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that DLM has the finite model property and a decidable 
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validity of equations in DLM and the existence of certain right 
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reducing the validity of equations in LG to the validity of 
equations in DLM.
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1. Introduction

A lattice-ordered group (�-group) is an algebraic structure 〈L, ∧, ∨, ·, −1, e〉 such that 
〈L, ·, −1, e〉 is a group, 〈L, ∧, ∨〉 is a lattice, and the group multiplication preserves the 
lattice order, i.e., a ≤ b implies cad ≤ cbd for all a, b, c, d ∈ L, where a ≤ b :⇐⇒ a ∧b = a. 
The class of �-groups forms a variety (equational class) LG and admits the following 
Cayley-style representation theorem:

Theorem 1.1 (Holland [6]). Every �-group embeds into an �-group Aut(〈Ω, ≤〉) consisting 
of the group of order-automorphisms of a totally ordered set (chain) 〈Ω, ≤〉 equipped with 
the pointwise lattice order.

Holland’s theorem has provided the foundations for the development of a rich and 
extensive theory of �-groups (see [2,11] for details). In particular, it was proved by Hol-
land [7] that an equation is valid in LG if and only if it is valid in Aut(〈Q, ≤〉), and by 
Holland and McCleary [8] that the equational theory of LG is decidable.

The inverse-free reduct of any �-group is a distributive lattice-ordered monoid (dis-
tributive �-monoid): an algebraic structure 〈M, ∧, ∨, ·, e〉 such that 〈M, ·, e〉 is a monoid, 
〈M, ∧, ∨〉 is a distributive lattice, and the monoid multiplication distributes over the 
lattice operations, i.e., for all a, b, c, d ∈ M ,

a(b ∨ c)d = abd ∨ acd and a(b ∧ c)d = abd ∧ acd.

The class of distributive �-monoids also forms a variety DLM and admits a Cayley-style 
(or Holland-style) representation theorem:

Theorem 1.2 (Anderson and Edwards [1]). Every distributive �-monoid embeds into a 
distributive �-monoid End(〈Ω, ≤〉) consisting of the monoid of order-endomorphisms of 
a chain 〈Ω, ≤〉 equipped with the pointwise lattice order.

Despite the obvious similarity of Theorem 1.2 to Theorem 1.1, the precise nature of the 
relationship between the varieties of distributive �-monoids and �-groups has remained 
unclear. It was proved by Repnitskĭı in [13] that the variety of commutative distributive 
�-monoids does not have the same equational theory as the class of inverse-free reducts of 
Abelian �-groups, but the decidability of its equational theory remains an open problem. 
In this paper, we prove the following results for the general (noncommutative) case:

Theorem 2.3. The variety of distributive �-monoids has the finite model property.3 More 
precisely, an equation is valid in all distributive �-monoids if and only if it is valid in all 
distributive �-monoids of order-endomorphisms of a finite chain.

3 Recall that a variety V has the (strong) finite model property if an equation (respectively, quasiequation) 
is valid in V if and only if it is valid in the finite members of V.
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Corollary 2.4. The equational theory of distributive �-monoids is decidable.

Theorem 2.9. An inverse-free equation is valid in the variety of �-groups if and only if it 
is valid in the variety of distributive �-monoids.

Theorem 2.9 shows, by way of Birkhoff’s variety theorem [3], that distributive �-
monoids are precisely the homomorphic images of the inverse-free subreducts of �-groups. 
It also allows us, using a characterization of valid �-group equations given in [4], to relate 
the validity of equations in distributive �-monoids to the existence of certain right orders 
on free monoids. As a notable consequence of this correspondence, we obtain:

Corollary 3.4. Every right order on the free monoid over a set X extends to a right order 
on the free group over X.

To check whether an equation is valid in all distributive �-monoids, it suffices, by 
Theorem 2.9, to check the validity of this same equation in all �-groups. We prove here 
that a certain converse also holds, namely:

Theorem 4.2. Let ε be any �-group equation with variables in a set X. A finite set of 
inverse-free equations Σ with variables in X ∪ Y for some finite set Y can be effectively 
constructed such that ε is valid in all �-groups if and only if the equations in Σ are valid 
in all distributive �-monoids.

