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A B S T R A C T   

Global warming affects ecosystem services, communities and populations, influencing the physiology, behaviour 
or environment of living beings, and hence impacts its survival or breeding. Identifying species susceptibility to 
warming is relevant in assessing risks to animal populations and ecological processes. The progressive increase in 
ambient temperature as a result of global warming might have an effect on the timing of primary moult. This 
could affect a bird’s annual cycle, influencing reproductive success and population dynamics. 

We describe a method to examine the potential effects of global warming on the primary moult process in a 
sedentary population of Red-legged Partridges (Alectoris rufa). We organised the factors that might influence the 
timing of moult end into a network and distinguished between environmental and intrinsic factors. We sorted the 
factors according to their contribution to quantitative moult models and constructed a diagrammatic scheme 
showing their interactions and effect on the end of primary moult over the annual cycle. 

In Red-legged Partridges, the timing of the end of moult varies according to age-sex class. We found no timing 
differences by age, but found significant timing differences by adult sex. More females overlap their moult with 
juveniles than males because female parental effort is higher, more females incubate and brood chicks. The 
timing of the end of moult varies by year due to conspecific interactions that change according to influences of 
the weather, habitat, and social and flock conditions. Parent birds synchronize their primary moult with the 
chick’s growth, degree of cover and food resources. From the time of hatching to the following year, the date 
(day-length), social factors (conspecific interactions), and weather (resources) affect the timing of moult and the 
birds’ annual cycle. 

Global warming affects the timing of the end of moult and that of the annual cycle. If the extent of the breeding 
period is shortened, there could be a negative effect on population outcomes. Middle size prey species are key in 
trophic chains. Our results suggest that the timing of the end of moult could be used as a proxy measure of 
warming impacts on wildlife and ecosystems and also as a tool for the management of game birds.   

1. Introduction 

Anthropogenic climate change is increasingly threatening ecosys
tems and species worldwide. Warming affect biodiversity at a global 
scale by modifying species distributions, population dynamics and 
altering their habitats, contributing to biodiversity loss (Brambilla et al., 
2018; Jetz et al., 2007; Powers and Jetz, 2019). However, local extinc
tion of species can occur with a substantial delay following habitat loss 
or degradation. The consequences of warming on biodiversity might be 
underestimated (Kuussaari et al., 2009). Most of this decline being 

attributed to more common species that have greater importance in 
terms of ecosystem function and service provision (Inger et al., 2015). 
Disentangling climatic impact on other factors can be difficult. Warming 
may limit species’ distributions directly, but in other cases the link to 
warming may be mediated by biotic interactions. The principal warming 
change related threats to populations may come from altered species 
interactions, providing an early indication of range contractions and 
population declines (Ockendon et al., 2014). 

Feathers become worn over time and their renewal is necessary for 
flight, insulation, communication and camouflage (Kiat and Izhaki, 
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2016; Jenni and Winkler, 2020). In passerines, the relative timing of the 
different types of moult, and other events in the annual cycle, are 
affected by global warming (Socolar et al., 2017). In consequence, the 
length of time taken for the post-juvenile moult has increased and the 
timing of adult moult has advanced (Helm et al., 2019). However, the 
effects of climate change on moult at the population level and on pop
ulation dynamics are largely unknown (Knudsen et al., 2011). Feathers 
make up 30% of the protein dry mass of a bird’s body (Weber et al., 
2010), so that moult has a critical effect on avian annual cycles, through 
the high energy demand that it imposes during several months each year 
(Ginn and Melville, 1983; Tonra and Reudink, 2018). However, the 
causes, mechanisms, patterns, and consequences of the primary moult 
process are still poorly understood (Kiat et al., 2019a). 

