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Postbariatric hypoglycemia (PBH) is an increasingly recognized late metabolic

complication of bariatric surgery, characterized by low blood glucose levels 1–3 h after

a meal, particularly if the meal contains rapid-acting carbohydrates. PBH can often

be effectively managed through appropriate nutritional measures, which remain the

cornerstone treatment today. However, their implementation in daily life continues to

challenge both patients and health care providers. Emerging digital technologies may

allow for more informed and improved decision-making through better access to relevant

data to manage glucose levels in PBH. Examples include applications for automated

food analysis from meal images, digital receipts of purchased food items or integrated

platforms allowing the connection of continuously measured glucose with food and other

health-related data. The resulting multi-dimensional data can be processed with artificial

intelligence systems to develop prediction algorithms and decision support systems with

the aim of improving glucose control, safety, and quality of life of PBH patients. Digital

innovations, however, face trade-offs between user burden vs. amount and quality of

data. Further challenges to their development are regulatory non-compliance regarding

data ownership of the platforms acquiring the required data, as well as user privacy

concerns and compliance with regulatory requirements. Through navigating these

trade-offs, digital solutions could significantly contribute to improving the management

of PBH.

Keywords: bariatric surgery, postbariatric hypoglycemia, postprandial hypoglycemia, Roux-en-Y gastric bypass,

dumping syndromes, diet records, mobile applications, decision support systems

INTRODUCTION

Postprandial hypoglycemia after bariatric surgery, also referred to as postbariatric hypoglycemia
(PBH), is an increasingly recognized complication of bariatric surgery. The condition manifests
with hypoglycemic episodes 1–3 h after meals, particularly if containing fast-acting carbohydrates
(1). Blood glucose management for PBH patients consists primarily of nutritional strategies.
Emerging technologies support and assist patients in their nutritional management of PBH. The
aim of this review is to give an overview of the role of continuous glucose monitoring (CGM)
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automatedmacronutrient estimation ofmeals, automated dietary
intake estimations, and digital platforms for multi-level data
integration and decision support systems for PBH.

PREVALENCE, PATHOPHYSIOLOGY AND
CLINICAL MANIFESTATION OF
POSTBARIATRIC HYPOGLYCEMIA

Differences in diagnostic criteria yield varying prevalence
estimates and recent results suggest that PBH affects
approximately 30% of postbariatric patients (2), more frequently
those who underwent Roux-en-Y gastric bypass (RYGB) surgery
(3). Additionally, many patients with PBH are asymptomatic
which suggests that prevalence among the postbariatric
population may be even higher (2, 4–6). If present, symptoms
in PBH patients include autonomic (e.g., trembling, anxiety,
palpitations, sweating) and neuroglycopenic symptoms (e.g.,
fatigue, concentration difficulties, confusion, vision changes).
Severe hypoglycemia can lead to seizures, loss of consciousness,
falls, motor vehicle accidents, and even death. Associated
disability and compromised quality of life can be profound,
and the condition does not appear to remit over time. Due to
the increasing use of bariatric surgery for durable resolution
of obesity and diabetes (7), clinicians should be familiar with
the condition, including its clinical management, and improved
methods to manage PBH are required.

Defining a clinically important glucose threshold is critical for
diagnosis, quantification of disease severity and indication for
intervention. A glycemic threshold of <3.0 mmol/L is deemed
to be clinically meaningful as it is associated with the occurrence
of neuroglycopenic symptoms and sequelae in patients with
diabetes (8). It was recently shown that this threshold also applies
to the PBH population (9). Finally, in the light of the high
incidence of hypoglycemia unawareness and the low sensitivity
of symptoms to hypoglycemia, it was recently suggested that
the presence of neuroglycopenic symptoms may disappear over
time and should therefore not be a requirement to diagnose
PBH (5).

