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Proteogenomic analyses of hepatocellular carcinomas (HCC) have focused on early-stage,

HBV-associated HCCs. Here we present an integrated proteogenomic analysis of HCCs

across clinical stages and etiologies. Pathways related to cell cycle, transcriptional and

translational control, signaling transduction, and metabolism are dysregulated and differen-

tially regulated on the genomic, transcriptomic, proteomic and phosphoproteomic levels. We

describe candidate copy number-driven driver genes involved in epithelial-to-mesenchymal

transition, the Wnt-β-catenin, AKT/mTOR and Notch pathways, cell cycle and DNA damage

regulation. The targetable aurora kinase A and CDKs are upregulated. CTNNB1 and TP53

mutations are associated with altered protein phosphorylation related to actin filament

organization and lipid metabolism, respectively. Integrative proteogenomic clusters show that

HCC constitutes heterogeneous subgroups with distinct regulation of biological processes,

metabolic reprogramming and kinase activation. Our study provides a comprehensive

overview of the proteomic and phophoproteomic landscapes of HCCs, revealing the major

pathways altered in the (phospho)proteome.
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Liver cancer, of which 75–85% are hepatocellular carcinoma
(HCC), caused 782,000 deaths globally in 20181. Genomic
analyses have revealed that TERT promoter, CTNNB1

(encoding β-catenin) and TP53 (encoding p53) are frequently
mutated in HCC, while genes involved in other critical processes,
such as oxidative stress response, chromatin remodeling and
hepatocyte differentiation, are recurrently mutated but in <10% of
HCC2–4. Transcriptomic subtyping has revealed HCC subclasses
that differ in the expression of genes related to proliferation,
stemness, metabolism, hepatocyte differentiation and liver
function5–10. More recently, three mass spectrometry-based
proteogenomic studies of hepatitis B virus (HBV)-associated
HCCs have been published11–13. In the first study, the proteome
profiling of early-stage HBV-associated HCCs found that a subset
of HCCs characterized by disrupted cholesterol homeostasis and
SOAT1 overexpression was associated with poor outcome11.
Indeed, avasimibe, a SOAT1 inhibitor, effectively reduced the size
of tumors overexpressing SOAT1 in patient-derived xenograft
models11. In the second study, integrated proteogenomic analysis
of HBV-related HCC12 revealed three proteome subclasses,
namely metabolism, proliferation and microenvironment dysre-
gulated subgroups, that were associated with patient survival,
tumor thrombus and genetic profile. PYCR2 and ADH1A, both
implicated in metabolic reprogramming in HCC, were further
identified as proteomic prognostic biomarkers. In the third study,
the authors found significant intratumor heterogeneity on the
genome and transcriptome levels but patient specificity on the
proteome and metabolome levels among resected and pre-
dominantly early-stage and HBV-associated HCCs13. While these
studies have provided great insights into the proteome of HCCs
that are primarily early-stage and HBV-associated, relatively little
of their phosphoproteome was described. In this work, we present
an integrated (phospho)proteogenomic analysis of HCC biopsies
across etiologies and clinical stages, representative of the wide
spectrum of molecular heterogeneity of HCC. We show that HCC
are underpinned by the dysregulation of oncogenic processes
related to transcriptional and translational control, metabolism,
the Wnt-β-catenin, AKT/mTOR and Notch pathways, which are
differentially regulated on the genomic, transcriptomic, pro-
teomic and phosphoproteomic levels.

Results
Proteogenomic profiling of HCC. We collected biopsies from 122
tumors from 114 patients, including seven patients with >1 mul-
ticentric (genetically independent) tumors (Table 1, Supplementary
Data 1 and Supplementary Fig. 1). 94% of the patients had at least
one underlying liver disease, primarily alcohol liver disease (59%)
and/or hepatitis C infection (26%). 53% of the patients were early
stage (BCLC 0/A) and 47% were more advanced stage (BCLC B/C/
D). None of the patients had undergone systemic therapy for their
disease. We performed whole-exome sequencing and RNA-
sequencing for all 122 tumors and global proteome and phos-
phoproteome profiling using liquid chromatography-tandem MS
analyses on a subset of 51 tumors (Table 1, Supplementary Figs. 2
and 3 and Supplementary Data 1). The proteome was measured in
data-independent manner by selected window acquisition of the-
oretical mass (SWATH)14,15 and the phosphoproteome was mea-
sured in data-dependent and label-free manner. The subset of 51
tumors subjected to proteome and phosphoproteome profiling was
representative of the entire cohort in terms of clinicopathological
parameters and molecular profiles (Table 1 and Supplementary
Fig. 4). As controls, we also performed RNA-sequencing, proteome
and phosphoproteome profiling on 15, 11 and 10 normal biopsies
from individuals without HCC and with normal liver values,
respectively (Supplementary Data 1).

Deregulated pathways in HCC. Principal component analyses
showed that HCCs are distinct from and more variable than
normal livers on the transcriptome, proteome and phosphopro-
teome levels (Fig. 1a–c). HCCs did not segregate according to
their underlying liver diseases (Supplementary Fig. 5). Across all
molecular levels, low-grade HCCs were more homogeneous than
high-grade HCCs as measured by intra-group variability
(Spearman rho between 0.26 and 0.37, all p < 0.0001, Fig. 1d). In
accordance with the definition of histological (Edmondson)
grading, we also found that low-grade HCCs were more similar to
normal livers than high-grade HCCs (Spearman rho between 0.51
and 0.66, all p < 0.0001, Fig. 1e). These observations were corro-
borated by an analysis of The Cancer Genome Atlas data (Sup-
plementary Fig. 6).

To identify pathways deregulated in HCC, we performed
differential expression analyses of the HCC transcriptome and
proteome compared to normal livers. We observed a moderate
correlation between the deregulation of the transcriptome and the
proteome (Spearman rho = 0.33, p < 0.0001, Fig. 1f). A quadrant
analysis of transcriptome and proteome data showed that 37.7%
(15.7% for adjusted p ≤ 0.05) of genes were up-regulated on both
the mRNA and the protein levels, 20.9% (6.2%) were up-regulated
on the mRNA level but down-regulated on the protein level,
16.6% (5.4%) were upregulated in protein but down-regulated on
the mRNA level, and 24.8% (13.6%) were downregulated in both.
Pathway analysis of these four quadrants revealed that the genes/
proteins up-regulated on both the mRNA and the protein levels
were enriched in pathways related to mRNA splicing, epigenetic
regulation of rRNA expression and translation (Fig. 1f and
Supplementary Data 2). By contrast, genes/proteins consistently
down-regulated were enriched in metabolism pathways of amino
acids, fatty acids, and other metabolites. Among genes up-
regulated only on the mRNA level, pathways related to
translational control, proteasome and oxidative phosphorylation
were enriched. By contrast, pathways related to the complement
and coagulation were enriched among proteins upregulated only
on the protein level.

Previous proteogenomic studies focused on surgically resected
HBV-associated or early-stage HCCs2,11,12, we therefore asked
whether early and late-stage HCC would show different
molecular characteristics. We observed no difference in terms
of the frequency of mutated genes (Supplementary Fig. 7). On the
transcriptomic and proteomic levels, high-stage HCCs over-
express genes and proteins related to cell cycle and mitosis, DNA
repair and replication, transcriptional regulation (Supplementary
Data 3). On the other hand, high-stage HCCs underexpress genes
related to ECM formation and organization on the mRNA level
and metabolism of fatty acids on the protein level.

Taken together, while we observed overall upregulation of
pathways related to mRNA splicing and downregulation of
pathways related to normal liver function, we also observed
translational control-related pathways being upregulated on the
mRNA level only, and pathways related to coagulation and the
complement upregulated on the protein level only.

CNA-mRNA-protein correlation analysis identifies candidate
driver genes. Next, we evaluated the correlation between copy
number alteration (CNA), mRNA expression and protein
expression. The median CNA-mRNA and mRNA-protein
Spearman correlation coefficients were 0.203 and 0.287, respec-
tively (Fig. 2a, b). We similarly observed a higher fraction of genes
with significantly positive (Spearman rho >0.3) mRNA-protein
correlation than for CNA-mRNA correlation (45.1% vs 32.0%),
with the latter higher than previously reported13. Gene set
enrichment analysis of CNA-mRNA and mRNA-protein
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correlation revealed 275 and 45 Reactome pathways, with only
one (protein localization) enriched in both analyses. The path-
ways enriched among genes with high CNA-mRNA correlation
include RNA transport, ubiquitination and proteasome degra-
dation, transcriptional regulation by TP53, translation, cell cycle
and DNA repair, and cellular response to stress (Fig. 2c and
Supplementary Data 4). By contrast, genes with high mRNA-
protein correlation are enriched in pathways related to the
metabolism of amino acids, glucose, fatty acids, and xenobiotics
(Fig. 2c and Supplementary Data 4).

Genome-wide copy number analysis by GISTIC2 identified 8
recurrently amplified peaks and 11 recurrently deleted peaks
(Supplementary Fig. 8 and Supplementary Data 4), 5 of which
were enriched among genes with high CNA-mRNA correlation

but none was enriched among genes with high mRNA-protein
correlation (Fig. 2d and Supplementary Data 5). One could
hypothesize that HCC driver genes would be overrepresented
among cis-copy number-regulated genes (i.e. the CNA impacts its
own expression) that also show high mRNA-protein correlation.
To identify such candidate driver genes, we focused on the 136
genes that showed high CNA-mRNA and mRNA-protein
correlation (Spearman rho>0.5) and specifically on the 29 within
the 5 enriched GISTIC2 regions, which were gained or lost in
27–61% of the cohort (Fig. 2d inset and Supplementary Data 4
and 5). We further narrowed down this list of 29 genes to those
that were dysregulated in the expected orientation (i.e. upregu-
lated in amplified regions and downregulated in deleted regions
with respect to normal tissues, FDR < 0.05). Of these 29, 19 were

Table 1 Summary of clinicopathological information of the cohort.

