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Abstract6

Humans and other animals learn to extract general concepts from sensory experience without7

extensive teaching. This ability is thought to be facilitated by offline states like sleep where previous8

experiences are systemically replayed. However, the characteristic creative nature of dreams sug-9

gests that learning semantic representations may go beyond merely replaying previous experiences.10

We support this hypothesis by implementing a cortical architecture inspired by generative adver-11

sarial networks (GANs). Learning in our model is organized across three different global brain12

states mimicking wakefulness, NREM and REM sleep, optimizing different, but complementary13

objective functions. We train the model on standard datasets of natural images and evaluate the14

quality of the learned representations. Our results suggest that generating new, virtual sensory in-15

puts via adversarial dreaming during REM sleep is essential for extracting semantic concepts, while16

replaying episodic memories via perturbed dreaming during NREM sleep improves the robustness17

of latent representations. The model provides a new computational perspective on sleep states,18

memory replay and dreams and suggests a cortical implementation of GANs.19

Keywords: Sleep, REM, NREM, representation learning, cortical networks, GANs20

1 Introduction21

After just a single night of bad sleep, we are acutely aware of the importance of sleep for orderly22

body and brain function. In fact, it has become clear that sleep serves multiple crucial physiological23

functions (Siegel, 2009; Xie et al., 2013), and growing evidence highlights its impact on cognitive24

processes (Walker, 2009). Yet, a lot remains unknown about the precise contribution of sleep, and in25

particular dreams, on normal brain function.26

One remarkable cognitive ability of humans and other animals lies in the extraction of general27

concepts and statistical regularities from sensory experience without extensive teaching (Bergelson28

and Swingley, 2012). Such regularities in the sensorium are reflected on the neuronal level in invariant29

object-specific representations in high-level areas of the visual cortex (Grill-Spector et al., 2001; Hung30

et al., 2005; DiCarlo et al., 2012) on which downstreams areas can operate. These so called semantic31

representations are progressively constructed and enriched over an organism’s lifetime (Tenenbaum32

et al., 2011; Yee et al., 2013) and their emergence is hypothesized to be facilitated by offline states33

such as sleep (Dudai et al., 2015).34

Previously, several cortical models have been proposed to explain how offline states could contribute35

to the emergence of high-level, semantic representations. Stochastic hierarchical models which learn36

to maximize the likelihood of observed data under a generative model such as the Helmholtz machine37

(Dayan et al., 1995) and the closely related Wake-Sleep algorithm (Hinton et al., 1995; Bornschein and38

Bengio, 2015) have demonstrated the potential of combining online and offline states to learn semantic39
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†Joint senior authorship.
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representations. However, these models do not leverage offline states to improve their generative model40

but are explicitly trained to reproduce sensory inputs during wakefulness. In contrast, most dreams41

during REM sleep exhibit realistic imagery beyond past sensory experience (Fosse et al., 2003; Nir and42

Tononi, 2010; Wamsley, 2014) suggesting learning principles which go beyond mere reconstructions.43

In parallel, cognitive models inspired by psychological studies of sleep proposed a "trace transforma-44

tion theory" where semantic knowledge is actively extracted in the cortex from replayed hippocampal45

episodic memories (Nadel and Moscovitch, 1997; Winocur et al., 2010; Lewis and Durrant, 2011).46

However, these models lack a mechanistic implementation compatible with cortical structures and47

only consider the replay of waking activity during sleep.48

Recently, implicit generative models which do not explicitly try to reconstruct observed sensory49

inputs, and in particular generative adversarial networks (GANs; Goodfellow et al., 2014), have been50

successfully applied in machine learning to generate new but realistic data from random patterns.51

This ability has been shown to be accompanied by the learning of disentangled and semantically52

meaningful representations (Radford et al., 2015; Donahue et al., 2016; Liu et al., 2021). They thus53

may provide computational principles for learning cortical semantic representations during offline states54

by generating previously unobserved sensory content as reported from dream experiences.55

Most dreams experienced during rapid-eye-movement (REM) sleep only incorporate fragments of56

previous waking experience, often intermingled with past memories (Schwartz, 2003). Suprisingly, such57

random combinations of memory fragments often results in visual experiences which are perceived as58

highly structured and realistic by the dreamer. The striking similarity between the inner world of59

dreams and the external world of wakefulness suggests that the brain actively creates novel experi-60

ences by rearranging stored episodic patterns in a meaningful manner (Nir and Tononi, 2010). A61

few hypothetical functions were attributed to this phenomenon, such as enhancing creative problem62

solving by building novel associations between unrelated memory elements (Cai et al., 2009; Llewellyn,63

2016a; Lewis et al., 2018), forming internal prospective codes oriented toward future waking experi-64

ences (Llewellyn, 2016b), or refining a generative model by minimizing its complexity and improving65

generalization (Hobson et al., 2014; Hoel, 2021). However, these theories do not consider the role of66

dreams for a more basic function, such as the formation of semantic cortical representations.67

Here, we propose that dreams, and in particular their creative combination of episodic memories,68

play an essential role in forming semantic representations over the course of development. The forma-69

tion of representations which abstract away redundant information from sensory input and which can70

thus be easily used by downstream areas is an important basis for memory semantization. To support71

this hypothesis, we introduce a new, functional model of cortical representation learning. The central72

ingredient of our model is a creative generative process via feedback from higher to lower cortical73

areas which mimics dreaming during REM sleep. This generative process is trained to produce more74

realistic virtual sensory experience in an adversarial fashion by trying to fool an internal mechanism75

distinguishing low-level activities between wakefulness and REM sleep. Intuitively, generating new but76

realistic sensory experiences, instead of merely reconstructing previous observations, requires the brain77

to understand the composition of its sensorium. In line with transformation theories, this suggests78

that cortical representations should carry semantic, decontextualized gist information.79

We implement this model in a cortical architecture with hierarchically organized forward and80

backward pathways, loosely inspired by GANs. The connectivity of the model is adapted by gradient-81

based synaptic plasticity, optimizing different, but complementary objective functions depending on82

the brain’s global state. During wakefulness, the model learns to recognize that low-level activity is83

externally-driven, stores high-level representations in the hippocampus, and tries to predict low-level84

from high-level activity (Figure 1a). During NREM sleep, the model learns to reconstruct replayed85

high-level activity patterns from generated low-level activity, perturbed by virtual occlusions, referred86

to as perturbed dreaming (Figure 1b). During REM sleep, the model learns to generate realistic87

low-level activity patterns from random combinations of several hippocampal memories and spon-88

taneous cortical activity, while simultaneously learning to distinguish these virtual experiences from89

externally-driven waking experiences, referred to as adversarial dreaming (Figure 1c). Together with90

the wakefulness, the two sleep states, NREM and REM, jointly implement our model of Perturbed and91

Adversarial Dreaming (PAD).92
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Figure 1: Cortical representation learning through perturbed and adversarial dreaming (PAD).
(a) During wakefulness (Wake), cortical feedforward pathways learn to recognize that low-level activity is
externally-driven and feedback pathways learn to reconstruct it from high-level neuronal representations. These
high-level representations are stored in the hippocampus. (b) During NREM sleep (NREM), feedforward
pathways learn to reconstruct high-level activity patterns replayed from the hippocampus affected by low-level
perturbations, referred to as perturbed dreaming. (c) During REM sleep (REM), feedforward and feedback
pathways operate in an adversarial fashion, referred to as adversarial dreaming. Feedback pathways generate
virtual low-level activity from combinations of multiple hippocampal memories and spontaneous cortical activity.
While feedforward pathways learn to recognize low-level activity patterns as internally generated, feedback
pathways learn to fool feedforward pathways.

Over the course of learning, constrained by its architecture and the prior distribution of latent93

activities, our cortical model trained on natural images develops rich latent representations along with94

the capacity to generate plausible early sensory activities. We demonstrate that adversarial dreaming95

during REM sleep is essential for learning representations organized according to object semantics,96

which are improved and robustified by perturbed dreaming during NREM sleep. Together, our results97

demonstrate a potential role of dreams and suggest complementary functions of REM and NREM sleep98

in cortical representation learning.99

2 Results100

2.1 Complementary objectives for wakefulness, NREM and REM sleep101

We consider an abstract model of the visual ventral pathway consisting of multiple, hierarchically102

organized cortical areas, with a feedforward pathway, or encoder, transforming neuronal activities103

from lower to higher areas (Figure 2, E). These high-level activities are compressed representations104

of low-level activities and are called latent representations, here denoted by z. In addition to this105

feedforward pathway, we similarly model a feedback pathway, or generator, projecting from higher106

to lower areas (Figure 2, G). These two pathways are supported by a simple hippocampal module107

which can store and replay latent representations. Three different global brain states are considered:108

wakefulness (Wake), non-REM sleep (NREM) and REM sleep (REM). We focus on the functional role109

of these phases while abstracting away dynamical features such as bursts, spindles or slow waves (Léger110

et al., 2018), in line with previous approaches based on goal-driven modeling which successfully predict111

physiological features along the ventral stream (Yamins et al., 2014; Zhuang et al., 2021).112

