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Abstract 

 

Cancer is one of the most deadly diseases on the planet. Over the past decades, 

numerous antineoplastic compounds have been discovered from natural resources such 

as medicinal plants and marine species as part of multiple drug discovery initiatives. 

Notably, several marine flora (e.g. Ascophyllum nodosum, Sargassum thunbergii) have 

been identified as a rich source for novel cytotoxic compounds of different chemical 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

 

forms. Despite the availability of enormous chemically enhanced new resources, the 

anticancer potential of marine flora and fauna has received little attention. Interestingly, 

numerous marine-derived secondary metabolites (e.g., Cytarabine, Trabectedin) have 

exhibited anticancer effects in preclinical cancer models. Most of the anticancer drugs 

obtained from marine sources stimulated apoptotic signal transduction pathways in 

cancer cells, such as the intrinsic and extrinsic pathways. This review highlights the 

sources of different cytotoxic secondary metabolites obtained from marine bacteria, 

algae, fungi, invertebrates, and vertebrates. Furthermore, this review provides a 

comprehensive overview of the utilisation of numerous marine-derived cytotoxic 

compounds as anticancer drugs, as well as their modes of action (e.g., molecular target). 

Finally, it also discusses the future prospects of marine-derived drug developments and 

their constraints. 

Keywords: Anticancer agents; Apoptosis; Drug discovery; Marine Microorganisms; Marine-

derived products; Secondary metabolites.   

1. Introduction  

Cancer is a frightening heterogeneous malignant disease rising due to transforming habits, 

diet and global warming. According to Nogueira et al., 2020, climate change and global 

warming will severely impact people worldwide, with rising temperatures and the poor air 

quality being accompanied by higher rates of cancer, particularly lung, skin, and 

gastrointestinal cancers. Up to 2020, 19.2 million new cancer cases and 9.95 million deaths 

were reported worldwide, according to the World Health Organization (WHO) reports. Also, 

it has been anticipated that over 28.9 million new cancer cases and 16.2 million deaths may 

occur by 2040 (Ferlay et al., 2021). Although the cancer mortality rate constitutes about 13% 

of all deaths globally, it was suggested that altering or avoiding key risk factors can prevent 

more than 30% of cancer deaths (Smith and Oeffinger, 2020). The global market for cancer 
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medicines was estimated to be worth around 135.5 billion dollars in 2020. This market is 

expected to reach a value of 274 billion dollars by 2030. Between 2009 and 2020, there were 

332 new anticancer approvals, including 209 (63 %) for a next-in-class indication in a new 

tumor type or a subsequent indication of the same medication in the same tumor type. When 

each tumor type was considered separately, 123 approvals (37%) were based on a novel 

mechanism of action (Olivier et al., 2021). Interestingly, products of natural origin and their 

derivatives account for more than 50% of the world's medicinal products in clinical use (Liu 

et al., 2019). Higher plants contribute about a quarter of the total, and nearly 60% of 

medications certified for treating cancer are found in nature (Abu-Izneid et al., 2020). 

Recent advancements suggest that curing cancer is feasible in the early stage with the use of 

biochemicals, immunotherapy and modern drugs. For instance, human carcinomas like 

lymphomas (Atallah-Yunes et al., 2020), testicular cancer (de Vries et al., 2020; Lubberts et 

al., 2020), and childhood lymphoblastic leukemia (Balliot et al., 2019) had an improved 

clinical outcome with longer patient survival. Despite the significant advancements in current 

cancer therapies, chemotherapy leads to several side effects, limiting their use in the clinic. 

The search continues to identify newer promising treatment with lesser adverse effects 

(Vibala et al., 2020). Around 87% of human diseases, including cancer, have been treated 

with natural compounds (Alami Merrouni and Elachouri, 2021). Several reviews, like the 

updated survey from Newman and Cragg, (2016), pointed to the fact that many drugs on the 

market are from natural origin; these authors stated that, out of the 1,328 new chemical 

entities approved as drugs between 1981 and 2016, only 359 were purely of synthetic origin. 

From the remaining ones, 326 were ―biological‖ entities (peptides of more than 50 residues, 

including therapeutic antibodies), and 94 were vaccines. A little less than half of those new 

drugs (549, exactly) were from natural origin or derived inspired from natural compounds. 

Furthermore, in the anticancer area, out of the 136 approved non biological compounds from 
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the same period (1981–2014), only 23 were purely synthetic (i.e., not derived from natural 

compounds nor natural compounds themselves. These natural bioactive compounds often act 

via regulating major molecular signal transduction pathways such as nuclear factor (NF)-κB, 

extracellular signal-regulated kinase (ERK), and G protein-coupled receptor (GPCR) 

pathways were implicated in growth and progression of cancer (Zielińska and Katanaev, 

2019).  

In recent years, there has been a steady increase in the discovery of innovative anticancer 

drugs, with the US Food and Drug Administration (FDA) / European Agency for the 

Evaluation of Medicinal Products (EMEA) approving between 5 and 10 new anticancer 

treatments each year (Alves et al., 2018a). Altretamine is a synthetic alkylating agent of the 

methylmelamine class. Alkylating agents modify and crosslink DNA, inhibiting DNA, RNA, 

and protein production, and killing rapidly dividing cells. Bendamustine is a new alkylating 

agent with purine analogue characteristics (Harries and Gore, 2002). Bendamustine appears 

to be particularly effective against B-cell leukemias. Temozolomide, like dacarbazine, is an 

imidazotetrazine derivative that acts as an alkylating agent, interrupting DNA replication, 

modifying and cross linking DNA, slowing DNA, RNA, and protein synthesis, and triggering 

apoptosis in fast dividing cells (Farris et al., 2019). In clinical trials, temozolomide readily 

crosses the blood-brain barrier and shown to shrink malignant astrocytomas and 

Glioblastoma. Oxaliplatin is a cisplatin analogue with a tetravalent platinum molecule. To 

impede DNA, RNA, and protein synthesis and promote programmed cell death, It is 

currently used to treat colorectal cancer, usually in conjunction with 5-fluorouracil (5-FU), 

irinotecan, or capecitabine (Tong et al., 2021). Pralatrexate is a folate analogue that inhibits 

folate dependent enzymes like thymidine synthase, dihydrofolate reductase, and glycinamide 

ribonucleotide formyl transferase. The drop in intracellular thymidine and purine 

concentrations prevents RNA and DNA synthesis and causes apoptotic cell death in rapidly 
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proliferating cells (O‘Connor et al., 2021). Azacitidine is a pyrimidine analogue (5-

azacytidine) that is converted intracellularly to a triphosphate and integrated into RNA and 

DNA. In solid tumours and lymphomas, azacitidine is an effective anticancer agent (El Fakih 

et al., 2018).  Belinostat is a small chemical inhibitor of histone deacetylase that prevents 

acetyl group removal from histones. Acrylation of histones induces cell cycle arrest and 

apoptosis. Histone deacetylase inhibition is highly vulnerable to the impacts of malignant T 

cells (Goey et al., 2016). Bexarotene is a synthetic retinoid analogue and antineoplastic drug 

that regulates genes involved in cell differentiation and proliferation. Retinoic acid receptors 

(RARs) impact cellular development and proliferation while retinoid X receptors (RXRs) 

often contribute to malignant cell death (Puri et al., 2021). Cabazitaxel is a semisynthetic 

derivative of a natural taxoid containing an 8-member taxane ring. Activating intracellular 

microtubulin, which hinders the breakdown of cytoskeletal microtubules, prevents cell 

division, and causes cell death (Mout et al., 2021). Trifluridine is made up of an 

antineoplastic pyrimidine analogue (2-deoxy-5-trifluoromethyl uridine) and a thymidine 

phosphorylase inhibitor that slows down metabolism. Oral intake of trifluridine results in 

intracellular triphosphate formation, which inhibits DNA synthesis, slows cell growth and 

proliferation, and causes death (Weiss et al., 2022). Abemaciclib is an orally available, small 

molecule inhibitor of cyclin-dependent kinases (CDK) 4 and 6 that is used in combination 

with fulvestrant in the therapy of postmenopausal women with metastatic breast cancer 

(Goetz et al., 2017). Sorafenib is a multikinase inhibitor that acts by inhibiting tumor growth 

by disrupting tumor microvasculature through antiproliferative effects. The multiple 

molecular targets of sorafenib, which include serine/threonine kinase (Raf), vascular 

endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptor 

signalling in the clinical activity in Hepatocellular carcinoma (Peck-Radosavljevic, 2014). 

Majorly all synthetic anticancer drugs cause some degree of hepatotoxicity, and the liver 
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damage is mainly caused by direct, intrinsic toxicity. These drugs are effective but have 

adverse effects such as nephrotoxicity, cardiotoxicity, neurotoxicity, arrhythmias, 

electrocardiographic abnormalities, and myocarditis (Kim et al., 2021).  

Due to the severity of toxicity with synthetic chemotherapeutic agents several human cancers 

considered as untreated (Ntie-Kang and Svozil, 2020). The marine domain has an unmatched 

potential for the discovery of new anticancer drugs and is an extremely useful tool for 

clinical trial in cancer cell differentiation. Anticancer drugs and natural products produced 

from marine sources are widely employed in the treatment of cancer and cancer related 

illnesses. They can also revive therapeutic agents derived from these drugs, such as natural 

immune agents, cytotoxic drugs, or chemical complexes. Most anticancer pharmaceutical 

markets rely on natural resources and engineered metabolites, which include mixes generated 

from marine species. Marine natural products have a variety of bioactivities that are 

pharmaceutically relevant (Nigam et al., 2019). Marine bacteria and fungus, as well as 

sponges, algae, and corals, have been demonstrated to produce novel secondary metabolites 

(SMs) with various chemical structures that can be used to develop anticancer treatments. 

Prokaryotes, notably marine bacteria like Lactobacilli and Noctiluca scintillans, algae 

(seaweeds) that produce secondary anticancer compounds. Similarly, marine microflora and 

microalgae make about 90% of all marine biomass. Many bioactivities have been 

documented that elicit MNPs, suggesting MNPs may be a rich source of new cancer 

treatments or therapeutic approaches (Alves and Diederich, 2021). 

In pre-clinical models and clinical studies, large numbers of marine chemical compounds 

serve as antitumor agents by effective inhibition of human tumor cell growth (de Vries et al., 

2020). Cytarabine is a pyrimidine nucleoside isolated from the sponge Tethya crypta. 

