston Scientific, Cardinal Health,
356 357 358	Dr. Windecker reports research and educational grants to the institution from Abbott, Amgen, Astra Zeneca, BMS, Bayer, Biotronik, Boston Scientific, Cardinal Health, CardioValve, CSL Behring, Daiichi Sankyo, Edwards Lifesciences, Guerbet, InfraRedx,
356 357 358 359	Dr. Windecker reports research and educational grants to the institution from Abbott, Amgen, Astra Zeneca, BMS, Bayer, Biotronik, Boston Scientific, Cardinal Health, CardioValve, CSL Behring, Daiichi Sankyo, Edwards Lifesciences, Guerbet, InfraRedx, Johnson & Johnson, Medicure, Medtronic, Novartis, Polares, OrPha Suisse, Pfizer,

363	Biotronik, Cardiovalve, Edwards Lifesciences, MedAlliance, Medtronic, Novartis,
364	Polares, Sinomed, V-Wave and Xeltis, but has not received personal payments by
365	pharmaceutical companies or device manufacturers. He is also member of the
366	steering/executive committee group of several investigator-initiated trials that receive
367	funding by industry without impact on his personal remuneration. Dr. Windecker is an
368	unpaid member of the Pfizer Research Award selection committee in Switzerland and
369	of the Women as One Awards Committee. Dr. Pilgrim reports research grants to the
370	institution from Edwards Lifesciences, Boston Scientifc and Biotronik, personal fees
371	from Biotronik and Boston Scientific, and other from HighLife SAS. Dr. Praz reports
372	travel expenses from Abbott, Edwards Lifesciences, and Polares Medical. Dr. Stortecky
373	reports research grants to the institution from Edwards Lifesciences, Medtronic, Boston
374	Scientific and Abbott, as well as personal fees from Boston Scientific, Teleflex and
375	BTG. Dr. Okuno reports speaker fees from Abbott. Dr. Heg reports and with CTU Bern,
376	University of Bern, which has a staff policy of not accepting honoraria or consultancy
377	fees. However, CTU Bern is involved in design, conduct, or analysis of clinical studies
378	funded by not-for-profit and for-profit organizations. In particular, pharmaceutical and

- 379 medical device companies provide direct funding to some of these studies. For an up-to-
- 380 date list of CTU Bern's conflicts of interest see
- 381 <u>http://www.ctu.unibe.ch/research/declaration_of_interest/index_eng.html</u>. All other
- 382 authors have no relationships relevant to the contents of this article to disclose.

385	Reference
386	1. Yadgir S, Johnson CO, Aboyans V, et al. Global, Regional, and National Burden of
387	Calcific Aortic Valve and Degenerative Mitral Valve Diseases, 1990-2017.
388	Circulation 2020;141(21):1670-80. doi:
389	10.1161/CIRCULATIONAHA.119.043391 [published Online First: 2020/04/01]
390	2. Marijon E, Mocumbi A, Narayanan K, et al. Persisting burden and challenges of
391	rheumatic heart disease. Eur Heart J 2021 doi: 10.1093/eurheartj/ehab407
392	[published Online First: 2021/07/16]
393	3. Sliwa K, Carrington M, Mayosi BM, et al. Incidence and characteristics of newly
394	diagnosed rheumatic heart disease in urban African adults: insights from the
395	heart of Soweto study. Eur Heart J 2010;31(6):719-27. doi:
396	10.1093/eurheartj/ehp530 [published Online First: 2009/12/10]
397	4. Zuhlke L, Engel ME, Karthikeyan G, et al. Characteristics, complications, and gaps
398	in evidence-based interventions in rheumatic heart disease: the Global
399	Rheumatic Heart Disease Registry (the REMEDY study). Eur Heart J
400	2015;36(18):1115-22a. doi: 10.1093/eurheartj/ehu449 [published Online First:

401 2014/11/27]