In our model, the three brain states only differ in their objective function and the presence or113

absence of external input. Synaptic plasticity performs stochastic gradient descent on state-specific114

objective functions via error backpropagation (LeCun et al., 2015). We assume that efficient credit115

assignment is realized in the cortex, and focus on the functional consequences of our specific architec-116

ture. For potential implementations of biophysically plausible backpropagation in cortical circuits, we117

refer to previous work (e.g., Whittington and Bogacz, 2019; Lillicrap et al., 2020).118
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Figure 2: Different objectives during wakefulness, NREM, and REM sleep govern the or-
ganization of feedforward and feedback pathways in PAD The variable x corresponds to 32x32
image, z is a 256-dimensional vector representing the latent layer (higher sensory cortex). Encoder
(E, green) and generator (G, blue) networks project bottom-up and top-down signals between lower
and higher sensory areas. An oblique arrow (↗) indicates that learning occurs in a given pathway.
(a) During Wake, low-level activities x are reconstructed. At the same time, E learns to classify low-
level activity as external (red target ‘external!’) with its output discriminator d. The obtained latent
representations z are stored in the hippocampus. (b) During NREM, the activity z stored during
wakefulness is replayed from the hippocampal memory and regenerates visual input from the previous
day perturbed by occlusions, modelled by squares of various sizes applied along the generated low-level
activity with a certain probability (see Methods). In this phase, E adapts to reproduce the replayed
latent activity. (c) During REM, convex combinations of multiple random hippocampal memories (z
and zold) and spontaneous cortical activity (ϵ), here with specific prefactors, generate a virtual activity
in lower areas. While the encoder learns to classify this activity as internal (red target ‘internal!’), the
generator adversarially learns to generate visual inputs that would be classified as external. The red
minus on G indicates the inverted plasticity implementing this adversarial training.

During Wake (Figure 2a), sensory inputs evoke activities x in lower sensory cortex which are119

transformed via the feedforward pathway E into latent representations z in higher sensory cortex. The120

hippocampal module stores these latent representations, mimicking the formation of episodic memories.121

Simultaneously, the feedback pathway G generates low-level activities x′ from these representations.122

Synaptic plasticity adapts the encoding and generative pathways (E and G) to minimize the mismatch123

between externally-driven and internally-generated activities (Figure 2a). Thus, the network learns to124

reproduce low-level activity from abstract high-level representations. Simultaneously, E also acts as a125

‘discriminator’ with output d that is trained to become active, reflecting that the low-level activity was126

driven by an external stimuli. The discriminator learning during Wake is essential to drive adversarial127

learning during REM. Note that computationally the classification of low-level cortical activities into128

“externally driven” and “internally generated” is not different from classification into, for example,129

different object categories, even though conceptually they serve different purposes. The dual use of E130

reflects a view of cortical information processing in which several network functions are preferentially131

shared among a single network mimicking the ventral visual stream (DiCarlo et al., 2012). This132

approach has been previously successfully employed in machine learning models (Huang et al., 2018;133

Brock et al., 2017; Ulyanov et al., 2017; Munjal et al., 2019; Bang et al., 2020).134

For the subsequent sleep phases, the system is disconnected from the external environment, and ac-135

tivity in lower sensory cortex is driven by top-down signals originating from higher areas, as previously136
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suggested (Nir and Tononi, 2010; Aru et al., 2020). During NREM (Figure 2b), latent representations137

z are recalled from the hippocampal module, corresponding to the replay of episodic memories. These138

representations generate low-level activities which are perturbed by suppressing early sensory neurons,139

modeling the observed differences between replayed and waking activities (Ji and Wilson, 2007). The140

encoder reconstructs latent representations from these activity patterns, and synaptic plasticity adjusts141

the feedforward pathway to make the latent representation of the perturbed generated activity similar142

to the original episodic memory. This process defines perturbed dreaming.143

During REM (Figure 2c), sleep is characterized by creative dreams generating realistic virtual144

sensory experiences out of the combination of episodic memories (Fosse et al., 2003; Lewis et al., 2018).145

In PAD, multiple random episodic memories from the hippocampal module are linearly combined and146

projected to cortex. Reflecting the decreased coupling (Wierzynski et al., 2009; Lewis et al., 2018)147

between hippocampus and cortex during REM sleep, these mixed representations are diluted with148

spontaneous cortical activity, here abstracted as Gaussian noise with zero mean and unit variance.149

From this new high-level cortical representation, activity in lower sensory cortex is generated and150

finally passed through the feedforward pathway. Synaptic plasticity adjusts feedforward connections E151

to silence the activity of the discriminator output as it should learn to distinguish it from externally-152

evoked sensory activity. Simultaneously, feedback connections are adjusted adversarially to generate153

activity patterns which appear externally-driven and thereby trick the discriminator into believing154

that the low-level activity was externally-driven. This is achieved by inverting the sign of the errors155

that determine synaptic weight changes in the generative network. This process defines adversarial156

dreaming.157

The functional differences between our proposed NREM and REM sleep phases are motivated by158

experimental data describing a reactivation of hippocampal memories during NREM sleep and the159

occurrence of creative dreams during REM sleep. In particular, hippocampal replay has been reported160

during NREM sleep within sharp-wave-ripples (O’Neill et al., 2010), also observed in the visual cortex161

(Ji and Wilson, 2007), which resembles activity from wakefulness. Our REM sleep phase is built162

upon cognitive theories of REM dreams (Llewellyn, 2016b; Lewis et al., 2018) postulating that they163

emerge from random combinations between episodic memory elements, sometimes remote from each164

other, which appear realistic for the dreamer. This random coactivation could be caused by theta165

oscillations in the hippocampus during REM sleep (Buzsáki, 2002). The addition of cortical noise166

is motivated by experimental work showing reduced correlations between hippocampal and cortical167

activity during REM sleep (Wierzynski et al., 2009), and the occurence of ponto-geniculo-occipital168

(PGO) waves (Nelson et al., 1983) in the visual cortex often associated with generation of novel169

visual imagery in dreams (Hobson et al., 2000, 2014). Furthermore, the cortical contribution in REM170

dreaming is supported by experimental evidence that dreaming still occurs with hippocampal damage,171

while reported to be less episodic-like in nature (Spanò et al., 2020).172

Within our suggested framework, ‘dreams’ arise as early sensory activity that is internally-generated173

via feedback pathways during offline states, and subsequently processed by feedforward pathways.174

In particular, this implies that besides REM dreams, NREM dreams exist. However, in contrast175

to REM dreams, which are significantly different from waking experiences (Fosse et al., 2003), our176

model implies that NREM dreams are more similar to waking experiences since they are driven by177

single episodic memories, in contrast to REM dreams which are generated from a mixture of episodic178

memories. Furthermore, the implementation of adversarial dreaming requires an internal representation179

of whether early sensory activity is externally or internally generated, i.e., a distinction whether a180

sensory experience is real or imagined.181

2.2 Dreams become more realistic over the course of learning182

Dreams in our model arise from both NREM (perturbed dreaming) and REM (adversarial dreaming)183

phases. In both cases, they are characterized by activity in early sensory areas generated via feedback184

pathways. To illustrate learning in PAD, we consider these low-level activities during NREM and185

during REM for a model with little learning experience ("early training") and a model which has186

experienced many wake-sleep cycles ("late training"; Figure 3). A single wake-sleep cycle consists187

of Wake, NREM and REM phases. As an example, we train our model on a dataset of natural188
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Figure 3: Both NREM and REM dreams become more realistic over the course of learning.
(a) Examples of sensory inputs observed during wakefulness. Their corresponding latent representa-
tions are stored in the hippocampus. (b, c) Single episodic memories (latent representations of stimuli)
during NREM from the previous day and combinations of episodic memories from the two previous
days during REM are recalled from hippocampus and generate early sensory activity via feedback
pathways. This activity is shown for early (epoch 1) and late (epoch 50) training stages of the model.
(d) Discrepancy between externally-driven and internally-generated early sensory activity as measured
by the Fréchet inception distance (FID) (Heusel et al., 2018) during NREM and REM for networks
trained on CIFAR-10 (top) and SVHN (bottom). Lower distance reflects higher similarity between
sensory-evoked and generated activity. Error bars indicate ±1 SEM over 4 different initial conditions.

images (CIFAR-10; Krizhevsky et al., 2013) and a dataset of images of house numbers (SVHN; Netzer189

et al., 2011). Initially, internally-generated low-level activities during sleep do not share significant190

similarities with sensory-evoked activities from Wake (Figure 3a); for example, no obvious object shapes191

are represented (Figure 3b). After plasticity has organized network connectivity over many wake-192

sleep cycles (50 training epochs), low-level internally-generated activity patterns resemble sensory-193

evoked activity (Figure 3c). NREM-generated activities reflect the sensory content of the episodic194

memory (sensory input from the previous day). REM-generated activities are different from the sensory195

activities corresponding to the original episodic memories underlying them as they recombine features196

of sensory activities from the two previous days, but still exhibit a realistic structure. This increase in197

similarity between externally-driven and internally-generated low-level activity patterns is also reflected198

in a decreasing Fréchet inception distance (Figure 3d), a metric used to quantify the realism of generated199

images (Heusel et al., 2018). The increase of dreams realism, here mostly driven by a combination200

of reconstruction learning (Wake) and adversarial learning (Wake and REM), correlates with the201

development of dreams in children, that are initially plain and fail to represent objects, people, but202

become more realistic and structured over time (Foulkes, 1999; Nir and Tononi, 2010).203