Trabectedin is a tetrahydroisoquinoline alkaloid that was the first anticancer drug from the 

marine tunicate species Ecteinascidia turbinata to be approved in the EU for the treatment of 
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soft-tissue sarcoma and relapsed instances of platinum-sensitive ovarian cancer (Casagrande 

et al., 2021). Eribulin is a natural mitotic inhibitor identified in a marine sponge species 

(Halichondria okadai). Eribulin attaches to the developing ends of microtubules causing 

tubulin clumps and apoptotic cell death. Eribulin was licenced for cancer treatment in 2010 

for metastatic breast cancer after anthracycline and taxan chemotherapy failed (Tarasiuk et 

al., 2022). 

This review highlights the sources of different cytotoxic secondary metabolites from aquatic 

bacteria, algae, fungi, invertebrates, and vertebrates. Furthermore, this review provides a 

detailed summary of the use of marine-derived cytotoxic compounds as anticancer agents and 

their mechanisms of action (e.g., molecular target). 

2. Recent advancements in marine biotechnology reveal the potential for the 

establishment of novel anticancer compounds 

Marine microorganisms, in particular the tiny single-cell phytoplankton, make up 90% of the 

overall biomass in the oceans. As alluded above, marine microorganisms are a rich source of 

a wide range of cytotoxic compounds; some of them reported to have medicinal value 

rendering marine microbes are as a critical source for novel drug development (Albarano et 

al., 2020). Marine microbial products (MMPs) can be successfully converted into drug 

molecules towards commercialization, it is demonstrated that marine products can be used as 

valuable alternative sources for the production of novel therapeutic agents in the 

pharmaceutical industry (Kumar and Adki, 2018). While bottlenecks impede the drug 

development process, significant progress has been made in recent years to resolve the 

potential issues/risks in marine microbial product research/development (Fig 1). The 

extraction of potentially beneficial marine compounds from natural resources was not always 

therapeutically reproducible. As a result, supplying MMP material is still a crucial problem 

that would influence the structure of the elucidation and preclude a comprehensive biological 
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analysis of MMPs (Radjasa et al., 2011).Currently, one third of aquaculture production 

operates in marine waters, and this industry is growing and going farther and farther into the 

sea (Froehlich et al., 2017). Mariculture reached 30.8 million tons in 2018, with 37.5% 

coming from global aquaculture production and Asia contributing up to 88.69% (72.8 million 

tons) (Ahmad et al., 2021). The main species were mainly high-value fish such as salmon, 

sea bass, sea bream, barramundi, and trout, as well as bivalve molluscs and seaweed (Ahmed 

and Thompson, 2019).  

 

Fig 1. Three bottlenecks with its testing results highlight the exploration of marine natural 

drug spices. 

A critical point in the process of drug development from marine organisms and often a 

bottleneck is the permanent availability of sufficient amounts of organisms and compounds 

without harming the marine environment. Only if sufficient supply may be addressed in an 

economically and ecologically feasible fashion, marine drugs having great economic value 

on the market (Rotter et al., 2021). If the collection of secondary metabolites from natural 
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environment cannot be operated in a sustainable matter, the supply problem can be solved by 

processes of marine biotechnology (aquaculture /agriculture /fermented cultivation; genetic 

engineering; enzymatic synthesis or modification) or by partial chemical synthesis/ semi 

synthesis/modification. 

To meet commercial production needs, farming systems must be low-cost, simple to install, 

and maintain, with a small surface area to limit the risk of biofouling and instability. Until 

structure elucidation is completed, aquaculture remains a significant possibility to provide 

sustainable sources of marine animals and secondary metabolites (Maslin et al., 2021). 

Natural drug development is difficult due to the trace levels of natural substances contained 

in marine extracts, as well as the ecological and economic constraints that were addressed for 

the most part in this study. The construction of more sustainable and efficient supply 

mechanisms is still required to encourage and maintain current leads. Species with high 

yields of the required chemicals should be emphasized for study and selection since they do 

not require bulk collection to meet biomass requirements (Binnewerg et al., 2020). A realistic 

bioeconomic research of active molecules production based on the sponge model should be 

conducted for each compound in accordance with its current market pricing, if accessible. In 

the future, numerous opportunities to increase the appeal of sponge mariculture for drug 

discovery could be more thoroughly examined since it competes with in vitro alternative 

methodologies. 

The prerequisite quality requirements for subsequent aquaculture exploitation must be met 

when producing in situ metabolites. The concentration of desired substances within the 

explants must then remain consistent or increase during the aquaculture process in order to 

maximize the value of natural populations. The proper commercial brood stock selection is 

critical, with donors exhibiting both rapid growth and high production rates for the secondary 

metabolites of interest. When trying to understand the changes in metabolites production of 
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explants throughout the year and between different habitats, continuous monitoring of 

microbial biochemical activity should be advocated. It can also be used to see if the explants' 

initial placement on the donor influences the following concentration of natural chemicals. 

Nonetheless, in other circumstances, a feasible drug development prospect is likely only 

possible if the projected quantities of ingredients are tiny enough to be reached (Maslin et al., 

2021). 

Despite the fact that MMPs are outstanding initial points in the advancement of 

pharmacotherapeutics, analysing biocompatibility and elucidating the fundamental process 

for converting it through effective biomedical applications remains a significant challenge. 

(Malve, 2016). Conversely, these techniques need intensive work to establish effective assay, 

perform Structure-Activity Relationship (SAR) evaluations, enhance biological structures of 

substance, and evaluate the findings, which are likely to be fake optimistic targets (Zheng et 

al., 2020). To rectify the issues as mentioned above, various label-free and genomic 

approaches have now been established to test the molecular target of different molecules, 

despite chemical alteration, in a high-throughput manner (Schenone et al., 2013). 

Label-free approaches include (i) Developed drug affinity responsive target stability 

(DARTS) to define molecular targets for tiny-molecules by analysing the interactions 

between protein-ligand; (ii) Cellular thermal shift assay (CETSA) to analyse the drug 

targeting. Here the biophysical principle of thermal stabilization triggered by the ligand of 

specific protein corresponds to a thermal shift in the melting curve into a higher temperature 

(Friman, 2020); (iii) Thermal stability shift-based fluorescence difference in 2D gel 

electrophoresis (TS-FITGE) is another label-free approach for defining a proteome-wide 

scale (Park et al., 2019); (iv) Stability of proteins from rates of oxidation (SPROX) utilized to 

determine the protein thermodynamic stability transition to classify targets by mass 

spectrometry (Li and Chen, 2019); (v) Size-exclusion chromatography for target 
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identification (SECTID) - this technique identifies the targets of small-molecule, which helps 

to minimize the issues with interactions of drug-target proteins (Goyon et al., 2018). The 

detailed label-free approaches in marine anticancer target development are depicted in Fig 2 

and Fig 3.  

 

Fig 2: Schematic illustrations of label-free technology systems.  Fig. 2 a, represents the 

proteolysis of drug affinity responsive target stability; fig. 2 b shows the identification of 

drug targets by cellular thermal shift assay; fig. 2 c, represents the fluorescent 2D gel 

electrophoresis based stable label-free approach and identification of drug targets; fig. 2 d, 

protein mixture containing legend processing with Met-Oxidation showing the rate of 

oxidation on the stability of the protein;  

 
Fig 3. The steps involved in the target identification by size exclusion chromatography. 
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Recent genetic screening approaches such as the large-scale high-throughput gene disruption 

screening approaches have great potential in identifying targets of small molecules. This 

includes genome-wide loss- or gain-of-function genetic screens to identify the specific 

targets of potential marine natural products without any bias (Fig 4). In addition, the gene 

dosage evaluations that systematically modulate gene product levels through cDNA over 

expression as well as the siRNA-mediated mRNA suppression have been  widely used to 

recognize the possible targets and mode of  action of natural products (Haley and Roudnicky, 

2020). Chromogenic profiling is another innovative genetic screening procedure that uses 

reduced or increased gene dosage for target identification. For instance, haploinsufficiency 

profiling (HIP) is a highly sensitive technique, which plays a critical role in defining the 

particular drug targets and pathways based on the reduction of gene copy numbers from two 

to one, that could improve drug sensitivity (Umbach et al., 2020).  

 

Fig 4. Strategies for the identification of the molecular targets of the marine microorganisms-

derived anticancer agents. 
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Haploinsufficiency profiling is a timely and effective strategy, especially in light of recent 

studies that show that few medicines target single gene products (e.g. imatinib), providing an 

in vivo perspective of the relative sensitivity of all targets in the cell crucial for understanding 

the full mechanism of drug action. The HIP is based on discovering that a heterozygous 

deletion strain is sensitized to a drug that targets the heterozygous locus's product (as 

measured by a decrease in growth rate or fitness). When all feasible heterozygous deletion 

strains are evaluated simultaneously, the most sensitive heterozygous deletion strain 

frequently finds the drug targets. This test has the advantage of rapidly identifying the 

inhibitory drug and its prospective targets without the need for prior knowledge. In addition, 

these candidate targets indicate the most necessary genes for growth, making them helpful in 

identifying antiproliferative targets that could be used in antifungal or oncology applications. 

HIP screening well-characterized and novel drugs from marine sources revealed the 

feasibility and robustness of this assay (Wang and Peng, 2017). 

A particular group of genes will exhibit a pattern of up-or down-regulation following the 

exposure to MMPs. These bioactive compounds are mainly produced by the activation of 

cryptic gene clusters, which are not active under normal conditions, and, thus, the expression 

of these clusters would be helpful in the exploitation of the chemical diversity of 

microorganisms. In addition, some biosynthetic genes stay silent and are not expressed in 

vitro (Singh et al., 2019). These signatures will be assembled in a matrix of similarity to 

create FUSION maps that connect the bioactive substances to unique biological processes 

(Xue et al., 2014). RNA sequencing (RNA-seq) has been considered as a high-throughput 

transcriptome profiling technique using the deep-sequencing methodology. It enables the 

identification of differentially expressed genes across the cellular signaling pathways and 

provides a key insight into numerous biological applications. Drug Target SeqR has been 
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designed to determine targets of drug molecules (Mun et al., 2020). The advantage of this 

technique is to know/determine the drug-sensitive/resistance gene mutations in cancer cells 

by high-throughput sequencing and to identify the therapeutic potential of the compounds of 

interest by combining CRISPR/Cas9-based genetic modification and combinatorial mutations 

(Mirza and Karim, 2019).  