402	5. Shrestha NR, Pilgrim T, Karki P, et al. Rheumatic heart disease revisited: patterns of
403	valvular involvement from a consecutive cohort in eastern Nepal. Journal of
404	cardiovascular medicine (Hagerstown, Md) 2012;13(11):755-9. doi:
405	10.2459/JCM.0b013e32835854b6 [published Online First: 2012/08/24]
406	6. Daly MJ, Blair PH, Modine T, et al. Carotid-access transcatheter aortic valve
407	replacement in a patient with a previous mitral valve replacement. Journal of
408	cardiac surgery 2015;30(3):256-9. doi: 10.1111/jocs.12324 [published Online
409	First: 2014/03/13]
410	7. Saji M, Highchi R, Iguchi N, et al. Transcatheter aortic valve replacement in patients
411	with degenerative calcified rheumatic aortic stenosis: A 10-patient case series.
412	International journal of cardiology 2019;280:38-42. doi:
413	10.1016/j.ijcard.2018.11.090 [published Online First: 2018/12/07]
414	8. Mentias A, Saad M, Desai MY, et al. Transcatheter Versus Surgical Aortic Valve
415	Replacement in Patients With Rheumatic Aortic Stenosis. J Am Coll Cardiol
416	2021;77(14):1703-13. doi: 10.1016/j.jacc.2021.02.032 [published Online First:

417 2021/04/10]

418	9. Leon MB, Smith CR, Mack MJ, et al. Transcatheter or Surgical Aortic-Valve
419	Replacement in Intermediate-Risk Patients. The New England journal of
420	medicine 2016;374(17):1609-20. doi: 10.1056/NEJMoa1514616 [published
421	Online First: 2016/04/05]
422	10. Reardon MJ, Van Mieghem NM, Popma JJ, et al. Surgical or Transcatheter Aortic-
423	Valve Replacement in Intermediate-Risk Patients. The New England journal of
424	medicine 2017;376(14):1321-31. doi: 10.1056/NEJMoa1700456 [published
425	Online First: 2017/03/18]
426	11. Khan F, Okuno T, Malebranche D, et al. Transcatheter Aortic Valve Replacement in
427	Patients With Multivalvular Heart Disease. JACC Cardiovascular interventions
428	2020;13(13):1503-14. doi: 10.1016/j.jcin.2020.03.052 [published Online First:
429	2020/07/11]
430	12. Okor I, Bob-Manuel T, Garikapati K, et al. Transcatheter Aortic Valve Replacement
431	in Rheumatic Aortic Stenosis: A Comprehensive Review. Curr Probl Cardiol
432	2021:100843. doi: 10.1016/j.cpcardiol.2021.100843 [published Online First:

433	2021/05/18]

434	13. Remenyi B, Wilson N, Steer A, et al. World Heart Federation criteria for
435	echocardiographic diagnosis of rheumatic heart diseasean evidence-based
436	guideline. Nat Rev Cardiol 2012;9(5):297-309. doi: 10.1038/nrcardio.2012.7
437	[published Online First: 2012/03/01]
438	14. Lancellotti P, Tribouilloy C, Hagendorff A, et al. Recommendations for the
439	echocardiographic assessment of native valvular regurgitation: an executive
440	summary from the European Association of Cardiovascular Imaging. European
441	Heart Journal - Cardiovascular Imaging 2013;14(7):611-44. doi:
442	10.1093/ehjci/jet105
443	15. Baumgartner H, Hung J, Bermejo J, et al. Echocardiographic assessment of valve
444	stenosis: EAE/ASE recommendations for clinical practice. European journal of
445	echocardiography : the journal of the Working Group on Echocardiography of
446	the European Society of Cardiology 2009;10(1):1-25. doi:
447	10.1093/ejechocard/jen303 [published Online First: 2008/12/10]
448	16. Okuno T, Asami M, Heg D, et al. Impact of Left Ventricular Outflow Tract