Cohort with genomic
and transcriptomic
data (122 biopsies
from 114 patients)

Cohort with genomic,
transcriptomic, proteomic
and phosphoproteomic
data (51 biopsies from 49
patients)

Comparison
between biopsies
with (n= 51) and
without (n= 71)
complete molecular
profiling

n (%) n (%)

Sex (n= 114, 49) Male 97 85% 41 84% ns
Female 17 15% 8 16%

Age at classification (n= 114, 49) (median, range) 69 (18–87) 66 (18–84) ns
BCLC (n= 115, 49)a 0 4 3% 1 2% ns

A 57 50% 25 51%
B 27 23% 14 29%
C 24 21% 7 14%
D 3 3% 2 4%

Number of tumors (n= 115, 49)a 1 53 46% 24 49% ns
2 20 17% 7 14%
3 6 5% 3 6%
4 1 1% 0 0%
5 1 1% 0 0%
multinodular 34 30% 15 31%

Macrovascular invasion (n= 115, 49)a yes 17 15% 5 10% ns
no 98 85% 44 90%

Metastasis (n= 115, 49)a yes 11 10% 3 6% ns
no 104 90% 46 94%

Child-Pugh (n= 115, 49)a A 69 60% 26 53% ns
B 40 35% 18 37%
C 3 3% 2 4%
(na/nd) 3 3% 3 6%

MELD (n= 115, 49)a (median, range) 9 (5–25) 9 (6–24) ns
(na/nd) 2 2% 2 4%

Cirrhosis (n= 115, 49)a yes 83 72% 35 71% ns
no 32 28% 14 29%

Underlying liver disease (n= 115, 49)a,b Hepatitis B 13 11% 7 14% ns
Hepatitis C 30 26% 18 37% p= 0.04
Alcoholic liver disease 68 59% 25 51% ns
Non-alcoholic fatty liver disease 19 17% 9 18% ns
No liver disease 7 6% 2 4% ns

Edmondson grade (n= 122, 51) 1 7 6% 5 10% ns
2 66 54% 25 49%
3 41 34% 16 31%
4 8 7% 5 10%

Immunophenotype (n= 122, 51) Inflammed 37 30% 13 25% ns
Immune-excluded 43 35% 21 41%
Immune-desert 38 31% 14 27%
(na/nd) 4 3% 3 6%

Statistical comparisons were performed using Fisher’s exact tests (for categorical data with two levels), Chi-squared tests (for categorical data with >2 levels), and two-sided Mann–Whitney U tests (for
numerical and ordinal data).
BCLC Barcelona Clinic Liver Cancer clinical staging system, MELD model for end-stage liver disease, na not available, nd not determined; ns not significant.
aDetermined at the time of biopsy. One patient was biopsied twice seven years apart.
bPatient may have >1 underlying liver disease.
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dysregulated on the mRNA level, 11 were dysregulated on the
protein level, and 9 were dysregulated on both levels (ATP6V1C1,
BYSL, CHD1L, NUDCD1, LRRC47, RRM2B, UBQLN4, XPO5,
YWHAZ). Among this group of genes were known cancer genes
such as CHD1L (Chromodomain Helicase DNA Binding Protein
1 Like, 1q21.3 peak)16 and YWHAZ (14-3-3 zeta, 8q22.2)17,18

(Fig. 2d inset).

There were other candidate copy number-driven cancer genes
implicated in oncogenesis (Fig. 2d inset and Supplementary
Data 5). For example, NUDCD1 (NudC domain containing 1, or
OVA66, 8q22.2) has been shown to promote colorectal
carcinogenesis and metastasis by inducing epithelial-to-
mesenchymal transition (EMT) and inhibiting apoptosis19 and
to promote oncogenic transformation by hyperactivating the
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PI3K/AKT, ERK1/2-MAPK and IGF-1R-MAPK signaling
pathways20,21. UBQLN4 (Ubiquilin-4, 1q21.3) was shown to
regulate Wnt-β-catenin pathway activation in HCC cells22 and is
associated with genomic instability and aggressive tumors23.
BYSL (Bystin Like, 6p21.1), a direct cMYC target24, is required for
nucleologenesis in HCC cell proliferation and its inhibition
induces apoptosis, partially arrests the cell cycle and inhibits
tumor formation in mouse xenografts25. BYSL also reportedly
promotes glioma/glioblastoma growth via the GSK-3β/β-catenin
and AKT/mTOR pathways26,27.

Of note, there are genes with poorly characterized or
controversial roles in HCC tumorigenesis among those that
showed strong CNA-mRNA and mRNA-protein correlation.
ATP6V1C1 (ATPase H+ Transporting V1 Subunit C1, 8q22.3) is
a member of the vacuolar ATPases (V-ATPases) family of proton
pumps with roles in Wnt/β-catenin, Notch, and mTOR signaling,
as well as in the regulation of cell invasion, migration and
metastasis28. The subunit V1C (encoded by ATP6V1C1) is, in
particular, upregulated in oral cancer, and its silencing impairs
breast cancer growth and metastasis29 but its role in HCC
carcinogenesis is unclear. RRM2B (Ribonucleotide Reductase
Regulatory TP53 Inducible Subunit M2B, or p53R2, 8q22.3) is a
p53 target and a regulator of DNA damage and replication stress30.
RRM2B was reported to be downregulated in HCC and to inhibit
cell migration and spreading through the Egr-1/PTEN/Akt1
pathway31. Yet its frequent amplification and overexpression in
HCC and other cancers suggests it may promote oncogenesis32,33,
specifically in hypoxic conditions34. The role of these genes/
proteins in HCC may warrant further investigation.

Taken together, our analysis of the CNA-mRNA and mRNA-
protein expression correlations showed distinct pathways being
regulated on different levels and identified potential HCC
driver genes.

Dysregulated phosphorylation in HCC. Next, we investigated
the protein phosphorylation landscape in HCC. Given that pro-
tein phosphorylation may be highly driven by the protein
expression rather than changes in phosphorylation, we investi-
gated dysregulated phosphorylation sites with and without nor-
malization by overall protein levels. Differential expression
analyses revealed 692 and 648 hyper- and hypophosphorylated
sites, respectively, and 302 and 355 normalized (by overall protein
levels) hyper- and hypophosphorylated sites compared to normal
livers (adjusted p ≤ 0.05 and |log2 fold-change| > 1, Fig. 3a, Sup-
plementary Fig. 9 and Supplementary Data 6). Pathway enrich-
ment analysis revealed that the hyperphosphorylated sites are in
proteins involved in cell cycle, mRNA splicing, the immune
system, cancer-related signaling pathways such as receptor
tyrosine kinases and MAP kinase and regulation by PTEN and
p53 (Fig. 3b, Supplementary Fig. 9 and Supplementary Data 7).
Signaling by AKT, FGFR, VEGF, TGFβ are also enriched

among the hyperphosphorylated proteins, though not always
statistically significant in the analyses of both normalized and
unnormalized phosphorylation levels. Among the hypopho-
sphorylated sites, histone modification-related processes were
enriched. Interestingly, pathways related to metabolism of amino
acids, carbohydrates, lipids were enriched among the overall
hypophosphorylated sites but also the normalized hyperpho-
sphorylated sites. By contrast, proteins involved in cellular
senescence and chromatin organization showed the opposite
trend, with enrichment of overall hyperphosphorylated sites but
normalized hypophosphorylated sites. While base excision repair
and DNA double-strand break repair were enriched among both
hypophosphorylated sites, nucleotide excision repair was enri-
ched among the hyperphosphorylated sites (Fig. 3b, Supple-
mentary Fig. 9 and Supplementary Data 7).

To infer the activation of kinases in HCC, we performed a
Kinase-Substrate Enrichment Analysis (KSEA)35. KSEA revealed
that Aurora kinase A (AURKA), Cyclin-dependent kinases 1/2/5/
7 (CDK1/2/5/7), ERK1/2 (MAPK1/3) and PLK1 showed increased
activation compared to normal livers, while PKACA/G
(PRKACA/G), PKCA/Z (PRKCA/Z) and SGK1 showed reduced
activity (Fig. 3c and Supplementary Data 8). When analyzing
dysregulated phosphorylation normalized by protein level, KSEA
revealed decreased AURKA and increased CDK1/2/5, ERK1/2
and GSK3B activity in HCCs (Supplementary Fig. 9 and
Supplementary Data 8).

Our results show that altered phosphorylation in HCC affects a
wide range of biological processes from cell proliferation and
DNA repair to immune system and signal transduction pathways.

Proteogenomic analysis of significantly mutated genes. Using
whole-exome sequencing, we identified 24,488 somatic mutations
(23,660 single nucleotide variants and 828 small insertions
and deletions) across the 122 tumor biopsies (Supplementary
Fig. 10 and Supplementary Data 9). Using MutSigCV36 and
OncodriveFML37, we identified 7 significantly mutated genes
(SMGs, Supplementary Fig. 10). While ALB, ARID1A, AXIN1,
CDKN1A, CTNNB1 and TP53 had previously been identified as
SMGs in several genomic studies3,38–40, GPAM was only identi-
fied in a meta-analysis41 (1.8% vs 7.4% in the current study,
Fisher’s exact test, p= 0.001). Here we found seven of the nine
GPAM mutations were frameshift mutations, strongly suggestive
of a tumor suppressor role (Supplementary Fig. 10). This is
corroborated by experiments in HepG2 hepatoblastoma and
Huh7 HCC cell lines that knocking down GPAM significantly
increased cell proliferation (Supplementary Fig. 10).

We evaluated the clinicopathological correlates of the 7 SMGs,
together with 6 additional cancer genes identified from at least 2
previous HCC genomics studies3,36–38 and mutated in ≥3 HCCs
of the current cohort (APOB, ARID2, CDKN2A, KEAP1, RB1 and
TSC2). TP53 and CTNNB1 mutations were mutually exclusive

Fig. 1 Deregulated pathways in HCC. a–c Principal component analysis plots of (a) transcriptome (grade 1 n= 7, grade 2 n= 66, grade 3 n= 41, grade 4
n= 8), b proteome (grade 1 n= 5, grade 2 n= 25, grade 3 n= 16, grade 4 n= 5), c phosphoproteome (grade 1 n= 5, grade 2 n= 25, grade 3 n= 16, grade
4 n= 5) of HCC biopsies (colored by Edmondson grade) and normal liver biopsies. d Intra-group (within Edmondson grade) variability as measured by
pairwise Euclidean distance between samples according to principal components (sample size as in (a–c)). e Distance of each HCC to the median of
normal livers as measured by Euclidean distance according to principal components. d, e Statistical comparisons were performed using Spearman’s
correlation tests. Thick middle line in the boxplot denotes the median; box extends to the 1st and 3rd quartiles; whiskers extend to the ±1.5 IQR of the box;
dots depict the outliers. f Scatter plot of (y-axis) the moderated t-statistics from the differential protein expression analysis of HCC vs normal liver against
(x-axis) the F-statistics from the differential gene expression analysis of HCC vs normal liver. Points are colored according to the four quadrants.
Enrichment maps show the top 10 enriched Reactome pathways from over-representation tests of the genes/proteins in each of the four quadrants. In each
enrichment map, gene sets with overlapping gene sets are joined by edges. Nodes are colored according to p-value, where gray indicates a higher p value
and dark blue/violet/purple/red indicates a lower p value. The size of the nodes is proportional to the number of genes in the quadrant within a given gene
set. Source data are provided as a Source Data file.
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(p= 0.012, Fisher’s exact test)40. While CTNNB1-mutant tumors
were more frequently lower grade (Edmondson grade, p= 0.017)
and were associated with the immune-desert phenotype
(p= 0.039)42,43, TP53-mutant tumors were of higher grade

