

University of Bern Social Sciences Working Paper No. 43

Color palettes for Stata graphics: an update

Ben Jann

Current version: June 3, 2022
First version: April 20, 2022

http://ideas.repec.org/p/bss/wpaper/43.html
http://econpapers.repec.org/paper/bsswpaper/43.htm

Faculty of Business, Economics and
Social Sciences

Department of Social Sciences

University of Bern
Department of Social Sciences
Fabrikstrasse 8
CH-3012 Bern

Tel. +41 (0)31 684 48 11
Fax +41 (0)31 684 48 17
info@sowi.unibe.ch
www.sowi.unibe.ch

Color palettes for Stata graphics: an update

Ben Jann
Institute of Sociology

University of Bern
ben.jann@unibe.ch

Abstract. This paper is an update to Jann (2018b). It contains a comprehensive
discussion of the colorpalette command, including various changes and addi-
tions that have been made to the software since its first publication. Command
colorpalette provides colors for use in Stata graphics. In addition to Stata’s
default colors, colorpalette supports a variety of named colors, a selection of
palettes that have been proposed by users, numerous collections of palettes and
colormaps from sources such as ColorBrewer, Carto, D3.js, or Matplotlib, as well
as color generators in different color spaces. The command also provides features
such as color interpolation or color vision deficiency simulation.

Keywords: Stata, palettes, colorpalette, colorcheck, graph, graphics, color,
color spaces, color interpolation, color vision deficiency, grayscale conversion, per-
ceptually uniform

Revision notes: Substantial changes and additions compared to the first release of
the software are marked with tags such as (new) or (revised) in the margin.

Contents

1 Introduction 3

2 Installation 4

3 Syntax 4

3.1 Syntax of colorpalette . 4

3.1.1 Palette options . 5

3.1.2 Macro options . 8

3.1.3 Graph options . 10

3.1.4 Stored results . 11

3.2 Syntax of colorcheck . 11

3.2.1 Options . 11

3.2.2 Stored results . 12

1

ben.jann@unibe.ch
https://ideas.repec.org/c/boc/bocode/s458444.html
https://www.stata.com/help.cgi?graph

4 Basic usage 12

4.1 View a palette (syntax 1) . 12

4.2 View multiple palettes (syntax 2) . 13

4.3 Select and order colors in a palette . 14

4.4 Specify a custom list of colors . 14

4.5 Manipulate and analyze colors . 16

4.5.1 Color interpolation . 16

4.5.2 Change intensity, saturation, and luminance 16

4.5.3 Grayscale conversion . 16

4.5.4 Color vision deficiency simulation 17

4.5.5 Analyze colors using colorcheck 17

4.6 Retrieve colors from colorpalette . 18

4.7 Make colors available as globals or locals 20

4.8 Make colors permanently available . 21

4.9 Provide custom palettes . 22

5 Named colors 23

5.1 HTML colors . 24

5.2 W3.CSS colors . 25

6 Palettes, colormaps, and color generators 28

6.1 Palettes . 29

6.1.1 Stata palettes . 29

6.1.2 User-contributed palettes . 29

6.1.3 Categorical palettes from pals 30

6.1.4 D3.js palettes . 30

6.1.5 Qualitative palettes from seaborn 31

6.1.6 Tableau 10 color schemes . 31

6.1.7 Color schemes by Paul Tol . 33

6.1.8 ColorBrewer palettes . 34

6.1.9 Color schemes from Carto . 36

2

6.1.10 Semantic colors by Lin et al. 37

6.1.11 Colors schemes from spmap . 37

6.1.12 Swiss Federal Statistical Office colors 38

6.1.13 HTML colors . 39

6.1.14 W3.CSS colors . 39

6.1.15 Wes Anderson palettes . 40

6.2 Colormaps . 40

6.2.1 Viridis colormaps . 41

6.2.2 Seaborn colormaps . 41

6.2.3 Other matplotlib colormaps . 41

6.2.4 Colormaps by Kovesi (2015) . 42

6.2.5 Scientific colour maps by Crameri (2018) 43

6.3 Color generators . 44

6.3.1 Generate colors over a range of intensity, opacity, saturation, or
luminance levels . 44

6.3.2 Generate colors by interpolation 44

6.3.3 Generate evenly spaced HCL hues 45

6.3.4 HCL, LCh, and JMh color generators 46

6.3.5 HSV and HSL color generators 48

7 References 50

1 Introduction

Stata features a set of about 50 named colors that can be used in graphs (see [G] col-
orstyle). Given the diverse needs of users, a set of 50 predefined colors is rather lim-
ited. Alternative colors are supported, but have to be specified by their RGB, CMYK,
or HSV values. To increase the number of easily accessible colors, the colorpalette

command provides a variety of named colors and predefined palettes and also features
color generators in different color spaces such as HSV (Hue-Saturation-Value) or HCL
(Hue-Chroma-Luminance). Furthermore, it supports additional input formats for cus-
tom colors, such as hex triplets, and allows color interpolation or generating colors over
a range if intensity or opacity levels.

The primary purpose of colorpalette is to provide named colors, color palettes,
color generators, and additional color input formats for use with grstyle set, a

3

https://www.stata.com/help.cgi?colorstyle
https://www.stata.com/help.cgi?colorstyle
http://repec.sowi.unibe.ch/stata/grstyle/grstyle-set.html

command that customizes the look of Stata graphics (Jann 2018c). grstyle set

runs colorpalette in the background so that users typically do not have to call
colorpalette directly. However, manually calling colorpalette can be useful to
display a quick overview of one or several palettes (see Section 4.1 and Section 4.2).
Furthermore, colorpalette can also be used independently of grstyle set to retrieve
colors and then pass them through to a subsequent graph command (see Section 4.6) or
to make additional named colors available as macros or as system colors (see Section 4.7 (new)

and Section 4.8).

Command colorpalette is provided as part of the palettes package (Jann 2017).
The package also contains an older version of the command called colorpalette9 as
well as utilities for the management of marker symbols and line patterns. Furthermore,
the package contains command colorcheck that can be used to evaluate whether the (new)

colors are distinguishable in (non-color) print or by people who suffer from color vision
deficiency (see Section 3.2).

The engine behind colorpalette and colorcheck is the ColrSpace class, a color (new)

management system written in Mata (Jann 2018a). ColrSpace is documented in Jann
(2022).

2 Installation

To install palettes and ColrSpace, type

. ssc install palettes, replace

. ssc install colrspace, replace

Alternatively, the packages are also available from GitHub (see github.com/benjann/
palettes and github.com/benjann/colrspace). To install from GitHub, type

. net from https://raw.githubusercontent.com/benjann/palettes/master/

. net install palettes, replace

. net from https://raw.githubusercontent.com/benjann/colrspace/master/

. net install colrspace, replace

colorpalette, colorcheck, and ColrSpace require version 14.2 of Stata or newer. (new)

Users of older Stata versions can use command colorpalette9, which runs under Stata
9.2 or newer, but has limited functionality and somewhat different syntax.

3 Syntax

3.1 Syntax of colorpalette

The colorpalette command has two syntax variants. Syntax 1 is used to retrieve
colors from one or multiple palettes. The colors are returned in r() and, by default,
displayed in a graph. The syntax is

4

http://repec.sowi.unibe.ch/stata/grstyle/grstyle-set.html
http://repec.sowi.unibe.ch/stata/grstyle/grstyle-set.html
https://ideas.repec.org/c/boc/bocode/s458444.html
http://repec.sowi.unibe.ch/stata/palettes/help-colorpalette9.html
http://repec.sowi.unibe.ch/stata/palettes/help-colrspace.html
http://repec.sowi.unibe.ch/stata/palettes/help-colrspace.html
https://ideas.repec.org/c/boc/bocode/s458444.html
http://repec.sowi.unibe.ch/stata/palettes/help-colrspace.html
https://github.com/benjann/palettes
https://github.com/benjann/palettes
https://github.com/benjann/colrspace
http://repec.sowi.unibe.ch/stata/palettes/help-colrspace.html
http://repec.sowi.unibe.ch/stata/palettes/help-colorpalette9.html

colorpalette
[
argument

] [
, palette options macro options graph options

]
where argument is

palette
[[

, palette options
]
/

[
palette

[
, palette options

]
/ ...

]]
and palette is a space-separated list of individual colors (see Section 4.4 and Section 5),
a named palette (see Section 4.9 and Section 6), or mata(name), where name is the (new)

name of a ColrSpace object.

Syntax 2 is used to display an overview of multiple palettes in a single graph, without
returning the colors in r(). The syntax is

colorpalette
[
, palette options graph options

]
: pspec

[
/ pspec / ...

]
where pspec is

palette
[
, palette options

]
or . to insert a gap.

3.1.1 Palette options

Options n() through cblind() are applied in the order as listed below. For example, if
you apply options ipolate() and cblind(), the colors will first be interpolated. Color
vision deficiency simulation will then be applied to the the interpolated colors.

n(#) specifies the size of the palette (number of colors). Many palettes such as the color
generators or the sequential and diverging ColorBrewer palettes are adaptive to n()

in the sense that they return different colors depending on n(). Other palettes such
as s2 contain a fixed set of colors.

If n() is different from the (maximum or minimum) number of colors defined by (new)

a palette, the colors are either recycled or interpolated, depending on the class of
the palette; see option class(). To prevent automatic recycling or interpolation,
specify option noexpand.

select(numlist) selects (and reorders) the colors retrieved from the palette. Positive (revised)

numbers refer to positions from the start; negative numbers refer to positions from
the end. select() cannot be combined with order() or drop().

drop(numlist) drops individual colors retrieved from the palette. Positive numbers (new)

refer to positions from the start; negative numbers refer to positions from the end.
Only one of drop() and select() is allowed.

order(numlist) reorders the colors. Positive numbers refer to positions from the start; (new)

negative numbers refer to positions from the end. Colors not covered in numlist will
be placed last, in their original order. Only one of order() and select() is allowed.

5

http://repec.sowi.unibe.ch/stata/palettes/help-colrspace.html#init
https://www.stata.com/help.cgi?numlist
https://www.stata.com/help.cgi?numlist
https://www.stata.com/help.cgi?numlist
https://www.stata.com/help.cgi?numlist

reverse returns the colors in reverse order.

shift(#) shifts the positions of the colors up (if # > 0) or down (if # < 0), wrapping (new)

positions around at the end. If # is in (−1, 1), the colors are shifted by trunc(#×n)
positions, where n is the size of the palette (proportional shift); if |#| ≥ 1, the colors
are shifted by trunc(#) positions.

opacity(numlist) sets the opacity level(s) (this requires Stata 15 or newer). The values
in numlist must be between 0 (fully transparent) and 100 (fully opaque). Specify
multiple values to use different opacity levels across the selected colors. If the number
of specified opacity levels is smaller than the number of colors, the levels will be
recycled; if the number of opacity levels is larger than the number of colors, the
colors will be recycled. To skip assigning opacity to a particular color, you may set
the corresponding element in numlist to . (missing).

intensity(numlist) sets the color intensity adjustment multipliers. The values in num-
list must be between 0 and 255. Values below 1 make the colors lighter; values larger
than 1 make the colors darker (although the allowed scale goes up to 255, values as
low as 5 or 10 may already make a color black). General behavior of numlist is as
in opacity().

ipolate(n
[
, suboptions

]
) interpolates the colors to a total of n colors (intensity mul- (new)

tipliers and opacity levels, if defined, will also be interpolated). Suboptions are as
follows.

cspace selects the color space in which the colors are interpolated. The default space
is Jab (perceptually uniform CIECAM02-based J ′a′b′). Other possibilities are,
for example, RGB, lRGB, Lab, LCh, Luv, HCL, JMh, or HSV; see the documentation
of ColrSpace for details (Jann 2022).

range(lb
[
ub

]
) sets the interpolation range, where lb and ub are the lower and

upper bounds. The default is range(0 1). If lb is larger than ub, the colors are
returned in reverse order. Extrapolation will be applied if the specified range
exceeds [0, 1].

power(#), with # > 0, determines how the destination colors are distributed across
the interpolation range. The default is to distribute them evenly; this is equiva-
lent to power(1). A power value larger than 1 squishes the positions towards the
lower bound. If interpolating between two colors, this means that the first color
will dominate most of the interpolation range (slow to fast transition). A value
between 0 and 1 squishes the positions towards the upper bound, thus making
the second color more dominant (fast to slow transition). Another way to think
of the effect of power() is that it moves the center of the color gradient up (if
> 1) or down (if 0 < # < 1).

positions(numlist) specifies the positions of the origin colors. The default is to
arrange them on a regular grid from 0 and 1. If the number of specified positions
is smaller than the number of origin colors, default positions are used for the
remaining colors. If the same position is specified for multiple colors, these colors

6

https://www.stata.com/help.cgi?numlist
https://www.stata.com/help.cgi?numlist
https://www.stata.com/help.cgi?numlist
https://www.stata.com/help.cgi?numlist
https://www.stata.com/help.cgi?numlist
https://www.stata.com/help.cgi?numlist
https://www.stata.com/help.cgi?numlist
http://repec.sowi.unibe.ch/stata/palettes/help-colrspace.html#ipolate
https://www.stata.com/help.cgi?numlist

will be averaged before applying interpolation.

padded requests padded interpolation. By default, the first color and the last color
are taken as the end points of the interpolation range; these colors thus remain
unchanged. Specify padded to interpret the first and last colors as interval mid-
points on an equally-spaced grid. This increases the interpolation range by half
an interval on each side and causes the first color and the last color to be affected
by the interpolation.