449	Calcification on Procedural Outcomes After Transcatheter Aortic Valve
450	Replacement. JACC Cardiovascular interventions 2020;13(15):1789-99. doi:
451	10.1016/j.jcin.2020.04.015 [published Online First: 2020/08/09]
452	17. Kappetein AP, Head SJ, Genereux P, et al. Updated standardized endpoint
453	definitions for transcatheter aortic valve implantation: the Valve Academic
454	Research Consortium-2 consensus document (VARC-2). European journal of
455	cardio-thoracic surgery : official journal of the European Association for
456	Cardio-thoracic Surgery 2012;42(5):S45-60. doi: 10.1093/ejcts/ezs533
457	[published Online First: 2012/10/03]
458	18. Iung B, Baron G, Tornos P, et al. Valvular heart disease in the community: a
459	European experience. Curr Probl Cardiol 2007;32(11):609-61. doi:
460	10.1016/j.cpcardiol.2007.07.002 [published Online First: 2007/11/03]
461	19. Passos LSA, Nunes MCP, Aikawa E. Rheumatic Heart Valve Disease
462	Pathophysiology and Underlying Mechanisms. Front Cardiovasc Med
463	2020;7:612716. doi: 10.3389/fcvm.2020.612716 [published Online First:
464	2021/02/05]

465	20. Mutagaywa RK, Wind AM, Kamuhabwa A, et al. Rheumatic heart disease anno
466	2020: Impacts of gender and migration on epidemiology and management. $Eur J$
467	Clin Invest 2020;50(12):e13374. doi: 10.1111/eci.13374 [published Online First:
468	2020/08/14]
469	21. Pilgrim T, Windecker S. Expansion of transcatheter aortic valve implantation: new
470	indications and socio-economic considerations. Eur Heart J 2018;39(28):2643-
471	45. doi: 10.1093/eurheartj/ehy228 [published Online First: 2018/04/28]
472	22. Sharma SK, Rao RS, Chandra P, et al. First-in-human evaluation of a novel balloon-
473	expandable transcatheter heart valve in patients with severe symptomatic native
474	aortic stenosis: the MyVal-1 study. EuroIntervention : journal of EuroPCR in
475	collaboration with the Working Group on Interventional Cardiology of the
476	European Society of Cardiology 2020;16(5):421-29. doi: 10.4244/EIJ-D-19-
477	00413 [published Online First: 2019/10/01]
478	23. Chandra P, Jose J, Mattummal S, et al. Clinical evaluation of the Hydra self-
479	expanding transcatheter aortic value: 6 month results from the GENESIS trial.
480	Catheterization and cardiovascular interventions : official journal of the Society

481	for Cardiac Angiography & Interventions 2021;98(2):371-79. doi:
482	10.1002/ccd.29733 [published Online First: 2021/04/21]
483	24. Zilla P, Williams DF, Bezuidenhout D. TAVR for Patients With Rheumatic Heart
484	Disease: Opening the Door for the Many? J Am Coll Cardiol 2021;77(14):1714-
485	16. doi: 10.1016/j.jacc.2021.02.044 [published Online First: 2021/04/10]
486	25. Remenyi B, ElGuindy A, Smith SC, Jr., et al. Valvular aspects of rheumatic heart
487	disease. Lancet (London, England) 2016;387(10025):1335-46. doi:
488	10.1016/S0140-6736(16)00547-X [published Online First: 2016/03/31]
489	26. Wallby L, Steffensen T, Jonasson L, et al. Inflammatory Characteristics of Stenotic
490	Aortic Valves: A Comparison between Rheumatic and Nonrheumatic Aortic
491	Stenosis. Cardiol Res Pract 2013;2013:895215. doi: 10.1155/2013/895215
492	[published Online First: 2013/03/12]
493	27. Scherman J, Ofoegbu C, Myburgh A, et al. Preclinical evaluation of a transcatheter
494	aortic valve replacement system for patients with rheumatic heart disease.
495	EuroIntervention : journal of EuroPCR in collaboration with the Working Group
496	on Interventional Cardiology of the European Society of Cardiology