(p= 0.001) and associated with HBV (p= 0.010, Supplementary
Fig. 10 and Supplementary Data 10). A multivariate Cox-
proportional hazard model suggests that CDKN2A, GPAM,
KEAP1 and TSC2 mutations are associated with poor overall

RRM2B
CPNE3

SQLE
BYSL

PARK7

NUDCD1XPO5

GLO1

LRRC47

CHD1L
PEX11B

PRKAB2

DERL1

PPIL1
HDGF

SF3B4

TARS2

SNX27

CERS2

MTDH

ATP6V1C1

PTDSS1

RER1
FLAD1

ADAR

UBQLN4

LZIC

YWHAZ

NOC2L0.5

0.6

0.7

0.8

0.9

0.5 0.6 0.7 0.8 0.9

1p36.23 Deletion Peak
1q21.3 Amplification Peak
6p21.2 Amplification Peak
8q22.2 Amplification Peak
8q24.13 Amplification Peak

Enriched recurrent CNA regions

a

b

d

cCNA−mRNA expression correlation
# 

ge
ne

s

−1.0 −0.5 0.0 0.5 1.0

0

500

1000

1500

2000 median=0.203

% rho>0: 87.2%
% sig. rho>0: 50.1%
% sig. rho>0.3: 32.0%

mRNA−protein expression correlation

Spearman correlation coefficient

# 
ge

ne
s

−1.0 −0.5 0.0 0.5 1.0

0

100

200

300

400
median=0.287

% rho>0: 86.2%
% sig. rho>0: 45.1%
% sig. rho>0.3: 45.1%

Spearman correlation coefficient

1

44274

Protein localization
Metabolism of nucleotides

Pyruvate metabolism and Citric Acid (TCA) cycle
Metabolism of amino acids and derivatives

Metabolism of vitamins and cofactors
RA biosynthesis pathway

Gluconeogenesis
Biological oxidations

Asparagine N−linked glycosylation
Cellular responses to stress

DNA Repair
Cell Cycle, Mitotic

Deubiquitination
Translation

Transcriptional Regulation by TP53
Antigen processing: Ubiquitination & Proteasome degradation

Transport of Mature Transcript to Cytoplasm

0.0 0.5 1.0 1.5 2.0

NESp.adjust ns

<0.05

# enriched Reactome
pathways

Fig. 2 CNA-mRNA-protein correlation. Histograms of the distributions of the per-gene Spearman correlation coefficients (a) for CNA-mRNA and (b)
mRNA-protein expression. sig.: significant. c Venn diagram of the number of enriched Reactome pathways for genes/proteins ranked by CNA-mRNA
expression correlation (orange) and mRNA-protein expression correlation (blue). Enrichment and statistical significance were defined by gene set
enrichment analysis. Multiple correction was performed using the Benjamini–Hochberg method. Barplot of selected Reactome pathways enriched among
genes with high CNA-mRNA expression correlation (orange) and/or with high mRNA-protein expression correlation (blue). Statistically significant
normalized enrichment scores (NES, p < 0.05) are shown in darker shades (dark orange/blue) while non-significant NESs are shown in lighter shades (light
orange/blue). d Scatterplot of the per-gene Spearman correlation coefficients (y-axis) between mRNA and protein expression against (x-axis) between
CNA and mRNA. Genes in five of the recurrently altered regions as defined by GISTIC2 are colored according to the color key. Inset shows the genes with
>0.5 correlation coefficients in both comparisons. Dysregulated genes (compared to normal livers) on both the mRNA and protein levels are underlined.
Source data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29960-8

6 NATURE COMMUNICATIONS |         (2022) 13:2436 | https://doi.org/10.1038/s41467-022-29960-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


survival independent of BCLC clinical stage (Supplementary
Fig. 10 and Supplementary Data 10). An analysis of the SMGs on
their cognate mRNA and protein products revealed that APOB
and TP53 mutations were associated with lower expression on the

mRNA or the protein levels, while CTNNB1 mutations were
associated with increased expression (Supplementary Fig. 11).

To evaluate the molecular changes associated with CTNNB1
and TP53 mutations, we performed differential expression
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analyses comparing mutant and wild-type HCCs. We identified
3067 differentially expressed genes in CTNNB1-mutant and 3949
in TP53-mutant HCCs, as well as 23 differentially expressed
proteins for CTNNB1-mutant and 399 for TP53-mutant HCCs
(Fig. 4a, e and Supplementary Data 11). No statistically significant
differences were observed on the phosphoproteome level. Of the
23 proteins that were altered in CTNNB1-mutant HCCs, 13 were

also differentially expressed at the mRNA level (Fig. 4a and
Supplementary Data 11). These include glutamine synthetase
(GLUL), α-methylacyl-CoA racemase (AMACR, associated with
CTNNB1 mutations in HCC44), ACSS3 (ACSS3, associated with a
metabolic HCC subclass characterized by frequent CTNNB1
mutations10). By contrast, the remaining ten differentially
expressed proteins were not associated with differential
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transcription. These include TNRC6B (TNRC6B, involved in the
β-catenin-independent Wnt signaling), Protein Kinase C Epsilon
(PRKCE, a β-catenin binding partner45), and PPIE (PPIE, a
spliceosome component that regulates the splicing of the long
non-coding RNA FAST which in turns regulates β-catenin and
Wnt signaling46). The Wnt target genes NKD1, AXIN2, RNF43
and ALDH3A1, whose mRNA expression is typically altered in
CTNNB1-mutant HCCs, are not differentially expressed at the
protein level (Fig. 4a and Supplementary Data 11).

CTNNB1 encodes β-catenin, a protein involved in intercellular
adhesion. In HCC, CTNNB1mutations lead to the accumulation of
cytoplasmic β-catenin and the subsequent aberrant Wnt activation.
We searched for phosphorylations that differ the most between
CTNNB1-mutant and CTNNB1-wild-type HCCs (10% most
extreme p-values from differential expression analysis) but are
not associated with differences on the protein level (interquartile
range of p-value signed according to the direction of differential
expression, Fig. 4b). Pathway analysis showed that 189 such
phosphorylation sites are in proteins involved in actin filament
organization (Fig. 4c and Supplementary Data 12). Among the
hyperphosphorylated sites in CTNNB1-mutant HCCs were Par3-
alpha (encoded by PARD3) S1046 and PDLIM2 (PDLIM2) S197,
while hypophosphorylation was observed in MAP1B (MAP1B)
S541/S937/S1396 and ACF7 (MACF1) S1752. Phosphorylation or
loss of Par3-alpha has been linked to the loss of cell polarity47,48.
Similarly, PDLIM2 phosphorylation leads to its stabilization and
facilitates β-catenin activation49. By contrast, Wnt activation
inactivates GSK3 kinase and causes decreased MAP1B and ACF7
phosphorylation, resulting in increased microtubule stability50 and
migration51,52. Indeed, we observed reduced expression of the
epithelial markers CDH1 (E-cadherin) and KRT19 (Keratin-19) in
the CTNNB1-mutant HCCs, suggesting a loss of the epithelial
phenotype (Supplementary Fig. 12). Moreover, KSEA revealed
that, compared to CTNNB1-wild-type HCCs, CTNNB1-mutant
HCCs showed increased AMPKα2 kinase activity and reduced
activity of CK II alpha, CK II alpha’ and CDK5 (Fig. 4d). Instead,
KSEA of the normalized phosphorylation levels showed increased
activity of FGR, a kinase that contributes to the regulation of
immune response and cytoskeleton remodeling (Fig. 4d).

Similarly, of the 399 differentially expressed proteins between
TP53-mutant and -wild-type HCCs, 238 were differentially
expressed at the mRNA level (Supplementary Data 11). While
stathmin 2 (STMN2) and Nuclear receptor corepressor 1
(NCOR1) were overexpressed at the protein level, they were
underexpressed on the mRNA level (Fig. 4e). By contrast, another
12 were underexpressed on the protein level but overexpressed on
the mRNA level, and these included Centromere Protein F
(CENPF), TACC3 (TACC3) and Kinetochore-associated protein 1
(KNTC1), all involved in the regulation of the mitotic spindle. We
further identified 178 sites whose phosphorylation differed

between TP53-mutant and -wild-type HCCs without differences
on the protein level (Fig. 4f). A pathway analysis of these
phosphorylation sites suggests that TP53 mutations are associated
with phosphorylation changes in proteins involved in the
regulation of lipid and mRNA metabolic processes, and the
regulation of cellular component biogenesis and organization
(Fig. 4g and Supplementary Data 12). In particular, PKR
(EIF2AK2) S83 is an activating autophosphorylation site53. PKR
is involved in diverse cellular processes, including stress response
against pathogens (e.g., HCV) and its activation inhibits protein
synthesis54. HCV infection triggers PKR phosphorylation55,
though here we did not observe an enrichment of HCV-
associated HCCs among the TP53-mutant HCCs (p > 0.05,
Fisher’s exact test). KSEA revealed that TP53-mutant HCCs
showed increased CDK1/2/5 activity (Fig. 4h). Other kinases
involved in the control of cell cycle, mitotic checkpoint and
spindle formation (Aurora Kinase A, TTK, NEK2), protein
synthesis and stress response (PKR), and MAPK signaling
(PRKD2, p38 delta (MAPK13)) also showed increased activity
when comparing overall phosphorylation levels.

Taken together, the proteogenomic analysis suggests that the
loss of epithelial phenotype seen in CTNNB1-mutant HCCs may
result from alterations in phosphorylation of proteins involved in
the organization of actin filaments, thereby regulating cell polarity
and migration, whereas TP53-mutant HCCs are associated with
altered phosphorylation of proteins related to lipid metabolism
and cell cycle control.

Molecular subtypes of HCC. We performed unsupervised ana-
lyses to identify HCC subtypes in each of the 5 individual omics
data sets, namely, somatic mutation, CNA, transcriptome, pro-
teome and phosphoproteome (‘single-omics’) as well as an inte-
grative analysis incorporating all 5 (n= 51 with complete data,
Supplementary Fig. 13). For the single-omics analyses, we iden-
tified 2–4 robust clusters using two independent approaches. The
four somatic mutation subclasses were characterized by muta-
tions in CTNNB1, TP53, or ARID1A or the lack of
CTNNB1/TP53/ARID1A mutations, the two CNA subclasses were
distinguished by the level of genomic instability, while the three
transcriptome subclasses were distinguished by elevated cell cycle
related processes, immune pathways or metabolism (Supple-
mentary Fig. 13 and Supplementary Data 13). Of note, mutation
cluster 3 and transcriptome cluster 1 were associated with high
Edmondson grade. Similarly, the mutation and transcriptome
clusters but not the CNA subclasses were associated with the
Hoshida molecular subtypes6 (Supplementary Fig. 13).