Finally, we turn our attention to totally ordered groups and totally ordered monoids, 
that is, �-groups and distributive �-monoids with a total lattice order. We show that the 
variety generated by the class of totally ordered monoids can be axiomatized relative 
to DLM by a single equation (Proposition 5.4). However, analogously to the case of 
commutative distributive �-monoids and unlike the case of DLM, we prove:

Theorem 5.7. There is an inverse-free equation that is valid in all totally ordered groups, 
but not in all totally ordered monoids.

We also exhibit an inverse-free equation that is valid in all finite totally ordered 
monoids, but not in the ordered group of the integers (Proposition 5.8), witnessing the 
failure of the finite model property for the variety of commutative distributive �-monoids 
and the varieties generated by totally ordered monoids and inverse-free reducts of totally 
ordered groups (Corollary 5.9).

2. From distributive �-monoids to �-groups

In this section, we establish the finite model property for the variety DLM of dis-
tributive �-monoids (Theorem 2.3) and the decidability of its equational theory (Corol-
lary 2.4). We then prove that an inverse-free equation is valid in DLM if and only if it is 
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valid in the variety LG of �-groups (Theorem 2.9). The key tool for obtaining these results 
is the notion of a total preorder on a set of monoid terms that is preserved under right 
multiplication, which bears some similarity to the notion of a diagram employed in [8]. 
In particular, the existence of such a preorder satisfying a given finite set of inequalities 
is related to the validity of a corresponding inverse-free equation in DLM or LG.

Let X be any set. We denote by Tm(X), Tg(X), Td(X), and T�(X) the term algebras 
over X for monoids, groups, distributive �-monoids, and �-groups, respectively, and by 
Fm(X), Fg(X), Fd(X), and F�(X), the corresponding free algebras, assuming for con-
venience that Fm(X) ⊆ Tm(X), Fg(X) ⊆ Tg(X), Fd(X) ⊆ Td(X), and F�(X) ⊆ T�(X). 
Given a set of ordered pairs of monoid terms S ⊆ Fm(X)2, we define the set of initial 
subterms of S:

is(S) := {u ∈ Fm(X) | ∃s, t ∈ Fm(X) : 〈us, t〉 ∈ S or 〈s, ut〉 ∈ S}.

Note in particular that s, t ∈ is(S) for each 〈s, t〉 ∈ S.
Recall now that a preorder  on a set P is a binary relation on P that is reflexive 

and transitive. We write a ≺ b to denote that a  b and b � a, and call  total if a  b

or b  a for all a, b ∈ P . Let  be a preorder on a set of monoid terms P ⊆ Fm(X). 
We say that  is right-X-invariant if for all x ∈ X, whenever u  v and ux, vx ∈ P , 
also ux  vx, and strictly right-X-invariant if it is right X-invariant and for all x ∈ X, 
whenever u ≺ v and ux, vx ∈ P , also ux ≺ vx.

Following standard practice for �-groups, we write (p)f for the value of a (partial) 
map f : Ω → Ω defined at p ∈ Ω. As a notational aid, we also often write ϕr to denote 
the value of a (partial) map ϕ defined for some element r.

Lemma 2.1. Let S ⊆ Fm(X)2 be a finite set of ordered pairs of monoid terms and let 
be a total right-X-invariant preorder on is(S) satisfying s ≺ t for each 〈s, t〉 ∈ S.

(a) There exists a chain 〈Ω, ≤〉 satisfying |Ω| ≤ |is(S)|, a homomorphism ϕ : Td(X) →
End(〈Ω, ≤〉), and some p ∈ Ω such that (p)ϕs < (p)ϕt for each 〈s, t〉 ∈ S.

(b) If  is also strictly right-X-invariant, then there exists a homomorphism ψ : T�(X)
→ Aut(〈Q, ≤〉) and some q ∈ Q such that (q)ψs < (q)ψt for each 〈s, t〉 ∈ S.

Proof. For (a), we let [u] := {v ∈ is(S) | u  v and v  u} for each u ∈ is(S) and define 
Ω := {[u] | u ∈ is(S)}, noting that |Ω| ≤ |is(S)|. If [u] = [u′], [v] = [v′], and u  v, then 
u′  v′, so we can define for [u], [v] ∈ Ω,

[u] ≤ [v] :⇐⇒ u  v.