The PAD training paradigm hence leads to internally-generated low-level activity patterns that204

become more difficult to discern from externally-driven activities, whether they originate from single205

episodic memories during NREM or from noisy random combinations thereof during REM. We will next206

demonstrate that the same learning process leads to the emergence of robust semantic representations.207

2.3 Adversarial dreaming during REM facilitates the emergence of semantic rep-208

resentations209

Semantic knowledge is fundamental for animals to learn quickly, adapt to new environments and210

communicate, and is hypothesized to be held by so-called semantic representations in cortex (DiCarlo211

et al., 2012). An example of such semantic representations are neurons from higher visual areas that212

contain linearly separable information about object category, invariant to other factors of variation,213
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Figure 4: Adversarial dreaming during REM improves the linear separability of the latent
representation. (a) A linear classifier is trained on the latent representations z inferred from an
external input x to predict its associated label (here, the category ‘car’). (b) Training phases and
pathological conditions: full model (PAD , black), no REM phase (P��@@AD, pink) and PAD with a REM
phase using a single episodic memory only (‘w/o memory mix’, purple). (c, d) Classification accuracy
obtained on test datasets (c: CIFAR-10; d: SVHN) after training the linear classifier to convergence on
the latent space z for each epoch of the E-G-network learning. Full model (PAD): black line; without
REM (P��@@AD): pink line; with REM, but without memory mix: purple line. Solid lines represent mean
and shaded areas indicate ±1 SEM over 4 different initial conditions.

such as background, orientation or pose (Grill-Spector et al., 2001; Hung et al., 2005; Majaj et al.,214

2015).215

Here we demonstrate that PAD, due to the specific combination of plasticity mechanisms during216

Wake, NREM and REM, develops such semantic representations in higher visual areas. Similarly as217

in the previous section, we train our model on the CIFAR-10 and SVHN datasets. To quantify the218

quality of inferred latent representations, we measure how easily downstream neurons can read out219

object identity from these. For a simple linear read-out, its classification accuracy reflects the linear220

separability of different contents represented in a given dataset. Technically, we train a linear classifier221

that distinguishes object categories based on their latent representations z after different numbers of222

wake-sleep cycles (‘epochs’, Figure 4a) and report its accuracy on data not used during training of the223

model and classifier (“test data”). While training the classifier, the connectivity of the network (E and224

G) is fixed.225

The latent representation (z) emerging from the trained network (Figure 4b, full model) shows226

increasing linear separability reaching around 59% test accuracy on CIFAR-10 (Figure 4c, black line,227

for details see Appendix 1-Table 1) and 79% on SVHN (Figure 4d, black line), comparable to less228

biologically plausible machine-learning models (Berthelot et al., 2018). These results show the ability229

of PAD to discover semantic concepts across wake-sleep cycles in an unsupervised fashion.230

Within our computational framework, we can easily consider sleep pathologies by directly interfering231

with the sleep phases. To highlight the importance of REM in learning semantic representations, we232
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consider a reduced model (P��@@AD) in which the REM phase with adversarial dreaming is suppressed and233

only perturbed dreaming during NREM remains (Figure 4b, pink cross). Without REM sleep, linear234

separability increases much slower and even after a large number of epochs remains significantly below235

the PAD (see also Appendix 1-Figure 3c,d). This suggests that adversarial dreaming during REM,236

here modeled by an adversarial game between feedforward and feedback pathways, is essential for the237

emergence of easily readable, semantic representations in the cortex. From a computational point of238

view, this result is in line with previous work showing that learning to generate virtual inputs via239

adversarial learning (GANs variants) forms better representations than simply learning to reproduce240

external inputs (Radford et al., 2015; Donahue et al., 2016; Berthelot et al., 2018).241

Finally, we consider a different pathology in which REM is not driven by randomly combined242

episodic memories and noise, but by single episodic memories without noise, as during NREM (Fig-243

ure 4b, purple cross). Similarly to removing REM, linear separability increases much slower across244

epochs, leading to worse performance of the readout (Figure 4c,d, purple lines). For the SVHN dataset,245

the performance does not reach the level of the PAD even after many wake-sleep cycles (see also Ap-246

pendix 1-Figure 3d). This suggests that combining different, possibly non-related episodic memories,247

together with spontaneous cortical activity, as reported during REM dreaming (Fosse et al., 2003),248

leads to significantly faster representation learning.249

Our results suggest that generating virtual sensory inputs during REM dreaming, via a high-level250

combination of hippocampal memories and spontaneous cortical activity and subsequent adversar-251

ial learning, allow animals to extract semantic concepts from their sensorium. Our model provides252

hypotheses about the effects of REM deprivation, complementing pharmacological and optogenetic253

studies reporting impairments in the learning of complex rules and spatial object recognition (Boyce254

et al., 2016). For example, our model predicts that object identity would be less easily decodable from255

recordings of neuronal activity in the Inferior-Temporal (IT) cortex in animal models with chronically256

impaired REM sleep.257

2.4 Perturbed dreaming during NREM improves robustness of semantic repre-258

sentations.259

Generalizing beyond previously experienced stimuli is essential for an animal’s survival. This general-260

ization is required due to natural perturbations of sensory inputs, for example partial occlusions, noise,261

or varying viewing angles. These alter the stimulation pattern, but in general should not change its262

latent representation subsequently used to make decisions.263

Here, we model such sensory perturbations by silencing patches of neurons in early sensory areas264

during the stimulus presentation (Figure 5a). As before, linear separability is measured via a linear265

classifier that has been trained on latent representations of un-occluded images and we use stimuli266

which were not used during training. Adding occlusions hence directly tests the out-of-distribution267

generalization capabilities of the learned representations. For the model trained with all phases (Fig-268

ure 5b, full model), the linear separability of latent representations decreases as occlusion intensity269

increases, until reaching chance level for fully occluded images (Figure 5c,d; black line).270

We next consider a sleep pathology in which we suppress perturbed dreaming during the NREM271

phase while keeping adversarial dreaming during REM (�SPAD, Figure 5b, orange cross). In �SPAD,272

linear separability of partially occluded images is significantly decreased for identical occlusion levels273

(Figure 5c,d; compare black and orange lines). In particular, performance degrades much faster with274

increasing occlusion levels. Note that despite the additional training objective, the full PAD devel-275

ops equally good or even better latent representations of unoccluded images (0% occlusion intensity)276

compared to this pathological condition without perturbed dreams.277

Crucially, the perturbed dreams in NREM are generated by replaying single episodic memories. If278

the latent activity fed to the generator during NREM was of similar origin as during REM, i.e. obtained279

from a convex combination of multiple episodic memories coupled with cortical spontaneous activity,280

the quality of the latent representations significantly decreases (see also Appendix 1-Figure 6). This281

suggests that only replaying single memories, as hypothesized to occur during NREM sleep (O’Neill282

et al., 2010), rather than their noisy combination, is beneficial to robustify latent representations283

against input perturbations.284
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Figure 5: Perturbed dreaming during NREM improves robustness of latent representa-
tions. (a) A trained linear classifier (cf. Figure 4) infers class labels from latent representations. The
classifier was trained on latent representations of original images, but evaluated on representations of
images with varying levels of occlusion. (b) Training phases and pathological conditions: full model
(PAD, black), without NREM phase (�SPAD, orange). (c, d) Classification accuracy obtained on test
dataset (C: CIFAR-10; D: SVHN) after 50 epochs for different levels of occlusion (0 to 100%). Full
model (PAD): black line; w/o NREM (�SPAD): orange line. SEM over 4 different initial conditions over-
lap with data points. Note that due to an unbalanced distribution of samples the highest performance
of a naive classifier is 18.9% for the SVHN dataset.
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Figure 6: Effects of NREM and REM sleep on latent representations. (a) Inputs x are
mapped to their corresponding latent representations z via the encoder E. Principal Component
Analysis (Jolliffe and Cadima, 2016) is performed on the latent space to visualize its structure (b-d).
Clustering distances (e,f) are computed directly on latent features z. (b, c, d) PCA visualization
of latent representations projected on the first two principal components. Full circles represent clean
images, open circles represent images with 30% occlusion. Each color represents an object category
from the SVHN dataset (purple:‘0’, cyan:‘1’, yellow:‘2’, red:‘3’). (e) Ratio between average intra-class
and average inter-class distances in latent space for randomly initialized networks (no training, grey),
full model (black), model trained without REM sleep (w/o REM, pink) and model trained without
NREM sleep (w/o NREM, orange) for un-occluded inputs. (f) Ratio between average clean-occluded
(30% occlusion) and average inter-class distances in latent space for full model (black), w/o REM
(pink) and w/o NREM (orange). Error bars represent SEM over 4 different initial conditions.