For the proteome and phosphoproteome, in each case two
clusters were identified. Proteome subclass 1 is associated with
ribonucleoprotein organization, and mRNA splicing and
processing, while subclass 2 is associated with metabolism and

Fig. 4 Proteogenomic analysis of SMGs. a Heatmaps showing the expression (z-score-transformed) of (left) 23 proteins differentially expressed between
CTNNB1-mutant and -WT HCCs (FDR < 0.05) and (right) the corresponding gene expression on the mRNA level. Genes with asterisks were also
differentially expressed on the transcriptome level. b Binned scatterplot plotting the signed (according to the direction of the fold change) p values from
differential expression analyses of protein expression (x-axis) and of phosphorylation site expression (y-axis) between CTNNB1-mutant and -WT HCCs.
Phosphorylation sites >99th quantile of the unsigned p-values of the differential phosphoprotein expression analysis and within the inter-quartile range of
the signed p-values of differential protein expression analysis are labeled. c Enrichment map showing the Gene Ontology biological processes enriched
among proteins with phosphorylation sites at >90th quantile of the unsigned p-values of the differential phosphoprotein expression analysis and within the
inter-quartile range of signed p-values of differential protein expression analysis. d Plot showing the kinase-substrate enrichment analyses z-scores ordered
in increasing order, comparing (left) phosphorylation site abundance and (right) phosphorylation site abundance normalized by protein abundance
between CTNNB1-mutant vs -WT HCCs. Significant kinases are labeled. e Small heatmap as (a) of (left) 399 proteins differentially expressed between
TP53-mutant and -WT HCCs (FDR < 0.05) and (right) the corresponding gene expression. Large heatmap showing the subset of 14 proteins/genes for
which the direction of the differential expression differed between the proteomic and transcriptomic signatures. f–h as (b–d) for stratification by TP53
mutation status. Source data are provided as a Source Data file.
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oxidative phosphorylation (Fig. 5a and Supplementary Data 13).
Phosphoproteome subclass 1 is also linked to ribonucleoprotein
assembly and mRNA splicing and processing but also to
chromatin organization and CK II alpha activation. Instead,
phosphoproteome subclass 2 is associated with telomere
maintenance, nucleosome organization, DNA repair, actin
cytoskeleton regulation and PKA C-alpha activation (Fig. 5b
and Supplementary Data 13). The proteome clusters, but not
the phosphoproteome clusters, are associated with Edmondson
grade and the Hoshida molecular subtypes6 (Fig. 5a, b and
Supplementary Fig. 13). In particular, proteome cluster 1 was
enriched for high-grade and high-stage HCCs. Further,
significant association was observed between mutation, tran-
scriptome and proteome clusterings, but not with the
phosphoproteome clusters (Supplementary Fig. 13).

We then asked whether an integrative clustering using all five
omics would provide further insight into the diversity of HCC.
Using the iCluster method56, we defined three robust clusters
(Fig. 5c), which are largely recapitulated using the algorithmically

distinct similarity network fusion (SNF) approach57 (Supplemen-
tary Fig. 13). To investigate how the three clusters differ from
each other, we compared them on the individual molecular levels
(Supplementary Data 14). In cluster 1, we observed an
enrichment of genes involved in ECM organization, angiogenesis
and amino acid metabolism on the mRNA level and amino acid
metabolism on the protein level. In cluster 2, pathways related to
fatty acid, amino acid and small molecule metabolism were
enriched on both the mRNA and protein levels. In cluster 3,
pathways related to cell proliferation, chromatin assembly and
RNA processing were enriched on both the mRNA and protein
levels, while on the phosphoprotein level, we observed pathways
related to cell cycle, epigenetic gene regulation and activation of
CDK1/2/6. No specific CNAs were enriched in any subclass.
Integrative clusters 2 and 3 were associated with low- and high-
grade HCCs, respectively. Compared to the single-omics cluster-
ing, the integrative clusters were associated with the mutation,
transcriptome and proteome clusters but not with the CNA or the
phosphoproteome clusters (Fig. 5c). Furthermore, we also found
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Fig. 5 Integrated phosphoproteomic classification of HCC. Unsupervised clustering of the (a) proteome and (b) phosphoproteome data using consensus
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that the integrative clusters, as well as the single-omics clustering
of mutation, transcriptome and proteome to be associated with
the previously published molecular subtypes defined by Hoshida
et al.6 (Supplementary Fig. 13).

Finally, to assess whether the single-omics and integrative
molecular subclasses are prognostic, we performed univariate and
multivariate Cox proportional hazard analyses. In the univariate
analyses, transcriptome cluster 1 (increased cell proliferation,
p= 0.037), proteome cluster 1 (ribonucleoprotein organization
and mRNA processing, p= 0.022) and integrative cluster 3
(increased cell proliferation, epigenetic gene regulation, and TP53
mutation, p= 0.005) were associated with poor overall survival,
while proteome cluster 2 (metabolism, p= 0.022) and integrative
cluster 2 (metabolism and CTNNB1 mutation, p= 0.015) were
associated with improved overall survival (Supplementary
Table 1). In the multivariate analyses incorporating primary
prognostic indicator BCLC, mutation cluster 2 (CTNNB1-
mutant) was associated with good prognosis (p= 0.025) and
mutation cluster 3 (TP53-mutant) was associated with poor
prognosis (p= 0.034) independent of BCLC (Supplementary
Table 1).

In summary, while molecular clustering of the proteome data
largely recapitulated that of the transcriptome and histological
grading, molecular clustering of the phosphoproteome data
differed from that of other single-omics and integrative
clustering.

Discussion
Our integrated proteogenomic analysis of HCC biopsies across
etiologies and clinical stages revealed similar but also distinct
biological processes, metabolic reprogramming and signaling
pathway activation on the different molecular levels. We found
that RNA processing was consistently upregulated and metabolic
pathways were downregulated on the transcriptome, proteome
and phosphoproteome levels. Interestingly, translational
regulation-related genes were upregulated on the mRNA but not
the protein level. One could speculate that the increased tran-
scription of translational regulation-related genes may be a
compensatory mechanism for increased protein degradation. On
the phosphoproteome level, altered protein phosphorylation was
associated with pathways related to cell cycle, immune system,
and DNA repair, as well as oncogenic signaling pathways such as
MAPK, PI3K/Akt/PTEN and FGFR. Indeed, KSEA revealed the
increased activity of ERK1/2 and cell cycle-related kinases such as
AURKA, CDK1/2/5/7, PLK1 and TTK.

We also identified putative HCC driver genes and drug targets.
We showed that GPAM is a frequently mutated gene in HCC.
Among genes and proteins that show positive correlation on the
CNA-mRNA and mRNA-protein levels and are dysregulated in
HCC, we identified candidate driver genes, such as NUDCD1,
UBQLN4, BYSL, ATP6V1C1 and RRM2B involved in diverse
processes including EMT, cell cycle and DNA damage regulation,
and the regulation of the Wnt-β-catenin, AKT/mTOR and Notch
pathways. At least two of them have been suggested as therapeutic
targets. Specifically, UBQLN4 is reported to repress homologous
recombination repair and promotes sensitivity to PARP1
inhibition23, while RRB2M, a gene that appears to promote
tumorigenesis in hypoxic conditions and encodes a component of
the ribonucleotide reductase, may be targeted by gemcitabine34, a
chemotherapeutic agent sometimes used to treat HCC. Our
phosphoproteome analysis also revealed targetable kinases with
elevated activity, especially Aurora Kinase A and CDKs. Aurora
Kinase A and CDK1/2 are classical cell cycle-related kinases
whereas CDK5 regulates many biological processes, including
angiogenesis and DNA damage response58,59. Preclinical studies

have shown that Aurora Kinase A and CDK1/2/5 inhibitors are
efficacious in HCC models60–62 and may act synergistically with
sorafenib/regorafenib and chemotherapeutic agents59,63,64. Inte-
grative clustering of HCCs reveal that cluster 2 was enriched for
CTNNB1 mutants, suggesting Wnt signaling may be a potential
therapeutic target for tumors in this cluster. On the other hand,
integrative cluster 3 is characterized by elevated cell cycle sig-
natures and CDK1/2/6 activity. CDKs, in particular CDK4/6, are
well-established therapeutic targets. These results also suggest
potential molecularly driven putative drug targets in specific HCC
subsets.

CTNNB1 and TP53 are the two most frequently mutated genes
in HCC. We identified altered phosphorylation sites in proteins,
such as ACF7, MAP1B, PDLIM2 and Par3-alpha, that may
underpin the loss of epithelial phenotype frequently seen in
CTNNB1-mutant HCCs. ACF7 (MACF1), part of the β-catenin
destruction complex65, is required for stabilizing Axin upon Wnt
activation66. Wnt activation causes GSK3 inactivation and
inability to phosphorylate ACF7, and dephosphorylated ACF7
remains active and able to form necessary connections between
microtubules and the actin cytoskeleton to enable migration51,52.
Similarly, GSK3 inactivation decreases MAP1B phosphorylation
and facilitates microtubule assembly and migration50. By con-
trast, PDLIM2 is required for polarized cell migration and its
phosphorylation facilitates β-catenin activation and nuclear
translocation49. Par3-alpha (PARD3), a regulator of tight junction
assembly67, changes the affinity for its interaction partners68–70

upon phosphorylation, leading to loss of cell polarity and
induction of migration. KSEA of CTNNB1-mutant HCCs also
revealed increased activity of FGR, involved in immune response
and cytoskeleton remodeling. In contrast to a previous study of
HBV-associated HCCs12, we did not observe elevated ALDOA
S36 phosphorylation in our cohort of CTNNB1-mutant HCCs
(FDR= 0.98). Instead, KSEA of TP53-mutant HCCs identified
increased activity of CDK1/2/5, which could in part explain the
higher histological grade typically associated with TP53 muta-
tions. Our analysis also identified altered phosphorylation of
proteins involved in lipid metabolism in TP53-mutant HCCs. p53
with a gain-of-function mutation has been reported to promote
lipid synthesis via at least two mechanisms, by activating the
SREBP transcription factors and by inhibiting AMPK71,72.
Finally, as previously reported13, the presence of TP53 mutations
is associated with loss of expression on the mRNA level.