Circular interpolation will be used for palettes declared as “cyclic” or “circular”;
see option class(). For such palettes, suboptions range(), power(), positions(),
and padded have no effect.

intensify(numlist) modifies the intensity of the colors. Syntax is as for intensity(). (new)

intensify() applies the same kind of adjustment as implemented by the intensity
adjustment multipliers set by intensity(). The difference between intensify()

and intensity() is that intensity() only records the intensity multipliers (which
are then returned as part of the color definitions), whereas intensify() directly
applies the adjustment by transforming the RGB values. A second difference is that
intensity() is applied before interpolation, whereas intensify() is applied after
interpolation.

saturate(numlist
[
, cspace level

]
) modifies the saturation (colorfulness) of the col- (new)

ors. Positive numbers will increase the chroma channel of the colors by the specified
amount, negative numbers will reduce chroma. General behavior of numlist is as in
opacity(). Suboptions are as follows.

cspace specifies the color space in which the colors are manipulated. Possible spaces
are LCh (cylindrical representation of CIE L*a*b*), HCL (cylindrical represen-
tation of CIE L*u*v*), JCh (CIECAM02 JCh), and JMh (CIECAM02-based
J ′M ′h). The default is LCh.

level specifies that the provided numbers are levels, not differences. The default is
to adjust the chroma values of the colors by adding or subtracting the specified
amounts. Alternatively, if levels is specified, the chroma values of the colors
will be set to the specified levels. Chroma values of typical colors lie between 0
and 100 or maybe 150.

luminate(numlist
[
, cspace level

]
) modifies the luminance (brightness) of the col- (new)

ors. Positive numbers will increase the luminance of the colors by the specified
amount, negative numbers will reduce luminance. General behavior of numlist is as
in opacity(). Suboptions are as follows.

cspace specifies the color space in which the colors are manipulated. Possible spaces
are Lab (CIE L*a*b*), Luv (CIE L*u*v*), JCh (CIECAM02 JCh), and JMh

(CIECAM02-based J ′M ′h) (LCh, HCL, and Jab are also allowed, but result in the
same colors as Lab, Luv, and JMh, respectively). The default is JMh.

level specifies that the provided numbers are levels, not differences. The default is
to adjust the luminance values of the colors by adding or subtracting the specified

7

https://www.stata.com/help.cgi?numlist
https://www.stata.com/help.cgi?numlist
https://www.stata.com/help.cgi?numlist
https://www.stata.com/help.cgi?numlist
https://www.stata.com/help.cgi?numlist

amounts. Alternatively, if levels is specified, the luminance values of the colors
will be set to the specified levels. Luminance values of typical colors lie between
0 and 100.

gscale
[
(
[
numlist

][
, cspace

]
)
]

converts the colors to gray, where numlist in [0, 1] spec- (new)

ifies the proportion of gray. The default proportion is 1 (full conversion). General
behavior of numlist is as in opacity(). Suboption cspace specifies the color space in
which the conversion is performed; it may be LCh (cylindrical representation of CIE
L*a*b*), HCL (cylindrical representation of CIE L*u*v*), JCh (CIECAM02 JCh),
and JMh (CIECAM02-based J ′M ′h). The default is LCh.

cblind
[
(
[
numlist

][
, type

]
)
]

simulates color vision deficiency (based on Machado et al. (new)

2009), where numlist in [0, 1] specifies the severity of the deficiency. The default
severity is 1 (maximum severity, i.e. deuteranopia, protanopia, or tritanopia, re-
spectively). General behavior of numlist is as in opacity(). Suboption type speci-
fies the type of color vision deficiency, which may be deuteranomaly (the default),
protanomaly, or tritanomaly. See en.wikipedia.org/wiki/Color blindness for basic
information on color blindness.

forcergb enforces translation of all colors to RGB. By default, colorpalette does not (new)

translate colors specified as Stata color names. Specify forcergb to return these
colors as RGB values.

noexpand omits recycling or interpolating colors if the number of requested colors is (new)

larger than the maximum (or smaller than the minimum) number of colors defined
in a palette.

class(class) declares the class of the the palette, where class may be qualitative (new)

(or categorical), sequential, diverging, cyclic (or circular), or any other
string. Palettes declared as qualitative or categoprical will be recycled, all other
palettes will be interpolated (if recycling or interpolation is necessary). Specifying
class() only affects palettes that do not set the class as part of their definition.

name(str) assigns a custom name to the palette. (new)

other options are additional palette-specific options. See the descriptions of the palettes
below (Section 6). When collecting results from multiple palettes, palette options
can be specified at the global level to define default settings for all palettes, or at
the local level of an individual palette. For general palette options, defaults set at
the global level can be overridden by repeating an option at the local level. Such
repetitions are not allowed for palette-specific options.

3.1.2 Macro options

The following options are only available in syntax 1.

globals
[
(spec)

]
stores the color codes as global macros (see [P] macro). Use this (new)

option as an alternative to obtaining the color codes from r(); see the Section 4.7
for an example. globals() disables graph display unless option graph is specified.

8

https://www.stata.com/help.cgi?numlist
https://www.stata.com/help.cgi?numlist
https://www.stata.com/help.cgi?numlist
https://www.stata.com/help.cgi?numlist
https://www.stata.com/help.cgi?numlist
https://www.stata.com/help.cgi?numlist
https://en.wikipedia.org/wiki/Color_blindness
https://www.stata.com/help.cgi?macro

The syntax of spec is[
namelist

] [
stub*

] [
, prefix(prefix) suffix(suffix) nonames

]
where namelist provides custom names for the colors and stub* provides a stub for
automatic names. If no name is found for a color in the palette definition and no
custom name is provided, an automatic name defined as stub#suffix will be used,
where # is the number of the color in the palette. The default stub is p or as set by
prefix(). Suboptions are as follows:

prefix() specifies a common prefix to be added to the names.

suffix() specifies a common suffix to be added to the names.

nonames prevents colorpalette from using the names found in the palette defini-
tion.

locals
[
(spec)

]
stores the color codes as local macros (see [P] macro). Syntax and (new)

functionality is as described for option globals(), with the exception that stub
defaults to empty string. locals() disables graph display unless option graph is
specified.

stylefiles
[
(spec)

]
stores the color codes in style files on disk. This makes the colors (new)

permanently available by their name, just like official Stata’s color names; see Sec-
tion 4.8 for an example. Style files will only be created for colors that are represented
by a simple RGB code; codes that include an intensity-adjustment or opacity opera-
tor and colors that are referred to by their Stata name will be skipped. stylefiles()
disables graph display unless option graph is specified. The syntax of spec is[

namelist
] [

stub*
] [

, prefix(prefix) suffix(suffix) nonames personal

path(path) replace
]

where namelist provides custom names for the colors and stub* provides a stub for
automatic names. If no name is found for a color in the palette definition and no
custom name is provided, an automatic name defined as stub#suffix will be used,
where # is the number of the color in the palette. The default stub is empty string
or as set by prefix(). Suboptions are as follows:

prefix() specifies a common prefix to be added to the names.

suffix() specifies a common suffix to be added to the names.

nonames prevents colorpalette from using the names found in the palette defini-
tion.

personal causes the style files to be stored in folder “style” within the PERSONAL

ado-file directory; see [P] sysdir. The default is to store the style files in folder
“style” within the current working directory; see [D] pwd.

path(path) provides a custom path for the style files. The default is to store the

9

https://www.stata.com/help.cgi?macro
https://www.stata.com/help.cgi?sysdir
https://www.stata.com/help.cgi?pwd

style files in folder “style” within the current working directory. path() and
personal are not both allowed.

replace permits colorpalette to overwrite existing files.

3.1.3 Graph options

Common graph options

title(string) specifies a custom title for the graph.

nonumbers suppresses the numbers identifying the colors in the graph. (new)

gropts(twoway options) provides options to be passed through to the graph command;
see [G] twoway options.

Additional graph options for syntax 1

rows(#) specifies the minimum number of rows in the graph. The default is 5.

names replaces the RGB values in the graph by the information found in r(p#name) (new)

(the color names), if such information is available.

noninfo suppresses the additional color information that is sometimes printed below (new)

the RGB values or the color names.

nograph suppresses the graph.

graph enforces drawing a graph even though macro options have been specified.

Additional graph options for syntax 2

horizontal displays the palettes horizontally. This is the default.

vertical displays the palettes vertically.

span adjusts the size of the color fields such that each palette spans the full plot region (new)

even if the palettes contain different numbers of colors.

barwidth(#) sets the width of the color bars. The default is barwidth(0.7). The (new)

available space per bar is 1 unit; specifying barwidth(1) will remove the gap between
bars.

labels(strlist) provides custom labels for the palettes. Enclose labels with spaces in
double quotes.

lcolor(colorstyle) specifies a custom outline color. The default is to use the same color
as for the fill.

lwidth(linewidthstyle) specifies a custom outline thickness. The default is
lwidth(vthin).

10

https://www.stata.com/help.cgi?twoway_options
https://www.stata.com/help.cgi?colorstyle#colorstyle
https://www.stata.com/help.cgi?linewidthstyle

3.1.4 Stored results

Under syntax 1, colorpalette stores the following in r() (see [R] Stored results):

Scalars:
r(n) number of colors

Macros:
r(ptype) color r(pname) name of palette or custom
r(pclass) palette class (if available) r(pnote) palette description (if available)
r(psource) palette source (if available) r(p) space-separated list of colors
r(p#) #th color r(p#name) name of #th color (if available)
r(p#info) info of #th color (if available)

Under syntax 2, colorpalette does not store any results.

3.2 Syntax of colorcheck
(new)

The colorcheck command analyzes the colors returned by colorpalette by apply-
ing grayscale conversion and color vision deficiency transformation, and by computing
minimum color differences among the converted colors. Results from colorpalette are
required to be in memory. The syntax is:

colorcheck
[
, options

]
3.2.1 Options

metric(metric) selects the color difference metric to be used. metric can be E76, E94,
E2000, or Jab; see the documentation of ColrSpace for details (Jann 2022). Default
is metric(Jab).

mono([#] [, method]) determines the settings for grayscale conversion, where # in [0, 1]
specifies the proportion of gray (default is mono(1), i.e. full conversion) and method
selects the conversion method. Default is LCh; see the documentation of ColrSpace
for available methods (Jann 2022).

cvd(#), with # in [0, 1], sets the severity of color vision deficiency. Default is cvd(1)

(maximum severity).

nograph suppresses the graph.

sort[(spec)] sorts the colors in the graph, where spec may be normal (sort by hue of
normal vision), mono (sort by shading of monochromacy vision), deuter (sort by hue
of deuteranomaly vision), prot (sort by hue of protanomaly vision), or trit (sort by
hue of tritanomaly vision). sort without argument is equivalent to sort(normal).
Sort only has an effect on how the colors are ordered in the graph, not on how they
are stored in r().

graph options are graph options as for colorpalette in Syntax 2.

11

https://www.stata.com/help.cgi?stored_results
http://repec.sowi.unibe.ch/stata/palettes/help-colrspace.html#delta
http://repec.sowi.unibe.ch/stata/palettes/help-colrspace.html#gray

3.2.2 Stored results

colorcheck adds (or updates) the following results. The results from colorpalette

are kept in memory.