497	2019;15(11):e975-e82. doi: 10.4244/EIJ-D-18-01052 [published Online First:
498	2019/08/14]
499	28. Vollenbroich R, Stortecky S, Praz F, et al. The impact of functional vs degenerative
500	mitral regurgitation on clinical outcomes among patients undergoing
501	transcatheter aortic valve implantation. American heart journal 2017;184:71-80.
502	doi: 10.1016/j.ahj.2016.10.015 [published Online First: 2016/11/29]
503	29. Asami M, Windecker S, Praz F, et al. Transcatheter aortic valve replacement in
504	patients with concomitant mitral stenosis. Eur Heart J 2019;40(17):1342-51.
505	doi: 10.1093/eurheartj/ehy834 [published Online First: 2019/01/01]
506	30. Okuno T, Hagemeyer D, Brugger N, et al. Valvular and Nonvalvular Atrial
507	Fibrillation in Patients Undergoing Transcatheter Aortic Valve Replacement.
508	JACC Cardiovascular interventions 2020;13(18):2124-33. doi:
509	10.1016/j.jcin.2020.05.049 [published Online First: 2020/09/26]
510	

512 Figure 1. Echocardiographic assessment of morphological features of rheumatic

513 heart disease.

514	(Left) Parasternal long axis views showing thickening of the AMVL (upper) compared
515	to a normal anterior mitral leaflet (lower). (Middle) Parasternal long axis views showing
516	restricted leaflet motion with classic dog-leg deformity of the anterior mitral leaflet
517	(upper) and non-restricted leaflet motion (lower). (Right) Apical views with chordal
518	thickening (upper) and normal chordal morphology (lower). Videos of the
519	echocardiography of the RHD case are provided in Online Supplement 1.
520	AMVL = anterior mitral valve leaflet; RHD = rheumatic heart disease.
521	
522	Figure 2. A flowchart of patients included in the present analysis.
523	AR = aortic regurgitation; ARF = acute rheumatic fever; AS = aortic stenosis; ICD-10 =
524	International Classification of Diseases Version 10; MR = mitral regurgitation; MV =
525	mitral valve; RHD = rheumatic heart disease; TAVI = transcatheter aortic valve
526	implantation.

528	Figure 3. Kaplan-Meier curves for cardiovascular death and stroke in the entire
529	cohort and PS-matched cohort.
530	Hazard ratios and p-values were calculated with the use of Cox proportional hazards
531	models. Abbreviations as in Figure 1.
532	
533	Figure 4. Kaplan-Meier curves for cardiovascular death, structural valve
534	deterioration, and unplanned repeat aortic valve intervention up to 5 years in the
535	PS-matched cohort.
536	Structural valve deterioration was defined according to the Valve Academic Research
537	Consortium-2 criteria ¹⁷ . Unplanned repeat aortic valve intervention was defined as a
538	composite endpoint including valve-in-valve procedure, balloon valvuloplasty, surgical
539	revision, or paravalvular leak closure.
540	Hazard ratios and p-values were calculated with the use of Cox proportional hazards
541	models. Abbreviations as in Figure 1.

Table 1. Baseline characteristics of the unmatched and matched population

	U	Unadjusted Cohort				Propensity Score Matched Cohort			
	Non-RHD (N = 2,224)	RHD (N = 105)	P value	ASD	Non-RHD (N = 420)	RHD (N = 105)	P value	ASD	
Age, years	82.1 ± 6.1	84.2 ± 6.1	< 0.001	-0.352	84.2 ± 5.3	84.2 ± 6.1	0.984	-0.002	
Female, n (%)	1,123 (50.5%)	78 (74.3%)	< 0.001	-0.506	322 (76.7%)	78 (74.3%)	0.610	0.055	
Body mass index, kg/cm ²	26.7 ± 5.22	24.4 ± 5.50	< 0.001	0.419	23.8 ± 4.26	24.4 ± 5.50	0.180	-0.135	
STS-PROM, %	5.31 ± 4.0	7.13 ± 4.53	< 0.001	-0.424	7.21 ± 4.90	7.13 ± 4.53	0.876	0.017	
NYHA functional class III or IV, n (%)	1,513 (68.1%)	85 (81.0%)	0.005	-0.297	346 (82.4%)	85 (81.0%)	0.776	0.037	
Comorbidities									
Hypertension, n (%)	1,916 (86.2%)	85 (81.0%)	0.150	0.140	355 (84.5%)	85 (81.0%)	0.376	0.094	
Diabetes mellitus, n (%)	595 (26.8%)	25 (23.8%)	0.573	0.068	89 (21.2%)	25 (23.8%)	0.597	-0.063	
Dyslipedemia, n (%)	1,475 (66.3%)	53 (50.5%)	0.001	0.325	210 (50.0%)	53 (50.5%)	1.00	-0.009	
CKD (eGFR <60 mL/min/1.73 m ²), n (%)	1,502 (67.6%)	88 (83.8%)	< 0.001	-0.384	370 (88.1%)	88 (83.8%)	0.253	0.123	
COPD, n (%)	272 (12.2%)	11 (10.5%)	0.759	0.056	28 (6.7%)	11 (10.5%)	0.210	-0.136	
Atrial fibrillation, n (%)	743 (33.4%)	53 (50.5%)	< 0.001	-0.350	222 (52.9%)	53 (50.5%)	0.664	0.048	
Coronary artery disease, n (%)	1,377 (61.9%)	51 (48.6%)	0.007	0.270	213 (50.7%)	51 (48.6%)	0.744	0.043	