It is vital for birds to maintain their plumage in good condition and to 
ensure that its renewal through moult occurs at the best time in a spe
cies’ annual cycle (Møller and Nielsen, 2018). Moult varies widely in 
timing, duration, and its degree of overlap with breeding and migration 
(Jenni and Winkler, 2020). The energetic cost of moult may represent up 
to 20% of daily energy expenditure and may result in a body mass loss of 
up to 22% over the course of a full moult (Marmillot et al., 2016). 
Accordingly, the renewal of the feathers has nutritional requirements 
similar to the growth of chicks, and this integumentary structure needs 
an abundant supply of dietary protein (Danner et al., 2015; Le Tortorec 
et al., 2012). 

The moult speed (e.g. the rate of feather renewal), depends on 
adequate food resources. Moult strategies are shaped by the timing of 
suitable habitat availability which can provide energy surpluses (protein 
food), and by the scheduling of reproduction, migration and day-length 
(Kiat et al., 2016). The moult strategy is a system of mechanisms that 
schedule the overlap or separation between moult, breeding and 
migration phases, and which optimize the replacement of feather tracts 
within the annual cycle according to a bird’s life history (Barta et al., 
2006; Newton, 2009). 

The process of primary moult constitutes a cycle of new feather 
production. In small birds, this happens once, or perhaps twice, each 
year, although in large birds it can extend over several years (Rohwer 
et al., 2009). Flight-feather moult affects minimum daily heart rate, 
which restricts the capacity of birds to forage and escape predation 
(Portugal et al., 2018). In sedentary galliform birds, adult primary 
feather moult overlaps with breeding and both processes (moult and 
breeding) require sufficient protein food and suitable habitat safe from 
predators (Demongin, 2016; Pap et al., 2015). 

Here, we present a methodological protocol for analysing the end of 
primary feather moult in the Red-legged Partridge. This procedure helps 
us to understand the annual timing of population processes and thus 
interpret the importance of moult in the annual cycle of birds and its 
implications for conservation (Barta et al., 2006; Brambilla et al., 2018). 
Bird moult as an ecological indicator is embedded in environmental 
management, sustainable development and biodiversity conservation 
(Butler et al., 2012). Birds are frequently used as ecological indicators 
because they are sensitive to changes in habitat quality, pollution, and 
warming (Canterbury et al., 2000). We have benefited from a long-term 
14 year study of a wild population of partridges, a sedentary gamebird 
living in optimal habitat conditions (Nadal et al., 2016), as a case study. 
We focus on testing a hypothesis regarding the relative contribution of 
factors that affect the end of moult. Our goal is to provide a study pro
tocol to understand the timing of the end of moult and assess the con
sequences of global warming on wildlife. 

2. Material and methods 

2.1. The study species 

The Red-legged Partridge is a ground-dwelling species native to 
Mediterranean habitats. It is sexually size-dimorphic, males being larger 
than females (Nadal et al., 2018a). It is a key prey and small-game 

species that employs a social strategy (flocking) to maximize its 
foraging efficiency and to defend itself against predators. Pair bonds 
form when winter flocks break up. Partridges build their nests and fe
males lay their eggs in April (average clutch size 11.4). The eggs hatch 
after 23 days of incubation (41% of males incubated a clutch on their 
own (Casas et al., 2009). The raising of chicks begins in June. Chicks are 
precocial and grow rapidly. They make short flights after two weeks, and 
reach adult size after three months. At four and a half months of age they 
have completed the juvenile moult (Nadal et al., 2018b). Adults begin to 
moult their primaries while breeding (in late June–late August) and 
complete this when breeding has finished (in late August to mid- 
November), but the precise relationship between the moult of adults 
and their chicks is unknown (Ginn and Melville, 1983). 

2.2. Study area 

Las Ensanchas is a small-game hunting ground in the Jabalón River 
basin in Ciudad Real, Spain (38◦39′ N, 3◦13′ W, 790–840 m a.s.l.). The 
landscape is Mediterranean Dehesa including a mosaic of cereal crops, 
fallow, natural pastures (75%) and scrubland (25%) with scattered holm 
oaks (Quercus ilex). The habitat structure remained constant during the 
study period (1998–2011), and the abundance of resources varied with 
the annual weather conditions (for details see Nadal et al., 2016). 