Scalars:
r(mono) proportion of gray r(cvd) CVD severity

Macros:
r(metric) color difference metric r(mono method) grayscale conversion method
r(p mono) list of converted colors

(grayscale)
r(p deut) list of converted colors

(deteranomaly)
r(p prot) list of converted colors

(protanomaly)
r(p trit) list of converted colors

(tritanomaly)

Matrix:
r(delta) color difference statistics

4 Basic usage

4.1 View a palette (syntax 1)

To display a single palette, type colorpalette followed by the name of the palette.
The graph produced by colorpalette displays the colors as well as their color codes
and, possibly, some additional information. For example, to view the fruits palette
from Lin et al. (2013), type:

. colorpalette lin fruits, rows(3)

1

2

3

4

5

6

7146 195 51

251 222 6

64 105 166

200 0 0

127 34 147

251 162 127

255 86 29
Apple

Banana

Blueberry

Cherry

Grape

Peach

Tangerine

lin fruits

Option rows() sets the (minimum) number of rows in the graph. It is also possible
to combine colors from multiple palettes by delimiting individual palette specifications
using a forward slash. Specify “global” options, that is, options affecting the rendering
of the graph as well as palette options to be applied to each palette, after the last
forward slash. In addition, each palette can have “local” options. Options specified at
the local level will take precedence over palette option specified at the global level. Here
is an example that combines signaling colors from different w3 palettes:

12

. colorpalette
> w3 safety, select(1 3 4) /
> w3 signal, select(3 1 6) /
> w3 highway, select(2 5 6) /
> , title("") rows(3)

1

2

3

4

5

6

7

8

9

189 30 36

246 199 0

0 114 86

160 33 40

247 186 11

49 127 67

166 0 26

255 171 0

0 77 51

w3-safety-red

w3-safety-yellow

w3-safety-green

w3-signal-red

w3-signal-yellow

w3-signal-green

w3-highway-red

w3-highway-yellow

w3-highway-green

4.2 View multiple palettes (syntax 2)

To display an overview of multiple palettes in a single graph, first type colorpalette

and possibly add some global options, then type a colon followed by a list of palettes
separated by forward slashes. Here is a simple example that displays colors 1–8 from
several categorical palettes; option lcolor(black) has been specified to draw black
lines around the color fields:

. colorpalette,
> select(1/8) lcolor(black):
> cols25 / Set1 / tab10 /
> tol muted

cols25

Set1

tab10

tol muted

1 2 3 4 5 6 7 8

Again, each palette can have local options that take precedence over options specified at
the global level. Furthermore, several options are available to change the rendering of the
graph. The following example illustrates the effects options vertical (flip orientation),
barwidth() (set the with of the color bars), nonumbers (suppress the color index),
gropts() (pass options through to the underlying [G] graph twoway command), and
also shows how empty slots can be introduced typing a dot (missing); in addition, the
example uses option n() to determine the number of colors to be generated per palette:

. colorpalette, n(30) vertical
> barwidth(.9) nonumbers
> gropts(yscale(noreverse)):
> /* viridis colormaps */
> viridis / plasma / inferno
> / magma / cividis
> /* add gap */
> / . /
> /* seaborn colormaps */
> rocket / mako / flare, reverse
> / crest, reverse

viridis plasma infernomagma cividis rocket mako flare crest

13

https://www.stata.com/help.cgi?graph_twoway

4.3 Select and order colors in a palette
(revised)

Some of the above examples already made use of options for selecting and ordering the
colors in a palette. Five such options are available: select() to select and order colors,
drop() to drop individual colors, order() to order colors without selecting, reverse
to reverse the order of the colors, and shift() to shift the positions of the colors up or
down. Positive numbers in select(), drop(), and order() refer to positions from the
start, negative numbers refer to positions from the end. A positive number in shift()

shifts positions up, a negative number shifts positions down; furthermore, an absolute
value smaller than one can be used to specify the shift in terms of a proportion of the
number of the colors in the palette. The following example illustrates the effects of
these options:

. colorpalette, labels(Set1
> reverse "select(-2 3/6)"
> "order(-2 3/6)" "drop(-2 3/6)"
> shift(-1) shift(.5)):
> Set1
> / Set1, reverse
> / Set1, select(-2 3/6)
> / Set1, order(-2 3/6)
> / Set1, drop(-2 3/6)
> / Set1, shift(-1)
> / Set1, shift(.5)

Set1

reverse

select(-2 3/6)

order(-2 3/6)

drop(-2 3/6)

shift(-1)

shift(.5)

1 2 3 4 5 6 7 8 9

4.4 Specify a custom list of colors
(revised)

Instead of selecting a named color palette you can also specify a custom list of colors
using syntax[

(
]
colorspec

[
colorspec ...

][
)
]

where colorspec is[
"
]
color

[
%#

][
*#

][
"
]

Parentheses around the list may be used, if needed, to prevent name conflict with palette
specifications. Color specifications containing spaces must be included in double quotes.
Argument %# in colorspec sets the opacity (in percent; 0 = fully transparent, 100 =
fully opaque; this requires Stata 15 or newer), *# adjusts the intensity (values between
0 and 1 make the color lighter; values larger than one make the color darker), and color
is one of the following:

name a color name; this includes official Stata’s color names as listed in [G] col-
orstyle, possible user additions provided through style files, as well as a
large collection of named colors provided by colorpalette (see Section 5)

14

https://www.stata.com/help.cgi?colorstyle
https://www.stata.com/help.cgi?colorstyle

#rrggbb 6-digit hex RGB value; e.g., white = #FFFFFF or #ffffff, navy = #1A476F

or #1a476f

#rgb 3-digit abbreviated hex RGB value; e.g., white = #FFF or #fff

RGB value in 0–255 scaling; e.g., navy = "26 71 111"

CMYK value in 0–255 or 0–1 scaling; e.g., navy = "85 40 0 144" or ".333

.157 0 .565"

cspace ... color value in one of the color spaces supported by ColrSpace; e.g., navy
= "XYZ 5.55 5.87 15.9" or "Lab 29 -.4 -27.5" or "Jab 30.1 -8.9 -19"

(see Section 6.1 in Jann 2022 for details)

Here is an example displaying some of Stata’s named colors (see [G] colorstyle) as well
as some of the additional named colors provided by colorpalette (see Section 5):

. colorpalette cranberry Crimson
> OrangeRed w3-red DarkBlue
> MediumBlue SkyBlue w3-blue
> forest_green SeaGreen
> YellowGreen w3-green
> , rows(4) title("")
> names noinfo

1

2

3

4

5

6

7

8

9

10

11

12

cranberry

Crimson

OrangeRed

w3-red

DarkBlue

MediumBlue

SkyBlue

w3-blue

forest_green

SeaGreen

YellowGreen

w3-green

Colors can also be specified as color codes in a variety of formats (see Section 6.1 in
Jann 2022). colorpalette translates these colors to RGB. The following example illus-
trates some variants; the example also illustrates how to specify opacity and intensity
operators:

. colorpalette Crimson
> "220 20 60" #DC143C
> "RGB1 .863 .078 .235"
> "HCL 8.1 139.6 47"
> Crimson%60 #dc143c%40*1.5
> "Jab 53.3 37.4 13.6*0.5"
> "RGBa 220 20 60 0.2"
> , rows(3) title("")

1

2

3

4

5

6

7

8

9

220 20 60

220 20 60

220 20 60

220 20 60

220 20 60

220 20 60%60

220 20 60%40*1.5

220 20 60*.5

220 20 60%20

Crimson

#DC143C

RGB1 .863 .078 .235

HCL 8.1 139.6 47

Crimson

#dc143c

Jab 53.3 37.4 13.6

RGBa 220 20 60 0.2

15

http://repec.sowi.unibe.ch/stata/palettes/help-colrspace.html#strinput
https://www.stata.com/help.cgi?colorstyle

4.5 Manipulate and analyze colors

4.5.1 Color interpolation

See Section 6.3.2.

4.5.2 Change intensity, saturation, and luminance
(new)

Options intensify(), saturate(), and luminate() can be used to change the intensity
(using same formulas as Stata’s intensity operator), the saturation (colorfulness), and
the luminance (brightness) of colors, respectively. The following example illustrates the
effects of these options:

. colorpalette, nonumbers
> labels(original "intensity *0.5"
> "intensity *1.5" "saturate -25"
> "saturate +25" "luminate -20"
> "luminate +20"):
> RdYlGn
> / RdYlGn, intensify(0.5)
> / RdYlGn, intensify(1.5)
> / RdYlGn, saturate(-25)
> / RdYlGn, saturate(25)
> / RdYlGn, luminate(-20)
> / RdYlGn, luminate(20)

original

intensity *0.5

intensity *1.5

saturate -25

saturate +25

luminate -20

luminate +20

The values specified in saturate() and luminate() are addends to the chroma and lu-
minance channels, respectively. Reasonable values are in a range of about ±50. The val-
ues specified in intensify() are intensity factors; typical values are between 0 (white)
and about 10 (black).

4.5.3 Grayscale conversion
(new)

Option gscale() converts colors to shades of gray. Grayscale transformation works by
reducing the chroma channel (colorfulness) towards zero. Here is an example, illustrat-
ing that colors from the hue generator will not be distinguishable in black and white
print:

. colorpalette, n(7) labels(original
> "50% gray" "70% gray"
> "90% gray" "100% gray"):
> hue
> / hue, gscale(.5)
> / hue, gscale(.7)
> / hue, gscale(.9)
> / hue, gscale

original

50% gray

70% gray

90% gray

100% gray

1 2 3 4 5 6 7

16

4.5.4 Color vision deficiency simulation
(new)

A substantial fraction of people suffer from color vision deficiency (CVD). Option
cblind() can be used to simulate the three common types of CVD (deuteranomaly,
protanomaly, and tritanomaly). Example:

. colorpalette, labels(original
> deuteranopia protanopia
> tritanopia):
> Set1,
> / Set1, cblind(1, deut)
> / Set1, cblind(1, prot)
> / Set1, cblind(1, trit)

original

deuteranopia

protanopia

tritanopia

1 2 3 4 5 6 7 8 9

cblind(1) requests simulation of full CVD severity; to simulate 50% CVD severity you
could specify cblind(0.5).

4.5.5 Analyze colors using colorcheck
(new)

colorcheck is a convenience command to evaluate whether colors will be distinguish-
able by people who suffer from color vision deficiency and also whether colors will be
distinguishable in (non-color) print. The smallest noticeable difference between two col-
ors has a color difference value (Delta E) of 1.0. A value of, say, 10 seems a reasonable
minimum difference for colors used to illustrate different features of data.

The general procedure is to obtain colors by running colorpalette and then apply
colorcheck one or several times to analyze the colors. Example:

. colorpalette Set1, nograph

. colorcheck, nograph

Number of colors = 9
N. of comparisons = 36
CVD severity = 1
Proportion of gray = 1
Grayscale method = LCh
Difference metric = Jab

Delta E minimum maximum mean

normal sight 20.59514 76.14433 43.95417
monochromacy .2124847 50.00967 17.8777
deuteranomaly 4.655909 72.64074 34.40387
protanomaly 3.744389 77.81498 37.00846
tritanomaly 9.20225 67.59568 37.00433

The minimum color difference under normal sight is about 20; all colors in the palette
are sufficiently distinguishable. However, at least some of them cannot be distinguished
after the colors have been transformed to gray. Also in the CVD scenarios the colors are
substantially less distinct than under normal sight. To identify the problematic colors,

17

the sort() option can be helpful. For example, specify sort(mono) to sort the colors
by gray scale:

. colorcheck, sort(mono) Normal sight

Monochromacy

Deuteranopia

Protanopia

Tritanopia

ΔE ≥ 20.6

ΔE ≥ 0.2

ΔE ≥ 4.7

ΔE ≥ 3.7

ΔE ≥ 9.2

4 7 1 2 9 3 5 8 6

Set1

Likewise, specify sort(deuter) to sort the colors by hue under deuteranomaly vision:

. colorcheck, sort(deuter) Normal sight

Monochromacy

Deuteranopia

Protanopia

Tritanopia

ΔE ≥ 20.6

ΔE ≥ 0.2

ΔE ≥ 4.7

ΔE ≥ 3.7

ΔE ≥ 9.2

9 3 7 1 5 6 2 4 8

Set1

See en.wikipedia.org/wiki/Color blindness for background information on color vision
deficiency. See en.wikipedia.org/wiki/Color difference for information on color differ-
ences.

4.6 Retrieve colors from colorpalette

Under syntax 1, colorpalette returns the values of the colors in r() so that they
can be used in a subsequent graph command. r(p) will contain a space separated list
of all colors; r(p1), r(p2), etc. will contain the single colors one by one. Here is an
example of the returns stored by colorpalette (option nograph is specified to prevent
colorpalette from displaying the palette):

18

https://en.wikipedia.org/wiki/Color_blindness
https://en.wikipedia.org/wiki/Color_difference

. colorpalette Set1, nograph

. return list

scalars:
r(n) = 9

macros:
r(ptype) : "color"
r(pname) : "Set1"
r(pnote) : "categorical colors from colorbrewer2.org (Brewer e.."

r(psource) : "http://www.personal.psu.edu/cab38/ColorBrewer/Colo.."
r(pclass) : "qualitative"

r(p) : ""228 26 28" "55 126 184" "77 175 74" "152 78 163" .."
r(p9) : "153 153 153"
r(p8) : "247 129 191"
r(p7) : "166 86 40"
r(p6) : "255 255 51"
r(p5) : "255 127 0"
r(p4) : "152 78 163"
r(p3) : "77 175 74"
r(p2) : "55 126 184"
r(p1) : "228 26 28"

Options such as n() or select() will affect the information stored in r(). That is,
the stored information reflects the configuration of the palette after applying all palette
options. Here is an example that uses colors from the hue generator in a scatter plot:

. sysuse auto, clear
(1978 automobile data)

. colorpalette hue, n(3) nograph

. scatter trunk turn mpg weight,
> mcolor(`r(p)´)
> ysize(3) scale(1.5)
> legend(position(4) cols(1))

0
10

20
30

40
50

2,000 3,000 4,000 5,000
Weight (lbs.)

