
s
o
u
r
c
e
:

h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
4
8
3
5
0
/
1
5
7
8
8
3

|

d
o
w
n
l
o
a
d
e
d
:

1
9
.
5
.
2
0
2
4

University of Bern Social Sciences Working Paper No. 42

ColrSpace: A Mata class for color management

Ben Jann

Current version: June 3, 2022
First version: April 10, 2022

http://ideas.repec.org/p/bss/wpaper/42.html
http://econpapers.repec.org/paper/bsswpaper/42.htm

Faculty of Business, Economics and
Social Sciences

Department of Social Sciences

University of Bern
Department of Social Sciences
Fabrikstrasse 8
CH-3012 Bern

Tel. +41 (0)31 684 48 11
Fax +41 (0)31 684 48 17
info@sowi.unibe.ch
www.sowi.unibe.ch

ColrSpace: A Mata class for color management

Ben Jann
Institute of Sociology

University of Bern
ben.jann@unibe.ch

Abstract. ColrSpace is a class-based color management system implemented in
Mata. It supports a wide variety of color spaces and translations among them,
provides color generators and a large collection of named palettes, and features
functionality such as color interpolation, grayscale conversion, or color vision de-
ficiency simulation. ColrSpace requires Stata 14.2 or newer.

Keywords: Stata, Mata, Colrspace, color, color palette, colormap, color generator,
color interpolation, color mixing, color vision deficiency, color blindness, grayscale
conversion, color difference, color contrast, color space, RGB, HSV, HSL, CMYK,
CIE 1931 XYZ, CIELAB, CIELUV, HCL, CIECAM02, gamma compression, chro-
matic adaption, hue, brightness, luminance, lightness, chroma, chromaticity, col-
orfulness, saturation, opacity, perceptually uniform, colorblind-friendly, web colors

Contents

1 Introduction 2

2 Installation 2

3 Overview of color spaces 3

4 Initialize a ColrSpace object 7

5 Display contents and set meta data 8

6 Define and transform colors 10

6.1 String input/output (Stata interface) 10

6.2 Color palettes and color generators . 17

6.3 Set/retrieve opacity and intensity . 24

6.4 Recycle, select, and order colors . 27

6.5 Interpolate and mix . 30

6.6 Intensify, saturate, luminate . 33

1

ben.jann@unibe.ch

6.7 Grayscale conversion . 36

6.8 Color vision deficiency simulation . 37

6.9 Color differences and contrast ratios 38

6.10 Import/export colors in various spaces 42

6.11 Color converter and other utilities . 44

7 Settings 48

7.1 Display overview of color space settings 48

7.2 RGB working space . 49

7.3 XYZ reference white . 52

7.4 CIECAM02 viewing conditions . 53

7.5 Default coefficients for J’M’h and J’a’b’ 53

7.6 Chromatic adaption method . 54

8 Alphabetical index of functions 55

9 Source code and certification script 57

10 References 57

1 Introduction

The ColrSpace package provides a full-blown color management system written in
Mata. It supports a wide variety of color spaces and translations among them, pro-
vides color generators and a large collection of colormaps, named palettes, and named
colors, and features functionality such as color interpolation, grayscale conversion, or
color vision deficiency simulation.

ColrSpace is primarily intended for use by programmers and the purpose of this
document is to provide comprehensive documentation of the ColrSpace class system.
Although interactive use of ColrSpace is possible, most applied users will find it easier
to work with canned Stata commands such as colorpalette and colorcheck, which
are built upon ColrSpace (for colorpalette see Jann 2018).

2 Installation

ColrSpace requires Stata 14.2 or newer. A compiled version of ColrSpace is available
from the SSC Archive. To install ColrSpace type

2

. ssc install colrspace, replace

Some of the examples below make use of the colorpalette command, which is part of
the palettes package (Jann 2018). To install the palettes package, type

. ssc install palettes, replace

ColrSpace and palettes are also available on GitHub; see github.com/benjann/
colrspace and github.com/benjann/palettes. To install the packages from GitHub (as
an alternative to installing from SSC), type

. net from https://raw.githubusercontent.com/benjann/colrspace/master/

. net install colrspace, replace

. net from https://raw.githubusercontent.com/benjann/palettes/master/

. net install palettes, replace

3 Overview of color spaces

A key feature of ColrSpace is that it can translate between many different color rep-
resentations. Such translations are used, for example, when interpolating colors. The
diagram in Figure 1 displays an overview of the different color spaces and coding schemes
supported by ColrSpace. The shown acronyms are the names by which the color spaces
are referred to in ColrSpace. The diagram also illustrates the path along which colors
are transformed from one color space into another. The different color representations
are as follows.

• HEX is a hex RGB value (hex triplet; see https://en.wikipedia.org/wiki/Web
colors). Examples are "#ffffff" for white or "#1a476f" for Stata’s navy.
ColrSpace will always return hex colors using their lowercase 6-digit codes. As
input, however, uppercase spelling and 3-digit abbreviations are allowed. For ex-
ample, white can be specified as are "#ffffff", "#FFFFFF", "#fff", or "#FFF".

• RGB is an RGB triplet (red, green, blue) in 0–255 scaling (see https://en.wikipedia.
org/wiki/RGB color model). When returning RGB values, ColrSpace will round
the values to integers and clip them at 0 and 255.

• RGB1 is an RGB triplet in 0–1 scaling. ColrSpace does not clip or round the values
and may thus return values larger than 1 or smaller than 0. Using unclipped values
ensures consistency of translations among different color spaces. To retrieve a
matrix of clipped values, you can type

C = S.clip(S.get("RGB1"), 0, 1)

RGB1 is the native format in which ColrSpace stores colors internally. By de-
fault, ColrSpace assumes that the colors are in the standard RGB working space

3

https://github.com/benjann/colrspace
https://github.com/benjann/colrspace
https://github.com/benjann/palettes
https://en.wikipedia.org/wiki/Web_colors
https://en.wikipedia.org/wiki/Web_colors
https://en.wikipedia.org/wiki/RGB_color_model
https://en.wikipedia.org/wiki/RGB_color_model

HEX

RGB(RGBA)

RGB1(RGBA1) CMYK1

HSL

HSV

CMYK

lRGB (chromatic adaption) XYZ

xyY

xyY1

XYZ1

Lab

LCh

Luv

HCL

CAM02
[
mask

]
JMh

[
coefs

]
Jab

[
coefs

]
Figure 1: Color spaces and coding schemes supported by ColrSpace

("sRGB"), but this can be changed; see function S.rgbspace(). Note that chang-
ing the RGB working space after colors have been added to a ColrSpace object will
not change the stored values. To transform colors from one RGB working space to
another RGB working space, export the colors to XYZ typing C = S.get("XYZ"),
change the RGB working space using function S.rgbspace(), and then reimport
the colors typing S.set(C, "XYZ").

• lRGB stands for linear RGB in 0–1 scaling, that is, RGB1, from which gamma
compression has been removed.

• HSV is a color triplet in the HSV (hue, saturation, value) color space. Hue is in
degrees of the color wheel (0–360), saturation and value are numbers in [0, 1].
ColrSpace uses the procedure described in https://en.wikipedia.org/wiki/HSL
and HSV to translate between HSV and RGB.

• HSL is a color triplet in the HSL (hue, saturation, lightness) color space. Hue
is in degrees of the color wheel (0–360), saturation and lightness are numbers in
[0, 1]. ColrSpace uses the procedure described in https://en.wikipedia.org/wiki/
HSL and HSV to translate between HSL and RGB.

• CMYK is a CMYK quadruplet (cyan, magenta, yellow, black) in 0–255 scaling.
When returning CMYK values, ColrSpace will round the values to integers and
clip them at 0 and 255. There is no unique standard method to translate between
CMYK and RGB, as translation is device-specific. ColrSpace uses the same
translation as is implemented in official Stata (for CMYK to RGB see program
setcmyk in file color.class; for RGB to CMYK see program rgb2cmyk in file
palette.ado).

4

https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/HSL_and_HSV

• CMYK1 is a CMYK quadruplet (cyan, magenta, yellow, black) in 0–1 scaling.
ColrSpace does not clip or round the values and may thus return values larger
than 1 or smaller than 0. To retrieve a matrix of clipped values, you can type

C = S.clip(S.get("CMYK1"), 0, 1)

See CMYK for additional information.

• XYZ is a CIE 1931 XYZ tristimulus value in Ywhite = 100 scaling. See https:
//en.wikipedia.org/wiki/CIE 1931 color space for background information. XYZ
values are defined with respect to a reference white; see function S.xyzwhite().
The default illuminant used by ColrSpace to define the reference white is "D65"

(noon daylight for a CIE 1931 2° standard observer). To transform RGB to CIE
XYZ, ColrSpace first removes gamma compression to obtain linear RGB (lRGB)
and then transforms linear RGB to XYZ using an appropriate transformation
matrix (see, e.g., Pascale 2003 for detailed explanations of both steps), possibly
applying chromatic adaption to take account of a change in the reference white
between the RGB working space and the XYZ color space.

• XYZ1 is a CIE XYZ tristimulus value in Ywhite = 1 scaling. See XYZ for additional
information.

• xyY is a CIE xyY triplet, where x (cyan to red for y around .2) and y (magenta to
green for x around .2) are the chromaticity coordinates in [0, 1], with x + y ≤ 1,
and Y is the luminance in Ywhite = 100 scaling (Y in CIE xyY is the same as Y in
CIE XYZ). ColrSpace uses the procedure described in https://en.wikipedia.org/
wiki/CIE 1931 color space to translate between XYZ and xyY.

• xyY1 is a CIE xyY triplet, with Y in Ywhite = 1 scaling. See xyY for additional
information.

• Lab is a color triplet in the CIE L*a*b* color space. L* in [0, 100] is the lightness
of the color, a* is the green (−) to red (+) component, b* is the blue (−) to
yellow (+) component. The range of a* and b* is somewhere around ±100 for
typical colors. ColrSpace uses the procedure described in https://en.wikipedia.
org/wiki/CIELAB color space to translate between XYZ and CIE L*a*b*.

• LCh is a color triplet in the CIE LCh color space (cylindrical representation of CIE
L*a*b*). L (lightness) in [0, 100] is the same as L* in CIE L*a*b*, C (chroma) is
the relative colorfulness (with typical values in a range of 0–100, although higher
values are possible), h (hue) is the angle on the color wheel in degrees (0–360).
See https://en.wikipedia.org/wiki/CIELAB color space.

• Luv is a color triplet in the CIE L*u*v* color space. L* in [0, 100] is the lightness
of the color, u* is the green (−) to red (+) component, v* is the blue (−) to
yellow (+) component. The range of u* and v* is somewhere around ±100 for
typical colors. ColrSpace uses the procedure described in https://en.wikipedia.
org/wiki/CIELUV to translate between XYZ and CIE L*u*v*. L* in CIE L*u*v*
is the same as L* in CIE L*a*b*.

5

https://en.wikipedia.org/wiki/CIE_1931_color_space
https://en.wikipedia.org/wiki/CIE_1931_color_space
https://en.wikipedia.org/wiki/CIE_1931_color_space
https://en.wikipedia.org/wiki/CIE_1931_color_space
https://en.wikipedia.org/wiki/CIELAB_color_space
https://en.wikipedia.org/wiki/CIELAB_color_space
https://en.wikipedia.org/wiki/CIELAB_color_space
https://en.wikipedia.org/wiki/CIELUV
https://en.wikipedia.org/wiki/CIELUV

• HCL is a color triplet in the HCL color space (cylindrical representation of CIE
L*u*v*). H (hue) is the angle on the color wheel in degrees (0–360), C (chroma)
is the relative colorfulness (with typical values in a range of 0–100, although higher
values are possible), L (lightness) in [0, 100] is the same as L* in CIE L*u*v*. See
https://en.wikipedia.org/wiki/CIELUV.

• CAM02 is a color value in the CIECAM02 color space. See Luo and Li (2013) for
details. In ColrSpace, CIECAM02 is specified as

"CAM02
[
mask

]
"

where optional mask selects the CIECAM02 attributes. The supported attributes
are Q (brightness), J (lightness), M (colourfulness), C (chroma), s (saturation), h
(hue angle), and H (hue composition). For example, you could type

C = S.get("CAM02 QJMCshH")

to obtain a n× 7 matrix containing all available attributes for each color. When
importing colors, e.g. using S.colors() or S.set(), mask must contain at least
one of Q and J, at least one of M, C, and s, and at least one of h and H. If mask is
omitted, ColrSpace assumes "CAM02 JCh".

• JMh is a color triplet in the CIECAM02-based perceptually uniform J ′M ′h color
space. See Luo and Li (2013, chapter 2.6.1) and Luo et al. (2006) for details. In
ColrSpace, J ′M ′h is specified as

"JMh
[
coefs

]
"

where optional coefs selects the transformation coefficients. coefs can be

UCS

or LCD

or SCD

or KL c1 c2

(lowercase spelling and abbreviations allowed). "JMh UCS" is equivalent to "JMh 1

.007 .0228", "JMh LCD" is equivalent to "JMh .77 .007 .0053", "JMh SCD" is
equivalent to "JMh 1.24 .007 .0363". If coefs is omitted, the default coefficients
as set by S.ucscoefs() will be used.

• Jab is a color triplet in the CIECAM02-based perceptually uniform J ′a′b′ color
space. See Luo and Li (2013, chapter 2.6.1) and Luo et al. (2006) for details. In
ColrSpace, J ′a′b′ is specified as

"Jab
[
coefs

]
"

where optional coefs is as described for JMh.

• RGBA is an opacity-extended RGB value (red, green, blue, alpha), where red, green,
and blue are in 0–255 scaling and alpha is a number in [0, 1] (0 = fully transparent,

6

https://en.wikipedia.org/wiki/CIELUV

1 = fully opaque). RGBA is not directly supported by S.convert(), but is allowed
as input or output format in functions such as S.colors(), S.set(), or S.get().
Alternatively, in S.colors(), you can use non-extended RGB and specify opacity
using Stata’s [G] colorstyle syntax; for example "RGBA 26 71 111 0.7" is equiv-
alent to "RGB 26 71 111%70" or "26 71 111%70" (see subsection 6.1). A further
alternative is to manage opacity using S.opacity() or S.alpha().

• RGBA1 is an opacity-extended RGB value (red, green, blue, alpha), where red,
green, and blue are in 0–1 scaling and alpha is a number in [0, 1] (0 = fully
transparent, 1 = fully opaque). See RGBA for additional information.

Internally, ColrSpace stores colors using their (unclipped) RGB1 values and additionally
maintains an opacity value (alpha) in [0, 1] and an intensity adjustment multiplier in
[0, 255] for each color.