2.3. Hypothesis generation 

We defined a general theory for primary moult in sedentary, 
medium-sized birds and a specific model of primary moult for the genus 
Alectoris (Nadal et al., 2018c). We selected a pool of easily measurable 
factors that affect moult (environmental and intrinsic) and constructed a 
nomological network to order them (Hughes, 2000). We arranged the 
factors diagrammatically according to their interrelationships and their 
driver effects (Fig. 1). As environmental factors we considered: 1) the 
date; 2) the temperature; and 3) the rainfall. As intrinsic factors we 
considered: 1) the autumn population size; 2) the number of adults; 3) 
the number of juveniles; 4) the population age-ratio; 5) the population 
sex-ratio; 6) the juvenile sex-ratio; and 7) the adult sex-ratio (Alfaro 
et al., 2018; De la Hera et al., 2010; Dietz et al., 2015; Pol et al., 2016). 
We used the network of factors to formulate hypotheses, following the 
chain of logical consequences. We created: a) causal hypotheses to 
explain how each factor might affect the timing of the end of moult (e.g. 
that the date [day length] triggers the end of moult); b) functional hy
potheses to explain the role of factor change on the end of moult (e.g. 
that the end of moult implies less secretive predator avoidance 

Fig. 1. Diagram of the nomological network showing the interrelationships 
between the causes, explanatory variables and consequences of factors on the 
timing of the end of primary moult. Those used in the Generalized Linear 
Models (GLMs) are shown in red. The rainfall-habitat-behaviour box has direct, 
indirect and bidirectional relationships. The highlighted boxes and arrows 
are studied. 
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behaviour); c) generalizing hypotheses to describe an observed pattern 
on the end of moult (e.g. that the end of moult of females and young 
overlaps) and; d) explanatory hypotheses to provide reasons to gener
alize the factor effect on the end of moult (e.g. that population structure 
and warming [environment] modify the timing of moult because birds 
need to account for the metabolic cost of moult). We also considered 
alternative hypotheses to provide other arguments for the previous hy
potheses (e.g. that population structure and warming [environment] 
modify the timing of moult because birds need to minimise predation 
risk) (Buttemer et al., 2019; Franklin et al., 2017; Hanć et al., 2017; Jahn 
et al., 2016). We hypothesised that warming affects environmental re
sources and so advances the timing of the end of moult (Tomotani et al., 
2018b). This would decrease population productivity and could drive 
the population into progressive decline (Martin et al., 2018; Visser et al., 
2011). 

2.4. Data collection 

We studied wild partridges collected during hunts performed from 
mid-October to mid-November, between 1998 and 2011. We deter
mined bird age by examining the primary feathers, and sex by spur 
characteristics. We cut through the ulna-radius to remove a wing from 
each bird and dried them for 15 days at 40 ◦C in the laboratory. We 
recorded feathers-length from the wing-tip to the insertion of the 8th, 
9th and 10th primary feathers into the integument, all to the nearest 0.5 
mm (Nadal et al., 2016). Each bird was classified as in are moulting or 
finish moult. 

We used data from the Las Terceras and Torrenueva meteorological 
stations run by AEMET (the Spanish Meteorological Agency, 
http://www.aemet.es) located at 300 m and 12 km from the study area, 
respectively. To assess annual variations in temperature, we used data 
from the Torrenueva meteorological station, because it has a more 
consistent long-term data series. To study the yearly effects of meteo
rology on moult, we selected the January–September period for rainfall 
and April–September for temperature (Halbritter et al., 2020). 

2.5. Procedure for the moult study and hypothesis verification 

First, we visualised the main data in graphic form to build a con
ceptual model for the end of primary moult (Moreno-Palacios et al., 
2018). The end of the moult occurs towards the end of October, when 
the number of partridges moulting decreases. The maximum hatching 
happens 130 days before, in the month of June (Nadal et al., 2016). For 
juveniles and adults to synchronize at the end of the primary moult, 
juveniles must begin moulting 30 days after hatching and adults when 
chicks are born. 