This robustification originates from the training objective defined in the NREM phase, forcing285

feedforward pathways to map perturbed inputs to the latent representation corresponding to their286

clean, non-occluded version. This procedure is reminiscent of a regularization technique from machine287

learning called ‘data augmentation’ (Shorten and Khoshgoftaar, 2019), which increases the amount of288

training data by adding stochastic perturbations to each input sample. However, in contrast to data289

augmentation methods which directly operate on samples, here the system autonomously generates290

augmented data in offline states, preventing interference with online cognition and avoiding storage of291

the original samples. Our ‘dream augmentation’ suggests that NREM hippocampal replay not only292

maintains or strengthens cortical memories, as traditionally suggested (Klinzing et al., 2019), but also293

improves latent representations when only partial information is available. For example, our model294

predicts that animals lacking such dream augmentation, potentially due to impaired NREM sleep, fail295

to react reliably to partially occluded stimuli even though their responses to clean stimuli are accurate.296

2.5 Latent organization in healthy and pathological models297

The results so far demonstrate that perturbed and adversarial dreaming (PAD), during REM and298

NREM sleep states, contribute to cortical representation learning by increasing the linear separability299

of latent representations into object classes. We next investigate how the learned latent space is300

organized, i.e., whether representations of sensory inputs with similar semantic content are grouped301

10



together even if their low-level structure may be quite different, for example due to different viewing302

angles, variations among an object category, or (partial) occlusions.303

We illustrate the latent organization by projecting the latent variable z using Principal Component304

Analysis (PCA, Figure 6a, Jolliffe and Cadima, 2016). This method is well-suited for visualizing305

high-dimensional data in a low-dimensional space while preserving as much of the data’s variation as306

possible.307

For PAD, the obtained PCA projection shows relatively distinct clusters of latent representations308

according to the semantic category ("class identity") of their corresponding images (Figure 6b). The309

model thus tends to organize latent representations such that high-level, semantic clusters are discern-310

able. Furthermore, partially occluded objects (Figure 6b, empty circles) are represented closeby their311

corresponding un-occluded version (Figure 6b, full circles).312

As shown in the previous sections, removing either REM or NREM has a negative impact on the313

linear separability of sensory inputs. However, the reasons for these effects are different between REM314

and NREM. If REM sleep is removed from training (P��@@AD), representations of unoccluded images are315

less organized according their semantic category, but still match their corresponding occluded versions316

(Figure 6c). REM is thus necessary to organize latent representations into semantic clusters, providing317

an easily readable representation for downstream neurons. In contrast, removing NREM (�SPAD) causes318

representations of occluded inputs to be remote from their un-occluded representations (Figure 6d).319

We quantify these observations by computing the average distances between latent representations320

from the same object category (intra-class distance) and between representations of different object321

category (inter-class distance). Since the absolute distances are difficult to interpret, we focus on their322

ratio (Figure 6e). On both datasets, this ratio increases if the REM phase is removed from training323

(Figure 6e, compare black and pink bars), reaching levels comparable to the one with the untrained324

network. Moreover, removing NREM from training also increases this ratio. These observations suggest325

that both perturbed and adversarial dreaming jointly reorganize the latent space such that stimuli with326

similar semantic structure are mapped to similar latent representations. In addition, we compute the327

distance between the latent representations inferred from clean images and their corresponding occluded328

versions, also divided by the inter-class distance (Figure 6f). By removing NREM from training, this329

ratio increases significantly, highlighting the importance of NREM in making latent representations330

invariant to input perturbations.331

2.6 Cortical implementation of PAD332

We have shown that perturbed and adversarial dreaming (PAD) can learn semantic cortical repre-333

sentations useful for downstream tasks. Here we hypothesize how the associated mechanisms may be334

implemented in cortex.335

First, PAD implies the existence of discriminator neurons that would learn to be differentially ac-336

tive during wakefulness and REM sleep. It also postulates a conductor that orchestrates learning by337

providing a teaching (‘nudging’) signal to the discriminator neurons during Wake and REM. Experi-338

mental evidence suggests that discriminator neurons, differentiating between internally generated end339

externally driven sensory activity, may reside in the anterior cingulate cortex (ACC) or the medial340

prefrontal cortex (mPFC), but functionally similar neurons may be located across cortex to deliver341

local learning signals (Subramaniam et al., 2012; Simons et al., 2017; Gershman, 2019; Benjamin and342

Kording, 2021).343

Second, learning in PAD is orchestrated across three different phases: (i) learning stimulus re-344

construction during Wake, (ii) learning latent variable reconstruction during NREM sleep (’perturbed345

dreaming’), and (iii) learning to generate realistic sensory activity during REM sleep (’adversarial346

dreaming’). Our model suggests that objective functions and synaptic plasticity are affected by these347

phases (Figure 7). Wakefulness is associated with increased activity of modulatory brainstem neu-348

rons releasing neuromodulators such as acetylcholine (ACh) and noradrenaline (NA), hypothesized to349

prioritize the amplification of information from external stimuli (Adamantidis et al., 2019; Aru et al.,350

2020). In contrast, neuromodulator concentrations during NREM are reduced compared to Wake,351

while REM is characterized by high ACh and low NA levels (Hobson, 2009). We postulate that the352

state-specific modulation provides a high activity target for the discriminator during Wake which is353
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Figure 7: Model features and physiological counterparts during Wake, NREM and REM
phases. ACh: acetylcholine; NA: noradrenaline. "Sign switch" indicates that identical local errors
lead to opposing weight changes between Wake and REM sleep.

decreased during REM and entirely gated off during NREM. Furthermore, we suggest that adversarial354

learning is implemented by a sign-switched plasticity in the generative network during REM sleep,355

with respect to Wake. During wakefulness, plasticity in these apical synapses may be enhanced by356

noradrenaline (NA) as opposed to NREM (Adamantidis et al., 2019; Aru et al., 2020). The presence of357

acetylcholine (ACh) alone during REM (Hobson et al., 2000) may switch the sign of plasticity in apical358

synapses of (hippocampal) pyramidal neurons (McKay et al., 2007). Furthermore, it is known that359

somato-dendritic synchrony is reduced in REM versus NREM sleep (Seibt et al., 2017); this suggests360

a reduced somato-dendritic backpropagation of action potentials, which, in turn, is known to switch361

the sign of apical plasticity (Sjöström and Häusser, 2006).362

Third, learning in our model requires the computation of reconstruction errors, i.e., mismatches363

between top-down and bottom-up activity. So far, two non-exclusive candidates for computing mis-364

match signals have been proposed. One suggests a dendritic error representation in layer 5 pyramidal365

neurons that compare bottom-up with top-down inputs from our encoding (E) and generative (G)366

pathways (Guerguiev et al., 2017; Sacramento et al., 2018). The other suggests an explicit mismatch367

representation by subclasses of layer 2/3 pyramidal neurons (Keller and Mrsic-Flogel, 2018).368

Fourth, our computational framework assumes effectively separate feedforward and feedback streams.369

A functional separation of these streams does not necessarily imply a structural separation at the net-370

work level. Indeed, such cross-projections are observed in experimental data (Gilbert and Li, 2013)371

and also used in, e.g., the predictive processing framework (Rao and Ballard, 1999). In our model, an372

effective separation of the information flows is required to prevent "information shortcuts" across early373

sensory cortices which would prevent learning of good representations in higher sensory areas. This374

suggests that for significant periods of time, intra-areal lateral interactions between cortical feedforward375

and feedback pathways are effectively gated off in most of the areas.376

Fifth, similar to previous work (Káli and Dayan, 2004), the hippocampus is not explicitly mod-377

eled but rather mimicked by a buffer allowing simple store and retrieve operations. An extension of378

our model could replace this simple mechanism with attractor networks which have been previously379

employed to model hippocampal function (Tang et al., 2010). The combination of episodic memories380

underlying REM dreams in our model could either occur in hippocampus or in cortex. In either case,381

we would predict a nearly simultaneous activation of different episodic memories in hippocampus that382

results in the generation of creative virtual early cortical activity.383

Finally, beyond the mechanisms discussed above, our model assumes that cortical circuits can ef-384

ficiently perform credit assignment, similar to the classical error backpropagation algorithm. Most385

biologically plausible implementations for error-backpropagation involve feedback connections to de-386

liver error signals (Whittington and Bogacz, 2019; Richards et al., 2019; Lillicrap et al., 2020), for387
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example to the apical dendrites of pyramidal neurons (Sacramento et al., 2018; Guerguiev et al., 2017;388

Haider et al., 2021). An implementation of our model in such a framework would hence require addi-389

tional feedforward and feedback connections for each neuron. For example, neurons in the feedforward390

pathway would not only project to higher cortical areas to transmit signals, but additionally project391

back to earlier areas to allow these to compute the local errors required for effective learning. Overall,392

our proposed model could be mechanistically implemented in cortical networks through different classes393

of pyramidal neurons with a biological version of supervised learning based on a dendritic prediction394

of somatic activity (Urbanczik and Senn, 2014), and a corresponding global modulation of synaptic395

plasticity by state-specific neuromodulators.396

3 Discussion397

Semantic representations in cortical networks emerge in early life despite most observations lacking an398

explicit class label, and sleep has been hypothesized to facilitate this process (Klinzing et al., 2019).399