Trunk space (cu. ft.)
Turn circle (ft.)
Mileage (mpg)

Macro expansion notation `r(p)' instructs Stata to paste the contents of r(p) at the
specified position within the command. Note that many commands, including most
graph commands, clear r(). That is, if you want to use the same colors in multiple
graphs without having to call colorpalette repeatedly, copy the colors to a local or
global macro ([P] macro). For example, typing

. local mycolors `"`r(p)'"'

would copy the list of colors to local macro mycolors. You could then use the colors in
subsequent graph commands by typing `mycolors'.

An alternative is to make colors available as local macros, global macros, or system
colors by calling colorpalette with option locals(), globals(), or stylefiles(),
respectively. See Section 4.7 and Section 4.8 for details. Yet another alternative is to use
the grstyle set command to change the default colors used in Stata graphs; grstyle

19

https://www.stata.com/help.cgi?macro
http://repec.sowi.unibe.ch/stata/grstyle/grstyle-set.html
http://repec.sowi.unibe.ch/stata/grstyle/grstyle-set.html
http://repec.sowi.unibe.ch/stata/grstyle/grstyle-set.html

set calls colorpalette internally (see Jann 2018c).

4.7 Make colors available as globals or locals
(new)

Instead of retrieving color codes from r() as described in Section 4.6, you can also
directly store the colors returned by colorpalette as local or global macros by applying
option locals() or globals(), respectively. These local or global macros can then be
used in subsequent graph commands to address the colors. Here is an example that
makes some HTML colors available as global macros (you could make all 140 HTML
colors available by typing colorpalette HTML, globals):

. colorpalette Fuchsia Tomato SteelBlue SeaShell, globals

globals:
Fuchsia : "255 0 255"
Tomato : "255 99 71"

SteelBlue : "70 130 180"
SeaShell : "255 245 238"

After that, type $name to select a color, where name is the name of the global:

. sysuse auto, clear
(1978 automobile data)

. scatter trunk turn mpg weight,
> mc($Fuchsia $Tomato $SteelBlue)
> graphr(color($SeaShell))
> ysize(3) scale(1.5)
> legend(position(4) cols(1))

0
10

20
30

40
50

2,000 3,000 4,000 5,000
Weight (lbs.)

Trunk space (cu. ft.)
Turn circle (ft.)
Mileage (mpg)

The defined globals will remain in memory until you restart Stata or until you drop
them using command macro drop.

Note that storing colors as macros will also work with colors that have no names;
colorpalette will then make up names using the color index (e.g., $p1, $p2, etc.; see
Section 3.1.2 for details on naming conventions). Furthermore, depending on context
(e.g., within a do-file or program), it may be more convenient to make colors available
as local macros instead of global macros. An example is as follows:

20

http://repec.sowi.unibe.ch/stata/grstyle/grstyle-set.html
http://repec.sowi.unibe.ch/stata/grstyle/grstyle-set.html
http://repec.sowi.unibe.ch/stata/grstyle/grstyle-set.html
http://repec.sowi.unibe.ch/stata/grstyle/grstyle-set.html
http://repec.sowi.unibe.ch/stata/grstyle/grstyle-set.html
https://www.stata.com/help.cgi?macro

. colorpalette Accent, locals

locals:
1 : "127 201 127"
2 : "190 174 212"
3 : "253 192 134"
4 : "255 255 153"
5 : "56 108 176"
6 : "240 2 127"
7 : "191 91 23"
8 : "102 102 102"

. scatter trunk turn mpg weight,
> mc(`1´ `2´ `3´)
> ysize(3) scale(1.5)
> legend(position(4) cols(1))

0
10

20
30

40
50

2,000 3,000 4,000 5,000
Weight (lbs.)

Trunk space (cu. ft.)
Turn circle (ft.)
Mileage (mpg)

The defined locals will remain in memory until the do-file or program concludes.

4.8 Make colors permanently available
(new)

Colors can also be made available permanently by applying the stylefiles() option.
Option stylefiles() will cause RGB color definitions to be stored in style files on disk
(one file for each color), from where Stata will read the color definitions:1

. colorpalette Fuchsia Tomato SteelBlue SeaShell, stylefiles
directory style does not exist
press any key to create the directory, or Break to abort

color styles:
Fuchsia : "255 0 255"
Tomato : "255 99 71"

SteelBlue : "70 130 180"
SeaShell : "255 245 238"

(style files written to directory style)

. discard // flush working memory to make the new colors available

The color names can then be used just like official Stata’s color names.

. sysuse auto, clear
(1978 automobile data)

. scatter trunk turn mpg weight,
> mc(Fuchsia Tomato SteelBlue)
> graphr(color(SeaShell))
> ysize(3) scale(1.5)
> legend(position(4) cols(1))

0
10

20
30

40
50

2,000 3,000 4,000 5,000
Weight (lbs.)

Trunk space (cu. ft.)
Turn circle (ft.)
Mileage (mpg)

1If the graph system has already been loaded, that is, if you already produced a graph in the
current session, you will need to clear the graph memory before the stored colors become available; use
[P] discard or [D] clear all to flush the working memory.

21

https://www.stata.com/help.cgi?discard
https://www.stata.com/help.cgi?clear

By default, colorpalette will store the style files in folder “style” in the current working
directory:

. dir style, wide

color-Fuchsia.style color-SteelBlue.style
color-SeaShell.style color-Tomato.style

This means that the color definitions will be found by Stata as long as you do not
change the working directory. To make the colors permanently available irrespective of
the working directory, type stylefiles(, personal). In this case the style files will
be stored in folder “style” within the PERSONAL ado-file directory; see help [P] sysdir.

4.9 Provide custom palettes
(revised)

If you want to create a personal named color palette, you can define a program called
colorpalette myname, where myname is the name of your palette. Palette myname
will then be available to colorpalette like any other palette. Your program should be
designed according to the following principles.

1. The program must return the color definitions as a comma-separated list in local
macro P. All types of color specifications supported by colorpalette, including
opacity and intensity operators, are allowed for the individual colors in the list
(see Section 4.4).

2. If input is parsed using [P] syntax, option n() must be allowed. In addition
to n(), all options not consumed by colorpalette will be passed through to
colorpalette myname. This makes it possible to support custom options in
your program.

3. Color names can be returned as a comma-separated list in local macro N.

4. Color descriptions can be returned as a comma-separated list in local macro I.

5. The palette name can be returned in local macro name (myname is used as the
palette name if no name is returned).

6. The palette class can be returned in local macro class.

7. A palette description can be returned in local macro note.

8. Information on the source of the palette can be returned in local macro source.

Here is an example providing a palette called bootstrap3 containing semantic colors
used for buttons in Bootstrap 3.3:

program colorpalette_bootstrap3
syntax [, n(str)] // n() not used
c_local P #ffffff,#337ab7,#5cb85c,#5bc0de,#f0ad4e,#d9534f, /*

22

https://www.stata.com/help.cgi?sysdir
https://www.stata.com/help.cgi?syntax
https://getbootstrap.com/docs/3.3/

*/ #e6e6e6,#286090,#449d44,#31b0d5,#ec971f,#c9302c
c_local N default,primary,success,info,warning,danger, /*

/ default.focus,primary.focus,success.focus,info.focus, /
*/ warning.focus,danger.focus

c_local class qualitative
c_local note Button colors from Bootstrap 3.3
c_local source https://getbootstrap.com/docs/3.3/

end

After defining the program, you can, for example, type:

. colorpalette bootstrap3, rows(6)

1

2

3

4

5

6

7

8

9

10

11

12

255 255 255

51 122 183

92 184 92

91 192 222

240 173 78

217 83 79

230 230 230

40 96 144

68 157 68

49 176 213

236 151 31

201 48 44

default

primary

success

info

warning

danger

default.focus

primary.focus

success.focus

info.focus

warning.focus

danger.focus

bootstrap3

To make the new palette permanently available, store the program in file
colorpalette myname.ado in the working directory or somewhere along Stata’s ado
path (see [P] sysdir).

5 Named colors (new)

colorpalette supports a variety of named colors in addition to Stata’s default colors
documented in [G] colorstyle. These additional colors are:

140 HTML colors

30 W3.CSS default colors

Further color collections from W3.CSS (using names as provided by W3.CSS): Flat UI Colors, Metro
UI Colors, Windows 8 Colors, iOS Colors, US Highway Colors, US Safety Colors, European
Signal Colors, Fashion Colors 2019, Fashion Colors 2018, Fashion Colors 2017, Vivid Colors,
Food Colors, Camouflage Colors, ANA (Army Navy Aero) Colors, Traffic Colors

See Section 5.1 and Section 5.2 for an overview of the colors and their names. The
names can be abbreviated and typed in lowercase letters. If abbreviation is ambiguous,
the first matching name in the alphabetically ordered list will be used. In case of name
conflict with a Stata color, the color from colorpalette will take precedence only if
the specified name is an exact match including case. For example, pink will refer to
official Stata’s pink, whereas Pink will refer to HTML color pink.

23

https://www.stata.com/help.cgi?sysdir
https://www.stata.com/help.cgi?colorstyle
https://www.w3schools.com/colors/colors_names.asp
https://www.w3schools.com/w3css/w3css_color_material.asp
https://www.w3schools.com/w3css/
https://www.w3schools.com/w3css/
https://www.w3schools.com/w3css/w3css_color_flat.asp
https://www.w3schools.com/w3css/w3css_color_metro.asp
https://www.w3schools.com/w3css/w3css_color_metro.asp
https://www.w3schools.com/w3css/w3css_color_win8.asp
https://www.w3schools.com/w3css/w3css_color_ios.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/colors/colors_fs595.asp
https://www.w3schools.com/colors/colors_ral.asp

To use the named colors in colorpalette simply type their names as you would for
Stata’s default colors. colorpalette will return the RGB codes of these colors that
can then be used, for example, in a graph command (see Section 4.6). Example:

. colorpalette SlateBlue
> PaleVioletRed LightSeaGreen
> SandyBrown w3-purple w3-lime,
> title(Some HTML and W3 colors)
> rows(2)