We selected and ordered the hypotheses from the particular to the 
general. We chose independent factors that are easily measurable. We 
sorted the key factors driving the end of moult depending on their 
contribution to different Generalized Linear Models (GLMs). To deter
mine the association between factors, we analysed them at two levels, 
between and within all age and sex groups (Kiat and Sapir, 2017). We 
examined the following hypotheses: 1) that more adult females than 
adult males synchronize their moult with juveniles, because of their 
higher parental effort during incubation and chick-rearing (Cockburn, 
2006); 2) that juveniles and adults align their primary renewal to foster 
social cohesion, so that they can feed without being predated (Møller 
and Nielsen, 2018); 3) that weather affects environment seasonality 
(resource scheduler) and individuals influence their social group, so that 
both date and social interactions can modify the end of moult (Jukema 
and Wiersma, 2014); and 4) that warming varies the environment sea
sonality that drives the annual ecological cycle (Mason et al., 2019). 

The aim was to see whether the date of the end of a birds’ moult can 
be used as a proxy to measure the effect of warming on this species, and 
other species by extension (Kiat et al., 2019b; Podlaszczuk et al., 2016; 
Weeks et al., 2020). We developed a conceptual model of the primary 

renewal of partridges that is driven by environmental and intrinsic 
factors (Fig. 2) (Ben-Hamo et al., 2017; Visser and Gienapp, 2019). Our 
method has three steps: first, build a conceptual model (nomological 
network), second, sort the key factors by relevance, and third, explain 
the species’ annual ecology (Fig. 3). 

2.6. Statistical analyses 

We performed chi-squared tests on our contingency tables to assess 
moult differences (moulting or finished moult) between sexes, ages, 
classes, years, and classes and years. To detect changes in moult over 
time, we compared each year using an analysis of means for the 

Fig. 2. A proposed conceptual model explaining how environmental (blue ar
rows) and intrinsic factors (red arrows) could affect the timing of the end of 
moult. Meteorology modulates the annual cycle of habitat resources. Compe
tition, predation, and food availability have effects on the immune state, moult 
and rearing of chicks. Age and sex class determine social influences and their 
integration in the group (social facilitation). The immune state, chick rearing 
and moult are intrinsic factors; competition, food supply and predation risk are 
environmental factors. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 3. The three steps in the procedure. First, a conceptual model based on a 
nomological network is used to select independent factors that affect moult. 
Second, Generalized Linear Models (GLMs) are performed with different data 
aggregations to sort key factors. Third, simple regression models are performed 
using key factors to determine the effects on the timing of the end of pri
mary moult. 
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proportions of denominators by age-sex classes (Supplementary Mate
rial 1). We used GLMs to select an environment (date and meteorolog
ical) and intrinsic (population) explanatory factors with the greatest 
contribution in: (a) age-sex classes; (b) age or sex groups; and (c) overall 
data for all of the partridges. The GLMs used to explain the end of moult 
were performed with a binomial distribution (moulting or finished 
moult) and logit as a link function. We used the log of worth (utility) of 
each explanatory factor in all models vs the other variables to build a 
rank order of their level of contribution (see Supplementary Material 3). 
We performed simple regression models with the selected explanatory 
factors for age-sex class and for overall partridge data. We used JMP14 
(SAS Institute Inc, 2018) for all of these statistical analyses. 

3. Results 

The end of moult differed between the sexes, males finishing earlier 
than females (χ2

1 = 267, P < 0.001, N = 12,975, Supplementary Material 
1). There were no such differences with respect to age groups (juveniles 
vs adults) (X2

1 = 0.36, P > 0.55, N = 12,975), although the completion of 
moult did vary between different age-sex classes (X2

3 = 486, P < 0.001, 
N = 12,975). The end of moult varied significantly between years (X2

13 =

1342, P < 0.001, N = 12,975). In 42.8% of years, the date of the end of 
juvenile female moult differed from that of the mean for all age-sex 
classes. This percentage increased to 57.1% in the case of juvenile 
males, 64.3% in the case of adult males, and 85.7% in the case of adult 

Fig. 4. The percentage of the different age-sex classes moulting between mid-October to mid-November according to age-sex class by year in the Red- 
legged Partridge. 