Proteome and phosphoproteome classifications revealed two
clusters each. Although for both classifications, one of the clusters
was associated with overexpression or enhanced phosphorylation
of proteins involved in ribonucleoprotein organization, and
mRNA processing and splicing, there was little concordance
between the two classifications. The lack of concordance of the
phosphoproteome clusters was also seen with mutation, tran-
scriptome and integrative clusters. As protein phosphorylation is
highly dynamic and our profiling captures a snapshot of the
tumor, phosphoproteomic data are inherently noisier than other
types of molecular data. Integrative clustering, using the algor-
ithmically distinct iCluster and SNF, identified three clusters that
resembled the spectrum of Edmondson grade and BCLC. They
also resemble the three proteome subclasses identified in two
previous studies in HBV-related HCC, both of which described
subclasses characterized by metabolic reprogramming, micro-
environment dysregulation and cell proliferation11,12. In parti-
cular, the proliferation proteome subclasses in HBV-related HCC
were associated with tumor thrombus12 and microscopic vascular
invasion11. Here our integrative cluster 3 (increased cell pro-
liferation and TP53 mutation) is associated with macro-vascular
invasion (p= 0.01, Fisher’s exact test) and poor outcomes.
However, it should be noted that our cohort was accrued over a
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long period and clinical practice has changed significantly over
the past decade, hence outcome data are inherently difficult to
interpret.

Proteomic and phosphoproteomic profiling technologies have
improved significantly over the past decade but are not without
challenges. In our study, we performed (phospho)proteomic
profiling for about half of the samples but in triplicates to ensure
robust statistics. Compared to WES and RNA-seq, (phospho)
proteome data are relatively sparse and not all proteins and
phosphorylation sites can be detected. It should also be noted that
not all proteins are expressed at a given time at detectable levels
and the detection of phosphorylation sites is challenging due to
the high degree of variability between tissues and samples. Fur-
ther, some phosphorylation sites may never be detected as they
are on hard-to-detect peptides. Our study has also generated
interesting leads for future studies. Mutagenesis experiments
would be required to properly dissect the effect of CTNNB1 and
TP53 mutations on the phosphoproteome. The fact that seven of
the nine GPAM mutations were frameshift mutations together
with the observation that knockdown of GPAM significantly
increased cell proliferation strongly suggests a tumor suppressor
role for GPAM in HCC. A full characterization of the functional
role of the individual frameshift mutations in GPAM would
require further experiments.

Our study generated proteome and phosphoproteome data
(Supplementary Figs. 2 and 3) for a wide spectrum of HCCs
across all clinical stages and major etiologies, thus more repre-
sentative of the molecular heterogeneity of HCC than previous
studies11–13. In particular, our analysis of the phosphoproteome
has provided deeper insights into the major processes and kinases
altered in HCC compared to previous studies. Our analyses of the
CNA-mRNA-protein correlation, phosphoproteome and inte-
grative clusters of HCCs have also nominated a number of puta-
tive drivers and drug targets that may warrant further study in
the future. In conclusion, our study provides a comprehensive
analysis of the proteomic and phosphoproteomic landscape of
HCCs, identifying proteome and phosphoproteome alterations
underlying HCC.

Methods
HCC biopsy procedure and sample collection. Human tissues were obtained
from patients undergoing diagnostic liver biopsy at the University Hospital Basel
between 2008 and 2018. Written informed consent was obtained from all patients.
The study was approved by the ethics committee of the northwestern part of
Switzerland (Protocol Number EKNZ 2014-099). Ultrasound-guided needle
biopsies were obtained from tumor lesion(s) and the liver parenchyma at a site
distant from the tumor with a coaxial liver biopsy technique that allows taking
several biopsy samples through a single biopsy needle tract as described73. Clinical
disease staging was performed using the Barcelona Clinic Liver Cancer
(BCLC) system74. Biopsies from multicentric tumors (i.e. genetically independent
primary tumors), but not intra-hepatic metastases, were included. In total, 122
HCC biopsies and 115 non-tumoral tissues from 114 patients were included in the
study (Supplementary Data 1), including 6 patients from whom 2 synchronous
multicentric tumor biopsies and 1 patient from whom 3 multicentric tumor
biopsies were obtained (Supplementary Fig. 1). None of the patients had received
systemic or locoregional therapies for liver cancer prior to biopsy. Two patients
were treated with curative surgery or ablation and were biopsied after HCC
recurrence was diagnosed by imaging.

As control, we used liver biopsies with normal histology obtained from 19
patients without HCC and with normal liver values (Supplementary Data 1). The
biopsy procedure was as described above.

Histopathological assessment. Diagnosis of HCC and histopathology evaluation
were carried out on FFPE slides blindly by at least two board-certified hepato-
pathologists (CE, MSM and/or LMT) at the Institute of Pathology of the University
Hospital Basel. Histopathologic grading was performed according to the
Edmondson grading system73,75. Hematoxylin & eosin (H&E) slides were reviewed
to define the presence or absence of cirrhosis, underlying liver disease, cholestasis,
vessel infiltration, necrotic areas, major growth pattern, cytological variants and
special subtypes according to the guidelines by the World Health Organization76.
Immunophenotypes were classified according to Chen and Mellman77. Specifically,

inflamed tumors are defined as tumors in which tumor infiltrating lymphocytes
(TILs) are present in the tumor parenchyma in close proximity to tumor cells;
immune-excluded are tumors in which TILs are present only in ≥10% of the tumor
stroma and/or tumor margins is populated by lymphocytes located in the
immediate vicinity of tumor cells; and immune-desert, in which less than 10% of
the tumor stroma is populated by lymphocytes, and neither dense immune cell
infiltrates nor immune cells are in contact with tumor cells.

DNA and RNA extraction. Genomic DNA and total RNA from tumor and
adjacent liver parenchyma were extracted using the ZR-Duet DNA and RNA
MiniPrep Plus kit (Zymo Research) following the manufacturer’s instructions.
Prior to extraction, biopsies were crushed in liquid nitrogen to facilitate lysis. Total
RNA of 15 patients without HCC was extracted using Trizol (Thermo Fisher
Scientific) according to the manufacturer’s instructions. Extracted DNA was
quantified using the Qubit Fluorometer (Invitrogen). Extracted RNA was quanti-
fied using NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific), and
RNA quality/integrity was assessed with an Agilent 2100 BioAnalyzer using RNA
6000 Nano Kit (Agilent Technologies).

Whole-exome sequencing and data processing. All 122 HCC biopsies and 115
non-tumoral tissues from 114 patients were subjected to whole-exome sequencing.
Whole-exome capture was performed using the SureSelectXT Clinical Research
Exome (Agilent Technologies) or SureSelect Human All Exon V6+ COSMIC
(Agilent Technologies) platforms according to the manufacturer’s guidelines.
Sequencing was performed on an Illumina HiSeq 2500 at the Genomics Facility
Basel according to the manufacturer’s guidelines. Paired-end 101-bp reads were
generated. Tumor biopsies and non-tumoral biopsies were sequenced to median
depths of 94.3 (range 16.4–140.0) and 49.4 (range 34.5–86.2), respectively (Sup-
plementary Data 1).

Sequence reads were aligned to the reference human genome GRCh37 using
Burrows-Wheeler Aligner (BWA, v0.7.12/13)78. Local realignment, duplicate
removal and base quality adjustment were performed using the Genome Analysis
Toolkit (GATK, v3.6)79 and Picard (http://broadinstitute.github.io/picard/, v2.4.1).
Somatic single nucleotide variants (SNVs) and small insertions and deletions
(indels) were detected using MuTect (v1.1.4)80 and Strelka (v1.0.15)81, respectively.
We filtered out SNVs and indels outside of the target regions, those with variant
allelic fraction (VAF) of <1% and/or those supported by <3 reads. We excluded
variants for which the tumor VAF was <5 times that of the paired non-tumor VAF.
We further excluded variants identified in at least two of a panel of 123 non-tumor
samples, including the 115 non-tumor samples included in the current study,
captured and sequenced using the same protocols using the artifact detection mode
of MuTect2 implemented in GATK 3.6. Mutations affecting hotspot residues82

were annotated. Significantly mutated genes were identified using MutsigCV
(v1.4)36 and OncodriveFML (accessed 08-07-2020). Genes with q < 0.1 were
considered significantly mutated. ‘Lollipop’ plots were generated using the
‘MutationMapper’ tool (accessed 12-1-2019) on the cBioPortal83. Mutual
exclusivity and co-occurrence of significantly mutated genes were computed using
one-sided Fisher’s exact test (p < 0.05), where log2 odds ratio >0 indicates
occurrence and log2 odds ratio <0 indicates mutual exclusivity. Tumor mutational
burden was defined as the total number of somatic mutations (including
synonymous and nonsynonymous point mutations and indels) in the coding
region and splice sites.

Allele-specific CNAs were identified using FACETS (v0.5.5)84, which performs
a joint segmentation of the total and allelic copy ratio and infers allele-specific copy
number states. Somatic mutations associated with the loss of the wild-type allele
(i.e., loss of heterozygosity [LOH]) were identified as those for which the lesser
(minor) copy number state at the locus was 0. All mutations on chromosome X in
male patients were considered to be associated with LOH. Copy number states
were collapsed to the gene level based on the median values to coding gene
resolution based on all coding genes retrieved from the Ensembl (release
GRCh37.p13). Genes with total copy number greater than gene-level median
ploidy were considered gains; greater than ploidy + 4, amplifications; less than
ploidy, losses; and total copy number of 0, homozygous deletions. Fraction of
genome altered was computed as the fraction of genes with amplification, gain, loss
or deletion. Tumors with >5% of the genome at copy number 0 (homozygous
deletions, 5 tumors) were excluded from the identification of homozygous deletions
and from the computation of fraction of genome altered. Significant focal CNAs
were identified from segmented data for all 122 tumor biopsies using GISTIC2.0
(v2.0.23)85.

RNA-sequencing and data processing. RNA-seq library prep was performed
with 200 ng total RNA using the TruSeq Stranded Total RNA Library Prep Kit with
Ribo-Zero Gold (Illumina) according to manufacturer’s specifications. Single-end
126-bp sequencing was performed on an Illumina HiSeq 2500 using v4 SBS
chemistry at the Genomics Facility Basel according to the manufacturer’s guide-
lines. Primary data analysis was performed with the Illumina RTA version
1.18.66.3.

Sequence reads were aligned simultaneously to the human reference genome
GRCh37, HBV strain ayw genome (NC 003977.2), and HCV genotype 1 genome
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(NC 004102.1) by STAR (v2.5.2a)86 using the two-pass approach. Median numbers
of reads aligning to the human genome were 52.2 million (range 37.4–115.1
million) and 63.5 million (range 52.5 - 82.2 million) for the HCC and normal liver
biopsies, respectively (Supplementary Data 1).