History of PCI, n (%)	606 (27.2%)	24 (22.9%)	0.369	0.101	91 (21.7%)	24 (22.9%)	0.793	-0.029
History of CABG, n (%)	242 (10.9%)	5 (4.8%)	0.050	0.229	30 (7.1%)	5 (4.8%)	0.513	0.100
History of MI, n (%)	332 (14.9%)	13 (12.4%)	0.574	0.074	61 (14.5%)	13 (12.4%)	0.641	0.063
Previous Mitral valve replacement/repair, n (%)	27 (1.2%)	5 (4.8%)	0.013	-0.209	23 (5.5%)	5 (4.8%)	1.000	0.032
History of cerebrovascular accident, n (%)	251 (11.3%)	16 (15.2%)	0.210	-0.116	68 (16.2%)	16 (15.2%)	0.883	0.026
Peripheral artery disease, n (%)	300 (13.5%)	16 (15.2%)	0.562	-0.050	63 (15.0%)	16 (15.2%)	1.000	-0.007
Previous pacemaker implantation, n (%)	182 (8.2%)	14 (13.3%)	0.071	-0.166	62 (14.8%)	14 (13.3%)	0.877	0.041
Medications at baseline								
Aspirin, n (%)	1,329 (59.9%)	50 (47.6%)	0.014	0.247	180 (42.9%)	50 (47.6%)	0.382	-0.095
P2Y12 antagonist, n (%)	424 (19.1%)	18 (17.1%)	0.703	0.051	57 (13.6%)	18 (17.1%)	0.352	-0.099
VKA, n (%)	381 (17.2%)	32 (30.5%)	0.001	-0.315	136 (32.4%)	32 (30.5%)	0.815	0.041
NOAC, n (%)	271 (12.2%)	17 (16.2%)	0.225	-0.114	68 (16.2%)	17 (16.2%)	1.000	< 0.001
Depicted are means with standard deviations (\pm SI index; CABG = coronary artery bypass grafting; C glomerular filtration rate; MI = myocardial infarction	OPD = chronic c	bstructive pul	monary d	lisease; C	KD = chronic k	idney disease;	eGFR = e	stimated
Association: $OAC = oral anticoagulant agent: PCI$	= percutaneous c	oronary interv	vention: R	HD = rhe	eumatic heart di	sease: STS-PR	OM = So	ciety of

Association; OAC = oral anticoagulant agent; PCI = percutaneous coronary intervention; RHD = rheumatic heart disease; STS-PROM = Society of

Thoracic Surgeons Predicted Risk of Mortality; VKA = vitamin K antagonist.

Table 2. Inaging characteristics of the dimatched and matched population	545	Table 2. Imaging characteristics of the unmatched and matched population
---	-----	---