Although the pathophysiology of PBH is only partially
understood, the excess postprandial insulin exposure in PBH
patients is likely driven by accelerated nutrient absorption
kinetics and stimulation of insulinotropic gut factors such
as glucagon-like peptide-1 (GLP-1) because of the altered
gastrointestinal anatomy (10). The rapid delivery of nutrients
into the jejunum, particularly after RYGB, causes a prompt
appearance of glucose in the blood. It has been shown that
after RYGB, during the first hour following the ingestion
of 75 g of glucose, approximately 45% of the total ingested
amount appears in the circulation compared to about 30%
pre-surgery (11). Entero-plasticity with the adaptation of
intestinal epithelium and change in glucose transporter density
can further accelerate systemic glucose appearance over time
(12). The resulting early postprandial glucose peak exerts
a stimulatory effect on the pancreatic cell, which is further
amplified by insulinotropic gut factors, a phenomenon known
as the incretin effect (1, 13–15). This observation is further

supported by evidence demonstrating that administering
the same amount of carbohydrate via a gastrostomy in
the bypassed stomach leads to a total remission of PBH
symptoms and normalization of pathologic glucose and
insulin curves as the same meal given via oral intake (16).
Other mechanisms, such as diminished neuroendocrine
counterregulation, reduced insulin clearance and altered
bile acids may further contribute to PBH (17–19). Figure 1

summarizes the interaction between dietary intake and
hypoglycemic events in PBH patients.

NUTRITIONAL MANAGEMENT OF
POSTBARIATRIC HYPOGLYCEMIA

Since prompt absorption of dietary glucose is a root cause of
PBH, it seems reasonable that diet modification represents the
first-line therapy of PBH. This is further supported by the current
absence of an approved pharmacotherapy to treat the condition.
With the aim to diminish postprandial glycemic excursions, the
key nutritional management concepts include restriction of the
carbohydrate load, choice of low glycemic index carbohydrates
and consistent combination with other macronutrients such as
protein and fat. In terms of carbohydrate intake, it was shown
that limiting a meal to 30 g of solid carbohydrate or 28 g of liquid
low glycemic index supplement was successful in preventing
hypoglycemia in patients with PBH (20). Another study recently
demonstrated that a compensatory increase in protein content
of a meal raises the nadir plasma glucose concentration by 13%
and was accompanied by reductions of GLP-1, gastric inhibitory
polypeptide (GIP), and insulin as well as increases in glucagon
concentrations (21). Fats can also serve as a substitute calorie
source to compensate for the reduction in carbohydrates. Fats
do not typically trigger insulin secretion and may even induce
some protective transient insulin resistance thereby stabilizing
postprandial glycaemia (22). For PBH patients, recommended
macronutrient distributions typically are 30% carbohydrates, 45–
50% fats and 20–25% protein (higher protein if weight reduction
is an additional goal). Further nutritional strategies focus on a
high fiber intake (natural foods or dietary supplement such as
glucomannan, guar or pectin) to reduce the absorption rate of
dietary glucose and diminish postprandial glycemic excursions
(23–25). Finally, fluid intake should generally be separated
from the main meal and semi-solid or liquid dishes should be
limited due to their more rapid absorption kinetics. Table 1
gives an overview of nutritional strategies for the management
of PBH.

Another component of nutritional management is to improve
safety in patients with PBH by adequate correction of
hypoglycemic events. Previous research suggests that glucose co-
ingested with amino acids induces a metabolic environment that
could be favorable for PBH patients due to elevated glucagon
levels (21, 26). However, it currently remains speculative whether
combinations of amino acids with glucose could offer more
suitable and sustainable hypoglycemia correction strategies.
Another strategy, although speculative in the PBH population
today, is intake of caffeine (3–6 mg/kg), which is known to
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FIGURE 1 | Origin of postbariatric hypoglycemia. Interaction between dietary intake and hypoglycemic events in patients with postbariatric hypoglycemia (left) and a

section from a CGM profile showing postprandial hypoglycemia followed by rebound hypoglycemia caused by the correction of the primary hypoglycemia (right).

TABLE 1 | Dietary modifications for the management of postbariatric

hypoglycemia.