4 Initialize a ColrSpace object

Initialize

To initialize a new ColrSpace object, type

S = ColrSpace()

where S is the name of the object. Alternatively, in non-interactive mode, declare a
ColrSpace object as

class ColrSpace scalar S

Either way, after initialization, the object will be empty, that is, it will contain no colors.
The object will be initialized, however, with the following default color space settings:

S.rgbspace("sRGB")

S.xyzwhite("D65")

S.viewcond(20, 64/(5*pi()), "average")

S.ucscoefs("UCS")

S.chadapt("Bfd")

Use S.settings() to display the current color space settings of object S . To restore
the above defaults, you can type S.clearsettings().

Reinitialize

To reinitialize an existing ColrSpace object, type

7

S.clear()

This will remove all colors and meta data from S . Color space settings are not affected
by S.clear(). Use S.clearsettings() if you want to reset the color space settings.

Clear internal look-up tables

Some of the functions below make use of look-up tables for palette names and named
colors. ColrSpace stores these tables in S for reasons of efficiency. To remove these
tables, type

S.clearindex()

This frees a little bit of memory, which may be relevant if you intend to create a lot of
ColrSpace objects. The tables will be rebuilt automatically if a function is called that
makes use of them.

5 Display contents and set meta data

Overview of contents

To display an overview of the contents of S , type

S.describe(
[
short

]
)

where short 6= 0 suppresses listing the individual colors.

Example

: S = ColrSpace()

: S.palette("HTML pink")

: S.describe()

name() = "HTML pink"
pclass() = "qualitative"
note() = "Pink HTML Colors from www.w3schools.com"
source() = "https://www.w3schools.com/colors/colors_groups.asp"
isipolate() = 0
N() = 6
N_added() = 6

Colors() Names() Info()

1 255 192 203 Pink #FFC0CB
2 255 182 193 LightPink #FFB6C1
3 255 105 180 HotPink #FF69B4
4 255 20 147 DeepPink #FF1493
5 219 112 147 PaleVioletRed #DB7093
6 199 21 133 MediumVioletRed #C71585

: S.describe(1)

name() = "HTML pink"

8

pclass() = "qualitative"
note() = "Pink HTML Colors from www.w3schools.com"
source() = "https://www.w3schools.com/colors/colors_groups.asp"
isipolate() = 0
N() = 6
N_added() = 6

Number of colors

To retrieve the number of colors defined in S , type

n = S.N
[
added

]
()

S.N() returns the total number of colors; S.N added() returns the number of colors
added last.

Collection name

To assign a name or title to the collection of colors in S , type

S.name(name)

where name is a string scalar. To retrieve the name, type

name = S.name()

Class

To assign a class to the collection of colors in S , type

S.pclass(class)

where class is a string scalar such as "qualitative" (or "categorical"),
"sequential", "diverging", or "circular" (or "cyclic"). To retrieve the class,
type

class = S.pclass()

Description

To assign a description to the collection of colors in S , type

S.note(note)

where note is a string scalar. To retrieve the description, type

9

note = S.note()

Source

To assign information on the source of the colors in S , type

S.source(source)

where source is a string scalar. To retrieve the source, type

source = S.source()

Interpolation status

ColrSpace maintains a 0/1 flag of whether colors have been interpolated by
S.ipolate(). To retrieve the status of the flag, type

flag = S.isipolate()

6 Define and transform colors

6.1 String input/output (Stata interface)

Color input

To import colors from a string scalar colors containing a list of color specifications, type

S.
[
add

]
colors(colors

[
, delimiter

]
)

or

rc = S.
[
add

]
colors(colors

[
, delimiter

]
)

where string scalar delimiter sets the character(s) delimiting the specifications; the
default is to assume a space-separated list, i.e. delimiter = " ". To avoid breaking
a specification that contains a delimiting character, enclose the specification in double
quotes. S.colors() will replace preexisting colors in S by the new colors. Alternatively,
use S.add colors() to append the new colors to the existing colors. S. colors() and
S. add colors() perform the same action as S.colors() and S.add colors(), but
they return rc instead of aborting if colors contains invalid color specifications. rc will
be set to the index of the first offending color specification, or to 0 if all specifications
are valid. Also see function S.cvalid() for a way to check whether a color specification
is valid.

To import colors from a string vector Colors (each element containing a single color

10

specification), type

S.
[
add

]
Colors(Colors)

or

rc = S.
[
add

]
Colors(Colors)

The syntax for a single color specification is

color
[
%#

][
*#

]
where %# sets the opacity (in percent; 0 = fully transparent, 100 = fully opaque), *#
sets the intensity adjustment multiplier (values between 0 and 1 make the color lighter;
values larger than one make the color darker), and color is one of the following:

name a color name; this includes official Stata’s color names as listed in [G] colorstyle,
possible user additions provided through style files, as well as a large collection
of named colors provided by ColrSpace

#rrggbb 6-digit hex RGB value; white = #FFFFFF or #ffffff, navy = #1A476F or #1a476f

#rgb 3-digit abbreviated hex RGB value; white = #FFF or #fff

RGB value in 0–255 scaling; navy = "26 71 111"

CMYK value in 0–255 or 0–1 scaling; navy = "85 40 0 144" or ".333 .157 0

.565"

RGB # # # RGB value in 0–255 scaling; navy = "RGB 26 71 111"

RGB1 # # # RGB value in 0–1 scaling; navy = "RGB1 .102 .278 .435"

lRGB # # # linear RGB value in 0–1 scaling; navy = "lRGB .0103 .063 .159"

CMYK # # # # CMYK value in 0–255 scaling; navy = "CMYK 85 40 0 144"

CMYK1 # # # # CMYK value in 0–1 scaling; navy = "CMYK1 .333 .157 0 .565"

HSV # # # HSV value; navy = "HSV 208 .766 .435"

HSL # # # HSL value; navy = "HSL 208 .620 .269"

XYZ # # # CIE XYZ value in 0–100 scaling; navy = "XYZ 5.55 5.87 15.9"

XYZ1 # # # CIE XYZ value in 0–1 scaling; navy = "XYZ1 .0555 .0587 .159"

xyY # # # CIE xyY value with Y in 0–100 scaling; navy = "xyY .203 .215 5.87"

xyY1 # # # CIE xyY value with Y in 0–1 scaling; navy = "xyY1 .203 .215 .0587"

Lab # # # CIE L*a*b* value; navy = "Lab 29 -.4 -27.5"

LCh # # # LCh value (polar CIE L*a*b* ; navy = "LCh 29 27.5 269.2"

Luv # # # CIE L*u*v* value; navy = "Luv 29 -15.4 -35.6"

HCL # # # HCL value (polar CIE L*u*v*); navy = "HCL 246.6 38.8 29"

CAM02
[
mask

]
. . . CIECAM02 value according to mask ; navy = "CAM02 JCh 20.2 37 245" or

"CAM02 QsH 55.7 69.5 303.5"

JMh
[
coefs

]
CIECAM02 J ′M ′h value; navy = "JMh 30.1 21 245"

Jab
[
coefs

]
CIECAM02 J ′a′b′ value; navy = "Jab 30.1 -8.9 -19" or "Jab LCD 39 -10.6

-23"

RGBA # # # # RGB 0–255 value where the last number specifies the opacity in [0, 1]

RGBA1 # # # # RGB 0–1 value where the last number specifies the opacity in [0, 1]

11

The color space identifiers (but not mask) can be typed in lowercase letters. The
provided examples are for standard viewing conditions.

The named colors provided by ColrSpace in addition to Stata’s named colors are as
follows (type help colrspace library namedcolors to view the source file containing
all color definitions):

140 HTML colors
AliceBlue, AntiqueWhite, Aqua, Aquamarine, Azure, Beige, Bisque, Black, BlanchedAlmond,
Blue, BlueViolet, Brown, BurlyWood, CadetBlue, Chartreuse, Chocolate, Coral, CornflowerBlue,
Cornsilk, Crimson, Cyan, DarkBlue, DarkCyan, DarkGoldenRod, DarkGray, DarkGrey,
DarkGreen, DarkKhaki, DarkMagenta, DarkOliveGreen, DarkOrange, DarkOrchid, DarkRed,
DarkSalmon, DarkSeaGreen, DarkSlateBlue, DarkSlateGray, DarkSlateGrey, DarkTurquoise,
DarkViolet, DeepPink, DeepSkyBlue, DimGray, DimGrey, DodgerBlue, FireBrick, FloralWhite,
ForestGreen, Fuchsia, Gainsboro, GhostWhite, Gold, GoldenRod, Gray, Grey, Green,
GreenYellow, HoneyDew, HotPink, IndianRed, Indigo, Ivory, Khaki, Lavender, LavenderBlush,
LawnGreen, LemonChiffon, LightBlue, LightCoral, LightCyan, LightGoldenRodYellow, LightGray,
LightGrey, LightGreen, LightPink, LightSalmon, LightSeaGreen, LightSkyBlue, LightSlateGray,
LightSlateGrey, LightSteelBlue, LightYellow, Lime, LimeGreen, Linen, Magenta, Maroon,
MediumAquaMarine, MediumBlue, MediumOrchid, MediumPurple, MediumSeaGreen, MediumSlateBlue,
MediumSpringGreen, MediumTurquoise, MediumVioletRed, MidnightBlue, MintCream, MistyRose,
Moccasin, NavajoWhite, Navy, OldLace, Olive, OliveDrab, Orange, OrangeRed, Orchid,
PaleGoldenRod, PaleGreen, PaleTurquoise, PaleVioletRed, PapayaWhip, PeachPuff, Peru, Pink,
Plum, PowderBlue, Purple, RebeccaPurple, Red, RosyBrown, RoyalBlue, SaddleBrown, Salmon,
SandyBrown, SeaGreen, SeaShell, Sienna, Silver, SkyBlue, SlateBlue, SlateGray, SlateGrey,
Snow, SpringGreen, SteelBlue, Tan, Teal, Thistle, Tomato, Turquoise, Violet, Wheat, White,
WhiteSmoke, Yellow, YellowGreen

30 W3.CSS default colors
w3-red, w3-pink, w3-purple, w3-deep-purple, w3-indigo, w3-blue, w3-light-blue, w3-cyan,
w3-aqua, w3-teal, w3-green, w3-light-green, w3-lime, w3-sand, w3-khaki, w3-yellow, w3-amber,
w3-orange, w3-deep-orange, w3-blue-grey, w3-brown, w3-light-grey, w3-grey, w3-dark-grey,
w3-black, w3-white, w3-pale-red, w3-pale-yellow, w3-pale-green, w3-pale-blue

Further color collections from W3.CSS (using names as provided by W3.CSS, e.g. w3-flat-turquoise)
Flat UI Colors, Metro UI Colors, Windows 8 Colors, iOS Colors, US Highway Colors, US Safety
Colors, European Signal Colors, Fashion Colors 2019, Fashion Colors 2018, Fashion Colors 2017,
Vivid Colors, Food Colors, Camouflage Colors, ANA (Army Navy Aero) Colors, Traffic Colors

The color names can be abbreviated and typed in lowercase letters. If abbreviation is
ambiguous, the first matching name in the alphabetically ordered list will be used. In
case of name conflict with a Stata color, the color from ColrSpace will take precedence
only if the specified name is an exact match including case. For example, pink will refer
to official Stata’s pink, whereas Pink will refer to HTML color pink.

Examples

. mata: S = ColrSpace()

. mata: S.colors("LightCyan MediumAqua BurlyWood")

. colorpalette mata(S), rows(1)

1 2 3224 255 255 102 205 170 222 184 135
LightCyan MediumAquaMarine BurlyWood

S

12

https://github.com/benjann/colrspace/blob/master/colrspace_library_namedcolors.sthlp
https://www.w3schools.com/colors/colors_names.asp
https://www.w3schools.com/w3css/w3css_color_material.asp
https://www.w3schools.com/w3css/
https://www.w3schools.com/w3css/
https://www.w3schools.com/w3css/w3css_color_flat.asp
https://www.w3schools.com/w3css/w3css_color_metro.asp
https://www.w3schools.com/w3css/w3css_color_win8.asp
https://www.w3schools.com/w3css/w3css_color_ios.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/colors/colors_fs595.asp
https://www.w3schools.com/colors/colors_ral.asp

. mata: S.add_colors("SeaShell Crimson")

. colorpalette mata(S), rows(2)

1

2

3

4

5224 255 255

102 205 170

222 184 135

255 245 238

220 20 60
LightCyan

MediumAquaMarine

BurlyWood

SeaShell

Crimson

S

. mata: S.colors("#337ab7, lab 50 -23 32, xyz 80 30 40, hcl 200 50 30", ",")

. colorpalette mata(S), rows(2)

1

2

3

4

51 122 183

97 128 62

255 0 171

0 88 96

#337ab7

lab 50 -23 32

xyz 80 30 40

hcl 200 50 30

S

. mata: S.colors("navy*.5 orange%80 maroon*.7%60")

. colorpalette mata(S), rows(1)

1 2 3navy*.5 orange%80 maroon%60*.7
navy orange maroon

S

Color output

To export colors into a string scalar containing a space-separated list of color specifica-
tions compatible with Stata graphics, type

colors = S.colors
[
added

]
(
[
rgbforce

]
)

where rgbforce 6= 0 enforces exporting all colors using their in RGB values. Colors that
have been defined in terms of their Stata color names are exported as is by default.
Specify rgbforce 6= 0 to export these colors as RGB values. S.colors() exports all
colors; use S.colors added() to export only the colors that have been added last.

To export colors into a string column vector (each row containing a single color
specification), type

Colors = S.Colors
[
added

]
(
[
rgbforce

]
)

Examples

: S = ColrSpace()

13

: S.colors("navy*.5 orange%80 maroon*.7%60")

: S.colors()
navy*.5 orange%80 maroon%60*.7

: S.colors(1)
"26 71 111*.5" "255 127 0%80" "144 53 59%60*.7"

: S.add_colors("SeaShell Crimson")

: S.colors_added()
"255 245 238" "220 20 60"

: S.Colors()
1

1 navy*.5
2 orange%80
3 maroon%60*.7
4 255 245 238
5 220 20 60

Names input

To import information from a string scalar names containing a list of color names, type

S.names
[
added

]
(names

[
, delimiter

]
)

where string scalar delimiter sets the character(s) delimiting the names; the default is
to assume a space-separated list, i.e. delimiter = " ". To avoid breaking a name that
contains a delimiting character, enclose the name in double quotes. S.names() affects
all colors defined in S ; use S.names added() to affect only the colors that have been
added last.

To import names from a string vector Names (each element containing a single name),
type

S.Names
[
added

]
(Names)

Note that redefining the colors, e.g. by applying S.colors() or S.set(), will delete
existing color names.

Example (using colors from getbootstrap.com/docs/3.3/)

. mata: S = ColrSpace()

. mata: S.colors("#337ab7 #5cb85c #5bc0de #f0ad4e #d9534f")

. mata: S.names("primary success info warning danger")

. colorpalette mata(S), rows(2)

14

https://getbootstrap.com/docs/3.3/

1

2

3

4

551 122 183

92 184 92

91 192 222

240 173 78

217 83 79
primary

success

info

warning

danger

S

Functions S.colors() and S.palette() fill in names automatically for colors that have
a name.