Clearly, ≤ is a total order on Ω and [s] < [t] for each 〈s, t〉 ∈ S. Moreover, if [u], [v] ∈ Ω, 
x ∈ X, and ux, vx ∈ is(S), then, using the right-X-invariance of ,

[u] ≤ [v] =⇒ [ux] ≤ [vx].
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In particular, if [u] = [v] ∈ Ω, x ∈ X, and ux, vx ∈ is(S), then [ux] = [vx]. Hence 
for each x ∈ X, we obtain a partial order-endomorphism ϕ̃x : Ω → Ω of 〈Ω, ≤〉 by 
defining ([u])ϕ̃x := [ux] whenever [u] ∈ Ω and ux ∈ is(S). Moreover, each of these 
partial maps ϕ̃x extends to an order-endomorphism ϕx : Ω → Ω of 〈Ω, ≤〉. Now let 
ϕ : Td(X) → End(〈Ω, ≤〉) be the homomorphism extending the assignment x �→ ϕx. 
Then ([e])ϕu = [u] for every u ∈ is(S) and hence ([e])ϕs < ([e])ϕt for each 〈s, t〉 ∈ S.

For (b), note that the set Ω defined in (a) is finite and, assuming that  is strictly 
right-X-invariant, the partial order-endomorphisms ϕ̃x : Ω → Ω of 〈Ω, ≤〉 for x ∈ X are 
injective. Hence 〈Ω, ≤〉 can be identified with a subchain of 〈Q, ≤〉 and each ϕ̃x can 
be extended to an order-automorphism ψx : Q → Q of 〈Q, ≤〉. As in (a), we obtain a 
homomorphism ψ : T�(X) → Aut(〈Q, ≤〉) extending the assignment x �→ ψx such that 
([e])ϕs < ([e])ϕt for each 〈s, t〉 ∈ S. �

For s, t ∈ T�(X), we write s ≤ t as an abbreviation for the equation s ∧ t ≈ s, noting 
that s ≈ t is valid in an �-monoid or �-group L if and only if s ≤ t and t ≤ s are valid in 
L. It is easily seen that every �-group (or �-monoid) term is equivalent in LG (or DLM) 
to both a join of meets of group (monoid) terms and a meet of joins of group (monoid) 
terms. It follows that to check the validity of an (inverse-free) equation in LG (or DLM), 
it suffices to consider equations of the form 

∧n
i=1 ti ≤

∨m
j=1 sj where sj , ti ∈ Fg(X) (or 

sj , ti ∈ Fm(X)) for 1 ≤ i ≤ n, 1 ≤ j ≤ m. The next lemma relates the validity of an 
inverse-free equation of this form in LG or DLM to the existence of a total (strictly) 
right-X-invariant preorder on a corresponding set of initial subterms.

Lemma 2.2. Let ε = (
∧n

i=1 ti ≤
∨m

j=1 sj) where sj , ti ∈ Fm(X) for 1 ≤ i ≤ n, 1 ≤ j ≤ m, 
and let S := {〈sj , ti〉 ∈ Fm(X)2 | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

(a) DLM |= ε if and only if there is no total right-X-invariant preorder  on is(S)
satisfying s ≺ t for each 〈s, t〉 ∈ S.

(b) LG |= ε if and only if there is no total strictly right-X-invariant preorder  on is(S)
satisfying s ≺ t for each 〈s, t〉 ∈ S.

Proof. For the left-to-right direction of (a), suppose contrapositively that there exists 
a total right-X-invariant preorder  on is(S) satisfying s ≺ t for each 〈s, t〉 ∈ S. By 
Lemma 2.1(a), there exist a chain 〈Ω, ≤〉, a homomorphism ϕ : Td(X) → End(〈Ω, ≤〉), 
and some p ∈ Ω such that (p)ϕs < (p)ϕt for each 〈s, t〉 ∈ S. So (p)ϕ∧n

i=1 ti > (p)ϕ∨m
j=1 sj , 

and hence DLM �|= ε. Similarly, for the left-to-right direction of (b), there exist, by 
Lemma 2.1(b), a homomorphism ψ : T�(X) → Aut(〈Q, ≤〉) and some q ∈ Q such that 
(q)ψ∧n

i=1 ti > (q)ψ∨m
j=1 sj and hence LG �|= ε.