1

2

3

4

5

6

106 90 205

219 112 147

32 178 170

244 164 96

156 39 176

205 220 57

SlateBlue

PaleVioletRed

LightSeaGreen

SandyBrown

w3-purple

w3-lime

Some HTML and W3 colors

5.1 HTML colors

HTML pink

Pink LightPink HotPink DeepPink

PaleVioletRed MediumVioletRed

HTML purple

Lavender Thistle Plum Orchid

Violet Fuchsia Magenta MediumOrchid

DarkOrchid DarkViolet BlueViolet DarkMagenta

Purple MediumPurple MediumSlateBlue SlateBlue

DarkSlateBlue RebeccaPurple Indigo

HTML red

LightSalmon Salmon DarkSalmon LightCoral

IndianRed Crimson Red FireBrick

DarkRed

HTML orange

Orange DarkOrange Coral Tomato

OrangeRed

HTML yellow

Gold Yellow LightYellow LemonChiffon

LightGoldenRodYellow PapayaWhip Moccasin PeachPuff

PaleGoldenRod Khaki DarkKhaki

HTML green

GreenYellow Chartreuse LawnGreen Lime

LimeGreen PaleGreen LightGreen MediumSpringGreen

SpringGreen MediumSeaGreen SeaGreen ForestGreen

Green DarkGreen YellowGreen OliveDrab

24

DarkOliveGreen MediumAquaMarine DarkSeaGreen LightSeaGreen

DarkCyan Teal

HTML cyan

Aqua Cyan LightCyan PaleTurquoise

Aquamarine Turquoise MediumTurquoise DarkTurquoise

HTML blue

CadetBlue SteelBlue LightSteelBlue LightBlue

PowderBlue LightSkyBlue SkyBlue CornflowerBlue

DeepSkyBlue DodgerBlue RoyalBlue Blue

MediumBlue DarkBlue Navy MidnightBlue

HTML brown

Cornsilk BlanchedAlmond Bisque NavajoWhite

Wheat BurlyWood Tan RosyBrown

SandyBrown GoldenRod DarkGoldenRod Peru

Chocolate Olive SaddleBrown Sienna

Brown Maroon

HTML white

White Snow HoneyDew MintCream

Azure AliceBlue GhostWhite WhiteSmoke

SeaShell Beige OldLace FloralWhite

Ivory AntiqueWhite Linen LavenderBlush

MistyRose

HTML gray

Gainsboro LightGray Silver DarkGray

DimGray Gray LightSlateGray SlateGray

DarkSlateGray Black

HTML grey

Gainsboro LightGrey Silver DarkGrey

DimGrey Grey LightSlateGrey SlateGrey

DarkSlateGrey Black

5.2 W3.CSS colors

w3 default

w3-red w3-pink w3-purple w3-deep-purple

w3-indigo w3-blue w3-light-blue w3-cyan

w3-aqua w3-teal w3-green w3-light-green

25

w3-lime w3-sand w3-khaki w3-yellow

w3-amber w3-orange w3-deep-orange w3-blue-grey

w3-brown w3-light-grey w3-grey w3-dark-grey

w3-black w3-white w3-pale-red w3-pale-yellow

w3-pale-green w3-pale-blue

w3 flat

w3-flat-turquoise w3-flat-emerald w3-flat-peter-river w3-flat-amethyst

w3-flat-wet-asphalt w3-flat-green-sea w3-flat-nephritis w3-flat-belize-hole

w3-flat-wisteria w3-flat-midnight-blue w3-flat-sun-flower w3-flat-carrot

w3-flat-alizarin w3-flat-clouds w3-flat-concrete w3-flat-orange

w3-flat-pumpkin w3-flat-pomegranate w3-flat-silver w3-flat-asbestos

w3 metro

w3-metro-light-green w3-metro-green w3-metro-dark-green w3-metro-magenta

w3-metro-light-purple w3-metro-purple w3-metro-dark-purple w3-metro-darken

w3-metro-teal w3-metro-light-blue w3-metro-blue w3-metro-dark-blue

w3-metro-yellow w3-metro-orange w3-metro-dark-orange w3-metro-red

w3-metro-dark-red

w3 win8

w3-win8-lime w3-win8-green w3-win8-emerald w3-win8-teal

w3-win8-cyan w3-win8-blue w3-win8-cobalt w3-win8-indigo

w3-win8-violet w3-win8-pink w3-win8-magenta w3-win8-crimson

w3-win8-red w3-win8-orange w3-win8-amber w3-win8-yellow

w3-win8-brown w3-win8-olive w3-win8-steel w3-win8-mauve

w3-win8-taupe w3-win8-sienna

w3 ios

w3-ios-dark-blue w3-ios-deep-blue w3-ios-blue w3-ios-light-blue

w3-ios-green w3-ios-pink w3-ios-red w3-ios-orange

w3-ios-yellow w3-ios-grey w3-ios-light-grey w3-ios-background

w3 highway

w3-highway-brown w3-highway-red w3-highway-orange w3-highway-schoolbus

w3-highway-yellow w3-highway-green w3-highway-blue

w3 safety

w3-safety-red w3-safety-orange w3-safety-yellow w3-safety-green

w3-safety-blue w3-safety-purple

w3 signal

w3-signal-yellow w3-signal-orange w3-signal-red w3-signal-violet

w3-signal-blue w3-signal-green w3-signal-grey w3-signal-brown

26

w3-signal-white w3-signal-black

w3 2019

w3-2019-fiesta w3-2019-jester-red w3-2019-turmeric w3-2019-living-coral

w3-2019-pink-peacock w3-2019-pepper-stem w3-2019-aspen-gold w3-2019-princess-blue

w3-2019-toffee w3-2019-mango-mojito w3-2019-terrarium-moss w3-2019-sweet-lilac

w3-2019-soybean w3-2019-eclipse w3-2019-sweet-corn w3-2019-brown-granite

w3-2019-chili-pepper w3-2019-biking-red w3-2019-creme-de-peche w3-2019-peach-pink

w3-2019-rocky-road w3-2019-fruit-dove w3-2019-sugar-almond w3-2019-dark-cheddar

w3-2019-galaxy-blue w3-2019-bluestone w3-2019-orange-tiger w3-2019-eden

w3-2019-vanilla-custard w3-2019-evening-blue w3-2019-paloma w3-2019-guacamole

w3 2018

w3-2018-red-pear w3-2018-valiant-poppy w3-2018-nebulas-blue w3-2018-ceylon-yellow

w3-2018-martini-olive w3-2018-russet-orange w3-2018-crocus-petal w3-2018-limelight

w3-2018-quetzal-green w3-2018-sargasso-sea w3-2018-tofu w3-2018-almond-buff

w3-2018-quiet-gray w3-2018-meerkat w3-2018-meadowlark w3-2018-cherry-tomato

w3-2018-little-boy-blue w3-2018-chili-oil w3-2018-pink-lavender w3-2018-blooming-dahlia

w3-2018-arcadia w3-2018-emperador w3-2018-ultra-violet w3-2018-almost-mauve

w3-2018-spring-crocus w3-2018-lime-punch w3-2018-sailor-blue w3-2018-harbor-mist

w3-2018-warm-sand w3-2018-coconut-milk

w3 2017

w3-2017-greenery w3-2017-grenadine w3-2017-tawny-port w3-2017-ballet-slipper

w3-2017-butterum w3-2017-navy-peony w3-2017-neutral-gray w3-2017-shaded-spruce

w3-2017-golden-lime w3-2017-marina w3-2017-autumn-maple w3-2017-niagara

w3-2017-primrose-yellow w3-2017-lapis-blue w3-2017-flame w3-2017-island-paradise

w3-2017-pale-dogwood w3-2017-pink-yarrow w3-2017-kale w3-2017-hazelnut

w3 vivid

w3-vivid-pink w3-vivid-red w3-vivid-orange w3-vivid-yellow

w3-vivid-green w3-vivid-blue w3-vivid-black w3-vivid-white

w3-vivid-purple w3-vivid-purple w3-vivid-yellowish-pink w3-vivid-reddish-orange

w3-vivid-orange-yellow w3-vivid-greenish-yellow w3-vivid-yellow-green w3-vivid-yellowish-green

w3-vivid-bluish-green w3-vivid-greenish-blue w3-vivid-purplish-blue w3-vivid-reddish-purple

w3-vivid-purplish-red

w3 food

w3-food-apple w3-food-aspargus w3-food-apricot w3-food-aubergine

w3-food-avocado w3-food-banana w3-food-butter w3-food-blueberry

w3-food-carrot w3-food-cherry w3-food-chocolate w3-food-cranberry

w3-food-coffee w3-food-egg w3-food-grape w3-food-kiwi

27

w3-food-lemon w3-food-lime w3-food-mango w3-food-mushroom

w3-food-mustard w3-food-mint w3-food-olive w3-food-orange

w3-food-pea w3-food-peach w3-food-pear w3-food-pistachio

w3-food-plum w3-food-pomegranate w3-food-pumpkin w3-food-raspberry

w3-food-saffron w3-food-salmon w3-food-spearmint w3-food-squash

w3-food-strawberry w3-food-tomato w3-food-wheat w3-food-wine

w3 camo

w3-camo-brown w3-camo-red w3-camo-olive w3-camo-field

w3-camo-earth w3-camo-sand w3-camo-tan w3-camo-sandstone

w3-camo-dark-green w3-camo-forest w3-camo-light-green w3-camo-green

w3-camo-dark-gray w3-camo-gray w3-camo-black

w3 ana

w3-ana-501 w3-ana-502 w3-ana-503 w3-ana-504

w3-ana-505 w3-ana-506 w3-ana-507 w3-ana-508

w3-ana-509 w3-ana-510 w3-ana-511 w3-ana-512

w3-ana-513 w3-ana-514 w3-ana-515 w3-ana-516

w3-ana-601 w3-ana-602 w3-ana-603 w3-ana-604

w3-ana-605 w3-ana-606 w3-ana-607 w3-ana-608

w3-ana-609 w3-ana-610 w3-ana-611 w3-ana-612

w3-ana-613 w3-ana-614 w3-ana-615 w3-ana-616

w3-ana-617 w3-ana-618 w3-ana-619 w3-ana-620

w3-ana-621 w3-ana-622 w3-ana-623 w3-ana-624

w3-ana-625 w3-ana-626 w3-ana-627 w3-ana-628

w3 traffic

w3-traffic-yellow w3-traffic-orange w3-traffic-red w3-traffic-purple

w3-traffic-green w3-traffic-blue w3-traffic-grey w3-traffic-white

w3-traffic-black

6 Palettes, colormaps, and color generators

This section provides an overview of the named palettes implemented in colorpalette.
There are three types of palettes: (1) standard palettes defined as a fixed set of colors
(or several fixed sets of varying size);2 (2) colormaps that obtain color gradients by
linear interpolation from a dense grid of RGB values or by linear segmentation between
given RGB anchor points; (3) color generators that construct colors based on specific
equations and parameter settings.

2Be aware that colorpalette automatically applies interpolation or recycling if the number of
requested colors is larger than the (maximum) number of colors provided by the palette. Specify
option noexpand to prevent this behavior.

28

Full palette names are given below. Note that the names can be abbreviated and
typed in lowercase letters when calling the palettes in colorpalette (for example,
“BuGn” could be typed as “bugn”, “lin carcolor algorithm” could be typed as “lin
car a”). If abbreviation is ambiguous, the first matching name in the sorted list of all
predefined palettes, colormaps, and color generators is used.

6.1 Palettes

6.1.1 Stata palettes

The Stata palettes are named after the graphics scheme (see [G] Schemes intro) in
which the colors are used. The palettes are as follows.

s1

15 colors as in Stata’s s1color scheme

s1r

15 colors as in Stata’s s1rcolor scheme

s2

15 colors as in Stata’s s2color scheme (the default palette)

economist

15 colors as in Stata’s economist scheme

mono

15 gray scales as in Stata’s monochrome schemes

Palette s2 is the default used by colorpalette if no palette is specified.

6.1.2 User-contributed palettes

Stata users have contributed various scheme files in which alternative sets of colors are
used, typically available from the Stata Journal site or from the SSC Archive. The
following palettes have been constructed after some of these contributions.

okabe

8 colorblind-friendly colors suggested by Okabe and Ito (2002); these colors are used in
schemes by Bischof (2017b).

cblind

Like okabe, but including an additional gray as suggested at www.cookbook-r.com.
The same colors are also used (in different order and using gs10 for gray) in the
plotplainblind and plottigblind schemes by Bischof (2017b).

plottig

15 colors used for plots 1 to 15 in the plottig scheme by Bischof (2017b). Most of these
colors are the same as the colors produced by the hue color generator with default options
(see below), although in different order.

29

https://www.stata.com/help.cgi?schemes
http://www.cookbook-r.com/

538

6 colors used for plots 1 to 6 and 7 colors used for background, labels, axes, and confi-
dence areas in the 538 scheme by Bischof (2017a). The palette replicates colors used at
fivethirtyeight.com.

mrc

7 colors used for plots 1 to 7 in the mrc scheme by Morris (2013). These are colors
according to guidelines by the UK Medical Research Council.

tfl

8 colors used for plots 1 to 8 in the tfl scheme by Morris (2015). The palette replicates
Transport for London’s corporate colors.

burd

9 colors used for plots 1 to 9 and 4 colors used for confidence areas in the burd scheme
by Briatte (2013). The first 9 colors are a selection of colors from various ColorBrewer
schemes.

lean

15 gray scales used for areas in plots 1 to 15 in schemes lean1 and lean2 by Juul (2003).

6.1.3 Categorical palettes from pals
(new)

The pals collection provides categorical palettes that have been obtained from the pals

package in R; see github.com/kwstat/pals. The palettes are as follows.

alphabet

alphabet2

cols25

glasbey

kelly

polychrome

watlington

6.1.4 D3.js palettes

The d3 collection provides color schemes from d3js.org, using the color values found at
GitHub. The schemes are as follows.

d3 10

d3 20

d3 20b

d3 20c

Typing d3 without argument is equivalent to d3 10. The palettes appear to originate (new)

from an earlier version of Tableau and are thus also provided as tab10, tab20, tab20b,

30

https://fivethirtyeight.com/
http://github.com/kwstat/pals
http://d3js.org/
http://github.com/d3/d3-scale/blob/master/README.md#category-scales
https://www.tableau.com

and tab20c. Furthermore, a variant on d3 20 is palette tableau (same colors but in
different order), which has been obtained from Lin et al. (2013).

tab10

tab20

tab20b

tab20c

tableau

6.1.5 Qualitative palettes from seaborn
(new)

The sb collection provides categorical color schemes from seaborn.pydata.org (same
basic colors as tab10, but in different tones). The schemes are as follows.

sb deep

sb deep6

sb muted

sb muted6

sb pastel

sb pastel6

sb bright

sb bright6

sb dark

sb dark6

sb colorblind

sb colorblind6

Typing sb without argument is equivalent to sb deep; typing sb6 is equivalent to sb

deep6.