However, the role of dreams in cortical representation learning remains unclear. Here we proposed400

that creating virtual sensory experiences by randomly combining episodic memories during REM sleep401

lies at the heart of cortical representation learning. Based on a functional cortical architecture, we402

introduced the perturbed and adversarial dreaming model (PAD) and demonstrated that REM sleep403

can implement an adversarial learning process which, constrained by the network architecture and the404

choice of latent prior distributions, builds semantically organized latent representations. Addition-405

ally, perturbed dreaming based on the episodic memory replay during NREM stabilizes the cortical406

representations against sensory perturbations. Our computational framework allowed us to investi-407

gate the effects of specific sleep-related pathologies on cortical representations. Together, our results408

demonstrate complementary effects of perturbed dreaming from individual episodes during NREM and409

adversarial dreaming from mixed episodes during REM. PAD suggests that the generalization abili-410

ties exhibited by humans and other animals arise from distinct processes during the two sleep phases:411

REM dreams organize representations semantically and NREM dreams stabilize these representations412

against perturbations. Finally, the model suggests how adversarial learning inspired by GANs can413

potentially be implemented by cortical circuits and associated plasticity mechanisms.414

Relation to cognitive theories of sleep415

PAD focuses on the functional role of sleep, and in particular dreams. Many dynamical features416

of brain states during NREM and REM sleep, such as cortical oscillations (Léger et al., 2018) are417

hence ignored here but will potentially become relevant when constructing detailed circuit models418

of the suggested architectures, for example for switching between memories (Korcsak-Gorzo et al.,419

2021). Our proposed model of sleep is complementary to theories suggesting that sleep is important420

for physiological and cognitive maintenance (McClelland et al., 1995; Káli and Dayan, 2004; Rennó-421

Costa et al., 2019; van de Ven et al., 2020). In particular, Norman et al. (2005) proposed a model422

where autonomous reactivation of memories (from cortex and hippocampus) coupled with oscillating423

inhibition during REM sleep helps detect weak parts of memories and selectively strengthen them,424

to overcome catastrophic forgetting. While our REM phase serves different purposes, an interesting425

commonality is the view of REM as a period where the cortex "thinks about what it already knows"426

from past and recent memories and reorganizes its representations by replaying them together, as427

opposed to NREM where only recent memories are replayed and consolidated. Recent work has also428

suggested that the brain learns using adversarial principles, either as a reality monitoring mechanism429

potentially explaining delusions in some mental disorders (Gershman, 2019), in the context of dreams430

to overcome overfitting and promote generalization (Hoel, 2021), and for learning inference in recurrent431

biological networks (Benjamin and Kording, 2021).432

Cognitive theories propose that sleep promotes the abstraction of semantic concepts from episodic433

memories through a hippocampo-cortical replay of waking experiences, referred to as "memory se-434

mantization" (Nadel and Moscovitch, 1997; Lewis and Durrant, 2011). The learning of organized435

representations is an important basis for semantization. An extension of our model would consider436

the influence of different sensory modalities on representation learning (Guo et al., 2019), which is437
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known to significantly influence cortical schemas (Lewis et al., 2018) and can encourage the formation438

of computationally powerful representations (Radford et al., 2021).439

Finally, sleep has previously been considered as a state where ‘noisy’ connections acquired dur-440

ing wakefulness are selectively forgotten (Crick and Mitchison, 1983; Poe, 2017), or similarly, as a441

homeostatic process to desaturate learning and renormalize synaptic strength (synaptic homeostasis442

hypothesis; Tononi and Cirelli, 2014, 2020). In contrast, our model offers an additional interpretation443

of plasticity during sleep, where synapses are globally readapted to satisfy different but complemen-444

tary learning objectives than Wake, either by improving feedforward recognition of perturbed inputs445

(NREM) or by adversarially tuning top-down generation (REM).446

Relation to representation learning models447

Recent advances in machine learning, such as self-supervised learning approaches, have provided pow-448

erful techniques to extract semantic information from complex datasets (Liu et al., 2021). Here, we449

mainly took inspiration from self-supervised generative models combining autoencoder and adversarial450

learning approaches (Radford et al., 2015; Donahue et al., 2016; Dumoulin et al., 2017; Berthelot et al.,451

2018; Liu et al., 2021). It is theoretically not yet fully understood how linearly separable represen-452

tations are learned from objectives which do not explicitly encourage them, i.e., reconstruction and453

adversarial losses. We hypothesize that the presence of architectural constraints and latent priors, in454

combination with our objectives, enable their emergence (see also Alemi et al., 2018; Tschannen et al.,455

2020). Note that similar generative machine learning models often report a higher linear separability456

of network representations, but use all convolutional layers as a basis for the readout (Radford et al.,457

2015; Dumoulin et al., 2017), while we only used low-dimensional features z. Approaches similar to458

ours, i.e., those which perform classification only on the latent features, report comparable performance459

to ours (Berthelot et al., 2018; Hjelm et al., 2019; Beckham et al., 2019).460

Furthermore, in contrast to previous GAN variants, our model removes many optimization tricks461

such as batch-normalization layers (Ioffe and Szegedy, 2015), spectral normalization layers (Miyato462

et al., 2018) or optimizing the min-max GAN objective in three steps with different objectives, which463

are challenging to implement in biological substrates. Despite their absence, our model maintains a464

high quality of latent representations. As our model is relatively simple, it is amenable to implementa-465

tions within frameworks approximating backpropagation in the brain (Whittington and Bogacz, 2019;466

Richards et al., 2019; Lillicrap et al., 2020). However, some components remain challenging for im-467

plementations in biological substrates, for example convolutional layers (but see Pogodin et al., 2021)468

and batched training (but see Marblestone et al., 2016).469

Dream augmentations, mixing strategies and fine-tuning470

To make representations robust, a computational strategy consists of learning to map different sen-471

sory inputs containing the same object to the same latent representation, a procedure reminiscent472

of data augmentation (Shorten and Khoshgoftaar, 2019). As mentioned above, unlike standard data473

augmentation methods, our NREM phase does not require the storage of raw sensory inputs to create474

altered inputs necessary for such data augmentation and instead relies on (hippocampal) replay be-475

ing able to regenerate similar inputs from high-level representations stored during wakefulness. Our476

results obtained through perturbed dreaming during NREM provide initial evidence that this dream477

augmentation may robustify cortical representations.478

Furthermore, as discussed above, introducing more specific modifications of the replayed activity,479

for example mimicking translations or rotations of objects, coupled with a negative phase where latent480

representations from different images are pushed apart, may further contribute to the formation of481

invariant representations. Along this line, recent self-supervised contrastive learning methods (Gidaris482

et al., 2018; Chen et al., 2020; Zbontar et al., 2021) have been shown to enhance the semantic structure483

of latent representations by using a similarity objective where representations of stimuli under different484

views are pulled together in a first phase, while, crucially, embedding distances between unrelated485

images are increased in a second phase.486

In our REM phase, different mixing strategies in the latent layer could be considered. For instance,487
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latent activities could be mixed up by retaining some vector components of a representation and using488

the rest from a second one (Beckham et al., 2019). Moreover, more than two memory representations489

could have been used. Alternatively, our model could be trained with spontaneous cortical activity only.490

In our experimental setting we do not observe significant differences between using a combination of491

episodic memories with spontaneous activity or only using spontaneous activity (Appendix 1-Figure 4).492

However, we hypothesize that for models which learn continuously, a preferential replay of combinations493

of recent episodic memories encourages the formation of cortical representations that are useful in the494

present.495

Here, we used a simple linear classifier to measure the quality of latent representations, which is496

an obvious simplification with regard to cortical processing. Note however that also for more complex497

‘readouts’, organized latent representations enable more efficient and faster learning (Silver et al.,498

2017; Ha and Schmidhuber, 2018; Schrittwieser et al., 2020). In its current form, PAD assumes that499

training the linear readout does not lead to weight changes in the encoder network. However, in cortical500

networks, cognitive or motor tasks leveraging latent representations likely shape the encoder network,501

which could in our model be reflected in ‘fine-tuning’ the encoder for specific tasks (compare Liu et al.,502

2021).503

Finally, our model does not show significant differences in performance when the order of sleep504

phases is switched (Appendix 1-Figure 5). However, NREM and REM are observed to occur in a505

specific order throughout the night (Diekelmann and Born, 2010) and this order has been hypothesized506

to be important for memory consolidation ("sequential hypothesis", Giuditta et al., 1995). The507

independence of phases in our model may be due to the relatively small synaptic changes occurring in508

each phase. We expect the order of sleep phases to influence model performance if these changes become509

larger, either due to longer phases or increased learning rates. The latter may become particularly510

relevant in continual learning settings where it becomes important to control the emphasis put on511

recent observations.512

Signatures of generative learning513

PAD makes several experimentally testable predictions at the neuronal and systems level. We first514

address generally whether the brain learns via generative models during sleep before discussing specific515

signatures of adversarial learning.516

First, our NREM phase assumes that hippocampal replay generates perturbed wake-like early sen-517

sory activity (see also Ji and Wilson, 2007) which is subsequently processed by feedforward pathways.518

Moreover, our model predicts that over the course of learning, sensory-evoked neuronal activity and519

internally-generated activity during sleep become more similar. In particular, we predict that (spa-520

tial) activity in both NREM and REM become more similar to Wake, however, patterns observed521

during REM remain distinctly different due to the creative combination of episodic memories. Future522

experimental studies could confirm these hypotheses by recording early sensory activity during wake-523

fulness, NREM and REM sleep at different developmental stages and evaluating commonalities and524

differences between activity patterns. Previous work has already demonstrated increasing similarity525

between stimulus-evoked and spontaneous (generated) activity patterns during wakefulness in ferret526

visual cortex (Berkes et al., 2011; but see Avitan et al., 2021).527

On a behavioral level, the improvement of internally-generated activity patterns correlates with528

the development of dreams in children, that are initially unstructured, simple and plain, and gradually529

become full-fledged, meaningful, narrative, implicating known characters and reflecting life episodes530