For the right-to-left direction of (a), suppose contrapositively that DLM �|= ε. By 
Theorem 1.2, there exist a chain 〈Ω, ≤〉, a homomorphism ϕ : Td(X) → End(〈Ω, ≤〉), 
and some p ∈ Ω such that 

∧n
i=1(p)ϕti >

∨m
j=1(p)ϕsj . Then (p)ϕt > (p)ϕs for each 

〈s, t〉 ∈ S and we define for u, v ∈ is(S),
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u  v :⇐⇒ (p)ϕu ≤ (p)ϕv.

Clearly  is a total preorder satisfying s ≺ t for each 〈s, t〉 ∈ S. Moreover, since ϕ is a 
homomorphism,  is right-X-invariant on is(S).

For the right-to-left direction of (b), suppose that LG �|= ε. By Theorem 1.1, there 
exist a chain 〈Ω, ≤〉, a homomorphism ψ : T�(X) → Aut(〈Ω, ≤〉), and q ∈ Ω such that ∧n

i=1(q)ψti >
∨m

j=1(q)ψsj . The proof then proceeds exactly as in the case of (a), except 
that we may observe finally that  is strictly right-X-invariant on is(S), using the fact 
that ψu is bijective for each u ∈ is(S). �

We now combine the first parts of the preceding lemmas to obtain:

Theorem 2.3. The variety of distributive �-monoids has the finite model property. More 
precisely, an equation is valid in all distributive �-monoids if and only if it is valid in all 
distributive �-monoids of order-endomorphisms of a finite chain.

Proof. It suffices to establish the result for an equation ε = (
∧n

i=1 ti ≤
∨m

j=1 sj), where 
s1, . . . , sm, t1, . . . , tn ∈ Fm(X). Suppose that DLM �|= ε and let S := {〈sj , ti〉 | 1 ≤ i ≤
n, 1 ≤ j ≤ m}. Combining Lemmas 2.2(a) and 2.1(a), there exist a finite chain 〈Ω, ≤〉, 
a homomorphism ϕ : Td(X) → End(〈Ω, ≤〉), and some p ∈ Ω such that (p)ϕs < (p)ϕt

for each 〈s, t〉 ∈ S. But then (p)ϕ∧n
i=1 ti > (p)ϕ∨m

j=1 sj , so End(〈Ω, ≤〉) �|= ε. �
Since DLM is a finitely axiomatized variety, we also obtain:

Corollary 2.4. The equational theory of distributive �-monoids is decidable.

Similarly, the second parts of Lemmas 2.1 and 2.2 can be used to show that an inverse-
free equation is valid in all �-groups if and only if it is valid in Aut(〈Q, ≤〉). Indeed, this 
correspondence is known to hold for all equations.

Theorem 2.5 ([7]). An equation is valid in all �-groups if and only if it is valid in 
Aut(〈Q, ≤〉).

Lemma 2.7 below provides the key ingredient for showing that an inverse-free equation 
is valid in LG if and only if it is valid in DLM. First, we illustrate the rather involved 
construction in the proof of this lemma with a simple example.

Example 2.6. Let End(2) be the distributive �-monoid of order-endomorphisms of the 
two-element chain 2 = 〈{0, 1}, ≤〉, and let 〈k0, k1〉 denote the member of End(2) with 
0 �→ k0 and 1 �→ k1. The equation yxy ≤ xyx fails in End(2), since for the homo-
morphism ϕ : Td({x, y}) → End(2) extending the assignment x �→ ϕx = 〈0, 0〉 and 
y �→ ϕy = 〈1, 1〉, we obtain
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0

1
ϕx ϕy ϕx
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1
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1
ϕy ϕx ϕy

Fig. 1. The paths for xyx = (1, 0, 1, 0) and yxy = (1, 1, 0, 1).

(1)ϕyxy = (((1)ϕy)ϕx)ϕy = 1 > 0 = (((1)ϕx)ϕy)ϕx = (1)ϕxyx.