As described above, genetic screening for identifying biological targets has greater potential 

to discover the targets of MMPs. Comparable advances with the facilitation of marine 

organism/bacterial genome isolation act as a new approach for distinguishing natural 

products with biologically important compounds, chiefly antibiotics and anticancer drugs.  

3. Specific marine sources of anticancer agents 

3.1. Marine bacteria 

Bioactive substances obtained from marine pseudomonas are diverse and include pyrroles, 

pseudo peptides, benzaldehyde, phenanthrene, pyrrolidinedione, andrimid, phenazine, 

quinoline, phloroglucinol, phthalate, moiramide, bushrin and zafrin (Gupta et al., 2013). 

Dibutyl phthalate and di-(2-Ethylhexyl) phthalate are recognized as cathepsin B inhibitors in 

several of these bioactive compounds. The most effective anticancer medicines produced 

primarily by marine bacteria include Bryostatin, Discodermolide, Eleutherobin, and 

Sarcodictyin (Singh et al., 2008). In vivo, Lactobacilli and Noctiluca scintillans demonstrated 

cancer-preventive activity against colorectal cancer and melanoma (Baindara and Mandal, 

2020). Lactobacilli can minimize nitro-reductase and azo-reductase production. The diet of 

rats includes β-glucuronidase enzymes that help to decrease the typical level of intestinal 

enzymes, which suggests that Lactobacilli could reduce colon cancer incidence  (Feyisetan et 

al., 2012; Nowak et al., 2019). Bacillus laterosporus produce the Basiliskamides A Anti-

HeLa, Anti-HepG2, and cytotoxicity. Bacterial toxins are the most powerful cytotoxins 

produced by bacteria themselves. Cytolysin A (ClyA) is a bacterial enzyme toxin produced 
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by Enterococcus faecalis, which works by making pores in eukaryotic cell membranes and 

triggering caspase‐ mediated cell death. A few studies have found that treating mice with 

Salmonella typhimurium or E coli strains expressing the ClyA toxin inhibited tumor growth. 

They combined carbon nitride (C3N4) with an E.coli strain that was able to produce nitric 

oxide (NO). In a mouse model, the C3N4 loaded bacteria were accumulated throughout the 

tumor and the treatment resulted in a significant antitumor activity (~80% inhibition of tumor 

growth) (Sedighi et al., 2019). The marine-derived Halomonas spp, GWS-BW-H8hM strain, 

have been stated to prevent the development of HepG2 and gastric adenocarcinoma. The 

marine bacterium A5S-46 and strain ZZ338 from sea squirts is rich in actinomycin D, which 

triggers cell-cycle arrest leading to apoptosis in MCF7 cell lines and extensively inhibits the 

extra proliferation of human glioma U251 cells by down-regulating certain metabolic glioma 

enzymes from multiple metabolic pathways (El-Garawani et al., 2020). Extremely 

heterogeneous polymer composites, i.e., exopolysaccharides (EPSs) and sulphated EPSs 

extracted from H. stenophila showed pro-apoptotic effects on T-leukaemia cells in a 

hypersaline environment. Only the tumor cells are found to be more prone to the induction of 

oxidative stress by sulfate EPS (B100S), while T cells remain immune in nature (Asker et al., 

2018). The isolated cytotoxic hydroxyl phenyl pyrrole dicarboxylic acids, from a marine 

Halomonas sp. i.e., 3,4-di-(4-hydroxy-phenyl) pyrrole-2,5-dicarboxylic acid (HPPD-2), 3-(4-

hydroxyphenyl)-4-phenylpyrrole-2,5-dicarboxylic acid (HPPD-1), indole-3-carboxaldehyde, 

other indole derivatives 3-(hydroxyacetyl)-indole,indole-3-acetic acid, indole-3-carboxylic 

acid (Wang et al., 2006). Both HPPD-1 and HPPD-2 expressed potential anticancer activity 

by inhibiting 12-O-tetradecanoylphorbol-13-acetate (TPA) mediated early antigen facilitation 

of the Epstein-Barr virus. Bacterial metabolite Macrolactin-A has been reported to suppress 

B16-F10 murine melanoma cells (Regmi et al., 2015). A few potential active components of 
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bacterial isolates displaying possible anticancer and anti-proliferative activity are shown in 

Table 1.   

Table 1: Some potential anticancer agents derived from marine bacteria. 

Source Compound 

structure 

Clinical application 

Cyanobacterium 

notostoc spp 

Cryptophycins Cytotoxic and anti-proliferative 

Lyngbya 

Majuscule 

Laxaphycin A Cytotoxic effect on human lymphoblastic cells 

Salinospora sp Salinosporamide A Antitumor activity (Human phase I clinical trials for 

multiple myeloma)  

Geitlerinema sp Ankaraholide A Antitumor activity on NCI-H-460 lung 

Tumor, breast carcinoma, and colon cancer 

Lyngbya bouilloni Apratoxin A Anticancer potential on U2OS 

osteosarcoma, HT29 colon adenocarcinoma, 

and HeLa cervical carcinoma 

Lyngbya majuscula Aurilide B  Antitumor potential on human lung tumor 

Nostoc sp. Cryptophycin 1 Cytotoxic on Leukemia, Colon carcinoma, 

Mammary Carcinoma, Cervical carcinoma HeLa 

Symploca sp. Belamide A Cytotoxic on HCT116 colon cancer 

Lyngbya sp. Bisebromoamide  Antitumor effect on  HeLa S3 epithelial 

Carcinoma and lung cancer 

Oscillatoria 

margaritifera 

Ethyl tumonoate A Anticancer on H-460 Lung Cancer 

Symploca hydnoides Malevamide D Cytotoxic on lung cancer A549, colon cancer HT29,  

and melanoma MEL-28 
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Bacillus 

laterosporus 

Basiliskamides A Anti-HeLa, Anti-HepG2, and cytotoxicity  

 

3.2. Marine fungi 

In recent years, numerous categories of chemically distinct marine fungal metabolites have 

been reported with a wide variety of activities against several targets. Reviews have reported 

>1000 metabolites of marine fungi alone to have the potential to grow as drugs, with some as 

anticancer compounds, none of which have so far been on the market (Deshmukh et al., 

2018). Nevertheless, for most of these results, the biological targets, full taxonomy studies, 

and way of interaction have not yet been established. 

3.2.1. Deep-sea sediment fungi-based metabolites 

Deep-sea fungi survive in the deepest part of 1000 meters or still more beneath the 

ground of extreme maritime environments, usually characterized by lack of sunshine, 

oligotrophic nature, lower temperature with higher hydrostatic pressure (Yuan et al., 

2020). Some of the important bioactive compounds isolated from the deep-sea fungi 

have great anticancer potential, as displayed in Fig 5.  

 

Fig 5. Deep-sea fungi sediment based anticancer medicine 
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The obtained linear peptide, simplicilliumtides A, from the broth of a deep-sea fungus, 

Simplicillium obclavatum EIODSF 020e, found in the east coastal part of the Indian 

ocean, is reported to have significant cytotoxicity against human leukemia HL-60 cell 

line with IC50 values of 64.7 μM (Liang et al., 2019). As per ethers A-D, five new 20-

nor-isopimarane diterpenoids with a 14, 16-cyclic ether structure and unique 6/6/6/5 

tetracyclic core skeleton, identified at the deep-sea sediment sample culture extract of 

Aspergillus wentii SD-310. The result showed powerful cytotoxic activity against the 

A549 cells, which was significantly higher when compared to positive control 

Adriamycin (Bladt et al., 2013). Circumdatin G collected from the deep-sea fungus 

culture Aspergillus westerdijkiae SSCIO 05233 showed anti-proliferative activities 

against K562 and promyelocytic HL-6 cell lines with IC50 values ranging between 25.8 

and 44.9 μM. (Fan et al., 2018). Xanthocillin X has been shown to inhibit the growth of 

a variety of cancerous cell lines, MCF-7, HeLa, HepG2, MDA-MB-231, NCI-H460 and 

DU145 cell lines with the IC50 values of 12.0, 7.0, 10.0, 10.0, 8.0, and 8.0 μg/mL 

respectively (Zhao et al., 2012). 

3.2.2. Potential anticancer molecules from mangrove endosymbiont fungi 

The Penicillium brocae, MA-231 obtained from mangrove endosymbiont fungi is rich in 

Spirobrocazines C and Brocazine G. The chemical configuration and total stereochemical 

nature of Spirobocazine C demonstrated restrained action on cells of A2780 (IC50 59 μM). 

Brocazine G, on the contrary, exhibits incredible activity against A2780CisR cell and A2780, 

even greater than positive cisplatin performance with IC50 values of 6.64 and 6.61 μM, 

respectively (Meng et al., 2014). Lasiodiplodia sp obtained from Excoecaria agallocha, an 

endophytic fungus harvested from the mangrove, consists of the chief constituent 2,4-

Dihydroxy-6-nonylbenzoate, which is cytotoxic to the MMQ and GH3 cell lines possessing 

IC50 values of 5.2 and 13.0 μM, respectively (Newman, 2018). Lasiodiplodia theobromae ZJ-
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HQ1 endosymbiont fungus was extracted among the healthy Acanthus ilicifolius L leaf of 

marine mangrove. The Preussomerin H, Preussomerin G, Sprechzomerin K, and 

Preussomerin F are produced with two intact chlorinated preussomerin of this fungus and 

show better biological activity towards human cancer cell lines A549 and MCF-7 with low 

IC50 values ranging from 5.9 to 8.9 μM (Chen et al., 2016). 7-O-methylnigrosporolide  

obtained from mangrove resourced fungi Pestalotiopsis microspore showed the potential 

cytotoxic effect on lymphoma cells L5178Y, which showed lowest IC50 values of 3.9 μM 

(Liu et al., 2016). The Egyptian mangrove Avicennia marina plant was cultured for 

Stemphylium globuliferum and the extracted compounds of Altersolanols A, B, N, 

Dihydroaltersolanol C, and Alterporriol E showed greater toxicity to the L5178Y mouse 

lymphoma cell line with the IC50 values of, 3.7, and 6.9 μM respectively (Teiten et al., 2013). 