Aspect Dietary modification

Carbohydrates:

Quantity

- ≤30g carbohydrates per meal

- Several small meals spread throughout the day

Carbohydrates:

Quality

- Starch sources high in fiber (whole grains, legumes)

- Avoidance of rapidly absorbed carbohydrates

(sugar/sweets) or replacement with sugar-free options

Protein and fats - Consistent combination of carbohydrates with foods

high in fat and protein and vegetables/salad

- Protein/fat-rich foods should ideally provide >70% of

meal energy

- Specific amino acids to increase endogenous

glucagon (e.g., arginine)

Meal pattern - Dessert/snack 90min after meals (to offset rapid blood

glucose falls)

- Avoidance of liquids together with meals

Soluble dietary

fibers

- Addition of soluble dietary fibers to slow down

carbohydrate absorption (guar/pectin)

stabilize glycaemia via induction of peripheral insulin resistance
and possibly increase of endogenous glucose production (27,
28). It is important to note that standard dietary advice given
to individuals with diabetes whose gastrointestinal tract is
intact is not applicable to the circumstances in PBH patients.
This is illustrated by current diabetes-inspired guidelines
recommending hypoglycemia correction with 15–20 g of fast-
acting carbohydrates, preferably glucose (29, 30). However,
clinical experience with PBH patients shows that the rapid
spikes in glycaemia following correction of hypoglycemia with
such strategies can trigger rebound hypoglycemia. Guidelines on
hypoglycemia correction strategies that are tailored to the specific
needs of PBH patients do not exist to date.

THE ROLE OF CONTINUOUS GLUCOSE
MONITORING

PBH patients have rapid meal-induced fluctuations in glucose
concentration levels in both directions with early postprandial
blood glucose spikes in the diabetic range followed by a
sharp decrease leading to hypoglycemia in the late postprandial
period. With the advent of CGM, which allows for measuring
interstitial glucose levels every 5min, real-time visualization
of glycemic trajectories has become possible. CGM devices
transmit glucose measurements at regular intervals from a
wearable body sensor to a nearby receiver or mobile device
through a low-power wireless technology (e.g., Bluetooth Low
Energy), providing users with actionable information on historic
and current glucose concentration and velocity of glucose
change. Whilst the technology has become the standard glucose
monitoring tool for patients with diabetes (31), its use in the PBH
population is currently still considered off-label. However, CGM
sensors may provide remarkable benefits for the management
of PBH in clinical practice. Not only can the immediate
and precise capturing of individual meal-induced glycemic
fluctuations improve dietary choices and behavior through a
trial-and-error approach, but CGM is furthermore useful for
detecting asymptomatic but clinically significant hypoglycemic
events (glucose <3.0 mmol/L according to the International
Hypoglycaemia Study Group). In a recently published study,
for example, CGM captured up to 10-fold more events than
were captured by symptom-driven capillary blood glucose
measurements (9). Customizable alerts can prompt patients for
preventive and corrective actions and allow them to review such
actions critically (e.g., prevention of overcorrection resulting in
rebound hypoglycemia).

CGM data can also be used to develop algorithms to predict
future hypoglycemia in real-time. Prediction methodologies
employed so far for such a purpose include classical time series-
based forecasting methods as well as machine learning and
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deep learning techniques (32–34). Incorporation of contextual
data (e.g., meal information, physical activity) as features in
the predictive model are also being explored (35–37). Predictive
hypoglycemia alerts have the potential to substantially reduce the
burden of hypoglycemia, however, false alarms can be a major
hindrance of their acceptance among users (38). While most of
the work on CGM-based hypoglycemia prediction has been done
in the diabetic population, research in PBH patients is currently
scarce (39).

Despite its potential, the current state of CGM technology
is not without limitations. Although the latest generation CGM
devices provide satisfying accuracy at steady state conditions,
CGM glucose levels may lag behind blood glucose concentrations
when glucose is changing rapidly, as in the postprandial state
(40). Additionally, the accuracy of CGM in the hypoglycemic
range is currently not satisfying and patients are advised to
confirm low levels with capillary blood glucose measurements
(41). Finally, current devices are not designed to handle the rapid
glucose dynamics that are characteristic for PBH patients and
cause gaps in data visualization and default non-mutable low
thresholds are set above the clinically relevant threshold for PBH
thereby risking nuisance for patients. A further drawback is that
patients need to be provided with CGM instrumentation that
they need to wear in addition to other sensors that they already
have. A preferable approach would be to find CGM-like signals
from data that the patients already collect with the devices that
they already have (e.g., heart rate and accelometer data from
smartphones and smartwatches).