Table 1 
GLMs for the end date of moult: total partridge data, adult, juvenile, and the various age-sex classes.  

Model P Pearson Goodness of fit 
test 

AICc 1 2 3 4 5 6 7 8 9 N K 

Total <0.0001 0.06 15,052 Date4 Class4 SR4 Age r4 Adul n4 Juv n4 JSR4 Precip4 Year2 12,975 9 
Adult <0.0001 0.4 7475 Class4 Date4 SR4 Age r4 Adul n4 Juv n4 JSR4 Year1  6353 8 

Juvenile <0.0001 0.4 7150 Date4 SR4 Age r4 Precip4 Juv n4 JSR4 Adul n4 Year4  6622 8 
A female <0.0001 0.7 2840 Date4 Juv n4 Age r4 Year4 SR4 Adul n4 JSR2 Tempe1  2581 8 
A male <0.0001 0.2 4578 Date4 Adul n4 SR4 Juv n4 Year4 Age r2    3772 6 

J female <0.0001 0.5 3587 Date4 SR4 Precip4 Juv n4 Age r4 Adul n4 JSR4 Year2  3317 8 
J male <0.0001 0.03 3575 Date4 SR4 Age r4 Precip4 Juv n4 JSR4 Adul n4 Year3  3305 8 

<0.0001 = 4 0.001 = 3 0.01 = 2 0.05 = 1. 
Binomial distribution: two plumage categories (a) birds that finish moult (b) birds that are moulting. 
Explanatory variables: SR = Sex ratio, ASR = Adult sex ratio, JSR = Juvenile sex ratio, Age r = Age ratio, Preci = Precipitation, Tempe = Temperature, Adult n =
Number of adults, Juv n = Number of juveniles. 
Models: Total, Adult, Juvenile, A female (Adult female), A male (Adult male), J female (Juvenile female), J male (Juvenile male).. 
P = P values for the model, AICc = Corrected Akaike Information Criterion, 1, 2…,9 = Order of the variables in the model according to Log Worth, N = Sample size, K 
= Number of explanatory variables in the model. 
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females (Fig. 4, Supplementary Material 2). 
Explanatory factors contribute to different utility values of the 

various GLMs. According to the models, the explanatory factors with the 
greatest effect on the end of primary moult rank in the order: Date > Sex- 
ratio > Age-ratio > Adult number > Juvenile number > Precipitation >
Year (Table 1, Figs. 1 and 3). In simple regressions, the determination 
coefficients of moulting birds are higher between juveniles (juvenile 
female with juvenile male, Table 2) than between adults (adult female 
with adult male). 

In addition, the determination coefficient of the end of moult is 
higher between adult female and juveniles than between adult male and 
juveniles. As Table 2 shows, the rest of the associations between the end 

of moult of the different age-sex classes with the autumn population size, 
the temperature, and the juvenile sex-ratio, showed smaller coefficients 
of determination. 

Over the years of the study, we found a progressive increase in the 
annual average temperature levels (R2 = 0.59; b = 0.61 ± 0.08; N = 46; 
F = 63.7; P < 0.0001). At the end of moult between mid-October and 
mid-November, the age-sex classes showed associations with tempera
ture, juvenile sex-ratio and autumn population size. According to Fig. 5, 
the date of the end of moult was earlier as temperature increased (R2 =

0.40; b = -40.2 ± 6.9; N = 56; F = 36; P < 0.0001; Fig. 4). The end of 
moult was also earlier as juvenile sex ratio increased (R2 = 0.22; b =
-164.2 ± 41.5; N = 56; F = 15.6; P < 0.0002). Moreover the end of moult 
was later as the autumn population increased (R2 = 0.48; b = 0.05 ±
0.007; N = 56; F = 50.4; P < 0.0001). 