The mangrove fungi Pestalotiopsis clavispora, isolated from the Rhizophora harrisonii, 

produced the fresh polyketide pestal polyol I. It showed cytotoxicity against the mouse 

lymphoma cell line (Pérez Hemphill et al., 2016). Meroterpenes isolated from the Penicillium 

sp. marine fungus have a fundamental correlation to meroterpenoid miniolutelide and are 

classified as miniolutelide. The significant cytotoxic activity of Meroterpenes against human 

colon cancer cells HT-29 is by suppression and apoptosis of cell cycle by down regulation of 

ERK/JNK/AKT signaling pathways (Zbakh et al., 2020). 

3.2.3. Marine deposit originated fungal compound 

Deep marine soil-derived molecules isolated from Aspergillus sp resourced on the northeast 

coastal area of Brazil. Molecules such as fumitremorgin C alkaloids, 12, 13-dihydroxy 

fumitremorgin C, Hetero-spirocyclic γ-lactams Pseurotin A, and pseurotin D. All these 

compounds displayed potent toxicity to the HCT116 cancer cells with IC50 values 4.5 - 72.0, 

μM (Helal et al., 2019). Tryptoquivalin T, tryptoquivalin U, and fiscalin B isolated from 

Neosartorya fischeri have been shown to induce apoptosis towards the NCI-H460 and HCT -
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1 cell line (Long et al., 2018). The bioactivity of compounds toward apoptosis of HL-60 cells 

were showed the IC50 values of 82.3, 90.0, and 8.8 μM respectively. 

3.3. Anticancer potential of marine algae 

Several experiments concentrate on aqueous soluble antitumor potent moieties from marine 

algae (Table 2). Until now, most anticancer moieties are not widely used because of their 

unintended harmful adverse effects on normal cells. Bioactive molecules destroy cancer cells 

by inducing apoptotic death or influence cell signalling by activating the protein kinase-C 

family of signaling enzymes (Lee et al., 2020). 

Table 2: Some important anticancer compounds derived from marine algae. 

Source Active 

compound 

Activity   Inhibitory concentration and 

cell line 

Reference 

Cyanobacteria     

Stigonema sp Scytonemin Protein serine/ 

Threonine kinase 

inhibitor, 

antiproliferative 

 IC50 0.08 to 10 μM Melanoma 

and spleen cells  

Evans et al., 

(2021) 

Cyanotoxins Anatoxin-A 

microcystins/ 

nodularin 

Treatment of 

Osteosarcoma 

 IC50 0.08 to 10 μM NCI-H460 

(human lung cancer) 

Slizewska and 

Duda, (2021) 

Calothrix sp. Calothrixin Anticancer IC50  5 pg/mL, KB Human 

nasopharyngeal cancer cells 

Xu et al., 

(2016)  

Aphanizomenon 

flosaquae 

Aphanorphine, 

Siatoxin 

Anticancer IC50 21.1 µM  

human fibroblast cell lines  

Chermala et 

al., (2019)  

Lyngbya 

majuscula 

Microcolin-A Immunomodulator IC50  6 nM –5.0 Μm, H-460 

human lung cancer cells  

Yu et al., 

(2019b) 

Dinophyceae     

Poterioochromon

as mathumensis 

Malhamenicili

pin-A 

Inhibits the protein 

tyrosine kinase 

(PTK) 

IC50 (62.8 ± 7.3 µg/mL   

HepG2 cells 

Machana et 

al.,( 2012) 

Procentrum 

belizeanum 

19–epi-

Okadaic acid 

A new protein 

phosphatase 

inhibitor 

 IC50 1 nmol/L 

 HeLa cell  

Boopathy and 

Kathiresan, 

(2013) 

Procentrum 

acuminate 

Okadaic acid Highly toxic 

against leukaemia 

cells by inhibiting 

IC50  0.1–1 ng/mL  

gastric cancer, colon cancer, 

PP2A  

Campo et al., 

(2013) 
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the enzymes of 

protein 

phosphatase 1 and 

2A 

Amphidinium sp Lingshioils A Cytotoxicity  IC50  4.13 μmol/L  

human lung cancer cell lines (A-

549) and HL 

Boopathy and 

Kathiresan, 

(2013) 

Chlorophyceae     

Enteromorpha 

prolifera 

Pheophytin Suppressive effect 

against chemically 

induced mouse 

skin tumor genesis 

IC50 2.8 μg/ml  

U87MG cells  

Cho et al., 

(2014)  

Chlorella vulgaris Oleic acid, 

linolenic acid, 

docosahexaeno

ic acid (DHA) 

Immunomodulators  IC50 20.2 µM, 17.8 µM and 16.5 

µM, respectively, in DU-145 

cells prostate cancer  

Chrzanowska 

et al.,(2022)  

Cladophora 

fascicularis 

Porphyrinolact

one 

Inhibitory activity 

of NF-kB which is 

the origin of TNFa  

IC50 0.8 µM  

MCF-7 breast cancer cells 

 Mondal et al., 

(2020)  

Avrainvillea 

nigricans 

 Nitric 

conoides A 

Antimitotic activity 

for human breast 

cancer (MCF-7) 

IC50 4.67 ± 0.17 µg/µl,  

A549 cancer lung cells  

Williams et al., 

(2007)  

Cymopolia 

barbata 

Cymobarbato Potent 

antimitogenic 

properties 

IC50 19.82  μM  

MCF-7, HT29, HepG 

 Badal et al., 

(2012) 

Bryopsis sp Kahalaides Phase II of clinical 

trials on breast and 

prostate tumours  

 IC50 0.162–0.288 μM  

antitumor activity in colon  

Kang et al., 

(2018)  

Caulerpa sp. Caulerpenyne Anticancer, 

antitumor,  

IC50  21.2 µM , SK-N-SH cell 

line 

Box et al., 

(2008)  

Phaeophyceae      

Sargassum 

thunbergii  

Fucoidans Inhibiting tumour 

metastasis of rat 

mammary 

adenocarcinoma 

ells  

IC50 60, 63 and 211 μg/mL 

against MCF-7, WiDr and Vero 

Cells 

Yudiati et al., 

(2016)  

Halimeda stuposa  4-hydroxy 

dictyolactone 

Human and 

mammalian colan 

cell lines 

IC50 1-5 µM against colon cancer 

cell line 

Ovenden et al., 

(2012)  
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Stipodium zonales Stypoquinoic 

acid 

Inhibitor of 

tyrosine kinase and 

cytotoxic towards 

lung and colon 

cancers 

IC50 0.1–30 µg Colorectal 

adenocarcinoma 

Moore et al., 

(2016) 

Ascophyllum sp Sulphated 

fucan, 

ascophyllan 

Cytotoxicity  IC50 12.6 µgmL−1 and 40.6 

µgmL−1 against KB and HT-29 

cells 

Hussain et al., 

(2016)  

Chondria sp Condriamide-

A 

Cytotoxicity  IC50  17 - 3000 ng/mL carcinoma 

cell line  

Khalifa et al., 

(2019)  

Rhodophyceae   

Chondrus 

ocellatus 

λ- 

Carrageenans 

Immunostimulant 

antitumour activity 

IC50  3.4 µg/mL Human 

osteosarcoma cellline 

Liu et al., 

(2019)  

Porteria 

hornemannii 

Halomon Strong cytotoxic 

action against 

several cancer cell 

lines  

I C50  20 and 42 µg/mL Sarcoma 

180 MB-MDA-231, human 

breast-cancer cells 

Tripathi et al., 

(2021b) 

Gracillaria 

asiatica 

Gracilarioside 

and 

gracilamides A 

and B 

Strong cytotoxicity 

for the human 

melanoma cell line 

IC50 2.4 µg/ml  

Colorectal HCT 116 cells  

 S.S et al., 

(2017) 

Laurencia 

filiformis 

Preparguerene Cytotoxicity on 

several cell lines 

(B16, HeLa, and 

P388) 

IC50 21.1 µM  

human fibroblast cell lines  

Jongaramruon

g et al., (2002)  

Laurencia obtusa Teurilene Cytotoxicity IC50 36.67 µM   

MGC-803 cell line 

Güven et al., 

(2014)  

Cyanotoxins such as microcystins/nodularine and anatoxin-A produced by Cyanobacteria, 

possess significant growth inhibitory potential against bone cancer (Zanchett and Oliveira-

Filho, 2013). Lagunamides A and B are shown to have great effective cytotoxic cyclic 

depsipeptides, which are extracted from marine cyanobacterium filaments and Lyngbya 

majuscula. These have a similar structural analogy to aurilide type of compounds and they 

are considered to have an effective anti-proliferative effect upon cancerous cells U2OS, 

A549, BGC-823, HeLa, HepG2, MCF-7, BEL-7404, HL-60, HCT116, and A375 (Huang et 

al., 2016). Shanab et al. (2012) reported the growth inhibitory effect of segmented crude 
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extract of Nostoc muscorum and Oscillatoria spp, on Ehrlich's Ascites Carcinoma Cell 

(EACC) and HepG2 (Shanab et al., 2012). Scytonemin is a serum protein/threonine kinase 

inhibitor derived from Stigonema sp. Scytonemin, affects the development of mitotic 

spindles and the enzyme kinesis, which is involved in the cell cycle control (Itoh et al., 

2013). Skitonemine acts as an ideal drug candidate because the protein kinase blockers of the 

molecule exhibit anti-inflammatory and anti-proliferative properties. Besides, this chemical 

substance inhibits the activation of human fibroblast and dendritic cells (Fan et al., 2019). 

The pentacyclic metabolites of indole (3, 2-) phenanthridine alkaloids and calothrixine A and 

B are known for its anticancer activity (X. Yang et al., 2019). It has been shown to exhibit 

better growth inhibitory effects against cancer cells A549 and NCI-H1650 at nanomolar 

concentrations. Microcolin-A, a lenient immune-suppressive peptide eluted from L. 

majuscula, suppresses the double-way murine blended submicromolar lymphocyte reactivity. 

The other potent molecule, curacin-A, has been identified from Lyngbya majuscule and 

shown to exhibit powerful anti-proliferative effects since it prevents polymerization of 

tubulin, which exhibits selectivity for breast, colon, and renal carcinoma cells (Yu et al., 

2019). A most notable finding is the metabolite containing boron such as borophycin, along 

with cyanovirin, cryptophycins 1 and 8 extracted from N. spongiaeforme var. tenue, Nostoc 

linckia, and Nostoc spp marine cyanobacterial strains, and these bioactive molecules are 

notably cytotoxic against colorectal and epidermoid carcinoma of human (Eggen and Georg, 

2002). The Amphyprora alata and Ankistrodesmus gracilis clearly show the most outstanding 

suppression of HepG2 cells (Tripathi et al., 2021).  