Transcript quantification was performed using RSEM (v1.2.31)87. Gene-level
expected counts were upper-quartile-normalized to 1000. For downstream analysis,
we computed the log2-fold-changes of normalized RSEM gene counts between
tumors and the median of 15 normal livers. Molecular subtyping according to
Hoshida et al.6 was performed using the Nearest Template Prediction (http://
software.broadinstitute.org/cancer/software/genepattern, accessed 29-06-2018).

Biopsy sample preparation for proteomics, protein extraction and digestion.
Fresh liver biopsies from 51 HCC and 11 normal livers were immediately snap-
frozen in liquid nitrogen. The average time from removing the biopsy from the
liver to freezing took about 2 min. The biopsies were processed as previously
described88. Specifically, for protein extraction, each frozen biopsy was crushed in
an in-house constructed metal mortar cooled on dry ice into a fine powder
(cryogenic grinding) and transferred into a cooled 1.5 ml tube containing
150–400 ml lysis buffer (50 mM Tris-HCl pH 8.0, 8 M urea, 150 mM NaCl, 1 mM
PMSF, Complete Mini Protease Inhibitors (Sigma-Aldrich), PhosSTOP Phospha-
tase Inhibitors (Sigma-Aldrich)). The biopsy lysate was vigorously vortexed for
5 min, rotated for 1 h at 4 °C and sonicated twice in a VWR Ultrasonic cleaner bath
(USC300T) for 1 min. Next, the lysate was centrifuged for 10 min at 15 °C at
20,000 × g and supernatant was removed and stored. Next, 50 μl of fresh lysis buffer
were added and the sample was homogenized with a Teflon pestle in a hand
homogenizer (Pellet Pestle Motor, Kontes/Kimble, USA) at maximum speed on ice
twice for 1 min. Samples were centrifuged for 10 min at 15 °C at 20,000 × g and
supernatant was removed and pooled with the previous one. Protein concentration
was measured with a Bradford assay. Next, proteins were reduced with 10 mM
DTT for 1 h at 37 °C and alkylated with 50 mM iodoacetamide for 30 min at RT in
the dark, both with gentle shaking. Urea concentration was lowered to 4M with
50 mM Tris-HCl, pH 8.0. Lysates were digested with two rounds of endoproteinase
LysC (Wako) at a 1:100 enzyme-to-protein ratio at 37 °C for two hours. Next, the
urea concentration was lowered to 1M. Lysates were digested with two rounds of
trypsin (Sigma): 1:50 ratio overnight and 1:100 ratio for 2 h at 37 °C. Digestion was
stopped with TFA to a final concentration of 0.5%. Digests were centrifuged for
2 min at 1500 × g and desalted on a C18 SepPak cartridge (50 mg column for up to
2.5 mg peptide load capacity, Waters) or C18 Macrospin/Microspin cartridge
(Waters). Peptide concentration was estimated at 280 nm, aliquots were taken and
peptides were dried in the SpeedVac and stored at −20 °C.

Peptide fractionation for proteome of human HCC biopsies. Human HCC
biopsies were measured by sequential window acquisition of all theoretical mass
spectra (SWATH), in which data-independent acquisition is coupled with spectral
library match14. From each biopsy, 30 μg of peptides were used for SWATH
analysis and 100 μg of peptides were used for library preparation. The biopsies
from the 11 patients with healthy livers were measured individually and also as a
pool. This pool was measured as a reference several times over the course of the
project to account for potential batch effects. Ten biopsy samples were measured
together as one batch of samples on the same capillary column. For library gen-
eration, 100 μg of peptides from each of the 10 biopsies of one batch were pooled
together and subjected to high-pH fractionation with a total of 1 mg of peptide
injected by 5 individual injections of 200 μg. Peptides were fractionated by high-pH
reversed phase separation using a XBridge Peptide BEH C18 column (3.5 μm, 130
Å, 1 mm × 150 mm, Waters) on an Agilent 1260 Infinity HPLC system. Peptides
were loaded on column in buffer A (ammonium formate (20 mM, pH 10) in H2O)
and eluted using a two-step linear 60 min gradient from 2% to 50% (v/v) buffer B
(90% acetonitrile/10% ammonium formate (20 mM, pH 10) at a flow rate of 42 μl/
min. Elution of peptides was monitored with a UV detector (215 nm, 254 nm). A
total of 36 fractions were collected and subsequently pooled into 12 fractions using
a post-concatenation strategy as previously described89 by combining fractions 1,
13, 25; 2, 14, 26; and so on. Peptides were dried in a SpeedVac, resuspended in 0.1%
formic acid (mobile phase A) and OD was measured. Twenty μg of each fraction
were used for library measurements.

SWATH analysis and library preparation. The biopsy samples were analyzed on
a Thermo Fisher QExactive Plus instrument coupled to an Easy nLC 1000. For
SWATH analysis of the biopsy samples, 1.1 μg was injected on column including
10% of iRT peptide mix (HRM kit Ki-3003, Biognosys, Zurich, Switzerland). For
library generation, 2 μg of each high pH fraction including 10% of iRT peptide mix
(HRM kit Ki-3003) were injected on column. Proteomes were analyzed by capillary
LC/MS/MS using a homemade separating column (0.075 mm × 38 cm) packed
with Reprosil C18 reverse-phase material (2.4-μm particle size; Dr. Maisch). The
solvents used for peptide separation were 0.1% formic acid (solvent A) and 0.1%
formic acid and 80% AcCN in water (solvent B). Two microliters of sample were
injected. A linear gradient from 0–40% solvent B in solvent A in 190 min was
delivered with the nano pump at a flow rate of 200 nL/min. After 190 min, solvent
B was increased to 95% in 5 min. The eluting peptides were ionized at 2.5 kV.
Singly charged ions and ions with unassigned charge state were excluded from

triggering MS2 events. For SWATH measurements, one Full MS-SIM scan at
resolution of 70,000 was followed by 40 mass windows of dynamic size ranging
from 400 to 1600 m/z with 4 kDa overlap at a resolution of 17,500. For library
measurements, the mass spectrometer was operated in data-dependent mode and
the precursor scan was done in the Orbitrap at 70,000 resolution. A top-20 method
was run. For SWATH analysis and library generation, samples were injected in
triplicates.

SWATH data analysis. The library was generated with MaxQuant (version
1.5.1.2)90 using the default settings except that the mass tolerance of the instrument
was set to 10 ppm and the minimal ratio count for quantification was set to 1. The
Uniprot SwissProt database (17 August 2015) including the iRT fusion peptide was
used for the searches. All library measurements were pooled into one MaxQuant
analysis to generate one general HCC library. The raw SWATH MS runs of the
individual biopsies were converted using the HTRMS converter (Biognosys). The
converted SWATH runs were analyzed with Spectronaut X (Version
12.0.20491.20.29183) (Biognosys) using the default settings and searched against
our in-house generated general HCC library.

Proteome analysis. Raw protein-group based data were exported from Spectro-
naut and imported into FileMakerPro Advanced (Version FMP18) for further data
processing. The raw intensities of the triplicates were averaged and the mean values
transformed by the logarithm to the base 2. Next, the values were normalized by
median subtraction. To account for potential batch effects, the log2 median-
subtracted intensities of each biopsy were normalized to the mean intensity of all
measured runs of the pool of healthy liver tissue. The proteome of the patient
biopsies was continuously measured over a time frame of 2 years. Throughout this
time period also aliquots of the pooled healthy sample were measured. All mea-
sured runs of the pooled healthy sample were therefore averaged for normalization.

We obtained data for 6167 proteins that were quantified (always against healthy
liver) in at least one run in at least one HCC (Supplementary Fig. 2 and
Supplementary Data 1), 5612 proteins quantified in at least 26 HCCs and 1997 in at
all 51 HCCs. Starting with the 6167 proteins quantified in at least one HCC, we
removed proteins for which data were missing from >50% of the samples (50% to
enable sufficient data for imputation), resulting in 5631 proteins for further
analysis. Data imputation using nearest neighbor averaging was performed using
the ‘impute.knn’ function from the ‘impute’ R package (v1.64.0).

Phospho-proteome analysis. Peptide samples were enriched for phosphorylated
peptides using Fe(III)-IMAC cartridges on an AssayMAP Bravo platform as
recently described91. Specifically, phosphorylated peptides were enriched using
Fe(III)-NTA 5 μL cartridges (Agilent technologies) in an automated fashion using
the AssayMAP Bravo Platform (Agilent Technologies). Fe(III)-NTA cartridges
were primed with 250 μL of 0.1% TFA in ACN and equilibrated with 250 μL of
loading buffer (80% ACN/0.1% TFA). Samples were dissolved in 160 μL of loading
buffer and loaded onto the cartridge. The columns were washed with 250 μL of
loading buffer, and the phosphorylated peptides were eluted with 25 μL of 1%
ammonia directly into 25 μL of 10% formic acid. Samples were dried in the
speedvac at low temperature and stored at −20 °C. We used an input peptide
amount of approx. 165 μg for the phosphoenrichment. For 3 biopsies, input to
phosphoenrichment was slightly reduced but was accounted for by Progenesis/
SafeQuant (see below). These 3 samples did not show an outlier pattern in terms of
the quantified phosphorylation sites after data processing and were included in
subsequent analyses. The μRPLC–MS system was set up as described previously92.
Chromatographic separation of peptides was carried out using an EASY nano-LC
1000 system (Thermo Fisher Scientific), equipped with a heated RP-HPLC column
(75 μm × 37 cm) packed in-house with 1.9 μm C18 resin (Reprosil-AQ Pur, Dr.
Maisch). Dried phosphopeptides were resuspended in 20 μl of 0.1% formic acid
and 3 μl of the sample were injected per triplicate LC–MS/MS run. Samples were
analyzed using a linear gradient ranging from 95% solvent A (0.15% formic acid,
2% acetonitrile) and 5% solvent B (98% acetonitrile, 2% water, 0.15% formic acid)
to 30% solvent B over 90 min at a flow rate of 200 nl/min. Mass spectrometry
analysis was performed on a Q-Exactive HF mass spectrometer equipped with a
nanoelectrospray ion source (both Thermo Fisher Scientific). Each MS1 scan was
followed by high-collision-dissociation (HCD) of the 10 most abundant precursor
ions with dynamic exclusion for 20 s. Total cycle time was approximately 1 s. For
MS1, 3e6 ions were accumulated in the Orbitrap cell over a maximum time of
100 ms and scanned at a resolution of 120,000 FWHM (at 200 m/z). MS2 scans
were acquired at a target setting of 1e5 ions, accumulation time of 50 ms and a
resolution of 30,000 FWHM (at 200 m/z). Singly charged ions and ions with
unassigned charge state were excluded from triggering MS2 events. The normalized
collision energy was set to 27%, the mass isolation window was set to 1.4 m/z and
one microscan was acquired for each spectrum. The samples were measured in
triplicates. The acquired raw-files were imported into the Progenesis QI software
(v2.0, Nonlinear Dynamics Limited), which was used to extract peptide precursor
ion intensities across all samples applying the default parameters. The generated
mgf-files were searched using MASCOT (version 2.4.1) against a decoy database
containing normal and reverse sequences of the predicted SwissProt entries of
Homo sapiens (www.ebi.ac.uk) and commonly observed contaminants generated
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using the SequenceReverser tool from the MaxQuant software (version 1.0.13.13).
The search criteria were set as follows: full tryptic specificity was required; 3 missed
cleavages were allowed; carbamidomethylation (C) was set as fixed modification;
oxidation (M) and phosphorylation (STY) were applied as variable modifications;
mass tolerance of 10 ppm (precursor) and 0.02 Da (fragments). The database
search results were filtered using the ion score to set the false discovery rate (FDR)
to 1% on the peptide and protein level, respectively, based on the number of reverse
protein sequence hits in the datasets. The relative quantitative data obtained were
normalized and statistically analyzed using SafeQuant92. Here the gMin algorithm
was chosen. Afterwards, data were imported into FileMakerPro Advanced (Version
FMP18) for further data processing. Imputed values were excluded and data were
median subtracted per biopsy.