DIGITAL SOLUTIONS TO SUPPORT
DIETARY DECISION MAKING

Existing evidence and clinical experience highlight the potential
for nutritional strategies to manage PBH in daily life and
overcome potentially debilitating consequences (21, 42).
However, practical implementation of such nutritional
strategies is not without challenges. First, substantial nutritional
knowledge, including carbohydrate counting skills and literacy
regarding carbohydrate quality (e.g., glycemic index) is necessary
to follow current guidelines. In addition to the required
knowledge it is also simply time that the patients need to
invest. The considerable manual effort that is involved can
lead to high churn rates. Second, it is important to recognize
that there is substantial variability in glucose profiles between
individuals, and even from day to day within the same patient,
potentially related to rate of delivery of foods to the intestine,
rates of glucose absorption by the proximal intestine, time of
day, and other metabolic factors (e.g., physical activity). As a
consequence, nutritional goals and measures to achieve these
goals need to be continuously adapted upon review of dietary
and glucose patterns.

Digital technologies offer the potential to overcome these
challenges and facilitate dietary management of PBH patients
whilst reducing the burden of hypoglycemia. Mobile applications
and wearable technologies (e.g., CGM sensors and smart
watches) provide opportunities for real-time collection of

granular health and nutrition-related data. Artificial intelligence,
machine and deep learning methodologies can be employed
to process and analyze the increasing amount of collected
data. The combination of these approaches can be translated
into practical clinical applications, such as decision support,
risk prediction and diet optimization tools. Whilst many diet
applications are existing, very few are suitable to meet the
specific and complex needs of PBH patients. In the following
section, we propose a selection of novel digital solutions that
may support the nutritional management of PBH patients in
daily life.

Automated Macronutrient Estimation
The quantification of macronutrients, particularly carbohydrates,
is an important component of nutritional management in PBH.
However, carbohydrate counting is a challenging task and
prone to errors, even for trained patients with type 1 diabetes
(43–46). With the development of computer vision algorithms
in combination with pervasive smartphone cameras, meal
macronutrient estimation from analyzing images captured
from smartphone cameras has become feasible. Automated
macronutrient estimation is usually generated by a three-stage
process: (1) food item segmentation; (2) food item recognition
and (3) volume estimation. Once the food item is recognized,
nutrient content can be retrieved from a food nutrient database
which contains both nutrient and density information. In line
with this concept, many algorithms have been proposed in the
scientific literature and some of these are accessible in the form
of mobile applications. However, the great majority of existing
algorithms focus on segmentation and recognition only, without
providing information on quantity, which represents the main
difficulty on the end users’ side. This gap is explained by the
technical challenge of estimating food volume. Nevertheless, in
recent years multi-view geometry-based solutions have been
developed requiring the patients to follow a specific photoshoot
protocol to work. GoCARB uses the Canny edge detector and
incremental random sample consensus (RANSAC) paradigm
for plate detection and then hierarchical k-means that are fed
into a support vector machine (SVM) for food classification
(47). GoFood replaced GoCARB’s SMV with a neural network
(48). Today, also single-view methods (e.g., combined with
depth data) are available (49). In this case, only a single image
instead of a video or reference map is required. An example of
the technical workflow of such a single-view method is displayed
in Figure 2. Systems that additionally provide automated
quantification of macronutrients were shown to provide accurate
macronutrient estimations with absolute errors of 14% for weight
and 15% for carbohydrate content (49). It is of note that the
reported estimate is better than currently reported carbohydrate
counting skills in the type 1 diabetes population (50) and
was recently demonstrated to be comparable to dieticians’
estimates (48, 51). However, accuracy results from controlled
laboratory environments may overestimate performance in
real word scenarios characterized by innumerable types of
food items and shapes. Further challenges to the technology
include mixed dishes (e.g., stews), drinks and semi-solid
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FIGURE 2 | Technical flow of the SNAQ app. The app automatically segments pictures of meals into meal components and recognizes the food of the components. If

the picture is taken with a depth-sensing camera of newer smartphones, it creates a depth map to estimate the volume of each meal component. From the volume

and the food recognition, it can calculate the weight of each meal component. By using a food composition database, the macronutrient composition of the meal is

calculated and displayed to the user with the corresponding CGM data. Screenshots kindly provided by SNAQ.

meals (e.g., yogurt/creams) as well as lacking availability
of food density information in nutrient databases and
macronutrient variability within food categories (depending on
the preparation).