3.3.1. Dinophyceae 

Several species of dinoflagellates are capable of producing toxins. A few of these toxins 

remain very effective even in lower doses when compared to the standard chemical agents 

like camptothecin, doxorubicin, 5-fluorouracil, etc. Protein tyrosine kinase was shown to be 
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efficiently inhibited by Malhamenicilipin-A collected from Poterioochromonas mathumensis 

(Anand et al., 2018). For most of the species of Procentrum, Okadaic acid has been found to 

be present such as in P. arenarium, P. maculosum, P. acuminate, P. concavum, P. fortii, and 

P. belizeanu. Okadaic acid has incredible toxicity to leukaemia by inhibiting protein 

phosphatase (Fujiki et al., 2018). The 19–epi-Okadaic acid is a recent inhibitor of protein 

phosphatase extracted from P. belizeanum  (Cruz et al., 2007). Dinochromes A and B are two 

carotenoids obtained from Peridinium bipes of aquatic species (Maoka et al., 2002). The anti-

proliferative property of Dinochrome A has been revealed to be more effective over human 

cancer cell lines, like OST (osteosarcoma), HeLa (cervical cancer), and GOTO 

(neuroblastoma). The cytotoxicity effect of Lingshi oils A, obtained from Amphidinium sp., 

was observed against human lung cancer cell line A-549 and human myeloblastic leukemia 

cell line (Domínguez, 2013). Amphidinolide, another compound separated from 

Amphidinium sp., proves to have cytotoxic, antitumor, and antineoplastic activity by 

alkylation due to intercalation by topoisomerases through the deterioration of DNA (Bosch et 

al., 2019). 

3.3.2. Chlorophyceae 

Caulerpa microphysa extracts efficiently regulated human promyelocytic leukemia cells 

(HL-60, BCRC 60027). The report found that C. microphysa extract is rich in antioxidant 

and anti-proliferative activities on HeLa and Huh-7 cell lines (Tanna et al., 2020). The 

extracted chemical constituents of Avrinvillea nigricans, such as Nigriccanoides A and B 

have better antitumor action on MCF-7 and human colon cancer HCT-116 (Williams et al., 

2007). Cymopolia barbata and Neomeris annulata rich in 4-isocymobarbatol and 

cymobarbatol are responsible for antimitogenic action (Barzkar et al., 2019). 

Kahalalide, a linear and cyclic peptide extracted from molluscan species Elysiya Rufscens 

has reached a phase II clinical trial, verifying its effect on the prostate. These breast tumors 
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induce lysosome membrane disruption causing cell death (Shilabin and Hamann, 2011). 

Diarylheptanoids, such as cymodiene, cymodienol, nodosal, and isocymodine, separated 

from Cymodocea nodosa, together with another tricyclic diterpenebrominated, have more 

cytotoxicity to the NSCLC-N6 lung carcinoma cells (Kontiza et al., 2005). The caulerpenyne 

derived from the marine algal species of Caulerpa spp. has demonstrated its bioactivity 

against different human cancer cells (Tripathi et al., 2021). Meroterpenes and usneoidone 

have an antitumor function and these compounds are obtained from Cystophora spp. (Zbakh 

et al., 2020). Pheophytin, a Chlorophyll-based molecule derived from Enteromorpha 

prolifera, a versatile green microalga, has a definitive inhibitory effect over the rodent skin 

tumor model (Shailaja et al., 2019). In addition, very little research has been performed to 

explore the potential of anticancer and immunomodulatory properties of Capsosiphon 

fulvescens green algae, a Korean functional food for decades. C. fulvescens derived sulphated 

polysaccharide (SPS-CF) has a remarkable key immune-stimulating activity on murine 

RAW264.7 cells and apoptotic cell death human colon cancer cells HT-29 (Choi et al., 

2019). The sulphated SPS-CF can synthesize pro-inflammatory mediators by stimulating 

macrophages to release IL-6, TNF-α, PGE2 and NO. This indicates the promising application 

of SPS-CF as an immunomodulatory agent in conjugation with anti-gastric cancer agents that 

were identified earlier (Manlusoc et al., 2019). The extracts from Chlorella vulgaris showed 

antitumor effects in animal studies. Apoptosis and oxidative degradation of HepG2 cells have 

also been reported for the C. vulgaris extract (A. Jayshree, 2016). The C. vulgaris microalgal 

species are often capable of developing antioxidants and anticancer medicine. 

3.3.3. Phaeophyceae 

The Fucales and Dictyotales are species of brown algae rich in secondary metabolites known 

to be useful in treating different cancer types. The medicinal texts from the Chinese and 

Ayurveda indicate that brown algae have been prescribed for the treatment of many cancer 
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types (Sanjeewa et al., 2018). Various extracts of seaweed (e.g. Gelidium amansii, Laminaria 

japonica, Euchema cottonii, and Porphyra tenera) were shown to suppress human gastric 

malignant growth (AGS) and colon-specific HT-29 tumour cells and mammary tumors on a 

dose-dependent basis (Usoltseva et al., 2019). The brown alga, Laminaria, has been indicated 

as a food supplement in breast cancer, which has a prevalence in approximately one-sixth of 

the women in Japan and US. The species of Sargassum and Laminaria have also been widely 

used as potential traditional cancer herbal remedies in China (Liu et al., 2012). Chinese and 

Japanese have long used the Laminaria, Ecklonia or Undaria, as sources of iodine. The 

sulphated polysaccharides derived from Saccharina japonica brown algae and Undaria 

pinnatifida have successfully been screened against T-47D and SK-MEL-28 breast cancer 

cells for their antitumor activity (Gutiérrez-Rodríguez et al., 2018).  

The major phytochemicals extracted from Dictyota sp and Halimeda stuposa, include 

diterpenes such as dictyol E, Xenicane diterpene 4-hydroxydictyolactone I, indole-3-

carboxaldehyde and 8, 11-dihydroxypachydictyol A. The cytotoxic potential of these 

phytoconstituents has been reported against MCF-7, CHO-K1, SF-268, HT-29, and H460 

mammalian and human cancer cell lines (El-Shaibany et al., 2020). Based on these reports, 

the majority of these isolated molecules showed nearly identical activity over the tested 

human tumor cell lines MCF-7, SF-268, and H460. Sargassum oligocystum's water extract 

exhibits anticancer potential on human tumor cells, such as K562 and Daudi (Zandi et al., 

2010). Some Sargassum species: S. fusiforme, S. confusum, S. lomentaria and S. 

kjellmanianum possess immunostimulatory competence in tumor-bearing rodent and 

apoptotic cytotoxic potential in selected human tumor cells (Sanjeewa et al., 2017). Brown 

seaweed algae-enriched fucoidans isolated from U. pinnatifida and S. japonica have 

extensively reduced both breast cancer and melanoma cell lines proliferation and colony 

formation in a dose-dependent manner. As reported by others, it has been proved that the 
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sulphated polysaccharides from S. japonica and U. pinnatifida are key elements for treating 

cancer (Malyarenko and Ermakova, 2017). The Padina spp hexane extract prohibits the 

growth of A-549 Lung carcinoma cancer cell lines by inhibition of topoisomerase I (Al-Enazi 

et al., 2018). As the extracts do not exhibit action against other cell lines, the activity of the 

extracts is called selective or unique as well as differential. 

Extracts of Ascophyllum nodosum with low molecular weight fucoidan prevent human breast 

cancer cells infiltration by stopping them from binding to the extracellular matrix and 

restricting the penetration of colon adenocarcinoma cells (Anastyuk et al., 2012). 

Ascophyllan, a sulphated fucan, derived from Ascophyllum, the brown algae has been studied 

against B16 melanoma cells for anti-metastatic activity (Abu et al., 2015). Moreover, the 

cytotoxic effect of polysaccharides has been reported only in Vero and XC cells, whereas it 

shows resistance to other cell lines. 

3.3.4. Rhodophyceae 

In red algae, there are ample secondary metabolites and halogenated derivatives. The 

antitumor activity of elatol and sesquiterpene isolated from Laurencia microcladia red alga 

was reported in Jurkat, Colo-205, U937, and B16F10 cell lines (Barcellos Marini et al., 

2018). Also, Elatol's cytotoxic effect has been studied in C57Bl6 mice bearing B16F10 cells, 

where it induces apoptosis of cells by triggering growth inhibition in the G1 and sub-G1 

stages (Campos et al., 2012). Western blot analysis indicates the appearance of cyclin-D1, 

cyclin-E, cyclin-dependent kinase (CDK) 2, and cdk4 gets decreased by the presence of 

elatol. A reduction in bcl-xl and a rise in the expression of bak, caspase-9, and p53 are 

similarly reported. Anti-proliferation activity has been documented in a human cervical 

adenocarcinoma cell line (HeLa) with ethanol extract from Corallina pilulifera calcareous 

red algae (Kwon et al., 2007). In another study, red seaweed Acanthospora spicifera showed 

tumoricidal activity in A549 cell lines. It was obvious as of the increase in average survival 
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time and the reduction in the number of tumors and cell viability counts. Oesophageal 

adenocarcinoma (EAC) is also controlled in implanted mice. The anti-proliferative activity of 

methanol, chloroform, and ethanol derivatives of Enteromorpha lingulata and Gracilaria 

edulis was evaluated in the HCT15 cell line (Murugan and Iyer, 2012). 

3.4. Anticancer drug from invertebrates 

Sponges of Porifera phylum, also known as "golf ball sponges or moon sponges", are said to 

be sessile marine invertebrates (Singh et al., 2021). Cinachyrella sp is primarily marine 

porifera with spherical or spiral body characteristics. Protein kinase C inhibition has been 

linked with joint pain and psoriasis pathogenesis and tumor development (Ruiz-Torres et al., 

2017). Renieramycin M, which is a natural component derived from sponges, has shown to 

facilitate anticancer activity. In nature Renieramycin is a tetrahydroisoquinoline and it is a 

form of tetrahydro-quinoline (Pinkhien et al., 2016). In lung carcinomas, the apoptosis death 

of renieramycin M was due to the p53-subordinate apoptosis pathway (Rodrigo and Costa, 

2019). Monanchocidin, a polycyclic guanidine alkaloid structure, is isolated from 

Monanchora pulchra, the marine sponge tested to produce cell apoptosis in human cervical 

mouse cells and human monocytic leukemia (Dyshlovoy et al., 2016). Spongistatin-I 

molecule separated from Spongia species induces severe cell death in several malignant cells 

by triggering growth arrest due to restriction of mitosis and increased attachment of 

vinblastine to tubulin fibrils (Xu et al., 2011). Heteronemin is another group of sponges 

examined in human cancer cell lines A549, ACHN, and A498 cells for its pharmacological 

effects to have antitumor activity (Wu et al., 2015). Heteronemin, a spongean sesterterpene 

affects cellular processes and also apoptotic cell death by TNFα-induced NF-κB signalling 

cascade due to inhibition of proteasome (Schumacher et al., 2010). Manzamine A exists in 

many of marine sponges also shows an antitumor effect (Gomes et al., 2016). The 8-

hydroxymanzamine A is a Pachypellin species isolated from other types of sponge exhibits 
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mild antitumor and anti-herpes simplex virus-II activity (Samoylenko et al., 2009). 