Processing of phospho-proteome data. SafeQuant92 generated phospho-peptide
centric quantifications. In order to generate quantitative data for single phos-
phorylation sites, peptides with more than one phosphorylation site were decon-
voluted. As a next step all intensities assigned to a single phosphorylation site were
added up to generate one cumulative intensity per phosphorylation site. The raw
intensities of the triplicates were averaged and the mean values transformed by the
logarithm to the base 2. Next, the values were normalized by median subtraction.
The phospho-enrichments were performed and measured in three batches due to
the limitation of the number of MS runs that can be performed using the same
capillary column. In each batch also an aliquot of the pooled healthy sample was
enriched and measured. Normalization to the pooled healthy sample was then
performed batch-wise to the pooled healthy sample enriched and measured at the
same time with the same batch. Localization probabilities of each phosphorylation
site were determined per batch using ScaffoldPTM (Version 3.2.0) (Proteome
Software) and the maximum observed localization probability observed was
assigned to each phosphorylation site. Only phosphorylation sites with a minimum
localization probability of 50% were taken into account.

We obtained data for 12205 phosphorylation sites (in 4230 proteins) that were
quantified (always against healthy liver) in at least one HCC (Supplementary Fig. 2
and Supplementary Data 1), 9606 (3816) quantified in at least one HCC with >99%
localization probability, 7911 (3160) quantified in at least 26 HCCs, 6403 (2856)
quantified in at least 26 HCCs with >99% localization probability, 4112 (2031)
quantified in all 51 HCCs and 3439 (1837) quantified in at all 51 HCCs with >99%
localization probability. Starting from the 12205 phosphorylation sites, we removed
proteins for which data were missing from >50% of samples (50% to enable
sufficient data for imputation), resulting in 7893 phosphorylation sites from 3156
proteins for further analysis. Since data were generated over three batches, we
corrected for the batch effect using the ‘removeBatchEffect’ function in the edgeR R
package (v3.32.0)93. Data imputation using nearest neighbor averaging was
performed using the ‘impute.knn’ function from the impute R package (v1.64.0).
To normalize for overall protein levels, we computed the difference between the
log2-fold-changes of phosphorylation site levels between tumors and the normal
livers and the log2-fold-changes of protein levels between tumors and the normal
livers, for proteins detected by both technologies.

Differential expression analysis. For transcriptome data, differential expression
analysis was performed using the ‘edgeR’ package (v3.32.0)93 between samples
from a given class vs all other samples using raw RSEM expected counts as input.
Specifically, normalization was performed using the “TMM” (weighted trimmed
mean) method94 and differential expression was assessed using the quasi-likelihood
F-test, adjusted for multiple testing using Benjamini and Hochberg’s method. For
proteome and phosphoproteome data, differential expression analysis was per-
formed using the ‘limma’ package (v3.46.0)94, using the log2-fold-changes of
protein/phosphorylation site levels between tumors and the normal livers. limma
fits a linear model to compute the moderated t-statistics using a Bayesian model
and adjusts the p-values for multiple testing using Benjamini and Hochberg’s
method. Genes, proteins and phosphorylation sites with adjusted p ≤ 0.05 were
considered differentially expressed.

Pathway analysis. Pathway analysis (over-representation analysis and gene set
enrichment analysis (GSEA)) was performed using the ‘clusterProfiler’ (v3.18.0)
and ‘ReactomePA’ (v1.34.0) packages95,96 for KEGG/Reactome pathways and Gene
Ontology biological processes subset. For proteome and phosphoproteome data,
the corresponding sets of detected proteins were used as background for over-
representation tests. p ≤ 0.05 was considered statistically significant. Pathway
analysis results were represented as barplots, dotplots or enrichment maps.

Kinase-substrate enrichment analysis (KSEA). KSEA35 was performed using the
‘KSEAapp’ R package (v0.99.0)97 using NetworKIN.cutoff = 5, the log fold-change
and p-values computed from differential expression analysis (see “Differential
expression analysis”) of unimputed phosphorylation site levels and unimputed
phosphorylation site levels normalized by overall protein levels (see “Processing of
phospho-proteome data”) as input.

Analysis of dysregulated genes/proteins and pathways in HCC. For the
assessment of dysregulated genes and proteins in HCC, we performed differential

expression analysis between HCCs and normal livers (see “Differential expression
analysis”) for transcriptome and proteome data. To compare the dysregulated
genes/proteins between transcriptome data and proteome data, Uniprot accessions
were mapped to Ensembl gene IDs, resulting in 5490 comparable genes/proteins.
Dysregulated pathways were identified using a quadrant analysis, by performing
over-representation tests (see “Pathway analysis”).

CNA-mRNA-protein correlation. Correlation was performed using segmented log
ratio for CNA, and the log2-fold-changes of protein levels between tumors and the
median of normal livers for mRNA and protein data. Uniprot accessions were
mapped to Ensembl gene IDs. For the CNA-mRNA correlation, 15272 genes were
included. For the mRNA-protein correlation, 5481 genes were included. CNA-
mRNA and mRNA-protein correlations were assessed using Spearman correlation
tests. To assess the enrichment of genes within significant focal CNAs defined by
GISTIC, genes were ranked according to Spearman correlation coefficient for
GSEA analysis using the ‘clusterProfiler’ package95. p value ≤ 0.05 was considered
statistically significant.

Analysis of dysregulated phosphorylation sites in HCC. For the assessment of
dysregulated phosphorylation sites in HCC, we performed differential expression
analysis between HCCs and normal livers (see “Differential expression analysis”) for
phosphorylation site levels with and without normalization by protein level. Sig-
nificantly regulated phosphorylation sites (adjusted p ≤ 0.05 and |logFC| ≥ 2) were
used for pathway analysis using over-representation tests (see “Pathway analysis”),
separately for up- and downregulated phosphorylation sites, as well as for up- and
down-regulated phosphorylation sites together. KSEA was also performed to identify
differential kinase activity by computing the differential expression between HCCs
and normal livers (see “Kinase-substrate enrichment analysis”).

Phosphoproteomic analysis for CTNNB1 and TP53 mutations. Transcriptomic,
proteomic and phosphoproteomic signatures of CTNNB1 and TP53 mutations
were identified by differential expression analysis of the HCCs (see “Differential
expression analysis”), by fitting a single model incorporating the mutation status of
both genes. To identify phosphorylation sites associated with mutations in these
two genes but were not associated with differences on the protein levels, we
identified phosphorylation sites whose p-values were within the most extreme 10th
percentile while the p-values of the corresponding proteins were within inter-
quartile range. These phosphorylation sites were then subjected to pathway analysis
by over-representation tests (see “Pathway analysis”). KSEA was also performed to
identify differential kinase activity by computing the differential expression
between mutant and wild-type HCCs (see “Kinase-substrate enrichment analysis”).

Single-omics clustering. Identification of tumor subclasses based on somatic non-
synonymous mutations was performed using oncosign (v1.0)98 and Network-Based
Stratification (pyNBS, downloaded on 4 June 2020)99,100. Significantly mutated
genes identified using MutsigCV36, as well as genes identified as significantly
mutated in HCC in at least 2 of Martincorena et al.38, Schultz et al.40, Fujimoto
et al.3, Bailey et al.39 (excluding TERT) and mutated (non-synonymous) in at least
3 tumor samples were included for the clustering.

Identification of tumor subclasses based on CNAs was performed using consensus
k-means clustering and consensus hierarchical clustering using the
‘ConsensusClusterPlus’ R package (v1.54.0)101, using gene-level amplification, gain,
neutral, loss and deletion status as input. 117 tumors were included, excluding the 5
for which copy number gain/loss status could not be determined (see “Whole-exome
sequencing and data processing”). For both clustering methods, Euclidean distance
was used as the distance metric, and up to 10 clusters were evaluated over
100 subsamples. Hierarchical clustering was performed using the “ward.D2”method.

Identification of tumor subclasses based on transcriptome, proteome and
phosphoproteome subclasses was performed using consensus nonnegative matrix
factorization (NMF) and consensus k-means clustering using the ‘CancerSubtypes’
(v1.16.0) and the ‘ConsensusClusterPlus’ (v1.54.0) R packages101,102, respectively.
Log2-fold-change between tumors and the median of normal livers were used as
input. For transcriptome and phosphoproteome clustering, features with standard
deviation ≥2 across the tumors were included for clustering, resulting in 1370 and
1024 features, respectively. For proteome clustering, features with standard
deviation ≥1 across the tumors were included, resulting in 1083 features. For
consensus NMF, up to 10 clusters were evaluated over 50 NMF runs. For consensus
k-means clustering, 1-Spearman correlation coefficient was used as the distance
metric, and up to 10 clusters were evaluated over 100 subsamples.

Robustness of the subclasses was assessed by downsampling to 70%, 80% or
90% of samples over 20 runs, reclustering the reduced dataset, and calculating the
adjusted Rand index compared to the full dataset. Cluster quality was assessed by
Silhouette widths (except for mutation subclasses). The final number of clusters
was chosen on the basis of the Silhouette widths and adjusted Rand index of the full
dataset and for the 20 iterations of the downsampled datasets.