4. Discussion 

Birds are and excellent bio-indicator to understand the effects of 
warming in animals populations (Jetz et al., 2007). Declines were 
greatest among those species whose annual productivity was most 
greatly reduced by asynchrony (Franks et al., 2018). The ecology of 
different bird species is complex by its diverse life-history traits and 
ecological relations. Identifying reliable predictors of species resilience 
or susceptibility to climate warming is critical to assess potential risks to 
species, communities and ecosystem services (Samplonius et al., 2018). 

Primary feather growth is scheduled according to a species’ life- 
history strategy. After hatching, chicks develop the structures of the 
skin from which the first juvenile plumage will grow. In Alectoris species, 
the post-juvenile moult replaces the juvenile plumage, except for the 9th 
and 10th primaries, which are retained. Following this, the previous 
generation of primary remiges is renewed each year (Demongin, 2016; 
Pyle, 2013). The comparison of moult patterns between different age 

Table 2 
Determination coefficients, R2 below slope ± SD, of simple regressions for moult 
between the age-sex classes, and with autumn population size, temperature and 
the juvenile sex ratio.   

AM JF JM Autumn p Tempe JSR 

AF 0.864 

0.85 ±
0.1 

0.673 

0.69 ±
0.14 

0.613 

0.75 ±
0.17 

0.582 

0.05 ±
0.01 

0.492 

− 40.6 ±
12.1  

AM  0.401 

0.58 ±
0.21 

0.381 

0.65 ±
0.24 

0.422 

0.05 ±
0.02 

0.582 

− 48.7 ±
11.9  

JF   0.944 

1.11 ±
0.08 

0.492 

0.06 ±
0.02  

0.401 

− 240 ±
84 

JM    0.492 

0.04 ±
0.01 

0.351 

− 35.7 ±
14.2 

0.291 

− 178 ±
81 

<0.0001 = 40.001 = 3 0.01 = 2 0.05 = 1. 
AF (Adult female), AM (Adult male), JF (Juvenile female), JM (Juvenile male), 
Autumn p (Autumn population), Tempe (Temperature), JSR (Juvenile sex ratio). 

Fig. 5. Birds that moult of age-sex classes in relation to: Mean temperatures during April–October (Temp IV-X), Juvenile sex ratio (JSR), Autumn population size 
(Autumn p), and between temperature and year. 
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classes is essential to understand the process (Jahn et al., 2016). Our 
results show that while juvenile moult relates to adult moult, the end 
date of these moults is independent (Fig. 4 and Table 2). There is no 
difference in the date of the end of moult between young and adults, 
although there is between adult females and adult males (chi-squared 
tests on contingency tables). The moult of adults depends on the moult 
of juveniles since adults organize their moult schedule around their 
breeding activities. In passerines, for example, juvenile moult responds 
to natural selection and adult moult to sexual selection (Guallar and 
Jovani, 2019). 

Any damage to the primary feathers impairs flight efficiency and 
hinders escape from predators (Kullberg et al., 1996). This reduction in 
flight capacity due to moult is compensated by changes in behaviour 
(Tomotani and Muijres, 2019). Outside the breeding season, Red-legged 
Partridges live in compact flocks, individuals remaining close to each 
other while several individuals at a time keep constant watch for danger. 
In this way, a flock acts in concert to compensate for the reduction in 
flight capacity during moult. Larger groups are better able to find food 
while also watching out for predators (Lamb et al., 2019). Group 
cohesion promotes social interactions and improves a flock’s ability to 
utilise resources and guarantee security from predation. We found that 
juveniles and adults synchronize their moult (Table 1 and 2). As they 
grow, chicks devote a lot of time to rest and vigilance, which could 
enhance the moult process. Growing juveniles need optimal habitat 
conditions with an abundance of protein food (invertebrates and seeds) 
and the best height and density of vegetation to hide from predators, 
thereby reducing the risks associated with limited flight capacity (Kiat 
and Sapir, 2018). The amount of food and cover available depends on 
the weather. 