Sigmadocia pumila and Holothuria atra (sea cucumber), the marine sponge‘s methanolic 

extract studied in vitro as well as in vivo experiments for the antitumor function. S. pumila 

and H. atra has retained a great level of antitumor activity towards human breast 

adenocarcinoma (MCF7), human breast ductal carcinoma cell (T47D), human cervix 

adenocarcinoma cell lines (HeLa), and human colorectal adenocarcinoma cell (WiDr) 

(Nursid et al., 2019). 

In many regions of the world, mollusks such as oysters, clams, and abalone are considered 

delicacies. Bioactive peptides found in these organisms show antiproliferative and 

antimetastatic properties in cancer cells, including breast, prostate, lung, and colon 

malignancies. On the other hand, sea cucumber is a popular seafood delicacy in many Asian 

nations. It contains a number of triterpene glycosides and a variety of important amino acids 

and polyunsaturated fatty acids. When taken orally, frondanol A5, a glycolipid extract from 

the North Atlantic sea cucumber (Cucumaria frondosa), inhibited colon carcinogenesis in 

vitro and reduced colon cancers in animals. When taken as food, the anticancer activity of 

sea cucumber may be attributed to other chemicals rather than sulfated triterpene glycosides. 

Frondoside A, on the other hand, could be used as a lead compound in the creation of 

anticancer medicines. Therefore, the high-value compounds present in edible marine captures 

can pave the way for exploring their potential use for functional foods, nutraceuticals or even 

a new type of anticancer drugs (Correia-da-Silva et al., 2017) 

3.5. Anticancer drugs from vertebrates 

Tunicates, classified as Chordata phylum, belong to subphylum Tunicata or Urochordatais 

also known as urochordates, which has sac-like filter feeders with two syphons. Tunicate 

larvae display chordate features as they have a notochord, dorsal nerve, pharyngeal slit, and 

post-anal tail. In comparison, these tunicates often lack their tails and their potential to travel; 
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instead, they retain the vascular nervous system (Cooper and Yao, 2012). Several tunicates, 

often called as "sea squirts," live on the ocean‘s surface or on the sides of foreshore and 

ships. It has a strong cytotoxic effect across many cancer cell lines (Table 3). For example, 

dichloromethane extract of Eudistoma vannamei has important cytotoxic effects and it was 

evaluated in HL-60 promyeloblastic leukaemia cells, and results demonstrated that initiation 

of apoptosis in these cells, which proves the cytotoxicity activity (Jimenez et al., 2012). 

Table 3: Summary of a few important clinical development and role of anticancer drugs 

extracted from the tunicate 

Source Compound Name Clinical Application 

Aplidium albicans 

 

Plitidepsin 

 

Phase III trials for Relapsed/ 

Refractory Myeloma in 2016 

Ecteinascidia turbinate 

 

Trabectedin 

 

Ovarian cancer and Soft-tissue 

sarcomas treatment were 

approved by the FDA in 2015. 

Lissoclinum sp Haterumaimide J 

 

Cytotoxicity to P388 leukaemia 

cells 

Lissoclinum  

voeltzkowi Michaelso 

Chlorolissoclimide 

 

Antiproliferative effect on non-

small-cell broncho-pulmonary 

carcinoma line NSCLC-N6. 

Eudistoma sp. Eilatin 

 

Antiproliferative effect on 

chronic myeloid leukemia 

Lissoclinum patella Lissoclinolide 

 

Antiproliferative and cytotoxic 

effect on human colon 

carcinoma HCT116.  

Aplidium Haouarianum Haouamine A Cytotoxic over the HT-29 
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 human colon carcinoma cell 

line 

Botryllus Tuberatus Tuberatolide A Cytotoxicity towards several 

cancer cell lines.  

Stolonica sp. Stolonic acid A Apoptosis activity in human 

and ovarian tumour cell lines. 

Pycnoclavella Kottae  Kottamide D Antimetabolic Activity, 

cytotoxicity towards tumor cell 

lines. 

Synoicum Adareanum Hyousterone A Cytotoxic on numerous cancer 

cell lines.  

 

As a result, these compounds also displayed anti-proliferative effects (Youssef et al., 2020). 

Also, the cytotoxic activity was studied for 7-alpha-hydroperoxy cholesterol and 7-beta 

hydroperoxy cholesterol (stereoisomer) of Formosan tunicate‘s lipophilic extracts in various 

cell lines (Jusakul et al., 2011). The cancer-defensive characteristics of 3-

demethylubiquinone Q2, includes disrupting cell transformation of JB6 Cl41 and p53 

(vital tumor suppressor protein) and inducing apoptosis (Fedorov et al., 2008). AP-1 (a major 

transcription factor in multiple cancer-causing genes) and NF-Clβ activation (a protein 

complex) which is responsible for DNA transcription and is linked to cancer formation. New 

Eudistoma gilboverde N-methyl beta-carbon alkaloids showed different extents of 

cytotoxicity towards human cell lines (THP-1 cells, HL-60, and HT-460) (Rashid et al., 

2001). Oda et al. (2007) have researched cytotoxicity of lissoclibadins and lissoclinotoxins 

from Lissoclinum cf. Badium, the tropical ascidian on nine different human cancer cell lines 

to test its future anticancer effectiveness. Anti-proliferative activity of dehydrodidemnin B 
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isolated from Aplidium albicans tunicate is through preventing the myc-oncogenic pathway. 

The results of the study suggest that its standard administration in Ehrlich carcinoma cultures 

decreases the total number of tumor cells by 70–90 % (Taraboletti et al., 2004).  

3.6. Isolation technique of secondary metabolites from marine sources 

Isolation and cultivation a new marine microbe could be a quick way to find new marine 

natural products (MNPs). It is difficult to culture all microbes from marine 

microenvironments. The majority of microorganisms from the environment (> 99.9%) do not 

form colonies on the nutrient-rich agar medium that has been utilized to isolate marine 

bacteria in the past. As a result, it is necessary to set specific, achievable, and relevant 

cultivation goals. A greater effort has been made to isolate the most-wanted or affluential 

from the marine resource. As stated by Paul Carini, key bacterial players may include those 

that (1) have a high relative abundance, (2) play key role in biogeochemistry or 

bioremediation, (3) have the potential to produce natural products, and (4) substantially 

diverge from cultured taxa (Mohamed et al., 2021). Although the simulated environment 

method has been a successful approach for isolating marine bacteria, especially for dominant 

species, with specific limitations as natural environments do not commonly have the 

optimum conditions for the growth of most bacteria.  

The secondary metabolite extraction from different marine sources requires a distinct process 

each time. Researchers are using different methods to cultivate and harvest metabolites but 

combining them yields a novel technique. It is possible to isolate particular stains and 

perform early growth by inoculating and employing a culture medium with the seabed or 

seawater microorganisms and using the PCR technique to isolate DNAs for microorganism 

identification (Fig 6). Incubation and bioreactor/fermentation are used to cultivate metabolite 

production, and then chemical extraction and purification are performed. Different analytical 
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procedures, such as HPLC, NMR, LCMS, and MS, are used to isolate and identify the 

molecule (Bitzer et al., 2006; Du et al., 2010).  

 

Fig 6. Schematic representation of isolation of metabolite from marine bio-scours. 

Maintaining and modifying this technique provides a vital isolation approach; for example, 

Du et al. (2010) isolated four novel alkaloids from the deep ocean sediment-derived fungus 

Penicillium sp. - meleagrin D, meleagrin E, roquefortine H, and roquefortine I. They 

fermented the strain in a seawater-based culture medium, followed by chemical treatments 

and isolation and identification of metabolites using HPLC, NMR, and UV. Similarly, Sekar 

et al. (2015) isolated a non-toxic natural anticancer drug for lung cancer from Candida 

albicans, a marine yeast. The yeast was grown on agar media, isolated, and structurally 

elucidated using GC-MS, NMR, and XRD. The docking investigation using lung cancer 

protein revealed positive action. Also, Wang et al. performed yet another biosynthetic 

extraction investigation. The bioactive hydroxyl-phenyl-pyrrole-dicarboxylic acids were 

generated by the marine Halomonas sp. strain GWS-BW-H8hM. The microorganisms were 
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isolated from seawater samples and cultured in synthetic seawater. Further cultivation was 

carried out in order to extract metabolites from the microbe using the fermenter, followed by 

chemical treatment, isolation, and elucidation using several analytical techniques. Raji cells 

exhibit positive cytotoxicity toward inhibition (Wang et al., 2006). 

Regardless of how the technology develops, culturing and isolating uncultured bacteria 

remains a time-consuming and laborious task. Thus, the most-wanted microbial groups in 

marine environments should be cultured first. A deeper understanding of the biogeochemical 

cycles mediated by microorganisms in marine environments requires better knowledge about 

the unculturable majority of bacteria, their relationships with coexisting members of the 

microbial community, and how they can be integrated as key players in biogeochemical 

processes. Importantly, the ‗reverse genomics‘ approach should be considered for targeted 

culturing of key players (Cross et al., 2019). With this method, antibodies against predicted 

membrane proteins can be used to target and culture microbial cells from a specific 

taxonomic group. However, the efficiency of methods for isolating uncultured microbes from 

environments that harbor more complicated microbiota should be further explored. 