In a first technology concept testing, 8 patients with confirmed

PBH used the SNAQ app within the framework of usual care
nutritional counseling. Figure 3 illustrates two different meal

assessment scenarios [(I) dinner consisting of ravioli with tomato
sauce and cheese and (II) a croissant] with the corresponding

glucose curve from a linked CGM. First experiences from both

healthcare provider and patient perspectives suggest that the
technology may be promising as it obviates the need for time-
consuming and error-prone food diaries, provides real-time
information of dietary intake and allows for personalizing dietary
strategies when linked with CGM (e.g., assessment of individual
carbohydrate thresholds in specific meal constellations). More
comprehensive usability testing and clinical efficacy trials are
required to fully evaluate its potential for the management
of PBH.

Digital Receipts for Grocery Choices With
Optimized Glycemic Impact
Dietary intake and nutritional habits are greatly influenced
by choices made at the grocery store. The great diversity of
food products, the high turnover and often misleading front
package claims (52) complicate the choice of products that
fit the dietary recommendations for PBH. Even with existing
food knowledge, checking food labels of different products and
comparing these to each other is tremendously time-consuming
(53). Thus, while basic feasibility of nudging shoppers toward
healthier choices in physical (54) as well as online (55) stores
has been demonstrated, optimizing food choices in real-life still
requires technological innovations.

Digital receipts from loyalty cards have a high potential as
an automatic, self-updating, and scalable approach to provide
automated insights into the nutrient profile of food products
and development of personalized recommendations, especially
in countries where loyalty card programs are widely used (56–
58). In Switzerland, for example, the loyalty programs offered
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FIGURE 3 | Output of image-based automated food assessment and corresponding glucose profiles. The SNAQ app allows for automated analysis of meal

macronutrients from photographed meals. Pairing with a continuous glucose monitor combines the meal information with the corresponding postprandial

glucose profile.

by Coop and Migros, the two main grocery stores, reach more
than 3 million households each, and 80% of the retail revenues
are associated to loyalty cards (59, 60). Digital receipts provide
shopping data that only includes product names, prices, and
date of purchase. Hence, sales data first needs to be enriched
with nutritional facts, which requires the creation, maintenance
and adaptation of a product ingredient database (61). For
example, the Auto-ID Labs of ETH Zurich and University of
St. Gallen have developed and maintained a product ingredient
database, which now contains more than 50,000 of the most
frequently bought products in Switzerland (61). Its content
reflects information that is contained in products’ food facts
and labels, e.g., energy, total fat, saturated fat, cholesterol, total
carbohydrates, fibers, sugars and sodium as well as additional
specifications such as a list of ingredients and allergens. Such food
databases can be further expanded by self-designed metrics that
are not visible on food products, e.g., a systematic methodology
to estimate added sugar values on the basis of analytical

data and ingredients of foods (62). Additionally, calculation
of carbohydrates to fiber ratio allows to stratify carbohydrates
according to their glycemic impact. Carbohydrate to fiber ratios
of 10:1 are linked to foods with higher dietary fiber and lower free
sugars (63).

Digital receipts from food purchases can be used for
nutritional management in two different ways. They enable
automated, continuous, objective and non-intrusive monitoring
of purchased food items including analysis of the distribution
into specific food categories and breakdowns intomacronutrients
and other nutritional properties. Of note, more holistic metrics
that provide insights into the overall healthiness and nutritional
quality of the purchased food have been developed. Examples
include the Food Standards Agency Nutrient Profiling System
Dietary Index (FSA-NPS DI) (64), the Healthy Trolley Index (65)
or the Grocery Purchase Quality Index-2016 (66). A comparison
between these food shopping quality indicators found that
correlations between food shopping data and density-based
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FIGURE 4 | Mobile application using digital receipts to optimize diet. The app screenshots provide insights into the functionalities of the app: daily overall nutritional

value of purchased food (e.g., using the Nutri-Score) (left); food categories for individualized goal setting (center); food recommendations based on individual food

purchase history and goal setting. The app currently exists only in German.