Names output

To export color names into a string scalar containing a space-separated list of the
descriptions, type

names = S.names
[
added

]
()

S.names() exports names from all colors; use S.names added() to export names only
from the colors that have been added last.

Alternatively, to export the names into a string column vector (each row containing a
single name) type

Names = S.Names
[
added

]
()

Example

: S = ColrSpace()

: S.colors("SeaShell Crimson")

: S.colors()
"255 245 238" "220 20 60"

: S.names()
SeaShell Crimson

: S.Names()
1

1 SeaShell
2 Crimson

Description input

To import information from a string scalar info containing a list of color descriptions
(e.g. color names or other text describing a color), type

S.info
[
added

]
(info

[
, delimiter

]
)

15

where string scalar delimiter sets the character(s) delimiting the descriptions; the default
is to assume a space-separated list, i.e. delimiter = " ". To avoid breaking a description
that contains a delimiting character, enclose the description in double quotes. S.info()
affects all colors defined in S ; use S.info added() to affect only the colors that have
been added last.

To import descriptions from a string vector Info (each element containing a single color
description), type

S.Info
[
added

]
(Info)

Note that redefining the colors, e.g. by applying S.colors() or S.set(), will delete
existing color descriptions.

Example (using colors from getbootstrap.com/docs/3.3/)

. mata: S = ColrSpace()

. mata: S.colors("#5cb85c #f0ad4e #d9534f")

. mata: S.info("color for success, color for warning, color for danger", ",")

. colorpalette mata(S), rows(1)

1 2 392 184 92 240 173 78 217 83 79
color for success color for warning color for danger

S

Functions S.colors() and S.palette() fill in descriptions automatically for colors
that have been translated to RGB (the original color codes will be used as descriptions).
Furthermore, modification functions such as S.ipolate() set the descriptions to the
color codes in the color space in which the modification has been performed.

Description output

To export color descriptions into a string scalar containing a space-separated list of the
descriptions, type

info = S.info
[
added

]
()

S.info() exports descriptions from all colors; use S.info added() to export descrip-
tions only from the colors that have been added last.

Alternatively, to export the color descriptions into a string column vector (each row
containing a single description) type

Info = S.Info
[
added

]
()

Example

: S = ColrSpace()

16

https://getbootstrap.com/docs/3.3/

: S.colors("SeaShell Crimson")

: S.colors()
"255 245 238" "220 20 60"

: S.info()
#FFF5EE #DC143C

: S.Info()
1

1 #FFF5EE
2 #DC143C

6.2 Color palettes and color generators

ColrSpace features a large collection of named color palettes and color generators. The
syntax to import colors from such a palette or color generator is

S.
[
add

]
palette(

[
"name", n, opt1, opt2, opt3, opt4

]
)

where name selects the palette and n sets the desired number of colors. Arguments
opt1 to opt4 depend the type of palette as explained below. S.palette() will replace
preexisting colors in S by the new colors; S.add palette() will append the new colors
to the existing colors. The functions abort with error if name does not match an existing
palette. See function S.pexists() for a way to check whether a palette exists or not.
See function S.palettes() if you want to obtain a list available palettes.

There are three types of palettes, discussed under the following headings (also see
repec.sowi.unibe.ch/stata/palettes/colors.html for an overview of all palettes):

Standard palettes

Colormaps

Color generators

Standard palettes

The syntax for standard palettes is

S.
[
add

]
palette(

[
"name", n, noexpand

]
)

where

name selects the palette; see below for available names. Default is s2; this default can
also be selected by typing "".

n is the number of colors to be retrieved from the palette. Many palettes, such as,
e.g., the sequential and diverging ColorBrewer palettes, are adaptive to n in the
sense that they return different colors depending on n. Other palettes, such as

17

http://repec.sowi.unibe.ch/stata/palettes/colors.html

s2, contain a fixed set of colors. In any case, if n is different from the (maximum
or minimum) number of colors defined by a palette, the colors are either recycled
(qualitative palettes; i.e. if S.pclass() is "qualitative" or "categorical") or
interpolated (all other palettes) such that the number of retrieved colors is equal to
n. Interpolation will be performed in the "Jab" space; if you want to interpolate in
another space, specify noexpand 6= 0 and then apply S.ipolate().

noexpand 6= 0 prevents recycling or interpolating colors if n, the number of requested
colors, is larger (smaller) than the maximum (minimum) number of colors defined
by a palette. That is, if noexpand 6= 0 is specified, the resulting number of colors in
S may be different from the requested number of colors. Exception: noexpand 6= 0
does not suppress “recycling” qualitative palettes if n is smaller than the (minimum)
number of colors defined by the palette. In this case, the first n colors of the palette
are retrieved irrespective of whether noexpand 6= 0 has been specified or not.

Example

. mata: S = ColrSpace()

. mata: S.palette("lin fruits")

. mata: S.add_palette("lin veg")

. mata: S.name("fruits and vegetables")

. colorpalette mata(S)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

146 195 51

251 222 6

64 105 166

200 0 0

127 34 147

251 162 127

255 86 29

255 141 61

157 212 105

245 208 64

104 59 101

239 197 143

139 129 57

255 26 34

Apple

Banana

Blueberry

Cherry

Grape

Peach

Tangerine

Carrot

Celery

Corn

Eggplant

Mushroom

Olive

Tomato

fruits and vegetables

Currently available standard palettes are as follows:

s2 15 qualitative colors as in Stata’s s2color scheme ([G] Scheme s2)

s1 15 qualitative colors as in Stata’s s1color scheme ([G] Scheme s1)

s1r 15 qualitative colors as in Stata’s s1rcolor scheme ([G] Scheme s1)

18

economist 15 qualitative colors as in Stata’s economist scheme ([G] Scheme economist)

mono 15 gray scales (qualitative) as in Stata’s monochrome schemes

okabe 8 CVD-friendly qualitative colors by Okabe and Ito (2002)

cblind like okabe, but including gray on second position

plottig 15 qualitative colors as in plottig by Bischof (2017b)

538 13 qualitative colors as in 538 by Bischof (2017a)

mrc 8 qualitative colors as in tfl by Morris (2015)

tfl 7 qualitative colors as in mrc by Morris (2013)

burd 13 qualitative colors as in burd by Briatte (2013)

lean 15 gray scales (qualitative) as in lean by Juul (2003)

tableau 20 qualitative colors from Lin et al. (2013)

pals qualitative palettes from the pals package in R (github.com/kwstat/pals), where
pals is alphabet (26), alphabet2 (26), cols25 (25), glasbey (32), kelly (22;
default), polychrome (36), or watlington (16)

d3
[
scheme

]
qualitative palettes from D3.js, where scheme is 10 (default), 20, 20b, or 20c

(aliases: tab10, tab20, tab20b, and tab20c)

sb
[
scheme

]
qualitative palettes from seaborn.pydata.org, where scheme is one of the following
10-color variants: deep (default), muted, pastel, bright, dark, colorblind
6-color variants: deep6 (alias: sb6), muted6, pastel6, bright6, dark6, colorblind6

tab
[
scheme

]
color schemes from Tableau 10 (source), where scheme is one of the following
qualitative: 10 (default), 20, Color Blind (10), Seattle Grays (5), Traffic (9),
Miller Stone (11), Superfishel Stone (10), Nuriel Stone (9), Jewel Bright

(9), Summer (8), Winter (10), Green-Orange-Teal (12), Red-Blue-Brown (12),
Purple-Pink-Gray (12), Hue Circle (19)

sequential: Blue-Green (7), Blue Light (7), Orange Light (7), Blue (20), Orange
(20), Green (20), Red (20), Purple (20), Brown (20), Gray (20), Gray Warm (20),
Blue-Teal (20), Orange-Gold (20), Green-Gold (20), Red-Gold (21)

diverging (7): Orange-Blue, Red-Green, Green-Blue, Red-Blue, Red-Black,
Gold-Purple, Red-Green-Gold, Sunset-Sunrise, Orange-Blue-White,
Red-Green-White, Green-Blue-White, Red-Blue-White, Red-Black-White,
Orange-Blue Light, Temperature

tol
[
scheme

]
color schemes by Paul Tol (personal.sron.nl/˜pault; using definitions from source

file tol colors.py, which may deviate from personal.sron.nl/˜pault), where scheme
is one of the following

qualitative: bright (8), high-contrast (4), vibrant (8), muted (11; default),
medium-contrast (7), light (10)

sequential: YlOrBr (9), iridescent (23)
rainbow: rainbow (1-23), PuRd (22), PuBr (26), WhRd (30), WhBr (34)
diverging: sunset (11), BuRd (9), PRGn (9)

colorbrewer color schemes from ColorBrewer (Brewer 2016; Brewer et al. 2003), where
colorbrewer is one of the following

qualitative: Accent (8), Dark2 (8), Paired (12), Pastel1 (9), Pastel2 (8), Set1 (9),
Set2 (8), Set3 (12)

sequential (3–9): Blues, BuGn, BuPu, GnBu, Greens, Greys, OrRd, Oranges, PuBu,
PuBuGn, PuRd, Purples, RdPu, Reds, YlGn, YlGnBu, YlOrBr, YlOrRd

diverging (3–11): BrBG, PRGn, PiYG, PuOr, RdBu, RdGy, RdYlBu, RdYlGn, Spectral
CMYK variants: add keyword cmyk (e.g., type Accent cmyk)

carto
[
scheme

]
color schemes from carto.com/carto-colors, where scheme is one of the following
qualitative (3–12): Antique, Bold (default), Pastel, Prism, Safe (CVD-friendly),
Vivid

sequential (2–7): Burg, BurgYl, RedOr, OrYel, Peach, PinkYl, Mint, BluGrn,

19

https://github.com/kwstat/pals
https://d3js.org/
https://seaborn.pydata.org/
https://www.tableau.com/about/blog/2016/7/colors-upgrade-tableau-10-56782
https://github.com/jrnold/ggthemes/blob/main/data-raw/theme-data/tableau.yml
https://personal.sron.nl/~pault/
https://personal.sron.nl/~pault/data/tol_colors.py
https://personal.sron.nl/~pault/
https://colorbrewer2.org/
https://carto.com/carto-colors/

DarkMint, Emrld, ag GrnYl, BluYl, Teal, TealGrn, Purp, PurpOr, Sunset, Magenta,
SunsetDark, ag Sunset, BrwnYl

diverging (2–7): ArmyRose, Fall, Geyser, Temps, TealRose, Tropic, Earth

ptol
[
scheme

]
color schemes from Tol (2012), where scheme is qualitative (1–12; default),
rainbow (4–12), or diverging (3–11)

lin
[
scheme

]
semantic colors from Lin et al. (2013), where scheme is carcolor (6; default), food

(7), features (5), activities (5), fruits (7), vegetables (7), drinks (7), or
brands (7) (algorithm-selected variants: add keyword algorithm; e.g., type lin

carcolor algorithm)

spmap
[
scheme

]
color schemes from spmap by Pisati (2007), where scheme is blues (2–99; default),
greens (2–99), greys (2–99), reds (2–99), rainbow (2–99), heat (2–16), terrain
(2–16), or topological (2–16)

sfso
[
scheme

]
color schemes by the Bundesamt für Statistik (2017), where scheme is
qualitative: parties (11), languages (5)
sequential (7): blue (default)
sequential (6): brown, orange, red, pink, purple, violet, ltblue, turquoise,
green, olive, black

diverging (10): votes

CMYK variants: add keyword cmyk (e.g., type sfso blue cmyk)

HTML
[
scheme

]
HTML colors in groups from www.w3schools.com, where scheme is pink (6),
purple (19), red (9), orange (5), yellow (11), green (22), cyan (8), blue (16),
brown (18), white (17), or gray (10; alias: grey); all 140 HTML colors
(alphabetically sorted) will be returned if scheme is omitted (alias: webcolors)

w3
[
scheme

]
W3.CSS color schemes from www.w3schools.com, where scheme is as follows
qualitative collections: default (30 Default Colors), flat (20 Flat UI Colors),
metro (17 Metro UI Colors), win8 (22 Windows 8 Colors), ios (12 iOS Colors),
highway (7 US Highway Colors), safety (6 US Safety Colors), signal (10
European Signal Colors), 2019 (32 Fashion Colors 2019), 2018 (30 Fashion Colors
2018), 2017 (20 Fashion Colors 2017), vivid (21 Vivid Colors), food (40 Food
Colors), camo (15 Camouflage Colors), ana (44 Army Navy Aero Colors), traffic
(9 Traffic Colors)

sequential themes (11): black, blue, blue-grey, brown, cyan, dark-grey,
deep-orange, deep-purple, green, grey, indigo, khaki, light-blue,
light-green, lime, orange, pink, purple, red, teal, yellow

wesanderson Wes Anderson palettes from wesandersonpalettes.tumblr.com (source), where
scheme is as follows

qualitative: BottleRocket1 (7), BottleRocket2 (5), Rushmore1 (5), Royal1 (4),
Royal2 (5), Zissou1 (5), Darjeeling1 (5), Darjeeling2 (5), Chevalier1 (4),
FantasticFox1 (5), Moonrise1 (4), Moonrise2 (4), Moonrise3 (5), Cavalcanti1
(5), GrandBudapest1 (4), GrandBudapest2 (4), IsleofDogs1 (6), IsleofDogs2 (5),
FrenchDispatch1 (5)

sequential: Zissou1 (5)

The palette names can be abbreviated and typed in lowercase letters (for example,
"BuGn" could be typed as "bugn", "lin carcolor algorithm" could be typed as "lin
car a"). If abbreviation is ambiguous, the first matching name in the sorted list of
palettes (including all palette types) will be used. Numbers in parentheses refer to the
palette size (number of colors; a range means that the palette comes in different sizes).

ColorBrewer is a set of color schemes developed by Brewer et al. (2003); also see
Brewer (2016). These colors are licensed under Apache License Version 2.0; see the
copyright notes at ColorBrewer updates.html.

20

https://www.w3schools.com/colors/colors_groups.asp
https://www.w3schools.com/w3css/w3css_color_material.asp
https://www.w3schools.com/w3css/w3css_color_material.asp
https://www.w3schools.com/w3css/w3css_color_flat.asp
https://www.w3schools.com/w3css/w3css_color_metro.asp
https://www.w3schools.com/w3css/w3css_color_win8.asp
https://www.w3schools.com/w3css/w3css_color_ios.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/colors/colors_fs595.asp
https://www.w3schools.com/colors/colors_ral.asp
https://wesandersonpalettes.tumblr.com/
https://github.com/karthik/wesanderson
https://colorbrewer2.org/
https://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_updates.html

Colormaps

Colormaps are palettes whose colors are obtained by linear segmentation around anchor
points or by linear interpolation from a dense grid of RGB values. The syntax for
colormaps is

S.
[
add

]
palette(

[
"name", n, range

]
)

where

name selects the colormap. See below for available names.

n is the number of colors to be retrieved from the colormap. The default is 15.

range = (lb
[
, ub

]
) specifies the range of the colormap to be used, with lb and ub

within [0, 1] (values smaller than 0 or larger than 1 will be interpreted as 0 or 1,
respectively). The default is (0,1). This default can also be selected by typing .