6.1.6 Tableau 10 color schemes (new)

The tab collection provides various color schemes from Tableau 10 (the color values have
been obtained from the ggthemes package in R). The schemes are as follows (typing
tab without argument is equivalent to tab 10).

Qualitative

tab 10

tab 20

31

https://seaborn.pydata.org/
https://www.tableau.com/about/blog/2016/7/colors-upgrade-tableau-10-56782
https://github.com/jrnold/ggthemes/

tab Color Blind

tab Seattle Grays

tab Traffic

tab Miller Stone

tab Superfishel Stone

tab Nuriel Stone

tab Jewel Bright

tab Summer

tab Winter

tab Green-Orange-Teal

tab Red-Blue-Brown

tab Purple-Pink-Gray

tab Hue Circle

Sequential

tab Blue-Green

tab Blue Light

tab Orange Light

tab Blue

tab Orange

tab Green

tab Red

tab Purple

tab Brown

tab Gray

tab Gray Warm

tab Blue-Teal

tab Orange-Gold

tab Green-Gold

tab Red-Gold

Diverging

tab Orange-Blue tab Orange-Blue-White

32

tab Red-Green tab Red-Green-White

tab Green-Blue tab Green-Blue-White

tab Red-Blue tab Red-Blue-White

tab Red-Black tab Red-Black-White

tab Gold-Purple tab Orange-Blue Light

tab Red-Green-Gold tab Temperature

tab Sunset-Sunrise

6.1.7 Color schemes by Paul Tol

New palettes (new)

The tol collection provides various color schemes presented by Paul Tol at personal.
sron.nl/˜pault. The schemes are as follows (typing tol without argument is equivalent
to tol muted).

Qualitative

tol bright

tol high-contrast

tol vibrant

tol muted

tol medium-contrast

tol light

Sequential

YlOrBr

iridescent

Rainbow

tol rainbow (1–23 colors)

tol PuRd

tol PuBr

tol WhRd

tol WhBr

Diverging

tol sunset

tol BuRd

tol PRGn

33

https://personal.sron.nl/~pault/
https://personal.sron.nl/~pault/

The definitions of the schemes have been obtained from source file tol colors.py. These
definitions may deviate from how the palettes are presented at personal.sron.nl/˜pault
(e.g., with respect to the order of colors in the qualitative schemes).

For tol rainbow, the selection of colors depends on the size of the palette, as illustrated
in the following example:

. colorpalette, labels(3 5 7 10 15)
> title(tol rainbow):
> tol rainbow, n(3)
> / tol rainbow, n(5)
> / tol rainbow, n(7)
> / tol rainbow, n(10)
> / tol rainbow, n(15)

3

5

7

10

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

tol rainbow

Palettes from Tol (2012)

The ptol collection provides color schemes as suggested by Tol (2012). The schemes
are as follows.

ptol qualitative (1–12 colors)

ptol rainbow (4–12 colors)

ptol diverging (3–11 colors)

Typing ptol without argument is equivalent to ptol qualitative. The selection of
colors depends on the size of the palette; displayed is the variant using the maximum
number of colors.

6.1.8 ColorBrewer palettes

ColorBrewer is a set of color schemes developed by Brewer et al. (2003; also see Brewer
2016). For more information on ColorBrewer also see colorbrewer2.org.3 The syntax
for the ColorBrewer palettes is

3The colors are licensed under Apache License Version 2.0; see the copyright notes at
www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer updates.html. The RGB values for the im-
plementation of the colors in colorpalette have been taken from the Excel spreadsheet provided
at www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer RGB.html. The CMYK values have been
taken from file cb.csv provided at github.com/axismaps/colorbrewer. ColorBrewer palettes for Stata
have also been provided by Gomez (2015) and by Buchanan (2015).

34

https://personal.sron.nl/~pault/data/tol_colors.py
https://personal.sron.nl/~pault/
http://colorbrewer2.org/
http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_updates.html
http://www.personal.psu.edu/cab38/ColorBrewer/ColorBrewer_RGB.html
https://github.com/axismaps/colorbrewer/

scheme
[
cmyk

]
where argument cmyk selects the CMYK variant (the default is to use the RGB variant)
and scheme is one of the following (the maximum number of colors is displayed for those
schemes that come in different sizes).

Qualitative

Accent

Dark2

Paired

Pastel1

Pastel2

Set1

Set2

Set3

Single-hue sequential (3–9 colors)

Blues Oranges

Greens Purples

Greys Reds

Multi-hue sequential (3–9 colors)

BuGn PuRd

BuPu RdPu

GnBu YlGn

OrRd YlGnBu

PuBu YlOrBr

PuBuGn YlOrRd

Diverging (3–11 colors)

BrBG RdGy

PiYG RdYlBu

PRGn RdYlGn

PuOr Spectral

RdBu

35

6.1.9 Color schemes from Carto (new)

The carto collection provides various color schemes from Carto (using colors codes from
cartocolor.js at github.com/CartoDB). The schemes are as follows.

Qualitative (2–11 colors, plus one color for missing data)

carto Antique

carto Bold

carto Pastel

carto Prism

carto Safe

(colorblind-friendly)

carto Vivid

Sequential (2–7 colors)

carto Burg carto BluYl

carto BurgYl carto Teal

carto RedOr carto TealGrn

carto OrYel carto Purp

carto Peach carto PurpOr

carto PinkYl carto Sunset

carto Mint carto Magenta

carto BluGrn carto SunsetDark

carto DarkMint carto ag Sunset

carto Emrld carto BrwnYl

carto ag GrnYl

Diverging (2–7 colors)

carto ArmyRose carto TealRose

carto Fall carto Tropic

carto Geyser carto Earth

carto Temps

Typing carto without argument is equivalent to carto Bold. The selection of colors
depends on the size of the palette; displayed is the variant using the maximum number
of colors.

36

https://carto.com/carto-colors/
https://github.com/CartoDB/CartoColor/blob/master/cartocolor.js
https://github.com/CartoDB/

6.1.10 Semantic colors by Lin et al.

The lin collection provides semantic color schemes suggested by Lin et al. (2013).4 The
syntax is

lin
[
scheme

[
algorithm

]]
where scheme is one of the following

carcolor 6 car colors; the default food 7 food colors
features 5 feature colors activities 5 activity colors
fruits 7 fruit colors vegetables 7 vegetable colors
drinks 7 drinks colors brands 7 brands colors

and argument algorithm requests algorithm selected colors. The default is to return the
colors selected by Turkers (in case of carcolor, food, features, activities) or by the
expert (in case of fruits, vegetables, drinks, brands). Figure 1 display the schemes
including labels (“T” stands for “Turkers”, “E” for “Expert”, “A” for “Algorithm”).

Figure 1: Semantic color schemes by Lin et al. (2013)

Red
Silver
Black
Green
Brown
Blue

1
2
3
4
5
6

T A
carcolor

Sour cream
Blue cheese dressing
Porterhouse steak
Iceberg lettuce
Onions (raw)
Potato (baked)
Tomato

1
2
3
4
5
6
7

T A
food

Speed
Reliability
Comfort
Safety
Efficiency

1
2
3
4
5

T A
features

Sleeping
Working
Leisure
Eating
Driving

1
2
3
4
5

T A
activities

Apple
Banana
Blueberry
Cherry
Grape
Peach
Tangerine

1
2
3
4
5
6
7

E A
fruits

Carrot
Celery
Corn
Eggplant
Mushroom
Olive
Tomato

1
2
3
4
5
6
7

E A
vegetables

A&W Root Beer
Coca-Cola
Dr. Pepper
Pepsi
Sprite
Sunkist
Welch's Grape

1
2
3
4
5
6
7

E A
drinks

Apple
AT&T
Home Depot
Kodak
Starbucks
Target
Yahoo!

1
2
3
4
5
6
7

E A
brands

6.1.11 Colors schemes from spmap

The spmap collection provides color schemes from the spmap package by Pisati (2007).
The implementation is based on code from spmap color.ado (version 1.3.0, 13 March
2017). The schemes are as follows (typing spmap without argument is equivalent to
spmap blues; displayed are 16-color variants).

spmap blues (2–99 colors)

4The values of the semantic colors have been taken from the source code of the brewscheme package
by Buchanan (2015) (brewextra.ado, version 1.0.0, 21 March 2016).

37

spmap greens (2–99 colors)

spmap greys (2–99 colors)

spmap reds (2–99 colors)

spmap rainbow (2–99 colors)

spmap heat (2–16 colors)

spmap terrain (2–16 colors)

spmap topological (2–16 colors)

6.1.12 Swiss Federal Statistical Office colors

The sfso collection provides color schemes by the Swiss Federal Statistical Office (using
hex and CMYK codes found in Bundesamt für Statistik 2017). The syntax is

sfso
[
scheme

[
cmyk

]]
where argument cmyk requests the CMYK variant (the default is to use the RGB variant)
and sfso scheme is one of the following.

Qualitative

sfso languages

colors used for languages (German, French, Italian, Rhaeto-Romanic, English)

sfso parties

colors used for Swiss parties (FDP, CVP, SP, SVP, GLP, BDP, Grüne, small left-
wing parties, small middle parties, small rightwing parties, other parties)

Sequential

sfso brown sfso blue

sfso orange sfso ltblue

sfso red sfso turquoise

sfso pink sfso green

sfso purple sfso olive

sfso violet sfso black

Diverging

sfso votes

colors used for results from votes (purple for rejection, green for approval)

Typing sfso without argument is equivalent to sfso blue. When using sfso blue

for color gradients, select colors 1–6 only; the 7th color is an extra color for special
purposes.

38

6.1.13 HTML colors (new)

The HTML collection provides HTML colors from www.w3schools.com. The schemes are
as follows.

HTML pink 6 pink colors HTML purple 19 purple colors
HTML red 14 red and orange colors HTML orange 14 red and orange colors
HTML yellow 11 yellow colors HTML green 22 green colors
HTML cyan 8 cyan colors HTML blue 16 blue colors
HTML brown 18 brown colors HTML white 17 white colors
HTML gray 10 gray colors HTML grey 10 grey colors (same as HTML gray)

See Section 5.1 for an overview of the colors in these schemes. Also see www.w3schools.
com/colors/colors names.asp or www.w3schools.com/colors/colors groups.asp. Typing
HTML without argument returns all 148 HTML colors (alphabetically sorted).

6.1.14 W3.CSS colors (new)

The w3 collection provides color schemes from W3.CSS. The schemes are as follows
(typing w3 without argument is equivalent to w3 default).

Qualitative collections (see Section 5.2)

w3 default 30 Default Colors w3 flat 20 Flat UI Colors
w3 metro 17 Metro UI Colors w3 win8 22 Windows 8 Colors
w3 ios 12 iOS Colors w3 highway 7 US Highway Colors
w3 safety 6 US Safety Colors w3 signal 10 European Signal Colors
w3 2019 32 Fashion Colors 2019 w3 2018 30 Fashion Colors 2018
w3 2017 20 Fashion Colors 2017 w3 vivid 21 Vivid Colors
w3 food 40 Food Colors w3 camo 15 Camouflage Colors
w3 ana 44 Army Navy Aero Colors w3 traffic 9 Traffic Colors

Sequential themes (11 colors)

w3 black w3 khaki

w3 blue w3 light-blue

w3 blue-grey w3 light-green

w3 brown w3 lime

w3 cyan w3 orange

w3 dark-grey w3 pink

w3 deep-orange w3 purple

w3 deep-purple w3 red

w3 green w3 teal

w3 grey w3 yellow

w3 indigo

39

https://www.w3schools.com/
https://www.w3schools.com/colors/colors_names.asp
https://www.w3schools.com/colors/colors_names.asp
https://www.w3schools.com/colors/colors_groups.asp
http://www.w3schools.com/w3css/w3css_colors.asp
https://www.w3schools.com/w3css/w3css_color_material.asp
https://www.w3schools.com/w3css/w3css_color_flat.asp
https://www.w3schools.com/w3css/w3css_color_metro.asp
https://www.w3schools.com/w3css/w3css_color_win8.asp
https://www.w3schools.com/w3css/w3css_color_ios.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/w3css/w3css_color_libraries.asp
https://www.w3schools.com/colors/colors_fs595.asp
https://www.w3schools.com/colors/colors_ral.asp

6.1.15 Wes Anderson palettes
(new)

The Wes Anderson collection provides palettes from wesandersonpalettes.tumblr.com
(the color codes have been obtained from github.com/karthik/wesanderson). The
palettes are as follows.