(Nir and Tononi, 2010). In spite of their increase in realism, REM dreams in adulthood are still531

reported as bizarre (Williams et al., 1992). Bizarre dreams, such as a “flying dogs”, are typically defined532

as discontinuities or incongruities of the sensory experience (Mamelak and Hobson, 1989) rather than533

completely structureless experiences. This definition hence focuses on high-level logical structure, not534

on the low-level sensory content. In contrast, the low FID score, i.e., high realism, of REM dreams535

in our experiments reflects that the low-level structure on which this evaluation metric mainly focuses536

(e.g., Brendel and Bethge, 2019) is similar to actual sensory input. Capturing the "logical realism"537

of our generated neuronal activities most likely requires a more sophisticated evaluation metric and538

an extension of the model capable of generating temporal sequences of sensory stimulation. We note,539
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however, that even such surreal dreams as “flying dogs” can be interpreted as altered combinations of540

episodic memories and thus, in principle, can arise from our model.541

Second, our model suggests that the development of semantic representations is mainly driven by542

REM sleep. This allows us to make predictions which connect the network with the systems level, in the543

specific case of acquiring skills from complex and unfamiliar sensory input. For humans, this could be544

learning a foreign language with unfamiliar phonetics. Initially, cortical representations cannot reflect545

relevant nuances in these sounds. Phonetic representations develop gradually over experience and are546

reflected in changes of the sensory evoked latent activity, specifically in the reallocation of neuronal547

resources to represent the relevant latent dimensions. We hypothesize that in case of impaired REM548

sleep, this change of latent representations is significantly reduced, which goes hand in hand with549

decreased learning speed. Future experimental studies could investigate these effects for instance by550

trying to decode sound identity from high-level cortical areas in patients where REM sleep is impaired551

over long periods through pharmacological agents such as anti-depressants (Boyce et al., 2017). An552

equivalent task in the non-human animal domain would be song acquisition in songbirds (Fiete et al.,553

2007). On a neuronal level, one could selectively silence feedback pathways during REM sleep in animal554

models over many nights, for example via optogenetic tools. Our model predicts that this silencing555

would significantly impact the animal’s learning speed, as reported from animals with reduced theta556

rhythm during REM sleep (Boyce et al., 2017).557

Signatures of adversarial learning558

The experimental predictions discussed above mainly address whether the brain learns via generative559

models during sleep. Here we make experimental predictions which would support our hypotheses and560

contrast it to alternative theories of learning during offline states.561

Existence of an external/internal discriminator The discriminator provides our model with the562

ability to distinguish externally driven from internally generated low-level cortical activity. Due to this563

unique property, the discriminator may be leveraged to distinguish actual from imagined sensations.564

According to our model, reduced REM sleep would lead to an impaired discriminator, and could thus565

result in an inability of subjects to realize that self-generated imagery is not part of the external566

sensorium. This may result in the formation of delusions, as previously suggested (Gershman, 2019).567

For instance, hallucinations in schizophrenic patients, often mistaken for veridical perceptions (Waters568

et al., 2016), could be partially caused by abnormal REM sleep patterns, related to observed reduced569

REM latency and density (Cohrs, 2008). Based on these observations, we predict in the context of our570

model a negative correlation between REM sleep quality and delusional perceptions of hallucinations.571

Systematic differences in REM sleep quality may hence explain why some patients are able to recognize572

that their hallucinations are self-generated while some others mistake them to be real. Moreoever,573

although locating discriminator neurons may prove non-trivial (but see "Cortical implementation" for574

specific suggestions), we predict that once the relevant cells have been identified, perturbing them may575

lead to detrimental effects on differentiating between external sensory inputs and internally generated576

percepts.577

The state-specific activity of the discriminator population makes predictions about plasticity on578

synapses in the feedforward stream during wakefulness and sleep. In our model, the discriminator579

is trained to distinguish externally from internally generated patterns by opposed targets imposed580

during Wake and REM. After many wake-sleep cycles, the KL loss as well as the reconstruction loss581

(see Methods) in our model become small compared to the adversarial loss (Appendix 1-Figure 1,582

Appendix 1-Figure 2), which remains non-zero due to a balance between discriminator and generator.583

The same low-level activity pattern would hence cause opposite weight changes during wakefulness and584

sleep on feedforward synapses. This could be tested experimentally by actively instantiating similar585

spatial activity patterns in low-level sensory cortex during wakefulness and REM and compare the586

statistics of observed changes in (feedforward) downstream synapses.587

Adversarial training of a generator during sleep To drive adversarial learning and maintain a588

balance between the generator and discriminator, the generative network must be trained in parallel to589
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the discriminative (encoder) network during REM. In contrast, in alternative representation learning590

models which involve offline states such as the Wake-Sleep algorithm (Hinton et al., 1995), generative591

pathways are not trained to produce realistic dreams during the sleep phase. Rather, they are trained592

by reconstruction on real input data during the wake phase. This allows an experimental distinction593

between our model and Wake-Sleep-like models: while our model predicts plasticity in both bottom-594

up and top-down pathways both during wake and during REM sleep, Wake-Sleep models alternate595

between training feedback and feedforward connections during online and offline states, respectively.596

Previous work has developed methods to infer plasticity rules from neuronal activity (Lim et al.,597

2015; Senn and Sacramento, 2015) or weight changes (Nayebi et al., 2020). In the spirit of existing598

in vivo experiments, we suggest to optogenetically monitor and potentially modulate apical dendritic599

activities in cortical pyramidal neurons of mice during wakefulness and REM sleep (Li et al., 2017;600

Voigts and Harnett, 2020; Schoenfeld et al., 2022). From the statistics of the recorded dendritic and601

neuronal activity, the plasticity rules could be inferred and compared to the state-dependent rules602

suggested by our model, in particular to the predicted sign-switch of plasticity between wakefulness603

and REM sleep.604

Adversarial learning and creativity Adversarial learning, for example in GANs, enables a form of605

creativity, reflected in their ability to generate realistic new data or to create semantically meaningful606

interpolations (Radford et al., 2015; Berthelot et al., 2018; Karras et al., 2018). This creativity might607

be partly caused by the freedom in generating sensory activity that is not restricted by requiring good608

reconstructions, but is only guided by the internal/external judgment (Goodfellow, 2016). This is less609

constraining on the generator than direct reconstruction losses used in alternative models such as vari-610

ational auto-encoders (Kingma and Welling, 2013) or the Wake-Sleep algorithm (Hinton et al., 1995).611

We thus predict that REM sleep, here implementing adversarial learning, should boost creativity, as612

previously reported (Cai et al., 2009; Llewellyn, 2016a; Lewis et al., 2018). Furthermore, we predict613

that REM sleep influences a subject’s ability to visualize creative mental images, for instance associ-614

ating non-obvious visual patterns from distinct memories. For example, we predict that participants615

chronically lacking REM sleep would perform worse than control participants at a creative synthesis616

task (Palmiero et al., 2015), consisting of combining different visual components into a new, potentially617

useful object.618

Adversarial learning and lucid dreaming Finally, adversarial dreaming offers a theoretical frame-619

work to investigate neuronal correlates of normal versus lucid dreaming (Dresler et al., 2012; Baird620

et al., 2019). While in normal dreaming the internally generated activity is perceived as externally621

caused, in lucid dreaming it is perceived as what it is, i.e., internally generated. We hypothesize that622

the "neuronal conductor" that orchestrates adversarial dreaming is also involved in lucid dreaming, by623

providing to the dreamer conscious access to the target "internal" that the conductor imposes during624

REM sleep. Our cortical implementation suggests that the neuronal conductor could gate the discrim-625

inator teaching via apical activity of cortical pyramidal neurons. The same apical dendrites were also626

speculated to be involved in conscious perception (Takahashi et al., 2020), dreaming (Aru et al., 2020),627

and in representing the state and content of consciousness (Aru et al., 2019).628

Our model demonstrates that adversarial learning during wakefulness and sleep can provide signif-629

icant benefits to extract semantic concepts from sensory experience. By bringing insights from modern630

artificial intelligence to cognitive theories of sleep function, we suggest that cortical representation631

learning during dreaming is a creative process, orchestrated by brain-state-regulated adversarial games632

between separated feedforward and feedback streams. Adversarial dreaming may further be helpful to633

understand learning beyond the standard student-teacher paradigm. By ‘seeing’ the world from new634

perspectives every night, dreaming represents an active learning phenomenon, constantly improving635

our understanding, our creativity and our awareness.636
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4 Methods637

4.1 Network architecture638

The network consists of two separate pathways, mapping from the pixel to the latent space (‘en-639

coder’/’discriminator’) and from the latent to pixel space (‘generator’). Encoder/Discriminator and640

Generator architectures follow a similar structure as the DCGANs model (Radford et al., 2015). The641

encoder Ez has four convolutional layers (LeCun et al., 2015) containing 64, 128, 256 and 256 chan-642

nels respectively (Figure 8). Each layer uses a 4 × 4 kernel, a padding of 1 (0 for last layer), and a
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Figure 8: Convolutional neural network (CNN) architecture of encoder/discriminator and generator
used in PAD.