(missing). If lb is larger than ub, the colors are retrieved in reverse order. Argument
range has not effect for cyclic (circular) colormaps.

Currently available colormaps are as follows:

viridis perceptually uniform colormaps from matplotlib.org (also see
bids.github.io/colormap), where viridis is as follows

sequential: viridis, magma, inferno, plasma, cividis (CVD-friendly)
cyclic: twilight, twilight shifted

seaborn perceptually uniform colormaps from seaborn.pydata.org, where seaborn is as
follows

sequential: rocket, mako, flare, crest
diverging: vlag, icefire

matplotlib
[
map

]
further colormaps from matplotlib.org (Hunter 2007), where map is autumn,

spring, summer, winter, bone, cool, copper, coolwarm, hot, jet (default), or
turbo

CET
[
map

]
perceptually uniform colormaps by Kovesi (2015), where map is as follows (see

colorcet.com/gallery.html for an overview)
linear: L01, L02, L03, L04, L05, L06, L07, L08, L09, L10, L11, L12, L13, L14, L15,
L16, L17, L18, L19, L20 (default)

rainbow: R1, R2, R3, R4
isoluminant: I1, I2, I3
diverging: D01, D01A, D02, D03, D04, D06, D07, D08, D09, D10, D11, D12, D13
circular: C1, C2, C3, C4, C5, C6, C7
CVD-friendly: CBD1, CBL1, CBL2, CBC1, CBC2

scico
[
map

]
perceptually uniform CVD-friendly colormaps by Crameri (2018), where map is

as follows
sequential: batlow (default), batlowW, batlowK, devon, lajolla, bamako, davos,
bilbao, nuuk, oslo, grayC, hawaii, lapaz, tokyo, buda, acton, turku, imola

diverging: broc, cork, vik, lisbon, tofino, berlin, roma, bam, vanimo
cyclic: romaO, bamO, brocO, corkO, vikO

The names can be abbreviated; if abbreviation is ambiguous, the first matching name
in the sorted list of palettes (including all palette types) will be used.

Example

21

http://matplotlib.org/stable/tutorials/colors/colormaps.html
http://bids.github.io/colormap/
http://seaborn.pydata.org/
http://matplotlib.orghttp://matplotlib.org/stable/tutorials/colors/colormaps.html
http://colorcet.com/gallery.html

. mata: A = B = ColrSpace()

. mata: A.palette("viridis", 30)

. mata: B.palette("magma", 30, (.5,1))

. colorpalette, gropts(ysize(1) scale(*4)) nonumbers: mata(A) / mata(B)

viridis

magma

Color generators

The syntax for the color generators is

S.
[
add

]
palette(

[
"name", n, H , C, L, P

]
)

where

name selects the type of color generator; see below for available names.

n specifies the number of colors to be generated. The default is 15.

H is a real vector specifying one or two hues in degrees of the color wheel.

C is a real vector specifying one or two chroma levels. For hue only the first level is
relevant.

L is a real vector specifying one or two luminance/lightness levels. For hue only the
first level is relevant.

P is a real vector specifying one or two power parameters. For hue only the first
parameter is relevant: P 6= 0 causes hue to travel counter-clockwise around the
color wheel.

The available color generators are as follows:

hue HCL colors with evenly spaced hues. The algorithm has been modeled after function
hue pal() from R’s scales package by Hadley Wickham (see
github.com/hadley/scales). The default parameters are H = (15, 375), C = 100,
and L = 65. If the difference between the two values of H is a multiple of 360, the
second value will be reduced by 360/n (so that the space between the last and the
first color is the same as between the other colors).

HCL
[
scheme

]
Qualitative, diverging, or sequential colors in the HCL space (radial CIE L*u*v*).

The algorithm has been modeled after R’s colorspace package by Ihaka et al.
(2016); also see Zeileis et al. (2009) and hclwizard.org. scheme can be one of the
following.

qualitative: qualitative (default), intense, dark, light, pastel
sequential: sequential, blues, greens, grays, oranges, purples, reds, heat, heat2,
terrain, terrain2, viridis, plasma, redblue

diverging: diverging, bluered, bluered2, bluered3, greenorange, browngreen,
pinkgreen, purplegreen

22

https://github.com/hadley/scales
http://hclwizard.org

LCh
[
scheme

]
Qualitative, diverging, or sequential colors in the LCh space (radial CIE L*a*b*).

The algorithm has been modeled in analogy to HCL. scheme can be one of the
following.

qualitative: qualitative (default), intense, dark, light, pastel
sequential: sequential, blues, greens, grays, oranges, purples, reds, heat, heat2,
terrain, terrain2, viridis, plasma, redblue

diverging: diverging, bluered, bluered2, bluered3, greenorange, browngreen,
pinkgreen, purplegreen

JMh
[
scheme

]
Qualitative, diverging, or sequential colors in the J ′M ′h space. The algorithm has

been modeled in analogy to HCL. scheme can be one of the following.
qualitative: qualitative (default), intense, dark, light, pastel
sequential: sequential, blues, greens, grays, oranges, purples, reds, heat, heat2,
terrain, terrain2, viridis, plasma, redblue

diverging: diverging, bluered, bluered2, bluered3, greenorange, browngreen,
pinkgreen, purplegreen

HSV
[
scheme

]
Qualitative, diverging, or sequential colors in the HSV space. The algorithm has been

modeled in analogy to HCL. scheme can be one of the following.
qualitative: qualitative (default), intense, dark, light, pastel, rainbow
sequential: sequential, blues, greens, grays, oranges, purples, reds, heat, terrain,
heat0, terrain0

diverging: diverging, bluered, bluered2, bluered3, greenorange, browngreen,
pinkgreen, purplegreen

HSL
[
scheme

]
Qualitative, diverging, or sequential colors in the HSL space. The algorithm has been

modeled in analogy to HCL. scheme can be one of qualitative (default),
sequential, or diverging.

The names of the generators and schemes can be abbreviated and typed in lowercase
letters. If abbreviation is ambiguous, the first matching name in the sorted list of
palettes and generators (including all palette types) will be used.

Given n (number of colors), H = (h1,h2) (hues), C = (c1,c2) (chroma levels),
L = (l1,l2) (luminance levels), P = (p1,p2) (power coefficients), the HCL generator
creates HCL colors i = 1, . . . ,n according to the following formulas.

• qualitative: HCL[i] = (h1 + (h2 − h1)× (i− 1)/(n − 1), c1, l1)

• sequential: let j = (n − i)/(n − 1), then

HCL[i] = (h2 − (h2 − h1)× j, c2− (c2− c1)× jp1, l2− (l2− l1)× jp2)

• diverging: let j = (n − 2i + 1)/(n − 1), then

HCL[i] = (cond(j > 0, h1, h2), c1 × |j|p1, l2 − (l2 − l1)× |j|p2)

The LCh, JMh, HSV, and HSL generator use analogous formulas. For qualitative
colors, if h2 is omitted, it is set to h2 = h1 + 360 × (n − 1)/n. See file
colrspace library generators.sthlp for the parameter settings of the different gen-
erators.

Examples

23

https://github.com/benjann/colrspace/blob/master/colrspace_library_generators.sthlp

. mata: S = ColrSpace()

. mata: S.palette("hue", 5)

. colorpalette mata(S), rows(2)

1

2

3

4

5248 118 109

163 165 0

0 191 125

0 176 246

231 107 243
HCL 15 100 65

HCL 87 100 65

HCL 159 100 65

HCL 231 100 65

HCL 303 100 65

hue

. mata: D1 = ColrSpace()

. mata: D1.palette("HCL diverging", 30)

. mata: D2 = ColrSpace()

. mata: D2.palette("HCL diverging", 30, (30, 100), 70, (50, 98))

. colorpalette, gropts(ysize(2) scale(*2)) nonumbers labels(D1 D2): ///
> mata(D1) / mata(D2)

D1

D2

6.3 Set/retrieve opacity and intensity

Set opacity

To set the opacity of the colors in S , type

S.
[
add

]
opacity

[
added

]
(opacity

[
, noreplace

]
)

S.opacity() sets opacty for all existing colors; use S.opacity added() if you only
want to set opacity for the colors that have been added last. Furthermore, use
S.add opacity() or S.add opacity added() to leave the existing colors unchanged
and append a copy of the colors with the new opacity settings. Arguments are as
follows.

opacity is a real vector of opacity values as percentages in [0, 100]. A value of 0 makes the
color fully transparent, a value of 100 makes the color fully opaque. If the number
of specified opacity values is smaller than the number of existing colors, the opacity
values will be recycled; if the number of opacity values is larger than the number of

24

colors, the colors will be recycled. To skip assigning opacity to a particular color,
you may set the corresponding element in opacity to . (missing).

noreplace 6= 0 specifies that existing opacity values should not be replaced. By default,
S.opacity() resets opacity for all colors irrespective of whether they already have
an opacity value or not.

Alternatively, you may type

S.
[
add

]
alpha

[
added

]
(alpha

[
, noreplace

]
)

where alpha contains opacity values specified as proportions in [0, 1].

Retrieve opacity

To retrieve a real colvector containing the opacity values (as percentages) of the colors
in S , type

opacity = S.opacity
[
added

]
()

opacity will be equal to . (missing) for colors that do not have an opacity value.
S.opacity() returns the opacity values of all colors; S.opacity added() only returns
the opacity values of the colors that have been added last.

Alternatively, you may type

alpha = S.alpha
[
added

]
()

to retrieve opacity values as proportions.

Set intensity

To set the intensity adjustment multipliers of the colors in S , type

S.
[
add

]
intensity

[
added

]
(intensity

[
, noreplace

]
)

S.intensity() sets the intensity multipliers for all existing colors; use
S.intensity added() if you only want to set intensity for the colors that have been
added last. Furthermore, use S.add intensity() and S.add intensity added() to
leave the existing colors unchanged and append a copy of the colors with the new in-
tensity settings. Arguments are as follows.

intensity is a real vector of intensity adjustment multipliers in [0, 255]. A multiplier
smaller than 1 makes the color lighter, a multiplier larger than one make the color
darker. If the number of specified intensity multipliers is smaller than the number of
existing colors, the intensity multipliers will be recycled; if the number of intensity
multipliers is larger than the number of colors, the colors will be recycled. To skip

25

assigning an intensity multiplier to a particular color, you may set the corresponding
element in intensity to . (missing).

noreplace 6= 0 specifies that existing intensity adjustment multipliers should not be
replaced. By default, S.intensity() resets the intensity multipliers for all colors
irrespective of whether they already have an intensity multiplier or not.

Note that S.intensity() does not manipulate the stored coordinates of a color, it just
adds an extra piece of information. This extra information, the intensity multiplier,
is added to a color specification when exporting the colors using S.colors(). If you
want to actually transform the stored color values instead of just recording an intensity
multiplier, you can use function S.intensify().

Retrieve intensity

To retrieve a real colvector containing the intensity adjustment multipliers of the colors
in S , type

intensity = S.intensity
[
added

]
()

intensity will be equal to . (missing) for colors that do not have an intensity multiplier.
S.intensity() returns the intensity multipliers of all colors; S.intensity added()

only returns the intensity multipliers of the colors that have been added last.

Examples

: S = ColrSpace()

: S.palette("s2", 4)

: S.opacity((., 80, ., 60))

: S.intensity((.7, ., .8, .))

: S.Colors()
1

1 navy*.7
2 maroon%80
3 forest_green*.8
4 dkorange%60

. mata: S = ColrSpace()

. mata: S.colors("cranberry")

. mata: S.intensity(range(1,.1,.10))

. colorpalette mata(S)

26

1

2

3

4

5

6

7

8

9

10

cranberry*1

cranberry*.9

cranberry*.8

cranberry*.7

cranberry*.6

cranberry*.5

cranberry*.4

cranberry*.3

cranberry*.2

cranberry*.1

cranberry

cranberry

cranberry

cranberry

cranberry

cranberry

cranberry

cranberry

cranberry

cranberry

S

6.4 Recycle, select, and order colors

Recycle colors

To recycle the colors in S , type

S.
[
add

]
recycle

[
added

]
(n)

where n is a real scalar specifying the number of desired colors. S.recycle() will
create n colors by recycling the colors until the desired number of colors is reached.
If n is smaller than the number of existing colors, S.recycle() will select the first
n colors. S.recycle() operates on all existing colors; use S.recycle added() if you
only want to recycle the colors added last. Furthermore, use S.add recycle() or
S.add recycle added() to leave the existing colors unchanged and append the recycled
colors.

Example

: S = ColrSpace()

: S.colors("black red yellow")

: S.recycle(7)

: S.colors()
black red yellow black red yellow black

: S.recycle(2)

: S.colors()
black red

27

Select colors

To select (and order) colors in S , type

S.
[
add

]
select

[
added

]
(p)

where p is a real vector of the positions of the colors to be selected (permutation vector).
Positive numbers refer to colors from the start; negative numbers refer to colors from
the end (numbers out of range will ignored). Colors not covered in p will be dropped
and the selected colors will be ordered as specified in p. S.select() operates on all
existing colors; use S.select added() if you only want to manipulate the colors added
last. Furthermore, use S.add select() or S.add select added() to leave the existing
colors unchanged and append the selected colors.

Example

: S = ColrSpace()

: S.colors("black red yellow blue green")

: S.select((4,3,4))

: S.colors()
blue yellow blue

Drop colors

To drop individual colors in S (without changing the order of the remaining colors),
type

S.
[
add

]
drop

[
added

]
(p)

where p is a real vector of the positions of the colors to be dropped (permutation vector).
Positive numbers refer to colors from the start; negative numbers refer to colors from
the end (numbers out of range will ignored). S.drop() operates on all existing colors;
use S.drop added() if you only want to manipulate the colors added last. Furthermore,
use S.add drop() or S.add drop added() to leave the existing colors unchanged and
append a copy of the colors that have not been dropped.

Example

: S = ColrSpace()

: S.colors("black red yellow blue green")

: S.drop(-2) // (drop second last)

: S.colors()
black red yellow green

Reorder colors

To order the colors in S , type

28

S.
[
add

]
order

[
added

]
(p)

where p is a real vector specifying the desired order of the colors (permutation vector).
Positive numbers refer to colors from the start; negative numbers refer to colors from the
end (numbers out of range will ignored). Colors not covered in p will be placed last, in
their original order. S.order() operates on all existing colors; use S.order added() if
you only want to manipulate the colors added last. Furthermore, use S.add order() or
S.add order added() to leave the existing colors unchanged and append the reordered
colors.