Let S := {〈xyx, yxy〉}. Then ϕ yields a total right-{x, y}-invariant preorder  on is(S) =
{e, x, y, xy, yx, xyx, yxy} given by x ∼ yx ∼ xyx ≺ e ∼ y ∼ xy ∼ yxy, since (1)ϕx =
(1)ϕyx = (1)ϕxyx = 0 < 1 = (1)ϕe = (1)ϕy = (1)ϕxy = (1)ϕyxy. Note that  is not 
strictly right-{x, y}-invariant, since x ≺ e, but xy ∼ y; this corresponds to the fact that 
ϕy is not a partial bijective map on {0, 1}, as 0 < 1 and (0)ϕy = (1)ϕy.

We describe a total strictly right-{x, y}-invariant preorder � on is(S) such that 
≺ ⊆ �. This corresponds to constructing partial bijections ϕ̂x and ϕ̂y on is(S) that 
extend ϕx and ϕy, respectively. The relation � can be computed directly using the 
definition given in Lemma 2.7, but to provide both a simpler description and intu-
ition for the construction, we identify each element xk · · ·x1 of is(S) with the sequence 
((1)ϕe, (1)ϕxk

, . . . , (1)ϕxk···x1), so e = (1), x = (1, 0), y = (1, 1), xy = (1, 0, 1), 
yx = (1, 1, 0), xyx = (1, 0, 1, 0), and yxy = (1, 1, 0, 1). Note that these are the paths 
of elements of {0, 1} involved in the successive computation steps for each term at the 
point p = 1 and can be visualized as indicated in Fig. 1.

The relation � on these paths is simply the reverse lexicographic order:

(1, 0) � (1, 0, 1, 0) � (1, 1, 0) � (1) � (1, 0, 1) � (1, 1, 0, 1) � (1, 1),

where the first three elements serve as copies of 0 and the last four as copies of 1, so via 
the above identification we obtain

x � xyx � yx � e � xy � yxy � y.

It can be verified that this is a total strictly right-{x, y}-invariant (pre)order, or, more 
easily, that the corresponding partial order-endomorphisms ϕ̂x and ϕ̂y are partial bijec-
tions as shown in Fig. 2.

Lemma 2.7. For any S ⊆ Fm(X)2 and total right-X-invariant preorder  on is(S), there 
exists a total strictly right-X-invariant preorder � on is(S) such that ≺ ⊆ �.

Proof. We define the following relations on is(S):

u ∼ v :⇐⇒ u  v and v  u;

xk · · ·x1 � yl · · · y1 :⇐⇒ ∃j ≤ l + 1: xk · · ·xi ∼ yl · · · yi for all i < j and

(xk · · ·xj ≺ yl · · · yj or j = k + 2);



136 A. Colacito et al. / Journal of Algebra 601 (2022) 129–148
(1, 1)

(1, 1, 0, 1)

(1, 0, 1)

(1)

(1, 1, 0)

(1, 0, 1, 0)

(1, 0)

(1, 1) = y

(1, 1, 0, 1) = yxy

(1, 0, 1) = xy

(1) = e

(1, 1, 0) = yx

(1, 0, 1, 0) = xyx

(1, 0) = x

ϕ̂y ϕ̂x ϕ̂y

Fig. 2. The partial bijections ϕ̂x and ϕ̂y and the evaluation of ϕ̂xyx at (1) = e.

xk · · ·x1 ≡ yl · · · y1 :⇐⇒ k = l and xk · · ·xi ∼ yl · · · yi for each i ≤ k;

u � v :⇐⇒ u � v or u ≡ v,

assuming that xk · · ·xi is the empty product e for i > k.
Observe that setting j = 1 in the definition of � yields ≺ ⊆ �. Also u � v implies 

u �≡ v. The irreflexivity of � follows directly from the fact that ≺ is irreflexive. For 
the transitivity of �, we consider u, v, w ∈ is(S) satisfying u = xk · · ·x1, v = yl · · · y1, 
w = zm · · · z1, u � v, and v � w. By definition, there exists a j1 ≤ l + 1 such that 
xk · · ·xi ∼ yl · · · yi for all i < j1, and either xk · · ·xj1 ≺ yl · · · yj1 or j1 = k + 2, and 
there exists a j2 ≤ m + 1 such that yl · · · yi ∼ zm · · · zi for all i < j2, and either 
yl · · · yj2 ≺ zm · · · zj2 or j2 = l + 2. There are four cases to check:

1. xk · · ·xj1 ≺ yl · · · yj1 and yl · · · yj2 ≺ zm · · · zj2 . If j2 ≤ j1, then xk · · ·xi ∼ yl · · · yi ∼
zm · · · zi for all i < j2 and xk · · ·xj2 ∼ yl · · · yj2 ≺ zm · · · zj2 , so (since ∼ and  are 
transitive), u � w. If j1 < j2, then j1 ≤ m + 1 and xk · · ·xi ∼ yl · · · yi ∼ zm · · · zi for 
all i < j1 and xk · · ·xj1 ≺ yl · · · yj1 ∼ zm · · · zj1 , so u � w.