Our data show that the end of moult varies by year according to 
weather and resource availability. During moult, birds combine an 
environment rich in resources with secretive behaviour to reduce ac
tivity, minimise energy expenditure, and lower predation risk (Martin 
et al., 2018; Panek and Majewski, 1990). Birds also alter their escape 
flight behaviour to compensate for the reduction in performance when 
flying with wing gaps (Tomotani et al., 2018a). For example, northern 
hemisphere waterfowl species moult where the risk of predation is 
lower, during periods of warmer temperatures and before food supplies 
and the availability of aquatic habitats approach their winter minima. 
By contrast, southern hemisphere waterfowl delay the onset of moult 
until the dry season, opting to moult when both food and aquatic hab
itats are scarce (Ndlovu et al., 2017b). Moult requires large amounts of 
nutrients and energy to accommodate various metabolic and physio
logical changes, as vascularization, blood volume and erythrocyte levels 
increase (Marmillot et al., 2016). Protein turnover rate increases in birds 
growing new feathers (Ben-Hamo et al., 2017). The nutritional benefit of 
habitats rich in protein foods has a strong effect on the timing and 
location of moulting, and this seasonal constraint places limits on the 
moult schedule (Kiat and Sapir, 2017; Szép et al., 2019). For example, 
the speed of flight-feather renewal in insectivorous birds is slightly 
higher in years with higher rainfall and a greater abundance of insects 
(Saino et al., 2017). The minimum resting metabolic rate increases over 
the moult period by up to 40–63% (Buttemer et al., 2019). Intrinsic 
factors depend on a sufficient food supply which in turn depends on the 
weather. 

Our results show that completion of moult varies widely between: 
individuals (according to size); age-sex classes (according to biology); 
social groups (according to behaviour); and years (according to 
weather). Because of their differing biological characteristics, different 
age and sex classes have their own requirements, although in the pop
ulation as a whole they complement each other to gain biological effi
ciency (Nadal et al., 2018b). In prey species, females generally invest 
more effort in parental tasks (e.g. incubation and chick-rearing) than 
males (Cockburn, 2006). In line with our data, the proportion of adult 
females that synchronize their moult with juveniles is generally higher; 
females adjust their moult to accommodate the need to find food and 

accompany their chicks. In raptor species, the timing of adult moult is 
reversed; adult females moult earlier than adult males (Ramírez and 
Panuccio, 2019; Zuberogoitia et al., 2018). Flexibility in the timing of 
moult is widespread in both resident and migratory birds (Rohwer et al., 
2011) and the extent of the primary moult varies substantially between 
species (Rohwer et al., 2009). In juvenile passerines, the duration and 
advance in timing of moult has increased over the last 212 years, in line 
with environmental warming (Kiat et al., 2019b). Ecological conditions 
affect moult and wing morphology (Matloff et al., 2020). Fresh feathers 
play a role in conspecific and heterospecific interactions, resistance to 
parasites, natural and sexual selection (Wright et al., 2018), and sea
sonal behaviour and new annual cycle stages often follow periods of 
moult. 

Moult strategies, the timing and overlaps of moult and other activ
ities, vary between sedentary and migratory birds, and also with lati
tude. Sedentary and short-distance migrants normally overlap breeding 
and moult, while long-distance migrants exhibit more than eight 
different moult strategies (Newton, 2009). Migratory species may 
perform partial primary moults, suspending moult once a certain feather 
series has been renewed, and delaying moult of the remaining feathers 
until arrival in the winter quarters (Tonra and Reudink, 2018). Water
fowl are flightless during moult and face associated risks in stopover/ 
staging areas (Ndlovu et al., 2017a). Our results show that overlap be
tween breeding and moult favour synchrony in the moult of adults and 
young. Some species appear to avoid overlapping active migration with 
moult and perform either rapid and shorter, or slower and more pro
tracted moults. Others overlap moult and migration, performing a slow, 
continuous moult depending on migration distance and duration (Ginn 
and Melville, 1983). Different fluctuations in body mass and pectoral 
muscle size during flight-feather moult are associated with interspecific 
differences in their moult strategy (Ndlovu et al., 2017a). 