	1	Unadjusted Coh	ort		Propensity Score Matched Cohort					
	Non-RHD (N = 2,224)	RHD (N = 105)	P value	ASD	Non-RHD (N = 420)	RHD (N = 105)	P value	ASD		
Echocardiography										
Aortic valve area, cm ²	0.67 ± 0.24	0.58 ± 0.22	< 0.001	0.379	0.58 ± 0.24	0.58 ± 0.22	0.931	-0.010		
Aortic valve mean gradient, mmHg	40.0 ± 17.3	40.5 ± 16.9	0.741	-0.033	41.3 ± 20.1	40.5 ± 16.9	0.708	0.043		
LVEF, %	54.6 ± 14.5	54.4 ± 14.8	0.917	0.010	53.5 ± 14.7	54.44± 14.8	0.563	-0.063		
Moderate/severe AR, n (%)	188 (8.5%)	20 (19.0%)	0.001	-0.310	84 (20.0%)	20 (19.0%)	0.892	0.024		
Moderate/severe MR, n (%)	419 (21.7%)	60 (59.4%)	< 0.001	-0.830	256 (61.4%)	60 (59.4%)	0.734	0.040		
Moderate/severe MS, n (%)	42 (1.9%)	23 (21.9%)	< 0.001	-0.647	81 (19.3%)	23 (21.9%)	0.584	-0.065		
Moderate/severe TR, n (%)	299 (15.8%)	37 (37.4%)	< 0.001	-0.501	157 (37.7%)	37 (37.4%)	1.00	0.008		
PASP, mmHg	47.6 ± 16.08	53.1 ± 15.5	0.001	-0.350	53.8 ± 17.2	53.1 ± 15.5	0.738	0.038		
Computed tomography										
Aortic valve complex calcium, mm ³	312.6 ± 337.1	333.9 ± 342.6	0.556	-0.062	354.2 ± 363.3	333.9 ± 342.6	0.631	0.057		

Depicted are means with standard deviations (\pm SD), or counts with percentages (%).

AR = aortic regurgitation; ASD = absolute standardized difference; LVEF = left ventricular ejection fraction; MR = mitral valve regurgitation; MS = mitral stenosis; PASP = pulmonary artery systolic pressure; RHD = rheumatic heart disease.

Table 3. Procedural characteristics and complications of the unmatched and matched population

	Unadj	usted Cohort	Propensity Score Matched Cohor			
	Non-RHD (N = 2,224)	RHD (N = 105)	P value	Non-RHD (N = 420)	RHD (N = 105)	P value
Procedural characteristics						
Femoral main access site, n (%)	2,015 (90.6%)	97 (92.4%)	0.730	390 (92.9%)	97 (92.4%)	0.835
Type of valve, n (%)			0.336			0.530
Balloon-expandable	1,113 (50.1%)	46 (43.8%)	0.231	160 (38.1%)	46 (43.8%)	0.315
Self-expandable	980 (44.1%)	54 (51.4%)	0.159	234 (55.7%)	54 (51.4%)	0.444
Mechanical-expandable	128 (5.8%)	5 (4.8%)	0.831	26 (6.2%)	5 (4.8%)	0.817
Pre-dilation, n (%)	1,567 (70.6%)	70 (66.7%)	0.384	305 (72.6%)	70 (66.7%)	0.229
Post-dilation, n (%)	568 (25.6%)	33 (31.4%)	0.209	120 (28.6%)	33 (31.4%)	0.551
Procedural complications						
Valve in series, n (%)	29 (1.3%)	2 (1.9%)	0.648	9 (2.1%)	2 (1.9%)	1.00
Valve dislocation/embolization, n (%)	36 (1.6%)	1 (1.0%)	1.00	11 (2.6%)	1 (1.0%)	0.475

Conversion to SAVR, n (%)	12 (0.5%)	1 (1.0%)	0.452	6 (1.4%)	1 (1.0%)	1.00
Annulus rupture/aortic dissection, n (%)	12 (0.5%)	1 (1.0%)	0.456	0 (0.0%)	1 (1.0%)	0.202
Cardiac tamponade/rupture, n (%)	15 (0.7%)	1 (1.0%)	0.523	5 (1.2%)	1 (1.0%)	1.00
Coronary artery occlusion, n (%)	9 (0.4%)	0 (0.0%)	1.00	1 (0.2%)	0 (0.0%)	1.00
VARC-3 technical success	1,911 (85.9%)	90 (85.7%)	0.887	371 (88.3%)	90 (85.7%)	0.505
Echocardiographic outcomes at discharge*						
Aortic valve area, mm	1.74 ± 0.50	1.68 ± 0.52	0.345	1.60 ± 0.39	1.68 ± 0.52	0.109
Prosthetic valve mean gradient at discharge, mmHg**	9.53 ± 4.44	8.38 ± 4.21	0.010	8.89 ± 4.52	8.38 ± 4.21	0.296
Aortic regurgitation grade at discharge, n (%)**			0.614			0.092
none	854 (38.5%)	38 (36.2%)		107 (25.5%)	38 (36.2%)	
mild	1228 (55.3%)	58 (55.2%)		271 (64.7%)	58 (55.2%)	
	139 (6.3%)	9 (8.6%)		41 (9.8%)	9 (8.6%)	