2. xk · · ·xj1 ≺ yl · · · yj1 and j2 = l + 2. Then j1 ≤ l + 1 < j2 ≤ m + 1, so xk · · ·xi ∼
yl · · · yi ∼ zm · · · zi for all i < j1 and xk · · ·xj1 ≺ yl · · · yj1 ∼ zm · · · zj1 . Hence u � w.

3. j1 = k + 2 and yl · · · yj2 ≺ zm · · · zj2 . If j2 < j1, then xk · · ·xi ∼ yl · · · yi ∼ zm · · · zi
for all i < j2 and xk · · ·xj2 ∼ yl · · · yj2 ≺ zm · · · zj2 , so u � w. If j1 ≤ j2, then 
j1 ≤ m + 1, xk · · ·xi ∼ yl · · · yi ∼ zm · · · zi for all i < j1, and j1 = k + 2, so u � w.

4. j1 = k + 2 and j2 = l+ 2. Then j1 ≤ m + 1 and xk · · ·xi ∼ yl · · · yi ∼ zm · · · zi for all 
i < j1. Hence u � w.

For the transitivity of �, there are also several cases to check. Clearly, if u � v and 
v � w, then u � w, by the transitivity of �. If u � v and v ≡ w, then u � w, using the 
definition of � and ≡ and the transitivity of ∼ and ≺. Similarly, if u ≡ v and v � w, 
then u � w. Finally, if u ≡ v and v ≡ w, then u ≡ w, by the transitivity of ∼. Moreover, 
� is reflexive, since u ≡ u for any u ∈ is(S), so � is a preorder. Since  is total, u �� v

and v �� u implies u ≡ v; so � is total. Note also that u � v if and only if u � v and 
v � u as suggested by the notation.
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To prove that � is strictly right-X-invariant on is(S), consider x ∈ X and u, v ∈ is(S)
such that u � v and ux, vx ∈ is(S). Suppose first that u ≡ v, so u and v have the same 
length and u ∼ v. Then ux and vx have the same length and, since  is right-X-invariant, 
ux ∼ vx. So ux ≡ vx and hence ux � vx. Now suppose that u � v. If ux ≺ vx, then 
ux � vx. Also, if ux ∼ vx, then, since u � v, the definition of � gives ux � vx. Finally, 
suppose towards a contradiction that ux � vx. Since  is right-X-invariant, u � v. But 
then, since  is total, v ≺ u and so v � u, contradicting u � v. �
Proposition 2.8. An inverse-free equation is valid in all distributive �-monoids if and only 
if it is valid in Aut(〈Q, ≤〉).

Proof. The left-to-right direction follows directly from the fact that the inverse-free 
reduct of Aut(〈Q, ≤〉) is a distributive �-monoid. For the converse, suppose without loss 
of generality that DLM �|=

∧n
i=1 ti ≤

∨m
j=1 sj , where sj , ti ∈ Fm(X) for 1 ≤ i ≤ n, 

1 ≤ j ≤ m, and let S := {〈sj , ti〉 | 1 ≤ i ≤ n, 1 ≤ j ≤ m}. By Lemma 2.2(a), there 
exists a total right-X-invariant preorder  on is(S) satisfying s ≺ t for each 〈s, t〉 ∈ S. 
By Lemma 2.7, there exists a total strictly right-X-invariant preorder � on is(S) such 
that ≺ ⊆ �. In particular, s � t for each 〈s, t〉 ∈ S. Hence, by Lemma 2.1(b), there exist 
a homomorphism ψ : T�(X) → Aut(〈Q, ≤〉) and q ∈ Q such that (q)ψsj < (q)ψti for 
1 ≤ i ≤ n, 1 ≤ j ≤ m. So Aut(〈Q, ≤〉) �|=

∧n
i=1 ti ≤

∨m
j=1 sj . �

The main result of this section now follows directly from Proposition 2.8 and the fact 
that the inverse-free reduct of any �-group is a distributive �-monoid.