BottleRocket1 (Bottle Rocket; 7 qualitative colors)

BottleRocket2 (Bottle Rocket; 5 qualitative colors)

Rushmore1 (Rushmore; 5 qualitative colors)

Royal1 (The Royal Tenenbaums; 4 qualitative colors)

Royal2 (The Royal Tenenbaums; 5 qualitative colors)

Zissou1 (The Life Aquatic with Steve Zissou; 5 diverging colors)

Darjeeling1 (The Darjeeling Limited; 5 qualitative colors)

Darjeeling2 (The Darjeeling Limited; 5 qualitative colors)

Chevalier1 (Hotel Chevalier: 4 qualitative colors)

FantasticFox1 (Fantastic Mr. Fox; 5 qualitative colors)

Moonrise1 (Moonrise Kingdom; 4 qualitative colors)

Moonrise2 (Moonrise Kingdom; 4 qualitative colors)

Moonrise3 (Moonrise Kingdom; 5 qualitative colors)

Cavalcanti1 (Castello Cavalcanti; 5 qualitative colors)

GrandBudapest1 (The Grand Budapest Hotel; 4 qualitative colors)

GrandBudapest2 (The Grand Budapest Hotel; 4 qualitative colors)

IsleofDogs1 (The Isle of Dogs; 6 qualitative colors)

IsleofDogs2 (The Isle of Dogs; 5 qualitative colors)

FrenchDispatch1 (The French Dispatch; 5 qualitative colors)

6.2 Colormaps

Colormaps are palettes used to generate color gradients with an arbitrary number of
colors. The general syntax is

palette
[
, range(lb

[
ub

]
) ...

]
where palette is the name of the colormap and option range(), with lb and ub in [0, 1],
selects the range of the colormap to be used. The default is range(0 1), that is, to use
the full range. If lb is larger than ub, the colors are returned in reverse order. Option
range() has not effect for cyclic (circular) colormaps.

40

http://wesandersonpalettes.tumblr.com
http://github.com/karthik/wesanderson

6.2.1 Viridis colormaps
(new)

The viridis collection provides perceptually uniform colormaps from matplotlib (also
see bids.github.io/colormap). The color values have been taken from file cm listed.py
at github.com/matplotlib. The colormaps are as follows.

Sequential

viridis

plasma

inferno

magma

cividis

(colorblind-friendly)

Cyclic

twilight

twilight shifted

6.2.2 Seaborn colormaps
(new)

The seaborn collection provides perceptually uniform colormaps from seaborn.pydata.
org. The colormaps are as follows.

Sequential

rocket

mako

flare

crest

Diverging

vlag

icefire

6.2.3 Other matplotlib colormaps
(new)

The matplotlib collection provides several colormaps from matplotlib (Hunter 2007).
The definitions of the colormaps have been taken from file cm.py at github.com/
matplotlib. The colormaps are as follows (typing matplotlib without argument is
equivalent to matplotlib jet).

Sequential

matplotlib jet

41

https://matplotlib.org/
http://bids.github.io/colormap/
https://github.com/matplotlib/matplotlib/blob/main/lib/matplotlib/_cm_listed.py
https://github.com/matplotlib/
http://seaborn.pydata.org/
http://seaborn.pydata.org/
https://matplotlib.org/
https://github.com/matplotlib/matplotlib/blob/master/lib/matplotlib/_cm.py
https://github.com/matplotlib/
https://github.com/matplotlib/

matplotlib autumn

matplotlib spring

matplotlib summer

matplotlib winter

matplotlib bone

matplotlib cool

matplotlib copper

matplotlib hot

matplotlib turbo

Diverging

matplotlib coolwarm

6.2.4 Colormaps by Kovesi (2015)
(new)

The CET collection provides perceptually uniform colormaps by Kovesi (2015); see col-
orcet.com. The colormaps are as follows (typing CET without argument is equivalent to
CET L20).

Linear

CET L01 CET L11

CET L02 CET L12

CET L03 CET L13

CET L04 CET L14

CET L05 CET L15

CET L06 CET L16

CET L07 CET L17

CET L08 CET L18

CET L09 CET L19

CET L10 CET L20

Rainbow

CET R1 CET R3

CET R2 CET R4

Isoluminant

CET I1 CET I3

CET I2

42

https://colorcet.com/
https://colorcet.com/

Diverging

CET D01 CET D08

CET D01A CET D09

CET D02 CET D10

CET D03 CET D11

CET D04 CET D12

CET D06 CET D13

CET D07

Circular

CET C1 CET C5

CET C2 CET C6

CET C3 CET C7

CET C4

Colorblind-friendly

CET CBD1 CET CBC1

CET CBL1 CET CBC2

CET CBL2

6.2.5 Scientific colour maps by Crameri (2018)
(new)

The scico collection provides perceptually uniform colorblind-friendly colormaps by
Crameri (2018); see www.fabiocrameri.ch/colourmaps. The colormaps are as follows
(typing scico without argument is equivalent to scico batlow).

Sequential

scico batlow scico oslo

scico batlowW scico grayC

scico batlowK scico hawaii

scico devon scico lapaz

scico lajolla scico tokyo

scico bamako scico buda

scico davos scico acton

scico bilbao scico turku

scico nuuk scico imola

43

https://www.fabiocrameri.ch/colourmaps/

Diverging

scico broc scico berlin

scico cork scico roma

scico vik scico bam

scico lisbon scico vanimo

scico tofino

Cyclic

scico romaO scico corkO

scico bamO scico vikO

scico brocO

6.3 Color generators

6.3.1 Generate colors over a range of intensity, opacity, saturation, or luminance
levels

The intensity() (or intensify()), opacity(), saturate(), and luminate() options
support number lists as argument (see [U] 11.1.8 numlist). If the list of specified
numbers is longer than the number of colors in the palette, the list of colors will be
recycled. This allows creating colors over a range of intensity, opacity, saturation, or
luminance levels, as in the following example:

. colorpalette, labels(intensity
> opacity saturate lumninate):
> cranberry, intensity(0.1(.1)1)
> / cranberry, opacity(10(10)100)
> / cranberry, saturate(-50(10)40)
> / cranberry, luminate(-25(5)20)

intensity

opacity

saturate

lumninate

1 2 3 4 5 6 7 8 9 10

6.3.2 Generate colors by interpolation
(new)

A powerful color generator is provided via the ipolate() option. The procedure is
to select a start color and an end color, and perhaps some intermediate colors, and
then apply interpolation to generate a color scale. Several suboptions to select the
interpolation space, set the positions of the origin colors, or affect the shape of the
transition between the colors are available (see the description of the ipolate() option
further details)

The default is to interpolate in the CIECAM02-based J ′a′b′ space, which is supposed

44

https://www.stata.com/help.cgi?numlist

to be perceptually uniform and does not travel around the color wheel. If you want to
interpolate around the color wheel, you could, for example, use the CIECAM02-based
J ′M ′h space:

. colorpalette, labels(Jab JMh)
> gropts(ysize(2) scale(2.25)):
> #fafa6e #2a4858, ipolate(10)
> / #fafa6e #2a4858,
> ipolate(10, JMh)

Jab

JMh

1 2 3 4 5 6 7 8 9 10

The power() suboption determines the speed of the transition between the colors. A
value larger than one makes the first color more dominant (slow to fast transition); a
value smaller than one makes the second color more dominant (fast to slow transition).
Example:

. colorpalette, nonumbers
> labels(slow even fast)
> gropts(ysize(2.5) scale(1.8)):
> #fafa6e #2a4858,
> ipolate(30, HCL power(1.5))
> / #fafa6e #2a4858,
> ipolate(30, HCL)
> / #fafa6e #2a4858,
> ipolate(30, HCL power(0.7))

slow

even

fast

When interpolating between more than two colors, the default is to arrange the origin
colors on a regular grid. This can be changed by the positions() suboption. In the
following example, the positions() suboption is used to shift the middle color to the
left or to the right, respectively:

. colorpalette, nonumbers
> labels(left middle right)
> gropts(ysize(2.5) scale(1.8)):
> Black Crimson Gold,
> ipolate(30, pos(0 .3 1))
> / Black Crimson Gold,
> ipolate(30)
> / Black Crimson Gold,
> ipolate(30, pos(0 .7 1))

left

middle

right

6.3.3 Generate evenly spaced HCL hues

The hue generator implements an algorithm that generates HCL colors with evenly
spaced hues. The palette has been modeled after function hue pal() from R’s scales

45

package by Hadley Wickham (see github.com/hadley/scales). The hue palette with de-
fault options produces the same colors as the intense scheme of the HCL color generator
(see below). The syntax is

hue
[
, parameter options ...

]
where parameter options are:

hue(h1 h2) sets the range of hues on the 360 degree color wheel. The default is hue(15
375). If the difference between start and end is a multiple of 360, end will be reduced
by 360/n, where n is the number of requested colors (so that the space between the
last and the first color is the same as between the other colors).

chroma(c) sets the colorfulness (color intensity), with c ≥ 0. The default is
chroma(100).

luminance(l) sets the brightness (amount of gray), with l ∈ [0, 100]. The default is
luminance(65).

direction(#) determines the direction to travel around the color wheel.
direction(1), the default, travels clockwise; direction(-1) travels counter-
clockwise.

The following graph illustrates how the colors change depending on option n():

. colorpalette, plabels(n(1) n(2)
> n(3) n(4) n(5) n(6) n(7)
> n(8) n(9) n(10))
> lcolor(black):
> hue, n(1) / hue, n(2) /
> hue, n(3) / hue, n(4) /
> hue, n(5) / hue, n(6) /
> hue, n(7) / hue, n(8) /
> hue, n(9) / hue, n(10)

n(1)

n(2)

n(3)

n(4)

n(5)

n(6)

n(7)

n(8)

n(9)

n(10)

1 2 3 4 5 6 7 8 9 10

6.3.4 HCL, LCh, and JMh color generators
(revised)

The HCL, LCh, and JMh palette are color generators in the HCL (Hue-Chroma-
Luminance) space (cylindrical representation of CIE L*u*v*), the LCh space (cylin-
drical representation of CIE L*a*b*), and the CIECAM02-based J ′M ′h space, respec-
tively. The implementation is based on R’s colorspace package by Ihaka et al. (2016);
also see Zeileis et al. (2009) and hclwizard.org. The LCh and JMh generators are imple-
mented analogously.

46

https://github.com/hadley/scales
https://hclwizard.org/

Let i be an index from 1 to n with n as the number of requested colors, h1 and h2

be two hues on the 360 degree color wheel, c1 and c2 be two chroma values, l1 and l2
be two luminance values, and p1 and p2 be two power parameters. Depending on the
type of scheme, the colors are then generated using to the following equations.

Scheme Hi Ci Li j

Qualitative h1 + j(h2 − h1) c1 l1
i−1
n−1

Sequential h2 − j(h2 − h1) c2 − jp1(c2 − c1) l2 − jp2(l2 − l1) n−i
n−1

Diverging
h1 if j > 0
h2 else

|j|p1c1 l2 − |j|p2(l2 − l1) n−2j+1
n−1

The color generator syntax selects the color space, the type of scheme, and the parameter
settings. It is

{ HCL | LCh | JMh }
[
scheme

] [
, parameter options ...

]
where parameter options are

hue(h1

[
h2

]
) to override the default values for h1 and h2 (hues on the 360 degree color

wheel),

chroma(c1
[
c2
]
) to override the default values for c1 and c2, c ≥ 0 (colorfulness; M ′ in

case of JMh),

luminance(l1
[
l2
]
) to override the default values for l1 and l2, l ∈ [0, 100] (brightness;

J ′ in case of JMh).

power(p1
[
p2
]
) to override the default values for p1 and p2, p > 0, that determine the

shape of the transition between chroma and luminance levels (for linear transitions,
set p = 1; p > 1 makes the transition faster, p < 1 makes the transition slower),

and scheme sets the type of scheme and the default parameters. The available predefined
HCL schemes are as follows (using n = 9; typing HCL without argument is equivalent to
HCL qualitative).

h1 h2 c1 c2 l1 l2 p1 p2

Qualitative

HCL qualitative 15 h∗ 60 – 70 – – –

HCL intense 15 h∗ 100 – 65 – – –

HCL dark 15 h∗ 80 – 60 – – –

HCL light 15 h∗ 50 – 80 – – –

HCL pastel 15 h∗ 35 – 85 – – –

with h∗ = h1 + 360(n− 1)/n

Sequential

HCL sequential 260 h1 80 10 25 95 1 p1

HCL blues 260 h1 80 10 25 95 1 p1

HCL greens 145 125 80 10 25 95 1 p1

47

HCL grays 0 h1 0 0 15 95 1 p1

HCL oranges 40 h1 100 10 50 95 1 p1

HCL purples 280 h1 70 10 20 95 1 p1

HCL reds 10 20 80 10 25 95 1 p1

HCL heat 0 90 100 30 50 90 .2 1

HCL heat2 0 90 80 30 30 90 .2 2

HCL terrain 130 0 80 0 60 95 .1 1

HCL terrain2 130 30 65 0 45 90 .5 1.5

HCL viridis 300 75 35 95 15 90 .8 1.2

HCL plasma 100 h1 60 100 15 95 2 .9

HCL redblue 0 -100 80 40 40 75 1 1

Diverging

HCL diverging 260 0 80 – 30 95 1 p1

HCL bluered 260 0 80 – 30 95 1 p1

HCL bluered2 260 0 100 – 50 95 1 p1

HCL bluered3 180 330 60 – 75 95 1 p1

HCL greenorange 130 45 100 – 70 95 1 p1

HCL browngreen 55 160 60 – 35 95 1 p1

HCL pinkgreen 340 128 90 – 35 95 1 p1

HCL purplegreen 300 128 60 – 30 95 1 p1

Equivalent schemes are also provided for LCh and JMh, using adjusted parameter values
such that the end points of the generated colors are similar to the ones generated by
HCL (see source file colrspace library generators.sthlp for details).