Table 4. Clinical outcomes of the unmatched and matched population

	Unadjusted cohort				Propensity Score Matched Cohort*					
	Non-RHD (N = 2,224)	RHD (N = 105)	HR/RR (95% CI)	P value	Non-RHD (N = 420)	RHD (N = 105)	HR/RR (95% CI)	P value		
At 30 days										
Cardiovascular mortality, n (%)	59 (2.7%)	2 (1.9%)	0.71 (0.17-2.91)	0.637	36 (8.6%)	2 (1.9%)	0.18 (0.04-0.80)	0.024		
Stroke, n (%)	79 (3.6%)	3 (2.9%)	0.80 (0.25-2.52)	0.699	26 (6.3%)	3 (2.9%)	0.45 (0.14-1.45)	0.181		
Disabling stroke, n (%)	53 (2.4%)	2 (1.9%)	0.79 (0.19-3.26)	0.750	18 (4.4%)	2 (1.9%)	0.43 (0.11-1.89)	0.277		
New permanent pacemaker implantation, n (%)	426 (19.3%)	21 (20.0%)	1.05 (0.68-1.63)	0.819	99 (24.0%)	21 (20.0%)	0.83 (0.53-1.32)	0.442		
NYHA III or IV, n/N (%)	185/2014 (9.2%)	13/95 (13.7%)	1.49 (0.88-2.51)	0.136	46/365 (12.6%)	13/95 (13.7%)	1.05 (0.59-1.87)	0.875		
At 1 year										
Cardiovascular mortality, n (%)	185 (8.6%)	10 (10.0%)	1.16 (0.61-2.18)	0.656	84 (20.3%)	10 (10.0%)	0.44 (0.24-0.84)	0.012		
Stroke, n (%)	110 (5.1%)	6 (6.2%)	1.15 (0.51-2.62)	0.735	34 (8.7%)	6 (6.2%)	0.66 (0.28-1.58)	0.353		

Disabling stroke, n (%)	75 (3.5%)	4 (4.2%)	1.13 (0.41-3.09)	0.811	20 (5.0%)	4 (4.2%)	0.82 (0.30-2.25)	0.697
Myocardial infarction, n (%)	38 (1.8%)	1 (1.1%)	0.56 (0.08-4.10)	0.571	4 (1.1%)	1 (1.1%)	0.88 (0.10-8.05)	0.906
Major or life-threatening bleeding, n (%)	474 (21.6%)	27 (26.0%)	1.22 (0.83-1.80)	0.307	104 (25.0%)	27 (26.0%)	1.04 (0.70-1.54)	0.853
NYHA III or IV, n/N (%)	210/1854 (11.3%)	11/85 (12.9%)	1.14 (0.65-2.01)	0.645	23/302 (7.6%)	11/85 (12.9%)	1.69 (0.90-3.19)	0.104

Depicted are number of events (counting first event per patient only), with Kaplan-Meier cumulative incidences in percentages in brackets and hazard ratios HR with 95% CI in brackets. NYHA III or IV is provided as numbers/assessed patients (%) with rate ratio from robustified Poisson regression with 95% confidence intervals in brackets.

*The Matched cohort is cluster-robustified for the matched sets (105 sets: each set contains one RHD and four non-RHD patients). Adjusted for STS-PROM, BMI, CKD, COPD, and history of CABG in view of residual imbalances.

CI = confidence intervals; HR = hazard ratio; RR = rate ratio; RHD = rheumatic heart disease; NYHA = New York Heart Association.