Example

: S = ColrSpace()

: S.colors("black red yellow blue green")

: S.order((4,3,4))

: S.colors()
blue yellow blue black red green

Reverse the order of colors

To reverse the order of the colors in S , type:

S.
[
add

]
reverse

[
added

]
()

S.reverse() operates on all existing colors; use S.reverse added() if you only
want to manipulate the colors added last. Furthermore, use S.add reverse() or
S.add reverse added() to leave the existing colors unchanged and append the reversed
colors. S.reverse() is equivalent to S.order(S.N()::1) or S.select(S.N()::1).

Example

: S = ColrSpace()

: S.colors("black red yellow blue green")

: S.reverse()

: S.colors()
green blue yellow red black

Shift colors

To shift the positions of colors up or down, wrapping positions around at the top and
bottom, type

S.
[
add

]
shift

[
added

]
(k)

where k specifies the size of the shift. If k is in (−1, 1), the colors are shifted by
trunc(k × n) positions, where n is the total number of colors (proportional shift); if
|k | ≥ 1, the colors are shifted by trunc(k) positions. Specify k > 0 (k < 0) for a

29

shift in upward (downward) direction. S.shift() operates on all existing colors; use
S.shift added() if you only want to manipulate the colors added last. Furthermore,
use S.add shift() or S.add shift added() to leave the existing colors unchanged and
append the shifted colors.

Example

: S = ColrSpace()

: S.colors("black red yellow blue green")

: S.shift(2)

: S.colors()
blue green black red yellow

6.5 Interpolate and mix

Interpolation

To apply linear interpolation to the colors in S , type:

S.
[
add

]
ipolate

[
added

]
(n

[
, space, range, power, positions, padded

]
)

Opacity values and intensity adjustment multipliers, if existing, will also be interpolated.
S.ipolate() takes all existing colors as input and replaces them with the interpolated
colors; use S.ipolate added() if you only want to interpolate the colors added last.
Furthermore, use S.add ipolate() or S.add ipolate added() to leave the existing
colors unchanged and append the interpolated colors. Arguments are as follows.

n is a real scalar specifying the number of destination colors. S.ipolate() will inter-
polate the existing (origin) colors to n new colors (thus increasing or decreasing the
number of colors, depending on whether n is larger or smaller than the number of
origin colors).

space selects the color space in which the colors are interpolated. space can be
"RGB", "lRGB", "HSV", "HSL", "CMYK", "XYZ", "xyY", "Lab", "LCh", "Luv", "HCL",
"CAM02

[
mask

]
", "JMh

[
coefs

]
", or "Jab

[
coefs

]
" (lowercase spelling allowed). The

default is "Jab". This default can also be selected by typing "". When interpolat-
ing from one hue to the next (relevant for "HSV", "HSL", "LCh", "HCL", "JMh", and
"CAM02" when mask contains h), S.ipolate() will travel around the color wheel
in the direction in which the two hues are closer to each other (based on the orig-
inal order of colors in S ; the rule may be violated if colors are reordered through
argument positions).

range = (lb[, ub]) specifies range of the destination colors. The default is (0,1).
This default can also be selected by typing . (missing). If lb is larger than ub, the
destination colors will be arranged in reverse order. Extrapolation will be applied if
the specified range exceeds [0, 1].

power is a real scalar affecting the distribution of the destination colors across range.

30

The default is to distribute them evenly. This default can also be selected by typing
. (missing) or setting power to 1. A power value larger than 1 squishes the positions
towards lb. If interpolating between two colors, this means that the first color will
dominate most of the interpolation range (slow to fast transition). A value between 0
and 1 squishes the positions towards ub, thus making the second color the dominant
color for most of the range (fast to slow transition). Another way to think of the
effect of power is that it moves the center of the color gradient up (if power is larger
than 1) or down (if power is between 0 and 1).

positions is a real vector specifying the positions of the origin colors. The default is to
place them on a regular grid from 0 and 1. This default can also be selected by typing
. (missing). If positions has less elements than there are colors, default positions are
used for the remaining colors. If the same position is specified for multiple colors,
these colors will be averaged before applying interpolation.

padded 6= 0 requests padded interpolation. By default, if padded is omitted or equal to
0, the first color and the last color are taken as the end points of the interpolation
range; these colors thus remain unchanged (as long as default settings are used for
range and position). If padded 6= 0, the positions of the colors are interpreted as
interval midpoints, such that the interpolation range is padded by half an interval
on each side. This causes the destination colors to be spread out slightly more (less)
than the origin colors, if the number of destination colors is larger (smaller) than
the number of origin colors.

Circular interpolation is used if S.pclass() is equal to "circular" or "cyclic". In
this case, arguments range, power , positions, and padded will be ignored. For regular
(noncircular) interpolation, which is applied if S.pclass() is different from "circular"

or "cyclic", these arguments can be used to fine-tune the interpolation.

Examples

. mata: Jab = ColrSpace()

. mata: Jab.colors("#337ab7 #f0ad4e")

. mata: JMh = J(1, 1, Jab) // (make copy)

. mata: Jab.ipolate(30)

. mata: JMh.ipolate(30, "JMh")

. colorpalette, gropts(ysize(1) scale(*4)) nonumbers: ///
> mata(Jab) / mata(JMh)

Jab

JMh

. mata: A = ColrSpace()

. mata: A.colors("#fafa6e #2A4858")

. mata: B = C = D = J(1, 1, A) // (make copies)

. mata: A.ipolate(30, "HCL")

31

. mata: B.ipolate(30, "HCL", (.1,.9)) // (select range)

. mata: C.ipolate(30, "HCL", ., 1.5) // (make 1st color dominant)

. mata: D.ipolate(30, "HCL", ., .6) // (make 2nd color dominant)

. colorpalette, gropts(ysize(2) scale(*2)) nonumbers: ///
> mata(A) / mata(B) / mata(C) / mata(D)

A

B

C

D

. mata: A = ColrSpace()

. mata: A.colors("black red yellow")

. mata: B = C = J(1, 1, A)

. mata: A.ipolate(30) // (red in middle)

. mata: B.ipolate(30, "", ., ., (0, .3, 1)) // (shift left)

. mata: C.ipolate(30, "", ., ., (0, .7, 1)) // (shift right)

. colorpalette, gropts(ysize(1.5) scale(*2.67)) nonumbers: ///
> mata(A) / mata(B) / mata(C)

A

B

C

Mixing

To mix (i.e. average) the colors in S , type:

S.
[
add

]
mix

[
added

]
(
[
space, w

]
)

Opacity values and intensity adjustment multipliers, if defined, will also be mixed (i.e.
averaged). S.mix() takes all existing colors as input and replaces them with the mixed
color; use S.mix added() if you only want to mix the colors added last. Furthermore,
use S.add mix() or S.add mix added() to leave the existing colors unchanged and
append the mixed color. Arguments are as follows.

space selects the color space in which the colors are mixed. space can be "RGB",

32

"lRGB", "HSV", "HSL", "CMYK", "XYZ", "xyY", "Lab", "LCh", "Luv," "HCL",
"CAM02

[
mask

]
", "JMh

[
coefs

]
", or "Jab

[
coefs

]
" (lowercase spelling allowed). The

default is "Jab". This default can also be selected by typing "". When
mixing hues (relevant for "HSV", "HSL", "LCh", "HCL", "JMh", and "CAM02"

when mask contains h), S.mix() will compute the mean of angles as described
at en.wikipedia.org/wiki/Mean of circular quantities (using weighted sums of the
cartesian coordinates if weights are specified); this is slightly different from the pro-
cedure employed by S.ipolate().

w is a real vector containing weights. Color mixing works by transforming the colors to
the selected color space, taking the means of the attributes across colors, and then
transforming the resulting “average” color back to the original space. w specifies
the weights given to the individual colors when computing the means. If w contains
less elements than there are colors, the weights will be recycled. Omit w , or specify
w as 1 or as . (missing) to use unweighted means.

Examples

: S = ColrSpace()

: S.colors("black red yellow")

: S.get()
1 2 3

1 0 0 0
2 255 0 0
3 255 255 0

: S.mix("lRGB")

: S.get()
1 2 3

1 213 156 0

: S.colors("black red yellow")

: S.mix("lRGB", (.5, 1, 1))

: S.get()
1 2 3

1 231 170 0

6.6 Intensify, saturate, luminate

Intensify

To adjust the intensity of the colors in S , type

S.
[
add

]
intensify

[
added

]
(m)

where m is a real vector of intensity adjustment multipliers in [0, 255]. A multiplier

33

http://en.wikipedia.org/wiki/Mean_of_circular_quantities

smaller than 1 makes the color lighter, a multiplier larger than one make the color
darker. If the number of specified multipliers is smaller than the number of colors, the
multipliers will be recycled; if the number of multipliers is larger than the number of
colors, the colors will be recycled. To skip adjusting the intensity of a particular color,
you may set the corresponding multiplier to . (missing). S.intensify() operates on
all existing colors; use S.intensify added() if you only want to manipulate the colors
added last. Furthermore, use S.add intensify() or S.add intensify added() to
leave the existing colors unchanged and append the manipulated colors.

ColrSpace uses the same algorithm as is used in official Stata to adjust the color
intensity. Applying S.intensify() thus results in colors that look the same as colors
that have been specified using intensity multiplier syntax (see help [G] colorstyle).
The algorithm works by increasing or decreasing the RGB values proportionally, with
rounding to the nearest integer and adjustment to keep all values within [0, 255].

Example

. mata: S = ColrSpace()

. mata: S.colors("navy maroon forest_green")

. mata: S.select((1,1,2,2,3,3)) // duplicate colors

. mata: S.intensify((., .5))

. colorpalette mata(S), rows(2)

1

2

3

4

5

6

navy

141 163 183

maroon

200 154 157

forest_green

170 186 151

S

Saturate

To change the saturation (colorfulness) of the colors in S , type:

S.
[
add

]
saturate

[
added

]
(d

[
, method, level

]
)

S.saturate() operates on all existing colors; use S.saturate added() if you only
want to manipulate the colors added last. Furthermore, use S.add saturate() or
S.add saturate added() to leave the existing colors unchanged and append the ma-
nipulated colors. Arguments are as follows.

d is a real vector of saturation adjustments addends. Positive values increase saturation,
negative values decrease saturation. If the number of specified addends is smaller
than the number of colors, the addends will be recycled; if the number of addends
is larger than the number of colors, the colors will be recycled. To skip adjusting a
particular color, you may set the corresponding addend to . (missing). Typically,
reasonable addends are in a range of about ±50.

34

method selects the color space in which the colors are manipulated. It can be "LCh",
"HCL", "JCh" (shorthand for CAM02 JCh), or "JMh" (lowercase spelling allowed).
The default is "LCh". This default can also be selected by typing "". S.saturate()
works by converting the colors to the selected color space, adding d to the C chan-
nel (or M ′ in case of J ′M ′h), and then converting the colors back (after resetting
negative chroma values to zero).

level 6= 0 specifies that d provides chroma levels, not addends. In this case, the C channel
will be set to d . Reasonable values typically lie in a range of 0–100, although higher
values are possible. Negative values will be reset to 0.

Example

. mata: A = ColrSpace()

. mata: A.palette("RdYlGn")

. mata: B = J(1, 1, A) // make copy of A

. mata: B.saturate(25)

. colorpalette, gropts(ysize(1) scale(*4)) nonumbers labels(A B): ///
> mata(A) / mata(B)

A

B

S.saturate() has been inspired by the saturate() and desaturate() functions in
Gregor Aisch’s chroma.js.

Luminate

To change the luminance of the colors in S , type

S.
[
add

]
luminate

[
added

]
(d

[
, method, level

]
)

S.luminate() operates on all existing colors; use S.luminate added() if you only
want to manipulate the colors added last. Furthermore, use S.add luminate() or
S.add luminate added() to leave the existing colors unchanged and append the ma-
nipulated colors. Arguments are as follows.

d is a real vector of luminance adjustments addends. Positive values increase luminance,
negative values decrease luminance. If the number of specified addends is smaller
than the number of colors, the addends will be recycled; if the number of addends
is larger than the number of colors, the colors will be recycled. To skip adjusting a
particular color, you may set the corresponding addend to . (missing). Typically,
reasonable addends are in a range of about ±50.

method selects the color space in which the colors are manipulated. It can be "Lab",
"LCh", "Luv", "HCL", "JCh" (shorthand for CAM02 JCh), "JMh" or "Jab" (lowercase

35

https://gka.github.io/chroma.js/

spelling allowed). The default is "JMh". This default can also be selected by typing
"". S.luminate() works by converting the colors to the selected color space, adding
d to the L channel (or J in case of CIECAM02 JCh, J ′ in case of J ′M ′h or J ′a′b′), and
then converting the colors back (after resetting negative luminance values to zero).
Results will be identical between "Lab" and "LCh", between "Luv" and "HCL", and
between "JMh" and "Jab".

level 6= 0 specifies that d provides luminance levels, not addends. In this case, the L
channel will be set to d . Reasonable values typically lie in a range of 0–100. Negative
values will be reset to 0.

Example

. mata: A = ColrSpace()

. mata: A.palette("ptol", 10)

. mata: B = J(1, 1, A) // make copy of A

. mata: B.luminate(20)

. colorpalette, lc(black) gropts(ysize(1) scale(*4)) nonumbers labels(A B): ///
> mata(A) / mata(B)

A

B

S.luminate() has been inspired by the darken() and brighten() functions in Gregor
Aisch’s chroma.js.

6.7 Grayscale conversion

To convert the colors in S to gray, type

S.
[
add

]
gray

[
added

]
(
[
p, method

]
)

S.gray() transforms all existing colors; use S.gray added() if you only want to trans-
form the colors added last. Furthermore, use S.add gray() or S.add gray added() to
leave the existing colors unchanged and append the transformed colors. Arguments are
as follows.

p is a real vector of proportions of gray, with p in [0, 1]. The default is p = 1 (complete
conversion to gray). If the number of specified proportions is smaller than the
number of colors, the proportions will be recycled; if the number of proportions is
larger than the number of colors, the colors will be recycled. To skip converting a
particular color, you may set the corresponding proportion to . (missing).

method specifies the color space in which the colors are manipulated. It can be "LCh",
"HCL", "JCh" (shorthand for CAM02 JCh), or "JMh" (lowercase spelling allowed).

36

https://gka.github.io/chroma.js/

The default is "LCh". This default can also be selected by typing "". Grayscale
conversion works by converting the colors the selected color space, reducing the C
channel (or M ′ in case of J ′M ′h) towards zero, and then converting the colors back.