4. Challenges in developing anticancer drugs from marine microbial sources 

There are a few significant challenges and risks in developing drug molecules from marine 

resources. The presence of multiple secondary metabolites from the same organism could be 

due to complex environmental conditions. The most incredible difficulty often faced is that 

microorganisms that live in marine animals, marine hosts, and invertebrates actually produce 

bioactive molecules (Liu et al., 2017). A reliable isolated supply and established novel lead 

molecules often present a challenge, as the lead molecule is found only in a limited volume 

and is practically quite challenging to isolate (Elissawy et al., 2021). The candidate 

compound's lack of sustainable provision has often hindered several important marine novel 

compounds from further research and drug development. Numerous initiatives have been 
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produced in current years to overcome the above-mentioned obstacles by inventing synthetic 

or hemi-synthetic analogs with the preferred and optimized characteristics or developing a 

lower-complex pharmacophore and a more straightforward synthetic process. The detection 

of a bioactive compound synthesized or hemi-synthesized must also be rendered by 

comparison to a blend obtained from a natural source (Wali et al., 2019). The complicated 

structure of the isolated compounds and their poor yield, typically associated with marine 

compounds, can relate to an inappropriate allocation of the chemical compound formula and 

incorrect assignment of one or more stereocenters (Pham et al., 2019). For instance, the 

production of marine species in their natural environment through Mariculture and 

Aquaculture can also be promoted.  A few things must be discussed at the early in the 

development process: (i) The future industrial application of the marine product and the need 

for that specific application of the compound on the market, (ii) The total cost for production 

per kg of the overall bioactive compound, (iii) Determined formulation loaded bioactive 

marine molecule with its preferred mode of administration, (iv) The ideal way to hit the 

market of the developed marine product (Press et al., 2019).  

Marine microorganisms need adapt to the physical, chemical, and biological conditions of the 

oceanic environment, as evidenced by their physiology and biochemical features. The 

diversity of marine habitats has acted as a driving force in the selection of bacteria and fungi, 

resulting in new adaptation strategies and the synthesis of new compounds. Secondary 

metabolite production can be affected by adaptations to marine conditions. Variable 

environmental factors may each time lead to the creation of distinct metabolites from the 

same organism (Pham et al., 2019). Marine monohydroxy sterols present a wider diversity 

than those from terrestrial sources, given a large number of substitutions and rearrangements, 

leading to a vast array of side chains. Some marine microorganisms, namely microalgae and 
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fungus, were shown to change the sterol concentrations to respond to environmental stimuli 

(De Carvalho and Fernandes, 2010).  

The successive drug development process includes the SAR relationship, highlighting 

medicinal chemistry advancement, formulation development, in-vitro, and in-vivo tests in 

animal models (Lindequist, 2016). Marine-derived anticancer drugs have the macrocyclic 

nucleic include four main subclasses according to their structural differences, namely, cyclic 

depsipeptides, diterpenes, macrolides, and macrocyclic alkaloids. The macrocyclic nucleic 

compounds have been reported from different sources, including algae, fungi, mollusks, 

cyanobacteria, sponges and gorgonians (Althagbi et al., 2020). The unprecedented skeletons 

of macrocyclic nucleic and structural complexity have an important role in the potency of 

their bioactivities. This has enhanced the discovery of anticancer drugs such as trabectedin, 

which is a tetrahydroisoquinoline alkaloidal derivative that the FDA has approved as an 

anticancer drug (Pereira et al., 2019). The structurally-related minor-groove alkylators 

trabectedin and lurbinectedin share a complex pleiotropic anticancer mechanism, affecting 

the tumor cells and the tumor microenvironment. Differing from conventional alkylators, 

both agents bind to the exocyclic amino group of guanines, with preference for guanine-

cytosine-rich triplets of the DNA minor groove, causing an atypical bending toward the 

major groove (Jimenez et al., 2020). Consequently, a cascade of synergistic events is 

catalyzed, leading to an arrest of proliferation, differentiation, and cell death. In addition to 

the binding moiety, another subunit protrudes from the DNA backbone, interacting directly 

and indirectly with different DNA-binding proteins, such as transcription factors or DNA 

repair proteins (X. Yang et al., 2019). 

The effective translation of MNPs into commercial pharmaceuticals highlights MNPs' 

potential as viable leads for therapeutic agent development. However, whatever the use of the 

molecule (drug, cosmetic, etc.), several grams to hundreds of grams are required for 
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preclinical research, multiple kilograms are necessary for clinical phases, and tones are 

required for cosmetic applications (Liang et al., 2019). The highest concentrations of toxic or 

deterring sponge metabolites are found in ecosystems such as coral reefs, which are 

characterized by intense competition and feeding pressure. This difficulty can be made 

considerably more difficult in the case of tissues from marine invertebrates, which present 

specific extraction-related issues due to their high water and salt content (Chen, 2021). In 

general, marine microorganisms such as cyanobacteria, algae, and fungus were acceptable for 

cultivation; nevertheless, the chemical of interest may need to be isolated and purified from 

specimens collected in the marine environment is challenging (Rotter et al., 2021). These 

limits result in the loss of a significant amount of accessible marine biodiversity and 

represent a significant bottleneck in the long-term supply of the required natural chemical. 

The total synthesis, especially large-scale synthesis of complex MNPs, has provided plentiful 

material supply and valid chemistry evidence for a thorough biological investigation to 

promote the MNP research. For instance, the large-scale total synthesis of largazole, a class I 

histone deacetylase inhibitor found in marine cyanobacteria Caldora penicillata, was 

established, and the target compound's decagrams were obtained final product in 21% overall 

yield over eight steps (Chen et al., 2018). Apart from the approaches mentioned above, 

fermentation is also applied to provide MNP supply for scientific research and clinical 

investigations. Although the proteasome inhibitor salinosporamide A has been synthesized, 

its ongoing clinical investigations mainly rely on large-scale saline fermentation for 

continuous supply. Mohinudeen et al., 2021  produced higher yields produced camptothecin 

of up to 426.7µg/g and 403.3 µg/g dry weights from Alternaria alstroemeriae (NCIM1408) 

and Alternaria burnsii (NCIM1409), respectively, using a simple laboratory fermentation 

process. In a jar fermentation procedure, wild-type Streptomyces sp. in the batch technique 

produced 205 mg of piceatannol from 342 mg of resveratrol in 20 h (Roh and Kang, 2014). 
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5. Mechanism of action of marine microorganisms-derived anticancer therapeutics 

In response to anticancer treatments, apoptosis is an effective cell death process as a form of 

cellular signaling/metabolism (Beesoo et al., 2014). Cell death is vital for growth, 

physiology, and homeostasis. Since apoptosis typically does not induce an allergic or 

immune reaction, apoptotic cancer cell death is desirable for treating cancer. This apoptotic 

pathway regulation and selective apoptosis activation with the natural compound are usually 

the more effective route to cancer therapy (Mudit and El Sayed, 2016). The induction of 

apoptosis caused by the numerous activating caspases, a group of enzymes that functions as 

cell damage-trigger compounds in many modes of apoptosis, may be extrinsic or intrinsic 

(Fig 7). 

 

Fig 7. Extrinsic and intrinsic mechanism of apoptosis. The receptor-mediated-extrinsic or 

mitochondria-mediated-intrinsic signaling pathways can trigger apoptotic cell death in 

cancer. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

 

5.1. Extrinsic pathway 

The extrinsic mechanism of apoptotic cell death is triggered on the cell surface by the 

binding of a particular ligand to its associated cell membrane negative regulator. Death 

receptors (e.g., Tumor necrosis factor receptor [TNFR], TNF-related apoptosis-inducing 

ligand [TRAIL] receptor, and Fas) belong to the TNFR super family (Wajant and Siegmund, 

2019). Upon binding of a ligand (e.g., TNF, TRAIL, and FasL, sequentially), the death 

receptors aggregate in plasma mucosa and enable adapter protein recruiting (Schneider-

Brachert et al., 2013). Caspase 8 Zymogen can link with the adapter proteins (e.g., FADD 

and RIP1) to create the active component of Caspase 8 to activate the downstream action of 

Caspase 3, which cuts the protein function that leads to apoptosis (Salvesen and Walsh, 

2014). 

5.2. Intrinsic pathway 

The intrinsic death impulses, e.g., reactive oxygen (ROS), DNA damaging reactive, and Ca
2+

 

mobilizing stimuli, stimulate the mitochondrial pathway directly or indirectly, leading to 

cytochrome C release and the production of the apoptosome complex containing cytochrome 

C, Apaf-1 and caspase-9 (Pistritto et al., 2016). The pro-apoptotic protein Bid assists like a 

cross-talker in binding the receptor and the mitochondrial signaling pathways after cleavage 

by caspase-8 activation through triggering the migration of Bax and Bak, the pro-apoptotic 

proteins, to promote permeabilization of the outer mitochondrial membrane. Therefore, Bid 

binds the receptor to the mitochondrial pathway and can activate its caspase proteolytic 

processing, leading to a mitochondrial amplification loop (Baig et al., 2016). Bcl-2 inhibition 

of Bax activation becomes a successful technique to activate an apoptotic mechanism (Naseri 

et al., 2015). Furthermore, caspases are involved in both intrinsic and extrinsic apoptosis 

pathways, so identifying caspase activators develops a new pathway towards discovering 

novel anticancer agents. 
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The signaling mechanism through PI3K/AKT (phosphatidylinositol 3- kinase / threonine-

specific) plays a crucial part in several cellular activities. It prevents the PI3K/AKT signaling 

pathway has becoming an efficient technique for cancer therapy targeting (J. Yang et al., 

2019). In addition, numerous drugs, for example, Apratoxin A, GV-c9, and GV-c1, LS-1, 

SD, have established critical anticancer features by hindering the JAK/STAT innate immune 

signaling pathway (Saeed et al., 2021). Therefore, bioactive natural aquatic products may 

have novel medicinal uses in preventing or treating cancer by modulating and enhancing 

physiological functions. A successful way to formulate newer anticancer agents is to isolate 

or produce these compounds, which attack several genes regulating apoptosis. Through 

various pathways, a large number of naturally occurring marine products with antitumor 

activity and that cause apoptosis have been identified over the past 20 years; apoptosis which 

of specific importance to us. Because of the presence of many extensive marine compounds, 

only MNPs and their synthesis variants that are in either clinical trials or successful test drugs 

that have influenced apoptotic pathways in tumour cells will be the priority of the research 

study. 