For mutation subclasses, the enrichment of mutated genes was assessed using a
chi-squared test across all clusters and using Fisher’s exact tests comparing a given
cluster to all other clusters. For CNA subclasses, the enrichment of copy number-
altered genes was assessed using Mann-Whitney U tests, adjusted for multiple
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testing using Benjamini and Hochberg’s method. Genes with adjusted p ≤ 0.05 were
considered statistically significant. For transcriptome, proteome and
phosphoproteome subclasses, over-expressed features were identified by
differential expression analysis between all samples in a given class and all other
samples (see “Differential expression analysis”) followed by pathway analysis (see
“Pathway analysis”). KSEA was also performed for the phosphoproteomics
subclasses (see “Kinase-substrate enrichment analysis”). Figures were generated
using the ‘ComplexHeatmap’ R package (v2.6.2)103.

Integrative clustering. Integrative clustering was performed for the 51 HCCs for
which data were available for all data types using the ‘iClusterBayes’ function,
which fits a Bayesian latent variable model that generates an integrated cluster
assignment based on joint inference across data types, implemented in the iClus-
terPlus R package (v1.26.0)56 and the similarity network fusion (SNF) method57,
which constructs a fusion patient similarity network by integrating the patient
similarity obtained from each of the genomic data types, as implemented in the
‘SNFtool’ (v2.3.0) and the ‘CancerSubtypes’ R packages57,102. As input data, sig-
nificantly mutated genes identified using MutsigCV36, as well as genes identified as
significantly mutated in HCC in at least 2 of Martincorena et al.38, Schultz et al.40,
Fujimoto et al.3, Bailey et al.39 (excluding TERT) and mutated (non-synonymous)
in at least 2 samples were included as mutational data. CNA data were included as
collapsed copy number regions, constructed using the ‘CNregions’ function in the
iClusterPlus R package to reduce the segmented logR ratio, as recommended in the
package vignette, resulting in 927 features for clustering. For transcriptome and
phosphoproteome data, features with standard deviation ≥2 across the tumors were
included for clustering, resulting in 1646 and 1024 features, respectively. For
proteome data, features with standard deviation ≥1 across the tumors were
included, resulting in 1083 features. Transcriptome, proteome and phosphopro-
teome data were z-score-transformed prior to clustering. For both clustering, up to
10 clusters were evaluated.

Robustness of the subclasses was assessed by downsampling to 70%, 80% or
90% of samples over 20 runs, reclustering the reduced dataset, and calculating the
adjusted Rand index compared to the full dataset. For iClusterBayes, the final
number of clusters was chosen on the basis of the Bayesian Information Criterion,
the deviance ratio (interpreted as percent explained variation) and adjusted Rand
index between the full dataset and the 20 iterations of the downsampled datasets.
For SNF, cluster quality was assessed by Silhouette widths and the final number of
clusters was chosen on the basis of the Silhouette widths and adjusted Rand index
of the full dataset and for the 20 iterations of the downsampled datasets.

The identification of enriched features were performed as per single-omics
clustering for the corresponding data type. Figures were generated using the
ComplexHeatmap R package (v2.6.2)103.

Analysis of the Cancer Genome Atlas (TCGA) data. The Pan-cancer TCGA104

data were obtained from https://gdc.cancer.gov/about-data/publications/
pancanatlas. Specifically, the files “EBPlusPlusAdjustPANCAN_IlluminaHi-
Seq_RNASeqV2.geneExp.tsv” (RNA-seq), “TCGA-RPPA-pancan-clean.txt”
(RPPA), “merged_sample_quality_annotations.tsv” (sample quality annotations)
were obtained. Samples with ‘cancer.type’ as ‘LIHC’ and ‘Do_not_use’ as ‘False’
were retained. Six patients (TCGA-BC-A10Q, TCGA-DD-A3A6, TCGA-FV-A3I0,
TCGA-GJ-A6C0, TCGA-KR-A7K2, TCGA-UB-A7MA) were removed as they
were marked as “AWG_excluded_because_of_pathology”. Edmondson grades were
obtained from our previous publication105. RNA-seq gene expression data was log-
transformed prior to principal component analysis. RPPA data was split into
proteome and phosphoproteome according to whether the antibodies measure
total protein or specific phosphorylation site, respectively.

Cell Lines and transfection. HCC-derived cell lines (Hep3B (ATCC Number: HB-
8064), Huh6 (JCRB Cell Bank Number: JCRB0401), SNU449 (ATCC Number:
CRL-2234), SNU182 (ATCC Number: CRL-2235), SNU398 (ATCC Number: CRL-
2233) and Huh7 (JCRB Cell Bank Number: JCRB0403)) and hepatoblastoma
derived cell line HepG2 (ATCC Number: HB-8065) were maintained in a 5% CO2-
humidified atmosphere at 37 °C and cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal bovine serum, 1% penicillin/
streptomycin (Bio-Concept, Allschwil, Switzerland), and 1% minimal essential
medium–nonessential amino acids (ThermoFisher Scientific, Basel, Switzerland).
Cell lines were confirmed negative for mycoplasma infection using the polymerase
chain reaction (PCR)-based Universal Mycoplasma Detection kit (American Type
Culture Collection, Manassas, VA). For transient GPAM knockdown, log-phase
HepG2 and Huh7 cells were seeded at approximately 60% confluence in 6-well
plates and transfected with siRNA against human GPAM (Dharmacon, #L-009946-
00-0005) or non-targeting control siRNA (Dharmacon, #D-001810-10-20) to a
final concentration of 25 nM, according to the manufacturer’s protocol. Cells were
harvested at 24, 48 and 72 h post transfection for protein isolation.

Protein extraction and western blot. Proteins were extracted using a Co-IP
buffer. Cell lysates were then treated with 1× reducing agent (NuPAGE Sample
Reducing Agent, #NP0009, Invitrogen, Carlsbad, CA), 1× loading buffer (NuPAGE
LDS Sample Buffer, #NP0007 Invitrogen, Carlsbad, CA), boiled and loaded into

neutral pH, pre-cast, discontinuous SDS-PAGE mini-gel system (NuPAGE Bis-Tris
Protein Gels, ThermoFisher, Basel, Switzerland). After transfer onto a nitrocellu-
lose membranes using the Trans-Blot Turbo Transfer System (Bio-Rad, Hercules,
CA), proteins were detected using GPAM (G2617; 1:500, Santa Cruz,) and B-actin
(A5441; 1:5000, Sigma, St. Louis, MO). Blots were scanned using the Odyssey
Infrared Imaging System (LI-COR Biosciences, Lincoln, NE) and band intensity
was quantified using ImageJ software (version 1.52a, LOCI, University of Wis-
consin). The ratio of proteins of interest/loading control in treated samples were
normalized to their counterparts in control cells.

Cell proliferation assay. Cell proliferation was assessed using CellTiter-Glo
Luminescent Cell Viability Assay (#G7570, Promega). Statistical analyses were
performed by the two-tailed unpaired Student’s t-test using Prism software v6.0
(GraphPad Software).

Statistical analysis. Principal component analysis (PCA) of transcriptome, pro-
teome and phosphoproteome data was performed using ‘prcomp’ from the stats R
library. For transcriptome data, the upper-quartile-normalized RSEM values were
used as input. For proteome and phosphoproteome data, the log2-fold-changes of
protein/phosphorylation site abundance between tumors and the median of normal
livers were used. Intra-group variability from PCA was computed as the pairwise
Euclidean distance between samples of the same Edmondson grade using all
principal components. Distance to normal livers was computed as the Euclidean
distance between a given HCC sample to the median of normal livers using all
principal components.

Statistical analyses of the clinicopathological variables were performed in R
version 4.0.3. Comparisons of ordinal variables (e.g. BCLC, Edmondson grade,
number of tumors) were performed using Mann–Whitney U tests. Comparisons of
categorical variables (e.g. immunophenotype, presence of metastasis) were
performed using Fisher’s exact tests or chi-squared tests. Comparisons of
numerical variables (e.g. tumor mutational burden) were performed using
Mann–Whitney U or Kruskal–Wallis tests. Correction for multiple testing was
performed using the Benjamini–Hochberg method.

The association of overall survival and molecular subclasses was performed
using Cox proportional-hazards model, including BCLC stage as a covariate.
Overall survival was defined as the time interval between the diagnosis of HCC to
death. Individuals who were lost-to-follow-up or had undergone liver
transplantation were considered censored. For patients with >1 biopsy included in
the study, only one biopsy was considered if all biopsies were of the same molecular
subclass and patients excluded from overall survival analysis if the biopsies were of
multiple molecular subclasses. All statistical tests were two-sided unless otherwise
indicated, and p ≤ 0.05 was considered statistically significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Sequencing data generated in this study (including RAW sequencing data) are available
under restricted access at the European Genome-phenome Archive under accessions
EGAS00001005073 (whole-exome sequencing) and EGAS00001005074 (RNA-sequencing).
Access is restricted because genetic data is personally identifiable. To obtain access and
conditions of access to the EGA datasets, contact the corresponding author, who will
respond within 4 weeks. The use of the data will be subjected to agreement of a data use
policy, which details the minimum protection measures required related to data encryption
and user access. The data will be available to the authorized users for the duration of the
requested project. Users will have to specifically agree to preserve, at all times, the
confidentiality of information and Data pertaining to Data Subjects and to use or attempt to
use the Data to compromise or otherwise infringe the confidentiality of information on
Data Subjects and their right to privacy. User have to agree not to attempt to identify Data
Subjects. The full data use policy will be available upon data access request. Hotspot
mutations were obtained from http://www.cancerhotspots.org. Protein-coding genes for
gene-level copy number analysis were obtained from Ensembl (http://grch37.ensembl.org/
Homo_sapiens/Info/Index, release GRCh37.p13). Proteome and phosphoproteome data
generated in this study are available in PRIDE (PXD025705 and PXD025836, respectively).
For SWATH data analysis, the Uniprot SwissProt database (www.uniprot.org, 17th August
2015) was used for the searches. The publicly available Pan-cancer TCGA104 data were
obtained from https://gdc.cancer.gov/about-data/publications/pancanatlas. Specifically, the
files “EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2.geneExp.tsv” (RNA-seq),
“TCGA-RPPA-pancan-clean.txt” (RPPA), “merged_sample_quality_annotations.tsv”
(sample quality annotations) were obtained. Source data are provided with this paper. The
remaining data are available within the Article, Supplementary Information or Source Data
file. Source data are provided with this paper.

Code availability
SafeQuant is available at GitHub [https://github.com/eahrne/SafeQuant].
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