FIGURE 5 | Digital platform for multi-level data integration. The platform gathers data from multiple sources, such as manual input, continuous glucose monitoring

sensors and health data from smartwatches. Custom algorithms and personalized data visualization (e.g., blinding data for specific classes of patients) allow for

tailoring the functionalities to individual needs. The dashboard allows the healthcare professional to monitor data acquisition in real time and optimize treatment.

relative food and nutrient intake are stronger than absolute food
and nutrient intake (58). Unlike self-reported dietary intake,
which assesses individual food intake, food items recorded with
digital receipts are typically consumed by a whole household.
However, a reasonably accurate conversion of household-level

food purchase data to individual-level data can be achieved by
using expenditure (66, 67) or caloric shares (68). Limitations
of this method include differences between what is bought and
what is eaten, non-tracked consumption, and distribution among
family members.
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FIGURE 6 | Browser dashboard summary view. The browser dashboard for the healthcare professional provides an overview of patient characteristics, settings for

data collection, data view and notifications. It further displays summary statistics of continuous glucose monitoring data.

Apart from permitting the automated analysis of purchased
food, digital receipts and linked food composition databases
allow for setting nutritional goals and translation into
personalized food recommendations delivered by dedicated
mobile applications. For example, a nutritional goal for
a PBH patient might be to consume food products that
provide a maximum of 30 g carbohydrates per serving size,
or cereals with a certain carbohydrate-to-fiber ratio. One
example of a digital receipts-based product advice application
is FutureMe (69). Figure 4 shows an example of using digital
receipts to assess people’s shopping behavior and provide
detailed recommendations.

Despite its promises, the most relevant barriers in the

adoption of digital receipts are individual user burden, retailer
resistance, lack of standardization, infrastructure and data
privacy. Not all retailers have a loyalty card program and loyalty

cards do not record the whole consumption, such as when

customers forget the card, food waste, or eating out. In addition,
customers may share their loyalty cards with other people.

Challenges regarding the infrastructure include maintenance of
the food composition database (adding new products), linking
digital receipts with nutritional information, and missing unique

identifiers on receipts (only prices and names). This could be
solved through standardization of the receipts to make items
identifiable, such as with the global trade item number. Finally,
people may be reluctant to share their data. However, it can
be expected that retailers will mass-adopt the distribution of
digital receipts, once they are required by regulation or when they
become a de-facto standard for cashless payments.

Digital Platforms for Multi-Level Data
Integration and Decision Support
Nutritional management in PBH lends itself to interactions
centered around data—information on meals, blood glucose
values and trajectories, symptoms, physical activity and possibly
off-label pharmacotherapies. Digitalization can enhance PBH
care not only through the improved collection and analysis of
data, but also through their connection in the form of integrated
platforms. This allows both patients and healthcare providers to
evaluate the collected data, both in real time and retrospectively.
The ability to simultaneously view both retrospective and real-
time data from multiple sources allows evaluating cause-and-
effect relationships among diet, glucose trajectories and other
factors such as physical activity. Such analysis is a key component
to optimize the clinical management of PBH as it sets the
foundation for informed decisionmaking. Apart from facilitating
and optimizing clinical management, integrated platforms can
support large-scale data collection (e.g., in clinical trials) which
can be used for the development, training and validation of
hypoglycemia prediction models. Finally, such predictive models
can be incorporated into data-driven decision support systems,
which can inform patients about imminent hypoglycemia and
ultimately about optimized dietary choices to improve glucose
control. Pioneering work by Zeevi et al. (70) has provided proof
of principle for the utility of tailoring nutrition to individual
glucose profile, albeit not in PBH patients.

An example of an integrated mobile platform, developed by
the Department of Information Engineering of the University
of Padova, is illustrated in Figure 5. The system has originally
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FIGURE 7 | Browser dashboard daily view. The browser dashboard further allows for day-by-day review of glucose trajectories that are displayed in combination with

other types of data collected such as self-measured blood glucose (SMBG), step counts from activity trackers, and physical activity logs and meal logs entered by

the user.

been created for patients with diabetes (71) and was modified, in
collaboration with the Department of Diabetes, Endocrinology,
Nutritional Medicine and Metabolism of the University Hospital
Bern, to meet the specific needs for clinical research in PBH
patients and for future use in clinical practice. The components
of the platform, which consists of a mobile app for patients, a web
interface for researchers and healthcare professionals, a cloud
database, and wearables integration work in synergy to ensure a
secure environment for data collection and real-timemonitoring.
The mobile app integrates manual data input (e.g., tracking of
meals, symptoms, drugs and events), data from the CGM device
as well as other wearables (e.g., activity tracker), whereas the web
interface allows researchers and healthcare professionals to access
data in real time on a browser dashboard (Figure 6). Figure 7
illustrates a daily glucose profile and Figure 8 a summary
statistics over several days.