Example

. mata: A = ColrSpace()

. mata: A.palette("s1")

. mata: B = C = J(1, 1, A) // make copies

. mata: B.gray(.7)

. mata: C.gray()

. colorpalette, lc(black) gropts(ysize(1.5) scale(*2.67)) nonumbers ///
> labels(A B C): mata(A) / mata(B) / mata(C)

A

B

C

Grayscale conversion is also supported by function S.convert().

6.8 Color vision deficiency simulation

To convert the colors in S such that they look how they would appear to people suffering
from color vision deficiency (color blindness), type

S.
[
add

]
cvd

[
added

]
(
[
p, method

]
)

S.cvd() transforms all existing colors; use S.cvd added() if you only want to transform
the colors added last. Furthermore, use S.add cvd() or S.add cvd added() to leave
the existing colors unchanged and append the transformed colors. Arguments are as
follows.

p is a real vector of deficiency severities, with p in [0, 1]. The default is p = 1 (maximum
severity, i.e. deuteranopia, protanopia, or tritanopia, respectively). If the number
of specified severities is smaller than the number of colors, the severities will be
recycled; if the number of severities is larger than the number of colors, the colors
will be recycled. To skip converting a particular color, you may set the corresponding
severity to . (missing).

method specifies the type of color vision deficiency. It can be "deuteranomaly",
"protanomaly", or "tritanomaly" (abbreviations allowed). The default is
"deuteranomaly". This default can also be selected by typing "". See
en.wikipedia.org/wiki/Color blindness for basic information on the different types
of color blindness.

37

https://en.wikipedia.org/wiki/Color_blindness

ColrSpace implements color vision deficiency simulation based on Machado et al.
(2009), using the transformation matrices provided at www.inf.ufrgs.br/˜oliveira (em-
ploying linear interpolation between matrices for intermediate severity values). The
transformations matrix for a specific combination of (scalar) p and method can be re-
trieved as follows:

M = S.cvd M(
[
p, method

]
)

Example

. mata: A = ColrSpace()

. mata: A.palette("s2", 5)

. mata: d = D = p = P = T = J(1, 1, A) // make copies

. mata: d.cvd(.5); d.name("deuteranomaly")

. mata: D.cvd(); D.name("deuteranopia")

. mata: p.cvd(.5, "p"); p.name("protanomaly")

. mata: P.cvd(1, "p"); P.name("protanopia")

. mata: T.cvd(1, "t"); T.name("tritanopia")

. colorpalette, lc(black) gropts(ysize(3) scale(*1.33)) nonumbers: m(A) / m(d) /
> m(D) / m(p) / m(P) / m(T)

s2

deuteranomaly

deuteranopia

protanomaly

protanopia

tritanopia

Color vision deficiency simulation is also supported by function S.convert().

6.9 Color differences and contrast ratios

Color differences

To compute differences between colors in S , type

D = S.delta
[
added

]
(
[
P, "method", noclip

]
)

38

https://www.inf.ufrgs.br/~oliveira/pubs_files/CVD_Simulation/CVD_Simulation.html

where P is a r × 2 matrix with each row selecting two colors to be compared. For
example, P = (3,5) would compare the 3rd and the 5th color; P = (1,2) \ (3,5)

would make two comparisons: 1st to 2nd and 3rd to 5th. The default, if P is omitted,
is to make n − 1 consecutive comparisons, where n is the number of existing colors: 1st
to 2nd, 2nd to 3rd, . . . , (n − 1)th to nth; this is equivalent to P = ((1::S.N()-1),
(2::S.N())). This default can also be selected by typing . (missing). S.delta()
operates on all existing colors, that is, P selects among all colors; in S.delta added()

P only selects among the colors added last. Further options are as follows.

method selects the method used to compute the color differences. It can be one of the
following (lowercase spelling and abbreviations allowed):

Jab
[
coefs

]
compute the differences from the perceptually uniform CIECAM J ′a′b′

space as described by Luo and Li (2013, chapter 2.6.1)

E76 1976 CIELAB Delta E definition (euclidean distance in the CIE L*a*b*
color space)

E94 1994 CIELAB Delta E definition (based on the description by Lindbloom
2017b, but using a modification to make the differences symmetric as
suggested by Hunt 2004, 670)

E2000 2000 CIELAB Delta E definition (based on the description given by
Lindbloom 2017c)

space compute the differences as euclidean distances in the respective color
space, where space may be RGB, RGB1, lRGB, XYZ, XYZ1, xyY1, Lab, LCh,
Luv, HCL, JCh (shorthand for CAM02 JCh), or JMh

[
coefs

]
The default is Jab. This default can also be selected by typing "". For background
information on color difference also see en.wikipedia.org/wiki/Color difference.

noclip 6= 0 prevents converting the colors to valid RGB values before computing the
differences. By default, S.delta() translates the colors to linear RGB and clips
the coordinates at 0 and 1, before converting the colors to the color space selected
by method , so that the computed differences are consistent with how the colors are
perceived on an RGB device. Specify noclip 6= 0 to skip this extra step.

Opacity settings and intensity adjustment multipliers are ignored when computing the
color differences.

Example

: S = ColrSpace()

: S.colors("#337ab7 #f0ad4e")

: S.ipolate(6, "", (0, .5))

: S.delta((J(5,1,1), (2::6))) // compare 1st to other colors
1

1 5.91377881
2 11.82755762
3 17.74133643
4 23.65511524
5 29.56889405

39

https://en.wikipedia.org/wiki/Color_difference

Graphical illustration:

. mata: D = S.delta((J(5,1,1), (2::6)))

. mata: D = `"""´ :+ "{&Delta}E = " :+ strofreal(D,"%9.3g") :+ `"""´

. mata: D = strofreal(1::5) :+ " 3 " :+ D

. mata: st_local("D", invtokens(D´))

. colorpalette mata(S), order(1 1 1 1 1) gropts(text(`D´))

1

2

3

4

5

6

7

8

9

10

51 122 183

51 122 183

51 122 183

51 122 183

51 122 183

83 128 169

104 133 160

122 139 153

137 144 150

150 151 148

Jab 51 -12 -24

Jab 51 -12 -24

Jab 51 -12 -24

Jab 51 -12 -24

Jab 51 -12 -24

Jab 54 -10 -19

Jab 56 -8 -14

Jab 59 -6 -9

Jab 62 -4 -4

Jab 65 -2 0

ΔE = 5.91

ΔE = 11.8

ΔE = 17.7

ΔE = 23.7

ΔE = 29.6

S

Contrast ratios

To compute contrast ratios between colors in S , type

R = S.contrast
[
added

]
(
[
P
]
)

where P is a r×2 matrix with each row selecting two colors to be compared. For exam-
ple, P = (3,5) would compare the 3rd and the 5th color; P = (1,2) \ (3,5) would
make two comparisons: 1st to 2nd and 3rd to 5th. The default, if P is omitted, is to make
n−1 consecutive comparisons, where n is the number of existing colors: 1st to 2nd, 2nd
to 3rd, . . . , (n − 1)th to nth; this is equivalent to P = ((1::S.N()-1), (2::S.N())).
This default can also be selected by typing . (missing). S.contrast() operates on
all existing colors, that is, P selects among all colors; in S.contrast added() P only
selects among the colors added last.

The contrast ratios are computed according to the Web Content Accessibility Guide-
lines (WCAG) 2.0 at www.w3.org. Let Y0 be the Y attribute of the lighter color, and
Y1 be the Y attribute of the darker color, in CIE XYZ space (in Ywhite = 100 scaling).
The contrast ratio is then defined as (Y0 + 5)/(Y1 + 5). Typically, a contrast ratio of at

40

https://www.w3.org/TR/2008/REC-WCAG20-20081211/#contrast-ratiodef

least 4.5 is recommended between foreground text and background fill.

Opacity settings and intensity adjustment multipliers are ignored when computing
the contrast ratios.

Example

Say, you want to print text inside bars and want the text and the bar fill to have the
same basic color. One idea is to use colors with reduced intensity for the fill and print
the text in the original color. S.contrast() may be helpful for finding out by how
much you need to reduce intensity so that there is enough contrast between text and
bar fill.

. mata: S = ColrSpace()

. mata: S.colors("navy maroon")

. mata: S.add_intensify(.6)

. mata: S.contrast((1,3) \ (2,4)) // not enough contrast
1

1 2.939889559
2 2.504861745

. mata: C = S.Colors()

. mata: t = `" 3 "Text", c(%s) box m(medium) bc(%s)"´

. mata: st_local("t1", sprintf("1"+t, C[1], C[3]))

. mata: st_local("t2", sprintf("2"+t, C[2], C[4]))

. colorpalette mata(S), gropts(text(`t1´) text(`t2´)) rows(2)

1

2

3

4

navy

maroon

118 145 169

188 134 137

Text

Text

S

. mata: S.select((1,2))

. mata: S.add_intensify((.4,.3))

. mata: S.contrast((1,3) \ (2,4)) // contrast now ok
1

1 4.586021616
2 4.574782323

. mata: C = S.Colors()

. mata: t = `" 3 "Text", c(%s) box m(medium) bc(%s)"´

. mata: st_local("t1", sprintf("1"+t, C[1], C[3]))

. mata: st_local("t2", sprintf("2"+t, C[2], C[4]))

. colorpalette mata(S), gropts(text(`t1´) text(`t2´)) rows(2)

41

1

2

3

4

navy

maroon

163 181 197

222 194 196

Text

Text

S

6.10 Import/export colors in various spaces

Import colors

An alternative to S.colors() is to import colors into S using the following functions:

S.set(C
[
, space

]
)

S.add(C
[
, space

]
)

S.reset
[
added

]
(C

[
, space, p

]
)

S.set() replaces preexisting colors by the new colors; use S.add() if you want to
append the new colors to the existing colors. S.reset() can be used to reset the values
of colors, without reinitializing opacity and intensity adjustment; S.reset added()

is like S.reset() but only operates on the colors that have been added last. The
arguments are as follows.

C provides the color values. If space is equal to "HEX", C is a string vector of length
n containing n hex RGB values; if space is equal to "CMYK", "CMYK1", "RGBA", or
"RGBA1", C is a n × 4 real matrix; if space is equal to "CAM02

[
mask

]
", C is a

n × strlen(mask) real matrix; in all other cases, C is a n × 3 real matrix of n
color values in the respective space. For S.reset() the number of colors in C must
match the length of p.

space is a string scalar specifying the color space of C . It can be "HEX", "RGB", "RGB1",
"lRGB", "HSV", "HSL", "CMYK", "CMYK1", "XYZ", "XYZ1", "xyY", "xyY1", "Lab",
"LCh", "Luv", "HCL", "CAM02

[
mask

]
", "JMh

[
coefs

]
", "Jab

[
coefs

]
", "RGBA", or

"RGBA1" (lowercase spelling allowed). The default is "RGB". This default can also
be selected by typing "".

p is a real vector of the positions of the colors to be modified. Positive numbers refer
to colors from the start; negative numbers refer to colors from the end. S.reset()
aborts with error if p addresses positions that do not exists. If p is omitted, the
default is to modify all colors. This default can also be selected by typing . (missing).

Example

. mata: S = ColrSpace()

. mata: S.set((100,150,200) \ (200,50,50), "RGB")

. mata: S.add((100,50,50) \ (200,50,50) \ (300,50,50), "HCL")

42

. colorpalette mata(S), rows(2)

1

2

3

4

5100 150 200

200 50 50

107 127 40

0 135 143

153 99 164
HCL 100 50 50

HCL 200 50 50

HCL 300 50 50

S

. mata: S.reset((100,50,50) \ (100,-20,10), "Luv", (2,-1))

. colorpalette mata(S), rows(2)

1

2

3

4

5100 150 200

255 241 180

107 127 40

0 135 143

225 255 245

Luv 100 50 50

HCL 100 50 50

HCL 200 50 50

Luv 100 -20 10

S

Export colors

To retrieve the colors from S in a particular color space, type

C = S.get
[
added

]
(
[
, space

]
)

where space is a string scalar specifying the color space. It can be "HEX", "RGB", "RGB1",
"lRGB", "HSV", "HSL", "CMYK", "CMYK1", "XYZ", "XYZ1", "xyY", "xyY1", "Lab", "LCh",
"Luv", "HCL", "CAM02

[
mask

]
", "JMh

[
coefs

]
", "Jab

[
coefs

]
", "RGBA", or "RGBA1" (low-

ercase spelling allowed). The default is "RGB". This default can also be selected by
typing "". S.get() returns all colors; S.get added() only returns the colors that have
been added last.

Example

: S = ColrSpace()

: S.palette("s2", 5)

: S.Colors()
1

1 navy
2 maroon
3 forest_green
4 dkorange
5 teal

: S.get()
1 2 3

1 26 71 111

43

2 144 53 59
3 85 117 47
4 227 126 0
5 110 142 132

: S.get("RGB1")
1 2 3

1 .1019607843 .2784313725 .4352941176
2 .5647058824 .2078431373 .231372549
3 .3333333333 .4588235294 .1843137255
4 .8901960784 .4941176471 0
5 .431372549 .5568627451 .5176470588

: S.get("CAM02 QsH")
1 2 3

1 55.65919632 69.52529473 303.5288896
2 65.37940215 72.51359985 399.3754444
3 72.56743268 62.83103583 157.0976797
4 91.67834891 71.71306279 56.76191955
5 83.33062233 39.46129676 221.8105571

: S.opacity((100,90,80,70,60))

: S.get("RGBa")
1 2 3 4

1 26 71 111 1
2 144 53 59 .9
3 85 117 47 .8
4 227 126 0 .7
5 110 142 132 .6

6.11 Color converter and other utilities

Convert colors without storing

Instead of storing colors in S using S.set() and then retrieving the colors in a particular
space using function S.get(), colors can also be converted directly from from one space
to another using the S.convert() function. S.convert() will not store any colors or
otherwise manipulate the content of S . The syntax is:

C = S.convert(C0, from, to)

where C0 is a matrix of input colors values in color space from, and to is a destination
color space. from and to can be "HEX", "RGB", "RGB1", "lRGB", "HSV", "HSL", "CMYK",
"CMYK1", "XYZ", "XYZ1", "xyY", "xyY1", "Lab", "LCh", "Luv", "HCL", "CAM02

[
mask

]
",

"JMh
[
coefs

]
", or "Jab

[
coefs

]
" (lowercase spelling allowed). The default is "RGB". This

default can also be selected by typing "". If from is "HEX", C0 is a string vector
containing n hex colors. In all other cases, C0 is a n × c real matrix of n color values
in the respective coding scheme. See the diagram in Figure 1 for the paths along which

44

the colors will be translated.