6. Prospects of anticancer agents derived from marine sources 

One of the most effective treatment strategies for cancer involves targeting various cellular 

signaling transduction pathways implicated in tumorigenesis. Some regulators of such 

mechanisms recently emerged and further research has been performed on marine organisms 

to balance tumor growth progression and diminish carcinogenesis. Modern anticancer drug 

research searches for potent cytotoxic compounds with improved performance, efficiency, 

and specificity (Malve, 2016). By the estimation available, promising anticancer molecules 

of marine origin are divided into various groups of chemicals, most of which are terpenes 

(40.5%), peptides (19%), macrolides (14.3%), and alkaloids (12%). In these, 50 % are 

considered anticancer agents for the first time. The bulk compounds found in vegetables and 
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berries are chemotherapeutic (92.7%), nutraceuticals (7.3 %) (Florean et al., 2020). The 

molecular mechanisms implicated in the anticancer effects of compounds under investigation 

are primarily cell cycle arrest by inhibiting the action of tubulin and various activation 

mechanisms of caspases 3, 8, 7, and 9 that induce apoptosis (Boice and Bouchier-Hayes, 

2020), mitochondrial membrane potential depolarization (Aminzadeh-Gohari et al., 2020), 

Bcl xL, Bax and polymerase cleavages (ADP ribose). Anti-migratory effect by inhibitory 

behavior in specific, transient receptor potential cation membrane (TRPM -7) channels 

(Sarwar et al., 2018). Anti-angiogenic properties by restraining the secretion of vascular 

Endothelial Grown Factor A; anti-inflammatory function by suppressing the expression of 

COX 2 and iNOS (Alves et al., 2018b). The ability to classify active moieties of marine 

resources for targeted cancer therapy is not yet particularly effective due to the large ability 

of resources for potent therapeutic products. 

The discovery and development of novel therapeutics from natural products (NPs) have 

played an important role in the past few decades. NPs are responsible for around 28% of new 

chemical entities and 42% of anticancer drugs that have been introduced to the market. In 

addition to plants and animals, microorganisms are valuable for innovative drug development 

(Alves et al., 2018a). More than 50,000 microbial natural products (MNPs) have been 

obtained, and they have played an important role in the creation of medicines. The majority 

of these have been found in terrestrial microbes. Over 15,000 structurally distinct MMPs 

with a bewildering diversity of bioactivities have been found in marine settings since the 

1970s (Rotter et al., 2021). Over the last two decades, more than 18,000 new marine 

compounds were described and the approval of more than 300 patents (Saeed et al., 2021). 

The FDA has approved six marine-derived therapeutics that are now being used in clinical 

applications, as well as one over-the-counter drug (OTC) (Alves et al., 2018a). However, 

with 28 marine or marine-derived pharmaceuticals currently in clinical trials (Table 4), it is 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

 

projected that the number of newly approved drugs from the sea will continue to rise (Khalifa 

et al., 2019). The nanobiotechnological sector is seeing an increase in the use of 

nanomaterials for the development of cancer drugs. MNPs could be a source of anticancer 

medication delivery systems. Nanoformulations are linked to a wide range of nanoparticles, 

and their polymerized structures are becoming a popular method for generating specialized 

cancer medicines (Bajpai et al., 2018). 

Table 4: Marine-derived anticancer drugs approved or in clinical trials 

Drug Source (marine 

organism) 

Treatment Progress status Reference 

Brentuximab 

vedotin 

Cyanobacteria 

Dollabella 

auricularia 

Hodgkin lymphoma 

and chronic large cell 

anaplastic 

lymphoma 

FDA 

approved in 

2018 

Saeed et 

al., (2021) 

Cytarabine,  Sponge 

Cryptotheca crypta 

Acute 

nonlymphoblastic 

leukemia 

FDA 

approved in 

2017 

Saeed et 

al., (2021) 

Eribulin 

mesylate 

Sponge 

Halichondria 

okadai 

Metastasized breast 

cancer 

FDA 

approved in 

2016 

Saeed et 

al., (2021) 

Trabectedin 

(Yondelis®) 

Caribbean tunicate 

Ecteinascidia 

turbinata 

Ovarian cancer; soft 

tissue sarcoma 

FDA 

approved in 

2015 

Saeed et 

al., (2021) 

Depatuxizumab 

mafodotin 

 

Cyanobacterium 

Caldora penicillata 

Adenocarcinoma and 

advanced solid tumors 

Phase III Pereira et 

al., (2019) 

Enfortumab 

 

Cyanobacterium 

Caldora penicillata 

Progressive 

urothelial cancers 

Phase III Pereira et 

al., (2019) 

Lurbinectedin 

 

Tunicate 

Ecteinascidia 

turbinata 

Ovarian 

cancer and small cell 

lung cancer 

Phase III Ning et al., 

2018 

Marizomib Actinomycete Multiple myeloma Phase III Saeed et 
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Salinispora tropica and 

glioblastoma 

al., (2021) 

Plinabulin Marine fungus 

Aspergillus sp. 

Neutropenia and 

Non-small cell lung 

cancer 

Phase III Saeed et 

al., (2021) 

Polatuzumab 

 

Cyanobacterium 

Caldora penicillata 

Diffuse large B cell 

lymphoma 

Phase III Saeed et 

al., (2021) 

Enzastaurin Bacterium 

Streptomyces 

staurosporeus 

Diffuse large B cell 

lymphoma; 

glioblastoma 

Phase III Saeed et 

al., (2021) 

Aplidine, 

plitidepsin 

 

Tunicate Aplidium 

alpicans 

Multiple myeloma; 

precursor cell 

lymphoblastic 

leukemia-lymphoma 

Phase II Wang et 

al., (2020) 

Ladiratuzumab 

vedotin 

Cyanobacterium 

Caldora penicillata 

Breast cancer Phase II Wang et 

al., (2020) 

PM060184 Sponge 

Lithoplocamia 

lithistoides 

Breast cancer; 

colorectal cancer 

Phase II Wang et 

al., (2020) 

Indusatumab Cyanobacterium 

Caldora penicillata 

Colorectal cancer; 

gastrointestinal cancer 

Phase II Wang et 

al., (2020) 

Glembatumumab Cyanobacterium 

Caldora penicillata 

Brain cancer; Breast 

cancer; malignant 

melanoma; 

Phase II Pereira et 

al., (2019) 

Midostaurin 

 

Bacterium 

Streptomyces 

staurosporeus 

Acute myeloid 

leukemia; systemic 

mastocytosis 

Phase I Wang et 

al., (2020) 

Elisidepsin 

 

Mollusc Elysia 

rufescens 

Gastric cancer; 

nonsmall 

cell lung cancer 

Phase I 

(suspends) 

Wang et 

al., (2020) 

Pinatuzumab Cyanobacterium 

Caldora penicillata 

Chronic lymphocytic 

leukemia; diffuse 

large 

Phase I 

(discontinued) 

Pereira et 

al., (2019) 
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B cell lymphoma; 

nHL 

Lifastuzumab 

 

Cyanobacterium 

Caldora penicillata 

Fallopian tube cancer; 

non-small cell lung 

cancer; ovarian 

cancer; 

peritoneal cancer 

Phase I 

(discontinued) 

Newman 

and Cragg, 

(2020) 

Vandortuzumab 

 

Cyanobacterium 

Caldora penicillata 

Prostate cancer Phase I 

(discontinued) 

Newman 

and Cragg, 

(2020) 

 

In addition, Principe and Fisher recently evaluated a database of information on 298 

pharmaceutical compounds derived from marine biota over the last 50 years. The products 

were created from 1,296 collections of specimens from 69 countries and all 7 continents, 

representing 232 different marine species belonging to 15 phyla. An analysis of the spatial 

distribution of sample collection locations yields a map showing where and when specimens 

with MNPs with pharmacological potential (for which clinical data is available) were 

gathered. The study's purpose was to find sites that provide MNPs with proven or potential 

usefulness rather than to have a representative sampling of chemical structures or geographic 

regions. This allowed researchers to identify the species from which the MNPs were 

separated and the locations where the specimens yielding those MNPs were gathered. Data 

from 1,296 specimen collections encompassed 298 MNPs (including 16 FDA-approved 

medications, 55 compounds under clinical development, 51 compounds in the preclinical 

investigation, and 176 lead compounds or probes) (Ntie-Kang and Svozil, 2020). 
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Fig. 8: (a) Pie chart illustrating comprehensive marine and terrestrial sources, 

(b) Pie chart illustrating the collected sources of marine natural products used as 

bioactive research products that are available commercially for their useful 

pharmacological properties in biomedical research (121 total). 

Fig 8 represents the recent comprehensive marine and terrestrial sources, commercially 

bioactive products for their useful pharmacological properties in biomedical research. 

7. Conclusion 

As mentioned in brief, the marine environment has marvelous productive environment 

wherein new potential medicines are being hunted, particularly with new anticancer agents. It 

suggests that the incredible progress in developing new anticancer treatments has an 

extremely efficient marine ecosystem. It suggests that the extremely efficient nature of the 

marine ecosystem is responsible for this incredible progress in developing new anticancer 

treatments. However, it has the purpose of chemical defense from predation, overgrowth, or 

other types of competitive interactions. Thus, the exciting adage is that the difference 

between pharmaceutical products and toxins is a matter of dosages in this case. In addition, 

numerous marine drugs have established critical anticancer attributes by an extrinsic 

mechanism of apoptotic cell death via triggering death receptor pathway (TNFR, TRAIL, and 
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Fas) and the intrinsic or mitochondrial pathway (Caspase proteolytic processing, Bcl-2 

inhibition Bax activation). The PI3K/AKT signaling pathway has also proven to be an 

effective strategy for therapeutic cancer targeting. For instance, meroterpene class anticancer 

drugs induce cell cycle apoptosis by inhibiting the ERK/JNK/AKT signaling pathways. 

Heteronemin affects cellular processes as well as apoptotic cell death via the TNFα-induced 

NF-κB cascade due to proteasome suppression. A further conclusion of this study is a high 

level of multidisciplinary and innovative activity that impregnates this research field. This 

eventually makes scientific research more exciting; it also encourages creativity and 

discovers new values and developments. The remarkable feature of these innovations has 

been born from one field and freshly and spontaneously introduced to another. Consequently, 

creating the MS2 molecular data networks can only be one of the milestones in pursuing 

marine microbes for their medicinal properties. 
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Graphical abstract 

 

 

Highlights 
 Marine-derived secondary metabolites reported having potent anticancer activity. 

 Marine microorganisms are a prime source of novel anticancer drugs.  

 The molecular targets of marine-derived cytotoxic compounds have been identified.  

 Metabolites of marine origin are an example of important producers with therapeutic 

potential. 
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