The main challenge in the development of such platforms
is device interoperability, which refers to the ability of devices

to connect and exchange data. Although improved over the
past years, siloed systems continue to complicate the creation of
connected ecosystems.

REMAINING CHALLENGES OF DIGITAL
APPROACHES

As wearable devices transition from lifestyle monitoring to
medical devices (where data acquired from the devices are the
basis for medical decisions), they will be subject to greater
regulation (72). Therefore, the United States Food and Drug
Administration (FDA) created the Digital Health Software
Precertification (Pre-Cert) Program for low-risk device approval
(73). This program will “provide more streamlined and efficient
regulatory oversight of software based medical devices developed
by manufacturers who have demonstrated a robust culture of
quality and organizational excellence, and who are committed
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FIGURE 8 | Ambulatory glucose profile. The dashboard includes a standardized visual report once the software has sufficient numbers of days of data collection. It

shows a median glucose control line; the 25th−75th percentiles, which represents 50% of the glucose readings over the analysis time period; and the 5th−95th

percentiles, which helps identifying outliers that are contributing to the median results.

to monitoring real-world performance of their products once
they reach the U.S. market.” A recent review found that the
most important concerns with wearable devices are security and
safety, particularly when data from wearable devices are used
to make medical decisions (74). A major advantage of using
wearable devices for health assessments is that the information is
objective and the burden of self-reporting is eliminated. Clinical
interventions with wearables provide users and clinicians with
real-time information and can support behavior change. For
consumer-based wearable devices to become more widely used
in clinical practice, secure data sharing technology needs to
be used properly and intermediaries need to be minimized.
Ultimately, clinicians play an essential role interpreting data
from wearable devices. It is thus important that clinicians
are familiar with wearable devices and their limitations. In
addition, the implementation of digital technologies for the
management of PBH can lead to financial burden for patients and
insurers. However, additional technology costs may be justified
given the potential reduction of disease burden and improved
patient safety.

CONCLUSION

PBH is an increasingly recognized complication of bariatric
surgery, for which nutritional management is the cornerstone
treatment. Digital technologies, through the improved collection

and analysis of data from multiple sources, hold great promise
for supporting, optimizing and personalizing the management
of diet and food in daily life whilst increasing quality of life and
safety in affected patients.

Promising approaches include automated image-based food
analysis, visualization of food effects using CGM, digital receipts
for smarter food choices at the grocery store, integrated platforms
to combine multiple sources of data and advanced data analysis
techniques to develop better prediction algorithms and decision
support systems.

However, several challenges remain that prevent digital
technologies from reaching their full potential in the
management of PBH and related conditions. From the users’
perspective, the most important criteria for the uptake of such
technologies is user burden, including effort for manual data
input and device burden. Another key point in the development
of digital solutions is how exactly a data controller complies
with data security and privacy policies, such as the EU General
Data Protection Regulation (GDPR). Additionally, it needs to
be considered that depending on the functionalities and use of
the algorithms, digital solutions may qualify as medical devices
and are subject to regulation (e.g., Medical Device Regulation in
Europe). International organizations, including the International
Medical Device Regulators Forum and the World Health
Organization (WHO), have made strides in classifying different
types of digital health technology and integrating digital health
technology into the field of medical devices. Although the stage
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of digital technologies to support nutritional management in
patients with PBH is still young, there is much promise for
growth, optimization and disruption in future. To integrate
digital decision support systems into the everyday life of PHB
patients, we need to ensure that they are based on the best
evidence for safety, efficacy and utility. Such efforts require
intensive collaborations between technical experts, clinicians,
regulatory experts and device makers.
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