Example

: S = ColrSpace()

: RGB = (25, 70, 120) \ (150, 60, 60)

: S.convert(RGB, "RGB", "xyY")
1 2 3

1 .195937035 .1947051783 5.942364968
2 .4925235637 .3295598015 10.04388472

: S.convert(RGB, "RGB", "JMh")
1 2 3

1 30.26849693 22.86056577 249.2738221
2 42.09699618 24.98595382 22.81761075

: Jab = S.convert(RGB, "RGB", "Jab")

: S.convert(Jab, "Jab", "HSV")
1 2 3

1 211.5789474 .7916666667 .4705882353
2 360 .6 .5882352941

: HCL = S.convert(Jab, "Jab", "HCL")

: S.convert(HCL, "HCL", "RGB")
1 2 3

1 25 70 120
2 150 60 60

S.convert() can also be used for grayscale conversion or color vision deficiency simu-
lation. The syntax is

C = S.convert(C0, from, "gray"
[
, p, method

]
)

C = S.convert(C0, from, "cvd"
[
, p, method

]
)

where p is a real scalar in [0, 1] specifying the proportion of gray or the severity of color
vision deficiency. The default is p = 1 (complete conversion to gray, maximum CVD
severity). This default can also be selected by typing . (missing). method selects the
conversion method or CVD type; see functions S.gray() and S.cvd() for details.

Check validity of color specification

To check whether a color specification is valid you can type

color = S.cvalid(colorspec)

where colorspec is a single color specification as described for S.colors(). If colorspec

45

is valid, color will be set to the (expanded) name of the color, or the RGB code of the
color if no color name is available. If colorspec is invalid, color will be set to empty
string.

Obtain list of named colors

To obtain a list of named colors provided by ColrSpace (excluding Stata’s system
colors), type

list = S.namedcolors(
[
pattern, case

]
)

list will be a n × 2 string matrix with color names in the first column and hex codes
in the second column. Specify pattern to filter the list; only color names matching the
specified pattern will be listed in this case. The syntax for pattern is as explained in
[M-5] strmatch(). By default, case will be ignored; specify case 6= 0 for case-sensitive
filtering.

Examples

: S = ColrSpace()

: S.namedcolors("*lime*")
1 2

1 Lime #00FF00
2 LimeGreen #32CD32
3 w3-2017-golden-lime #9c9a40
4 w3-2018-lime-punch #BFD641
5 w3-2018-limelight #F1EA7F
6 w3-food-lime #bffe28
7 w3-lime #cddc39
8 w3-win8-lime #a4c400

. mata: S.Colors(S.namedcolors("*lime*")[,1])

. colorpalette mata(S), rows(3)

1

2

3

4

5

6

7

8

0 255 0

50 205 50

156 154 64

191 214 65

241 234 127

191 254 40

205 220 57

164 196 0

Lime

LimeGreen

w3-2017-golden-lime

w3-2018-lime-punch

w3-2018-limelight

w3-food-lime

w3-lime

w3-win8-lime

S

46

Check whether palette exists

To check whether name matches an existing palette you can type

name = S.pexists(name
[
, libname

]
)

name will be set to the (expanded) name of the palette if a matching palette was found.
If no matching palette is found, name will be set to empty string. See S.palette() for
information on palettes. libname will be replaced by the name of the ColrSpace library
in which the palette was found. If no matching palette is found, libname will be left
unchanged.

Obtain list of available palettes

To obtain a list of available palettes, type

list = S.palettes(
[
pattern, case

]
)

list will be a n × 2 string matrix with palette names in the first column and library
names in the second column. The library names provide information on the ColrSpace

library in which a palette definition can be found. Specify pattern to filter the list; only
palettes matching the specified pattern will be listed in this case. The syntax for pattern
is as explained in [M-5] strmatch(). By default, case will be ignored; specify case 6= 0
for case-sensitive filtering.

Interpolation

In addition to S.ipolate(), ColrSpace also provides interpolation functions that do
not involve translation between colorspaces and do not store any colors in S . These
direct interpolation functions are

C = S.colipolate(C 0, n
[
,range, power, positions, padded

]
)

for regular interpolation and

C = S.colipolate c(C 0, n)

for circular interpolation, where C 0 is an n0 × c matrix of n0 origin colors that are
interpolated to n destination colors. Other arguments are as for S.ipolate().

Recycling

In addition to S.recycle(), ColrSpace also provides a recycling function that does not
store any colors in S . This direct recycling function is

47

C = S.colrecycle(C 0, n)

where C 0 is an n0 × c matrix of n0 input colors values that are recycled to n output
colors.

Linear segmented colormaps

Function

RGB1 = S.lsmap(R, G, B, n
[
, range

[
)

can be used to create linear segmented colormaps. Some of the colormaps above are
implemented in terms of this function. R, G , and B are matrices specifying the anchor
points of the segments (each row consist of three values: the anchor, the value of the color
on the left of the anchor, and the value of the color on the right). See the corresponding
tutorial page at matplotlib.org for details. S.lsmap() does not check the consistency
of the specified matrices and may return invalid results if consistency is violated.

Clipping

Function

C = S.clip(C 0, a, b)

can be used for clipping, where C 0 is a real matrix of input values, a is a real scalar
specifying the lower bound, and b is a real scalar specifying the upper bound. Values in
C 0 smaller than a will be set to a; values larger than b will be set to b; values between
a and b as well as missing values will be left as is.

7 Settings

7.1 Display overview of color space settings

To display an overview of the current color space settings of S , type

S.settings()

Example:

: S = ColrSpace()

: S.settings()

rgb_gamma(): gamma = 2.4
offset = .055

transition = .0031308
slope = 12.92

48

https://matplotlib.org/tutorials/colors/colormap-manipulation.html#creating-linear-segmented-colormaps
https://matplotlib.org/

rgb_white(): X = 95.047
Y = 100
Z = 108.883

rgb_xy(): red x = .64
red y = .33

green x = .3
green y = .6
blue x = .15
blue y = .06

xyzwhite(): X = 95.047
Y = 100
Z = 108.883

viewcond(): Y_b = 20
L_A = 4.07436654

F = 1
c = .69

N_c = 1

ucscoefs(): K_L = 1
c_1 = .007
c_2 = .0228

chadapt(): method = "Bfd"

To restore the default color space settings, type

S.clearsettings()

7.2 RGB working space

To set the RGB working space, type

S.rgbspace("name")

where name is one of the following.

Adobe 1998 Adobe RGB (1998)

Apple Apple RGB

Best Best RGB

Beta Beta RGB

Bruce Bruce RGB

CIE CIE 1931 RGB

ColorMatch ColorMatch RGB

Don 4 Don RGB 4

ECI v2 ECI RGB v2

Ekta PS5 Ekta Space PS5

Generic Generic RGB

HDTV HDTV (HD-CIF)

NTSC NTSC RGB (1953)

49

PAL/SECAM PAL/SECAM RGB

ProPhoto ProPhoto RGB

SGI SGI RGB

SMPTE-240M SMPTE-240M RGB

SMPTE-C SMPTE-C RGB

sRGB Standard RGB using primaries from Lindbloom (2017d)

sRGB2 Standard RGB using equation F.8 (XYZ to RGB matrix) from IEC
(2003)

sRGB3 Standard RGB using equation F.7 (RGB to XYZ matrix) from IEC
(2003)

Wide Gamut Adobe Wide Gamut RGB

Wide Gamut BL Wide Gamut variant from Lindbloom (2017d)

The names can be abbreviated and typed in lowercase letters. If abbreviation
is ambiguous, the first matching name in the alphabetically ordered list will be
used. See the ColrSpace source code for the definitions of the spaces. The def-
initions have been taken from Pascale (2003) and Lindbloom (2017d). Also see
en.wikipedia.org/wiki/RGB color space. The default is S.rgbspace("sRGB"). This de-
fault can also be selected by typing S.rgbspace(""). Other color management systems
may use slightly different definition of standard RGB. For example, the colorspacious

Python library by Smith (2018) uses a definition equivalent to "sRGB2". The advantage
of "sRGB" is that RGB white (255 255 255) translates to the reference white in XYZ,
which is not exactly true for "sRGB2" or "sRGB3".

An RGB working space consists of three elements: the parameters of the gamma
compression used to transform lRGB (linear RGB) to RGB, the reference white, and
the working space primaries used to transform XYZ to lRGB. Instead of choosing a
named RGB working space, the elements can also be set directly as described below.

Gamma compression

To set the gamma compression parameters, type

S.rgb gamma(args)

where args is

gamma
or gamma, offset, transition, slope
or (gamma, offset, transition, slope)
or "gamma"
or "gamma offset transition slope"

If only gamma is provided, simple gamma encoding C ′ = C1/gamma is applied. If
offset , transition, and slope are also provided, the detailed gamma encoding C ′ =
(1 + offset) × C1/gamma − offset if C > transition and else C ′ = C × slope is used. A

50

https://en.wikipedia.org/wiki/RGB_color_space

typical value for gamma is 2.2; see Novak (2016) for an excellent explanation of gamma
compression; also see en.wikipedia.org/wiki/Gamma correction.

Reference white

The reference white can be set by

S.rgb white(args)

where args is as described in for function S.xyzwhite(). If the reference white of the
RGB working space differs from the XYZ reference white, ColrSpace applies chromatic
adaption when translating between XYZ and lRGB.

Working space primaries

To set the working space primaries, type

S.rgb xy(xy)

where xy is a 3× 2 matrix containing the red, green, and blue xy primaries. ColrSpace
uses the method described in Lindbloom (2017e) to compute the lRGB-to-XYZ trans-
formation matrix from the white point and the primaries, and sets the XYZ-to-lRGB
matrix to the inverse of the lRGB-to-XYZ matrix. Alternatively, you can type

S.rgb M(M)

where M is a 3 × 3 matrix, to directly set the lRGB-to-XYZ matrix to M and the
XYZ-to-lRGB matrix to luinv(M) (see [M-5] luinv()), or

S.rgb invM(invM)

to set the XYZ-to-lRGB matrix to invM and the lRGB-to-XYZ matrix to luinv(invM).

Retrieve settings

To retrieve the current RGB working space settings, you can type

gamma = S.rgb gamma()

white = S.rgb white()

xy = S.rgb xy()

M = S.rgb M()

invM = S.rgb invM()

51

https://en.wikipedia.org/wiki/Gamma_correction

7.3 XYZ reference white

To set the reference white for the CIE XYZ color space, type

S.xyzwhite(args)

where args is

X , Y , Z
or (X , Y , Z)

or "X Y Z"

or x , y
or (x, y)
or "x y"
or "name"

where X , Y , and Z are the XYZ coordinates of the white point (with Y = 100), x and
y are the xyY coordinates of the white point (assuming Y = 100), and name is one of
the following:

CIE 1931 2°
observer

CIE 1964 10°
observer

Description

A A 10 degree Incandescent/Tungsten 2856K

B B 10 degree Direct sunlight at noon 4874K (obsolete)

B B 10 degree Direct sunlight at noon 4874K (obsolete)

B BL B 2 degree variant from Lindbloom (2017a)

C C 10 degree North sky daylight 6774K (obsolete)

D50 D50 10 degree Horizon light 5003K (used for color rendering)

D55 D55 10 degree Mid-morning/mid-afternoon daylight 5503K (used for
photography)

D65 D65 10 degree Noon daylight 6504K (new version of north sky day-
light)

D75 D75 10 degree North sky daylight 7504K

9300K High eff. blue phosphor monitors 9300K

E Uniform energy illuminant 5454K

F1 F1 10 degree Daylight fluorescent 6430K

F2 F2 10 degree Cool white fluorescent 4200K

F3 F3 10 degree White fluorescent 3450K

F4 F4 10 degree Warm white fluorescent 2940K

F5 F5 10 degree Daylight fluorescent 6350K

F6 F6 10 degree Lite white fluorescent 4150K

F7 F7 10 degree Broad-band daylight fluorescent, 6500K

F8 F8 10 degree D50 simulator, Sylvania F40 design 50, 5000K

F9 F9 10 degree Cool white deluxe fluorescent 4150K

52

F10 F10 10 degree Philips TL85, Ultralume 50, 5000K

F11 F11 10 degree Narrow-band white fluorescen, Philips TL84, Ultra-
lume 40, 4000K

F12 F12 10 degree Philips TL83, Ultralume 30, 3000K

The names can be abbreviated and typed in lowercase letters (for example, "D55 10

degree" could be typed as "d55 10"). If abbreviation is ambiguous, the first matching
name in the alphabetically ordered list will be used. See the ColrSpace source code
for the definitions of the white points. The definitions have been taken from Pascale
(2003), Lindbloom (2017a), and en.wikipedia.org/wiki/Standard illuminant. The de-
fault is S.xyzwhite("D65"). This default can also be selected by typing S.xyzwhite(.)
or S.xyzwhite(""). To retrieve a 1 × 3 rowvector containing the XYZ coordinates of
the current white point, you can type

white = S.xyzwhite()

7.4 CIECAM02 viewing conditions

To set the CIECAM02 viewing conditions, type

S.viewcond(args)

where args is

Y b, LA, F, c, N c

or Y b, LA, (F, c, N c)

or (Y b, LA, F, c, N c)

or "Y b LA F c N c"

or Y b, LA, "surround"
or "Y b LA surround"

with surround equal to average (F = 1, c = .69, N c = 1), dim (F = .9, c = .59, N c

= .9), or dark (F = .8, c = .525, N c = .8) (abbreviations allowed). The default is
Y b = 20, LA = 64/(5π), and average surround. These defaults can also be selected
by typing S.viewcond(.) or S.viewcond(""), or by setting Y b to ., LA to ., and
surround to . or empty string. To retrieve a 1 × 5 rowvector of the current viewing
condition parameters, type

viewcond = S.viewcond()

See Luo and Li (2013) for details on CIECAM02 viewing conditions.

7.5 Default coefficients for J’M’h and J’a’b’

To set the default uniform color space coefficients for J ′M ′h and J ′a′b′, type

53

https://en.wikipedia.org/wiki/Standard_illuminant

S.ucscoefs(args)

where args is

KL, c1, c2

or (KL, c1, c2)

or "KL c1 c2"

or "name"

with name equal to UCS (KL = 1, c1 = .007, c2 = .0228), LCD (KL = .77, c1 = .007,
c2 = .0053), or SCD (KL = 1.24, c1 = .007, c2 = .0363) (abbreviations and lowercase
letters allowed). To to retrieve a 1×3 rowvector of the current default coefficients, type

ucscoefs = S.ucscoefs(args)

See Luo and Li (2013, chapter 2.6.1) and Luo et al. (2006) for details on these coefficients.