Eighty per cent of passerines in tropical areas exhibit moult-breeding 
overlap, and compensate by growing new feathers slowly (Echeverry- 
Galvis and Hau, 2013). Moult while breeding may be more common in 
larger species because the length of the reproductive period, as well as 
the time required to replace large flight-feathers, increases with body 
size (Rohwer et al., 2009; Jenni et al., 2020). Moult-breeding overlap is a 
common strategy in precocial and sedentary birds, which can take 
advantage of abundant protein foods and plenty of vegetation cover to 
minimize the impact of predation and therefore can synchronise sea
sonality (time) with habitat quality (resources) (Szép et al., 2019). Ac
cording to our results, Alectoris species synchronise shedding and growth 
of primary feathers in juveniles and adults (Tables 1 and 2, Supple
mentary Material 2). Flight-feather growth patterns develop early dur
ing embryogenesis, much earlier than for other feather types (Kondo 
et al., 2018). Our results show that moult lasts for 100 days in chicks and 
130 days in adults and that chicks begin moult 30 days after hatching, 
thereby synchronising the end of their moult with adults (Fig. 4). In the 
Common Ground Dove Columbina passerina (an altricial species) juve
niles usually have more than two adjacent feathers growing simulta
neously, and replace their primaries in about 100 days. In contrast, 
adults, which overlap moult and breeding extensively, usually grow just 
a single primary at a time and take at least 145 days to replace all of their 
primaries (Rohwer and Rohwer, 2018). 

The date of moult changes each year because it fits with reproduc
tion, which is timed to vegetation growth and cereal (food) ripening 
which in turn depends on the weather conditions and seasonality of the 
year in question. Our results suggest that date and social interactions can 
also change the timing of moult (Supplementary Material 1). The end of 
primary moult generally matches the end of breeding and gives way to 
the beginning of a new cycle for the population (Mettke-Hofmann et al., 
2010). Seeds germinate with the autumn rain and new growth covers the 
soil, bringing food for partridges. After the moult, the birds acquire 
critical pigments essential for intraspecific interactions (Mcgraw et al., 
2006; Reudink et al., 2009) and ectoparasite resistance (Gunderson 
et al., 2008). After wintering in a flock, partridges begin pair formation 
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and then enter the nesting period. Primary moult begins in adults during 
the hatching period, while in chicks it occurs just one month after 
hatching (Fig. 4, Table 2). The weather generally depends on date and 
drives habitat characteristics and phenology, which in turn modulate 
the moult. Furthermore, the age and sex class affect social cohesion, 
which in turn modulates the moult (Fig. 6). 

Bird moult advances with global warming probably because warm
ing advances seasonality, which drives the timing of the biological cycle 
(Miller-Rushing et al., 2010). Sedentary birds such as the Red-legged 
Partridge provide useful comparisons of warming effects between 
years. This contrasts with migratory species that divide their annual 
cycle between different geographical regions and are therefore more 
difficult to understand in relation to global warming. The mobile species 
can change their location to better habitats according to shifts in the 
timing of seasonal conditions, and so ameliorate the effects of warming 
(Samplonius et al., 2018). In the hottest years, breeding and moult end 
early, and so could reduce reproductive success (Fig. 5). Warming causes 
birds to moult earlier (breeding period decreases) as the juvenile sex 
ratio increases, and so could lead to population decline (Visser and 
Gienapp, 2019). Conversely, when moult is delayed, the autumn pop
ulation increases. This downward trend in population productivity will 
continue as temperatures continue to rise progressively year on year. We 
can therefore use the monitoring of a bird’s moult timing to assess the 
impacts of warming on wildlife, and assess the resulting effects on 
ecological processes and ecosystem services (Inger et al., 2015). 
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