643

stride of 2, i.e., feature size is halved in each layer. All convolutional layers except the last one are644

followed by a LeakyReLU non-linearity (Maas et al., 2013). We denote the activity in the last con-645

volutional layer as z. An additional convolutional layer followed by a sigmoid non-linearity is added646

on top of the second-to-last layer of the encoder and maps to a single scalar value d, the internal/ex-647

ternal discrimination (with putative teaching signal 0 or 1). We denote the mapping from x to d by648

Ed. Ez and Ed thus share the first three convolutional layers. We jointly denote them by E, where649

E(x) = (Ez(x), Ed(x)) = (z, d) (Figure 8).650

Mirroring the structure of Ez, the generator G has four deconvolutional layers containing 256, 128, 64,651

and 3 channels. They all use a 4 × 4 kernel, a padding of 1 (0 for first deconvolutional layer) and a652

stride of 2, i.e, the feature-size is doubled in each layer. The first three deconvolutional layers are653

followed by a LeakyReLU non-linearity, and the last one by a tanh non-linearity.654

As a detailed hippocampus model is outside the scope of this study, we mimic hippocampal storage655

and retrieval by storing and reading latent representations to and from memory.656

4.2 Datasets657

We use the CIFAR-10 (Krizhevsky et al., 2013) and SVHN (Netzer et al., 2011) datasets to evaluate658

our model. They consist of 32 × 32 pixel images with three color channels. We consider their usual659

split into a training set and a smaller test set.660
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4.3 Training procedure661

We train our model by performing stochastic gradient-descent with mini-batches on condition-specific662

objective functions, in the following also referred to as loss functions, using the ADAM-optimizer663

(β1 = 0.5, β2 = 0.999; Kingma and Ba, 2017) with learning rate of 0.0002 and mini-batch size of 64.664

We rely on our model being fully differentiable. The following section describes the loss functions for665

the respective conditions.666

Algorithm 1: Training procedure
θE , θG ; // initialize network parameters

for number of training iterations do

Wake
X ← {x(1), ...,x(b)} ; // random mini-batch from dataset

Z,D ← E(X) ; // infer latent and discriminative outputs

X ′ ← G(Z) ; // reconstruct input via generator

Limg ← 1
b

∑b
i=1 ∥x(i) − x′(i)∥2 ; // compute reconstruction loss

LKL ← DKL(q(Z)||p(Z)) ; // compute KL-loss

Lreal ← −1
b

∑b
i=1 log(d

(i)) ; // compute discriminator loss on real samples

θE ← θE −∇θE (Limg + LKL + Lreal) ; // update encoder/discriminator parameters

θG ← θG −∇θGLimg ; // update generator parameters

NREM sleep
Z ← {z(1), ...,z(b)} ; // mini-batch of latent vectors from Wake

X ′ ← G(Z) ; // reconstruct input via generator

Z ′ ← Ez(X
′ ⊙Ω) ; // infer perturbed input

LNREM ← 1
b

∑b
i=1 ∥z(i) − z′(i)∥2 ; // compute reconstruction loss

θE ← θE −∇θELNREM

REM sleep
if first iteration then

Zmix ← Z
else

Zmix ← λ′(λZ + (1− λ)Zold) + (1− λ′)ϵ ; // convex combination of current and old

latent vectors with noise

end
D ← Ed(G(Zmix))
LREM ← −1

b

∑b
i=1 log(1− d(i))) ; // compute adversarial loss

θE ← θE −∇θELREM
θG ← θG +∇θGLREM ; // gradient ascent on discriminator loss

Zold ← Z ; // keep current vectors for next iteration

end

4.3.1 Loss functions667

Wake In the Wake condition, we minimize the following objective function, composed of a loss for
image encoding, a regularization, and a real/fake (external/internal) discriminator,

LWake = Limg + LKL + Lreal . (1)

Ez and G learn to reconstruct the mini-batch of images X = {x(1),x(2), ...,x(b)} similarly to
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autoencoders (Bengio et al., 2013) by minimizing the image reconstruction loss Limg defined by

Limg =
1

b

b∑
i=1

∥x(i) −G(Ez(x
(i)))∥2 , (2)

where b denotes the size of the mini-batch. We store the latent vectors Z = Ez(X) corresponding to668

the current mini-batch for usage during the NREM and REM phases.669

We additionally impose a Kullback-Leibler divergence loss on the encoder Ez. This acts as a
regularizer and encourages latent activities to be Gaussian with zero mean and unit variance:

LKL = DKL(q(Z|X)||p(Z)) , (3)

where q(Z|X) ∼ N (µ,σ2) is a distribution over the latent variables Z, parametrized by mean µ and
standard deviation σ, and p(Z) ∼ N (0, 1) is the prior distribution over latent variables. Ez is trained
to minimize the following loss:

LKL =
1

2nz

nz∑
j=1

(
µ
(Z)
j

2
+ σ

(Z)
j

2
− 1− log (σ

(Z)
j

2
)

)
, (4)

where nz denotes the dimension of the latent space and where µ
(Z)
j and σ

(Z)
j represent the jth elements670

of respectively the empirical mean µ(Z) and empirical standard deviation σ(Z) of the set of latent671

vectors Ez(X) = Z.672

As part of the adversarial game, Ed is trained to classify the mini-batch of images as real. This
corresponds to minimizing the loss defined as sum across the mini-batch size b,

Lreal = LGAN(Ed(X), 1) = −1

b

b∑
i=1

log(Ed(x
(i))) . (5)

Note that, in principle, LGAN can be any GAN-specific loss function (Gui et al., 2020). Here we choose673

the binary cross-entropy loss.674

NREM sleep Each Wake phase is followed by a NREM phase. During this phase we make use of
the mini-batch of latent vectors z stored during the Wake phase. Starting from a mini-batch of latent
vectors, we generate images G(z). Each obtained image of G(z) is multiplied by a binary occlusion
mask ω of the same dimension. This mask is generated by randomly picking two occlusion parameters,
occlusion intensity and square size (for details see Section 4.3.2). The encoder Ez learns to reconstruct
the latent vectors z by minimizing the following reconstruction loss:

LNREM =
1

b

b∑
i=1

∥z(i) − Ez

(
G(z(i))⊙ ω

)
∥2 , (6)

where ⊙ denotes the element-wise product.675

REM sleep In REM, each latent vector from the mini-batch considered during Wake is combined
with the latent vector from the previous mini-batch, the whole being convex combined with a mini-
batch of noise vectors ϵ ∼ N (0, I), where I is the identity matrix, leading to a mini-batch of latent
vectors Zmix = λ′(λZ + (1 − λ)Zold) + (1 − λ′)ϵ. Here, λ = 0.5 and λ′ = 0.5, where Zold is the
previous mini-batch of latent activities. This batch of latent vectors is passed through G to generate
the associated images G(Zmix). In this phase, the loss function encourages Ed to classify G(Zmix) as
fake, while adversarially pushing G to generate images which are less likely to be classified as fake by
the minimax objective

min
Ed

max
G
LREM , (7)
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where

LREM = LGAN(Ed(G(Zλ)), 0) = −
1

b

b∑
i=1

log(1− Ed(G(zλ
(i))) . (8)

In our model, the adversarial process is simply described by a full backpropagation of error through676

Ed and G with a sign switch of weight changes in G.677

In summary, each Wake-NREM-REM cycle consists of: 1) reconstructing a mini-batch x of images678

during Wake, 2) reconstructing a mini-batch of latent activities Z = Ez(X) during NREM with679

perturbation of G(z), and 3) replaying Z convex combined with Zold and noise from the (n − 1)-680

th cycle. In PAD training, all losses are weighted equally and we did not use a schedule for LKL,681

as opposed to standard Variational Autoencoder (VAE) training (Kingma and Welling, 2013). One682

training epoch is defined by the number of mini-batches necessary to cover the whole dataset. The683

evolution of losses with training epochs is shown in Appendix 1-Figure 1 and Appendix 1-Figure 2.684

The whole training procedure is summarized in the pseudo-code implemented in Algorithm 1.685

4.3.2 Image occlusion686

0% 100%

s = 8

s = 4

Figure 9: Varying size and intensity of occlusions on example images from CIFAR-10. Image occlusions
vary along 2 parameters: occlusion intensity, defined by the probability to apply a grey square at a
given position, and square size (s).