7.6 Chromatic adaption method

To set the chromatic adaption method type

S.chadapt(method)

where method is "Bfd" (Bradford), "identity" (XYZ Scaling), "vKries" (Von
Kries), or "CAT02" (abbreviations and lowercase letters allowed). The default is
S.chadapt("Bfd"), which can also be selected by typing S.chadapt(""). The Brad-
ford, XYZ Scaling, and Von Kries methods use the procedure described in Lindbloom
(2017a), the "CAT02" method uses the procedure described in Luo and Li (2013, page
33). To retrieve a string scalar containing the current method, type

method = S.chadapt()

ColrSpace uses chromatic adaption internally whenever such a translation is necessary.
However, you can also apply chromatic adaption manually by typing

XYZnew = S.XYZ to XYZ(XYZ, from, to)

where XYZ is an n×3 matrix of XYZ values to be adapted, from is the origin whitepoint,
and to is the destination whitepoint; any single-argument whitepoint specification as
described in for S.xyzwhite() is allowed. Function S.XYZ to XYZ() does not change
or store any colors in S .

To retrieve the predefined transformation matrices on which chromatic adaption is
based, type

M = S.tmatrix(
[
name

]
)

54

where name is "Bfd", "identity", "vKries", "CAT02", or "HPE" (Hunt-
Pointer-Estevez) (abbreviations and lowercase letters allowed). The default is
S.tmatrix("Bfd"), which can also be selected by typing S.tmatrix(""). The "HPE"

matrix is not used for chromatic adaption, but has been included in S.tmatrix() for
convenience. It is used when translating colors from XYZ to CIECAM02; see Luo and
Li (2013).

8 Alphabetical index of functions

Below is a sorted list of all functions provided by ColrSpace. Several of
these functions also come in variants such as S.add name(), S.name added(), or
S.add name added(), where name is the function name.

ColrSpace() initialize a ColrSpace object

S.add() add colors in a particular space

S.alpha() set/retrieve opacity

S.chadapt() set chromatic adaption method

S.clear() remove all colors and meta data

S.clearindex() clear internal look-up tables

S.clearsettings() clear color space settings

S.clip() helper function for clipping

S.contrast() compute contrast ratios

S.delta() compute color differences

S.describe() displays contents of S

S.drop() drop colors

S.colipolate() helper function for interpolation

S.colipolate c() helper function for circular interpolation

S.colors() string input/output (scalar)

S.Colors() string input/output (vector)

S.colrecycle() helper function for recycling

S.convert() convert colors between spaces

S.cvalid() check whether color is valid

S.cvd() color vision deficiency simulation

S.cvd M() helper function to retrieve CVD matrix

S.get() retrieve colors in a particular space

S.gray() gray scale conversion

S.info() color description input/output (scalar)

S.Info() color description input/output (vector)

55

S.intensify() adjust color intensity

S.intensity() set/retrieve intensity adjustment

S.ipolate() interpolate colors

S.isipolate() whether interpolation has been applied

S.lsmap() helper function to create linear segmented colormaps

S.luminate() adjust luminance of colors

S.mix() mix colors

S.N() retrieve number of colors

S.name() set/retrieve name of color collection

S.namedcolors() return index of available named colors

S.names() color names input/output (scalar)

S.Names() color names input/output (vector)

S.note() set/retrieve description of color collection

S.opacity() set/retrieve opacity

S.order() order colors

S.palette() retrieve colors from named palette

S.palettes() return index of available palettes

S.pclass() set/retrieve class of color collection

S.pexists() check whether named palette exists

S.recycle() recycle colors

S.reset() reset colors in a particular space

S.reverse() reverse the order of colors

S.rgbspace() set RGB working space

S.rgb gamma() set/retrieve gamma correction

S.rgb invM() set/retrieve XYZ-to-lRGB matrix

S.rgb M() set/retrieve lRGB-to-XYZ matrix

S.rgb white() set/retrieve RGB reference white

S.rgb xy() set/retrieve RGB primaries

S.saturate() adjust saturation (chroma) of colors

S.select() select colors

S.set() set colors in a particular space

S.settings() display color space settings

S.shift() shift positions of colors

S.source() set/retrieve source of color collection

S.tmatrix() retrieve transformation matrices

S.ucscoefs() set default coefficients for J ′M ′h and J ′a′b′

56

S.viewcond() set/retrieve CIECAM02 viewing conditions

S.xyzwhite() set/retrieve XYZ reference white

S.XYZ to XYZ() apply chromatic adaption

9 Source code and certification script

lcolrspace.mlib has been compiled in Stata 14.2. The source code can be found
in file colrspace source.sthlp. Palette definitions, parameters of color genera-
tors, and definitions of named colors are kept in additional source files. These
files are colrspace library palettes.sthlp, colrspace library lsmaps.sthlp,
colrspace library rgbmaps.sthlp, colrspace library generators.sthlp, and
colrspace library namedcolors.sthlp.

Users can extend the set of available palettes and colors by providing personal library
files. These files should be stored somewhere along the [R] adopath (for example in
the PERSONAL directory), so Stata can find them, and they must be named as above
but with a " personal" suffix (e.g. colrspace library palettes personal.sthlp).
Each library file has its peculiar syntax; see the explanations in the file headers.

A certification script testing internal consistency and comparing results to
some test values and results from the colorspacious Python library by Smith
(2018) (see file gold values.py at Github) as well as to results obtained from the
color calculators at colorizer.org and www.brucelindbloom.com, can be found at
github.com/benjann/colrspace/blob/master/colrspace cscript.do.

10 References
Bischof, D. 2017a. G538SCHEMES: module to provide graphics schemes for http:

//fivethirtyeight.com. Statistical Software Components S458404, Boston College De-
partment of Economics. https://ideas.repec.org/c/boc/bocode/s458404.html.

. 2017b. New graphic schemes for Stata: plotplain and plottig. The Stata Journal
17(3): 748–759.

Brewer, C. A. 2016. Designing Better Maps. A Guide for GIS Users. 2nd ed. Redlands,
CA: Esri Press.

Brewer, C. A., G. W. Hatchard, and M. A. Harrower. 2003. ColorBrewer in Print: A
Catalog of Color Schemes for Maps. Cartography and Geographic Information Science
30(1): 5–32.

Briatte, F. 2013. SCHEME-BURD: Stata module to provide a ColorBrewer-inspired
graphics scheme with qualitative and blue-to-red diverging colors. Statistical Software
Components S457623, Boston College Department of Economics. https://ideas.repec.
org/c/boc/bocode/s457623.html.

57

https://github.com/benjann/colrspace/blob/master/colrspace_source.sthlp
https://github.com/benjann/colrspace/blob/master/colrspace_library_palettes.sthlp
https://github.com/benjann/colrspace/blob/master/colrspace_library_lsmaps.sthlp
https://github.com/benjann/colrspace/blob/master/colrspace_library_rgbmaps.sthlp
https://github.com/benjann/colrspace/blob/master/colrspace_library_generators.sthlp
https://github.com/benjann/colrspace/blob/master/colrspace_library_namedcolors.sthlp
https://github.com/njsmith/colorspacious/blob/master/colorspacious/gold_values.py
http://colorizer.org/
http://www.brucelindbloom.com/index.html?ColorCalculator.html
https://github.com/benjann/colrspace/blob/master/colrspace_cscript.do
http://fivethirtyeight.com
http://fivethirtyeight.com
https://ideas.repec.org/c/boc/bocode/s458404.html
https://ideas.repec.org/c/boc/bocode/s457623.html
https://ideas.repec.org/c/boc/bocode/s457623.html

Bundesamt für Statistik. 2017. Layoutrichtlinien. Gestaltungs und Redaktionsrichtlinien
für Publikationen, Tabellen und grafische Assets. Technical Report Version 1.1.1,
Bundesamt für Statistik, Neuchâtel.

Crameri, F. 2018. Scientific colour maps. Zenodo. DOI: 10.5281/zenodo.1243862.

Hunt, R. W. G. 2004. The Reproduction of Colour. 6th ed. West Sussex: John Wiley
& Sons.

Hunter, J. D. 2007. Matplotlib: A 2D graphics environment. Computing in Science &
Engineering 9(3): 90–95.

Ihaka, R., P. Murrell, K. Hornik, J. C. Fisher, R. Stauffer, and A. Zeileis. 2016.
colorspace: Color Space Manipulation. R package version 1.3-2. http://CRAN.
R-project.org/package=colorspace.

International Electrotechnical Commission (IEC). 2003. International Standard IEC
61966-2-1:1999/AMD1:2003. Amendment 1 – Multimedia systems and equipment –
Color measurement and management – Part 2-1: Color management – Default RGB
color space – sRGB. http://www.sis.se/api/document/preview/562720/.

Jann, B. 2018. Color palettes for Stata graphics. The Stata Journal 18(4): 765–785.

Juul, S. 2003. Lean mainstream schemes for Stata 8 graphics. The Stata Journal 3(3):
295–301.

Kovesi, P. 2015. Good Colour Maps: How to Design Them. arXiv:1509.03700 [cs.GR].

Lin, S., J. Fortuna, C. Kulkarni, M. Stone, and J. Heer. 2013. Selecting Semantically-
Resonant Colors for Data Visualization. Computer Graphics Forum 32(3pt4): 401–
410.

Lindbloom, B. J. 2017a. Chromatic Adaptation. Revision 06 Apr 2017. http://www.
brucelindbloom.com/Eqn ChromAdapt.html.

. 2017b. Delta E (CIE 1994). Revision 07 Apr 2017. http://www.brucelindbloom.
com/Eqn DeltaE CIE94.html.

. 2017c. Delta E (CIE 2000). Revision 08 Apr 2017. http://www.brucelindbloom.
com/Eqn DeltaE CIE2000.html.

. 2017d. RGB Working Space Information. Revision 06 Apr 2017. http://www.
brucelindbloom.com/WorkingSpaceInfo.html.

. 2017e. RGB/XYZ Matrices. Revision 07 Apr 2017. http://www.
brucelindbloom.com/Eqn RGB XYZ Matrix.html.

Luo, M. R., G. Cui, and C. Li. 2006. Uniform Colour Spaces Based on CIECAM02
Colour Appearance Model. COLOR research and application 31(4): 320–330.

58

https://doi.org/10.5281/zenodo.1243862
http://CRAN.R-project.org/package=colorspace
http://CRAN.R-project.org/package=colorspace
http://www.sis.se/api/document/preview/562720/
https://arxiv.org/abs/1509.03700
http://www.brucelindbloom.com/Eqn_ChromAdapt.html
http://www.brucelindbloom.com/Eqn_ChromAdapt.html
http://www.brucelindbloom.com/Eqn_DeltaE_CIE94.html
http://www.brucelindbloom.com/Eqn_DeltaE_CIE94.html
http://www.brucelindbloom.com/Eqn_DeltaE_CIE2000.html
http://www.brucelindbloom.com/Eqn_DeltaE_CIE2000.html
http://www.brucelindbloom.com/WorkingSpaceInfo.html
http://www.brucelindbloom.com/WorkingSpaceInfo.html
http://www.brucelindbloom.com/Eqn_RGB_XYZ_Matrix.html
http://www.brucelindbloom.com/Eqn_RGB_XYZ_Matrix.html

Luo, M. R., and C. Li. 2013. CIECAM02 and Its Recent Developments. In Advanced
Color Image Processing and Analysis, ed. C. Fernandez-Maloigne, 19–58. New York:
Springer.

Machado, G. M., M. M. Oliveira, and L. A. F. Fernandes. 2009. A Physiologically-based
Model for Simulation of Color Vision Deficiency. IEEE Transactions on Visualization
and Computer Graphics 15(6): 1291–1298.

Morris, T. 2013. SCHEME-MRC: Stata module to provide graphics scheme for UK
Medical Research Council. Statistical Software Components S457703, Boston College
Department of Economics. https://ideas.repec.org/c/boc/bocode/s457703.html.

. 2015. SCHEME-TFL: Stata module to provide graph scheme, based on Trans-
port for London’s corporate colour pallette. Statistical Software Components S458103,
Boston College Department of Economics. https://ideas.repec.org/c/boc/bocode/
s458103.html.

Novak, J. 2016. What every coder should know about gamma. 2016 Sep 21. https:
//blog.johnnovak.net/2016/09/21/what-every-coder-should-know-about-gamma/.

Okabe, M., and K. Ito. 2002. Color Universal Design (CUD). How to make figures and
presentations that are friendly to Colorblind people. http://jfly.iam.u-tokyo.ac.jp/
color/.

Pascale, D. 2003. A review of RGB color spaces ... from xyY to R’G’B’. Mon-
treal: The BabelColor Company. URL http://www.babelcolor.com/index htm files/
A%20review%20of%20RGB%20color%20spaces.pdf.

Pisati, M. 2007. SPMAP: Stata module to visualize spatial data. Statistical Software
Components S456812, Boston College Department of Economics. http://ideas.repec.
org/c/boc/bocode/s456812.html.

Smith, N. J. 2018. colorspacious 1.1.2: A powerful, accurate, and easy-to-use Python
library for doing colorspace conversions. http://pypi.org/project/colorspacious.

Tol, P. 2012. Colour Schemes. SRON Technical Note, Doc. no. SRON/EPS/TN/09-002.
https://personal.sron.nl/∼pault/colourschemes.pdf.

Zeileis, A., K. Hornik, and P. Murrell. 2009. Escaping RGBland: Selecting Colors for
Statistical Graphics. Computational Statistics & Data Analysis 53: 3259–3270.

59

https://ideas.repec.org/c/boc/bocode/s457703.html
https://ideas.repec.org/c/boc/bocode/s458103.html
https://ideas.repec.org/c/boc/bocode/s458103.html
https://blog.johnnovak.net/2016/09/21/what-every-coder-should-know-about-gamma/
https://blog.johnnovak.net/2016/09/21/what-every-coder-should-know-about-gamma/
http://jfly.iam.u-tokyo.ac.jp/color/
http://jfly.iam.u-tokyo.ac.jp/color/
http://www.babelcolor.com/index_htm_files/A%20review%20of%20RGB%20color%20spaces.pdf
http://www.babelcolor.com/index_htm_files/A%20review%20of%20RGB%20color%20spaces.pdf
http://ideas.repec.org/c/boc/bocode/s456812.html
http://ideas.repec.org/c/boc/bocode/s456812.html
http://pypi.org/project/colorspacious
https://personal.sron.nl/~pault/colourschemes.pdf

	1
	ColrSpace: A Mata class for color managementto.44em.Ben Jann
	Contents
	Introduction
	Installation
	Overview of color spaces
	Initialize a ColrSpace object
	Display contents and set meta data
	Define and transform colors
	String input/output (Stata interface)
	Color palettes and color generators
	Set/retrieve opacity and intensity
	Recycle, select, and order colors
	Interpolate and mix
	Intensify, saturate, luminate
	Grayscale conversion
	Color vision deficiency simulation
	Color differences and contrast ratios
	Import/export colors in various spaces
	Color converter and other utilities

	Settings
	Display overview of color space settings
	RGB working space
	XYZ reference white
	CIECAM02 viewing conditions
	Default coefficients for J'M'h and J'a'b'
	Chromatic adaption method

	Alphabetical index of functions
	Source code and certification script
	References