6.3.5 HSV and HSL color generators
(revised)

The HSV and HSL palettes are color generators in the HSV (Hue-Saturation-Value) and
the HSL (Hue-Saturation-Lightness) spaces, respectively. The implementation is par-
tially based on R’s grDevices package (which is part of the R core) and partially on
colorspace by Ihaka et al. (2016). The used formulas are analogous to the formulas of
the HCL generator (replacing chroma by saturation and replacing luminance by value
or lightness).5 The syntax is

{ HSV | HSL }
[
scheme

] [
, parameter options ...

]
where parameter options are

hue(h1

[
h2

]
) to override the default values for h1 and h2 (hues on the 360 degree color

wheel),

5Although HSV heat0 and HSV terrain0 use somewhat different formulas; see the source code of
ColrSpace for details.

48

https://github.com/benjann/colrspace/blob/master/colrspace_library_generators.sthlp
http://repec.sowi.unibe.ch/stata/palettes/help-colrspace.html#src

saturation(s1
[
s2
]
) to override the default values for s1 and s2, si ∈ [0, 1] (colorful-

ness),

value(v1
[
v2
]
) to override the default values for v1 and v2, vi ∈ [0, 1] (brightness),

power(p1
[
p2
]
) to overrides the default values for p1 and p2, p > 0, that determine the

shape of the transition between saturation and value levels (for linear transitions,
set p = 1; p > 1 makes the transition faster, p < 1 makes the transition slower),

and scheme sets the type of scheme and the default parameters. The available predefined
HSV schemes are as follows (using n = 9; typing HSV without argument is equivalent to
HSV qualitative).

h1 h2 s1 s2 v1 v2 p1 p2

Qualitative

HSV qualitative 15 h∗ .4 – .85 – – –

HSV intense 15 h∗ .6 – .9 – – –

HSV dark 15 h∗ .6 – .7 – – –

HSV light 15 h∗ .3 – .9 – – –

HSV pastel 15 h∗ .2 – .9 – – –

HSV rainbow 15 h∗ 1 – 1 – – –

with h∗ = h1 + 360(n− 1)/n

Sequential

HSV sequential 240 h1 .8 .05 .6 1 1.2 p1

HSV blues 240 h1 .8 .05 .6 1 1.2 p1

HSV greens 140 120 1 .1 .3 1 1.2 p1

HSV grays 0 h1 0 0 .1 .95 1.0 p1

HSV oranges 30 h1 1 .1 .9 1 1.2 p1

HSV purples 270 h1 1 .1 .6 1 1.2 p1

HSV reds 0 20 1 .1 .6 1 1.2 p1

HSV heat 0 60 1 .2 1 1 0.3 p1

HSV terrain 120 0 1 0 .65 .95 0.7 1.5

HSV heat0 0 20 1 0 1 – – –

HSV terrain0 120 0 1 0 .65 .9 – –

Diverging

HSV diverging 240 0 .8 – .6 .95 1.2 p1

HSV bluered 240 0 .8 – .6 .95 1.2 p1

HSV bluered2 240 0 .6 – .8 .95 1.2 p1

HSV bluered3 175 320 .6 – .8 .95 1.2 p1

HSV greenorange 130 40 1 – .8 .95 1.2 p1

HSV browngreen 40 150 .8 – .6 .95 1.2 p1

HSV pinkgreen 330 120 .9 – .6 .95 1.2 p1

49

HSV purplegreen 290 120 .7 – .5 .95 1.2 p1

The HSL color generator only supports schemes qualitative, sequential, and
diverging, using adjusted parameter values such that the end points of the generated
colors are similar to the ones generated by HSL for these schemes.

7 References
Bischof, D. 2017a. G538SCHEMES: module to provide graphics schemes for http:

//fivethirtyeight.com. Statistical Software Components S458404, Boston College De-
partment of Economics. https://ideas.repec.org/c/boc/bocode/s458404.html.

. 2017b. New graphic schemes for Stata: plotplain and plottig. The Stata Journal
17(3): 748–759.

Brewer, C. A. 2016. Designing Better Maps. A Guide for GIS Users. 2nd ed. Redlands,
CA: Esri Press.

Brewer, C. A., G. W. Hatchard, and M. A. Harrower. 2003. ColorBrewer in Print: A
Catalog of Color Schemes for Maps. Cartography and Geographic Information Science
30(1): 5–32.

Briatte, F. 2013. SCHEME-BURD: Stata module to provide a ColorBrewer-inspired
graphics scheme with qualitative and blue-to-red diverging colors. Statistical Software
Components S457623, Boston College Department of Economics. https://ideas.repec.
org/c/boc/bocode/s457623.html.

Buchanan, B. 2015. BREWSCHEME: Stata module for generating customized graph
scheme files. Statistical Software Components S458050, Boston College Department
of Economics. https://ideas.repec.org/c/boc/bocode/s458050.html.

Bundesamt für Statistik. 2017. Layoutrichtlinien. Gestaltungs und Redaktionsrichtlinien
für Publikationen, Tabellen und grafische Assets. Technical Report Version 1.1.1,
Bundesamt für Statistik, Neuchâtel.

Crameri, F. 2018. Scientific colour maps. Zenodo. DOI: 10.5281/zenodo.1243862.

Gomez, M. 2015. Stata command to generate color schemes. http://github.com/
matthieugomez/stata-colorscheme.

Hunter, J. D. 2007. Matplotlib: A 2D graphics environment. Computing in Science &
Engineering 9(3): 90–95.

Ihaka, R., P. Murrell, K. Hornik, J. C. Fisher, R. Stauffer, and A. Zeileis. 2016.
colorspace: Color Space Manipulation. R package version 1.3-2. http://CRAN.
R-project.org/package=colorspace.

Jann, B. 2017. PALETTES: Stata module to provide color palettes, symbol palettes,
and line pattern palettes. Statistical Software Components S458444, Boston College
Department of Economics. https://ideas.repec.org/c/boc/bocode/s458444.html.

50

http://fivethirtyeight.com
http://fivethirtyeight.com
https://ideas.repec.org/c/boc/bocode/s458404.html
https://ideas.repec.org/c/boc/bocode/s457623.html
https://ideas.repec.org/c/boc/bocode/s457623.html
https://ideas.repec.org/c/boc/bocode/s458050.html
https://doi.org/10.5281/zenodo.1243862
http://github.com/matthieugomez/stata-colorscheme
http://github.com/matthieugomez/stata-colorscheme
http://CRAN.R-project.org/package=colorspace
http://CRAN.R-project.org/package=colorspace
https://ideas.repec.org/c/boc/bocode/s458444.html

. 2018a. COLRSPACE: Stata module providing a class-based color management
system in Mata. Statistical Software Components S458597, Boston College Depart-
ment of Economics. https://ideas.repec.org/c/boc/bocode/s458597.html.

. 2018b. Color palettes for Stata graphics. The Stata Journal 18(4): 765–785.

. 2018c. Customizing Stata graphs made easy (part 2). The Stata Journal 18(4):
786–802.

. 2022. ColrSpace: A Mata class for color management. University of Bern Social
Sciences Working Papers 42. https://ideas.repec.org/p/bss/wpaper/42.html.

Juul, S. 2003. Lean mainstream schemes for Stata 8 graphics. The Stata Journal 3(3):
295–301.

Kovesi, P. 2015. Good Colour Maps: How to Design Them. arXiv:1509.03700 [cs.GR].

Lin, S., J. Fortuna, C. Kulkarni, M. Stone, and J. Heer. 2013. Selecting Semantically-
Resonant Colors for Data Visualization. Computer Graphics Forum 32(3pt4): 401–
410.

Machado, G. M., M. M. Oliveira, and L. A. F. Fernandes. 2009. A Physiologically-based
Model for Simulation of Color Vision Deficiency. IEEE Transactions on Visualization
and Computer Graphics 15(6): 1291–1298.

Morris, T. 2013. SCHEME-MRC: Stata module to provide graphics scheme for UK
Medical Research Council. Statistical Software Components S457703, Boston College
Department of Economics. https://ideas.repec.org/c/boc/bocode/s457703.html.

. 2015. SCHEME-TFL: Stata module to provide graph scheme, based on Trans-
port for London’s corporate colour pallette. Statistical Software Components S458103,
Boston College Department of Economics. https://ideas.repec.org/c/boc/bocode/
s458103.html.

Okabe, M., and K. Ito. 2002. Color Universal Design (CUD). How to make figures and
presentations that are friendly to Colorblind people. http://jfly.iam.u-tokyo.ac.jp/
color/.

Pisati, M. 2007. SPMAP: Stata module to visualize spatial data. Statistical Software
Components S456812, Boston College Department of Economics. http://ideas.repec.
org/c/boc/bocode/s456812.html.

Tol, P. 2012. Colour Schemes. SRON Technical Note, Doc. no. SRON/EPS/TN/09-002.
https://personal.sron.nl/∼pault/colourschemes.pdf.

Zeileis, A., K. Hornik, and P. Murrell. 2009. Escaping RGBland: Selecting Colors for
Statistical Graphics. Computational Statistics & Data Analysis 53: 3259–3270.

51

https://ideas.repec.org/c/boc/bocode/s458597.html
https://ideas.repec.org/p/bss/wpaper/42.html
https://arxiv.org/abs/1509.03700
https://ideas.repec.org/c/boc/bocode/s457703.html
https://ideas.repec.org/c/boc/bocode/s458103.html
https://ideas.repec.org/c/boc/bocode/s458103.html
http://jfly.iam.u-tokyo.ac.jp/color/
http://jfly.iam.u-tokyo.ac.jp/color/
http://ideas.repec.org/c/boc/bocode/s456812.html
http://ideas.repec.org/c/boc/bocode/s456812.html
https://personal.sron.nl/~pault/colourschemes.pdf

	Color palettes for Stata graphics: an updateto.44em.Ben Jann
	Contents
	Introduction
	Installation
	Syntax
	Syntax of colorpalette
	Palette options
	Macro options
	Graph options
	Stored results

	Syntax of colorcheck
	Options
	Stored results

	Basic usage
	View a palette (syntax 1)
	View multiple palettes (syntax 2)
	Select and order colors in a palette
	Specify a custom list of colors
	Manipulate and analyze colors
	Color interpolation
	Change intensity, saturation, and luminance
	Grayscale conversion
	Color vision deficiency simulation
	Analyze colors using colorcheck

	Retrieve colors from colorpalette
	Make colors available as globals or locals
	Make colors permanently available
	Provide custom palettes

	Named colors
	HTML colors
	W3.CSS colors

	Palettes, colormaps, and color generators
	Palettes
	Stata palettes
	User-contributed palettes
	Categorical palettes from pals
	D3.js palettes
	Qualitative palettes from seaborn
	Tableau 10 color schemes
	Color schemes by Paul Tol
	ColorBrewer palettes
	Color schemes from Carto
	Semantic colors by Lin et al.
	Colors schemes from spmap
	Swiss Federal Statistical Office colors
	HTML colors
	W3.CSS colors
	Wes Anderson palettes

	Colormaps
	Viridis colormaps
	Seaborn colormaps
	Other matplotlib colormaps
	Colormaps by Kovesi (2015)
	Scientific colour maps by Crameri (2018)

	Color generators
	Generate colors over a range of intensity, opacity, saturation, or luminance levels
	Generate colors by interpolation
	Generate evenly spaced HCL hues
	HCL, LCh, and JMh color generators
	HSV and HSL color generators

	References