Following previous work (Zeiler and Fergus, 2013), grey squares of various sizes are applied along687

the image with a certain probability (Figure 9). For each mini-batch, a probability and square size688

were randomly picked between 0 and 1, and 1 − 8 respectively. We divide the image into patches689

of the given size and we replace each patch with a constant value (here, 0) according to the defined690

probability.691

4.4 Evaluation692

4.4.1 Training of linear read-out693

A linear classifier is trained on top of latent features Z = Ez(X), with Z ∈ RN×256, where N is694

the number of training dataset images. A latent feature z ∈ R256 is projected via a weight matrix695

W ∈ R10×256 to the label neurons to obtain the vector y = Wz.696

This weight matrix is trained in a supervised fashion by using a multi-class cross-entropy loss. For
a feature z labelled with a target class t ∈ {0, 1, .., 9}, the per-sample classification loss is given by

LC(z, t;W ) = − log pW (Y = t|z) . (9)

Here, pW is the conditional probability of the classifier defined by the linear projection and the softmax
function

pW (Y = t|z) = eyt∑9
i=0 e

yi
. (10)

The classifier is trained by mini-batch (b = 64) stochastic gradient descent on the loss LC with a697

learning rate η = 0.2 for 20 epochs, using the whole training dataset.698
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4.4.2 Linear separability699

Following previous work (Hjelm et al., 2019), we define linear separability as the classification accuracy700

of the trained classifier on inferred latent activities Ez(Xtest) from a separate test dataset Xtest. Given701

a latent feature z, class prediction is made by picking the index of the maximal activity in the vector702

y. We ran several simulations for 4 different initial parameters of E and G and report the average test703

accuracy and standard error of the mean over trials. To evaluate performance on occluded data, we704

applied random square occlusion masks on each sample from Xtest for a fixed probability of occlusion705

and square size. We report only results for occulusions of size 4, after observing similar results with706

other square sizes.707

4.4.3 PCA visualization708

To visualize the 256-dimensional latent representation Ez(x) of the trained model we used the Prin-709

cipal Component Analysis reduction algorithm (Jolliffe and Cadima, 2016). We project the latent710

representations to the first two principle components.711

4.4.4 Latent-space organization metrics712

Intra-class distance is computed by randomly picking 1, 000 pairs of images of the same class, projecting713

them to the encoder latent space z and computing their Euclidian distance. This process is repeated714

over the 10 classes in order to obtain the average over 10 classes. Similarly, inter-class distance is715

computed by randomly picking 10, 000 pairs of images of different classes, projecting them to the716

encoder latent space z and computing their Euclidian distance. The ratio of intra- and inter-class717

distance is obtained by dividing the mean intra-class distance by the mean inter-class distance. Clean-718

occluded distance is computed by randomly picking 10, 000 pairs of non-occluded/occluded images,719

projecting them to the encoder latent space and computing their Euclidian distance. The ratio of720

clean-occluded and inter-class distance is obtained by dividing the clean-occluded distance by the mean721

inter-class distance. We performed this analysis for several different trained networks with different722

initial conditions and report the mean ratios and standard error of the mean over trials.723

4.4.5 Fréchet inception distance724

Following Heusel et al. (2018), Fréchet inception distance (FID) is computed by comparing the statistics
of generated (NREM or REM) samples to real images from the training dataset projected through an
Inception-v3 network pre-trained on ImageNet

FID = ∥µreal − µgen∥2 + Tr(Σreal +Σgen − 2(ΣrealΣgen)
1/2) (11)

where µ and Σ represent the empirical mean and covariance of the 2048-dimensional activations of the725

Inception v3 pool3 layer for 10, 000 pairs of data samples and generated images. Results represent mean726

FID and standard error of the mean FID over 4 different trained networks with different initializations.727

4.4.6 Modifications specific to pathological models728

To evaluate the differential effects of each phase, we removed NREM and/or REM phases from training729

(Figure 4, Figure 5, Figure 6). For instance, for the condition w/o NREM, the network is never trained730

with NREM.731

A few adjustments were empirically observed to be necessary in order to obtain a fair comparison
between each condition. When removing the REM phase during training, we observed a decrease of
linear separaribility after some (> 25) epochs. We suspect that this decrease is a result of overfitting
due to unconstrained autoencoding objective of E and G. Models trained without REM hence would
not provide a good baseline to reveal the effect of adversarial dreaming on linear separability. For
models without the REM phase, we hence added a vector of Gaussian noise ϵ ∼ N (0, 0.5 · I) to the
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encoded activities Ez(X) of dimension nz before feeding them to the generator. Thus, Eq. Equation (2)
becomes:

Limg =
1

b

b∑
i=1

∥x(i) −G
(
Ez(x

(i)) + ϵ
)
∥2 , (12)

which stabilizes linear separability of latent activities around its maximal value for both CIFAR-10732

and SVHN datasets until the end of training.733

Furthermore, we observed that the NREM phase alters linear performance in the absence of REM734

(w/o REM condition). To overcome this issue, we reduced the effect of NREM by scaling down its loss735

with a factor of 0.5. This enabled to benefit from NREM (recognition under image occlusion) without736

altering linear separability on full images.737
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A Appendix 11035

A.1 Training losses for full and pathological models1036

In the following, we report the measured losses over training for the various different pathological condi-1037

tions. Limg and LKL are optimized for each condition and systematically decrease with learning, while1038

LNREM is significantly reduced in models with NREM (Appendix 1-Figure 1, Appendix 1-Figure 2).1039

Its initial increase in the models with REM is explained to its competitive optimization with the GAN1040

losses. Generator loss Lfake = LREM and discriminator loss Lreal + Lfake are only optimized in models1041

with REM, showing a progressive decrease of the discriminator loss in parallel with an increase of the1042

generator loss, reflecting adversarial learning between the two streams.1043

A.2 Linear classification performance1044

We report the mean and standard error of the mean (SEM) of the final linear classification performance1045

(epoch 50) on latent representations of from the PAD and pathological models in Appendix 1-Table 1.1046

We also report the linear classification performance for the full and pathological models over 1001047

epochs. Linear separability for the "w/o REM" (Appendix 1-Figure 3c,d, pink curves) and "w/o1048

memory mix" (Appendix 1-Figure 3d, purple curve) conditions do not reach levels of the full model1049

(Appendix 1-Figure 3c,d, black curves) even after many training epochs. Furthermore, without NREM1050

(Appendix 1-Figure 3c,d, "w/o NREM" and "Wake only", orange and gray curves), linear separability1051

tends to decrease after many training epochs, suggesting that NREM helps to stabilize performance1052

with training by preventing overfitting.1053

Dataset PAD w/o memory mix w/o REM w/o NREM Wake only
CIFAR-10 58.25± 0.70 53.87± 0.85 46.00± 0.43 58.00± 0.34 42.25± 0.54

SVHN 78.92± 0.40 60.87± 5.07 42.30± 1.51 73.25± 0.22 41.93± 0.65

Appendix 1-Table 1: Final classification performance for full model and all pathological
conditions for un-occluded images . Mean and SEM over 4 different initial condition of linear
separability of latent representations at the end of training (epoch 50) for PAD and its pathological
variants.
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CIFAR-10

Wake only w/o REM

PADw/o NREM

Appendix 1-Figure 1: Training losses for full and pathological models with CIFAR-10
dataset. Evolution of training losses used to optimize E and G networks (see Methods) over training
epochs for full and pathological models.

A.3 Comparison of performance with REM driven by convex combination or noise1054

We report the linear classifier performance for PAD using different latent inputs to the generator.1055

In the main text, we use a convex combination of mixed memories (being a convex combination of1056

two different replayed latent vectors) and noise sampled from a Gaussian unit distribution (Appendix1057

1-Figure 4, black). We here show the results when only random Gaussian noise is used (Appendix1058

1-Figure 4, green) and when only a convex combination of memories is used (Appendix 1-Figure 4,1059

red). These different mixing strategies do not show a big difference in linear separability over training1060

epochs.1061

A.4 The order of sleep phases has no influence on the performance of the linear1062

classifier1063

To investigate the role of the order of NREM and REM sleep phases, we consider a variation in which1064

their order is reversed with respect to the model described in the main manuscript. The performance1065

of the linear classifier is not influenced by this change (Appendix 1-Figure 5).1066
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Wake only w/o REM

PADw/o NREM

Appendix 1-Figure 2: Training losses for full and pathological models with SVHN dataset.

A.5 Replaying multiple episodic memories during NREM sleep1067

While in the main text we considered NREM to use only a single episodic memory, here we report1068

results for a model in which also NREM uses multiple (here: two) episodic memories. In the full model1069

(Appendix 1-Figure 6, black curves, same data as in Figure 5c,d), NREM uses a single stored latent1070

representation. Here we additionally consider an additional model in which these representations are1071

obtained from a convex combination of mixed memories and spontaneous cortical activity. The better1072

performance of a single replay suggests that replay from single episodic memories as postulated to occur1073

during NREM sleep is more efficient to robustify latent representations against input perturbations.1074
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Appendix 1-Figure 3: Linear classification performance for full model and all pathological
conditions. For details see Figure 4.

CIFAR-10 SVHN
a b

Appendix 1-Figure 4: Linear classification performance for different mixing strategies during
REM. Linear separability of latent representations with training epochs for PAD trained with different
REM phases: one driven by a convex combination of mixed memories and noise (black), one by pure
noise (green), and one by mixed memories only (red). For details see Figure 4.
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CIFAR-10 SVHN
a b

Appendix 1-Figure 5: Linear classification performance for different order of sleep phases.
Linear separability of latent representations with training epochs for PAD trained when NREM pre-
cedes REM phase (Wake-NREM-REM, black) or when REM precedes NREM (Wake-REM-NREM,
brown).

CIFAR-10 SVHN
a b

Appendix 1-Figure 6: Importance of replaying single hippocampal memories during NREM.
Linear separability of latent representations at the end of learning with occlusion intensity for a model
trained with all phases.
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