Theorem 2.9. An inverse-free equation is valid in the variety of �-groups if and only if it 
is valid in the variety of distributive �-monoids.

It follows by Birkhoff’s variety theorem [3] that DLM is generated as a variety by 
the class of inverse-free reducts of �-groups and hence that distributive �-monoids are 
precisely the homomorphic images of the inverse-free subreducts of �-groups.

Since the equational theories of the varieties of distributive lattices [10] and �-
groups [5] are co-NP-complete, we also obtain the following complexity result:

Corollary 2.10. The equational theory of distributive �-monoids is co-NP-complete.

The correspondence between �-groups and distributive �-monoids established in The-
orem 2.9 does not extend to inverse-free quasiequations. In particular, the quasiequa-
tion xz ≈ yz =⇒ x ≈ y, describing right cancellativity, is valid in all �-groups, 
but not in the distributive �-monoid End(2). A further example is the quasiequation 
xy ≈ e =⇒ yx ≈ e, which is clearly valid in all �-groups, but not in the distributive 
�-monoid End(〈N, ≤〉). To see this, define f, g ∈ End(〈N, ≤〉) by (n)f := n + 1 and 
(n)g := max(n − 1, 0); then (n)fg = n for all n ∈ N, but (0)gf = 1. Let us also re-
mark, however, that this quasiequation is valid in any finite distributive �-monoid L. 
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If ab = e for some a, b ∈ L, then, by finiteness, an = an+k for some n, k ∈ N>0, so 
e = anbn = an+kbn = ak and ba = akba = ak−1aba = ak = e. Hence the variety of 
distributive �-monoids does not have the strong finite model property.

3. Right orders on free groups and free monoids

In this section, we use Theorem 2.9 and a characterization of valid �-group equations 
in LG given in [4] to relate the existence of a right order on a free monoid satisfying 
some finite set of inequalities to the validity of an equation in DLM (Theorem 3.3). In 
particular, it follows that any right order on the free monoid over a set X extends to a 
right order on the free group over X (Corollary 3.4).

Recall first that a right order on a monoid (or group) M is a total order ≤ on M such 
that a ≤ b implies ac ≤ bc for any a, b, c ∈ M ; in this case, M is said to be right-orderable. 
Left orders and left-orderability are defined symmetrically.

The following result of [4] establishes a correspondence between the validity of an 
equation in LG and the existence of a right order on a free group with a negative cone 
(or, by duality, a positive cone) containing certain elements.

Theorem 3.1 ([4, Theorem 2]). Let s1, . . . , sm ∈ Fg(X). Then LG |= e ≤
∨m

j=1 sj if and 
only if there is no right order ≤ on Fg(X) satisfying sj < e for 1 ≤ j ≤ m.

Combining this result with Theorem 2.9, we obtain a correspondence between the 
validity of an equation in DLM and the existence of a right order on a free monoid 
satisfying certain corresponding inequalities.

Proposition 3.2. Let ε = (
∧n

i=1 ti ≤
∨m

j=1 sj) where sj , ti ∈ Fm(X) for 1 ≤ i ≤ n, 
1 ≤ j ≤ m. Then DLM |= ε if and only if there is no right order ≤ on Fm(X) satisfying 
sj < ti for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Proof. For the left-to-right direction, suppose contrapositively that there exists a right 
order ≤ on Fm(X) satisfying sj < ti for 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then DLM �|= ε

by Lemma 2.2(a). For the converse, suppose contrapositively that DLM �|= ε. By Theo-
rem 2.9, also LG �|= ε and, rewriting the equation,

LG �|= e ≤
∨

{sjt−1
i | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

By Theorem 3.1, there exists a right order ≤ on Fg(X) such that sjt−1
i < e, or equiv-

alently sj < ti, for 1 ≤ i ≤ n, 1 ≤ j ≤ m. The restriction of ≤ to Fm(X) therefore 
provides the required right order on Fm(X). �

Proposition 3.2 relates the validity of an equation in DLM to the existence of a right 
order extending an associated set of inequalities on a free monoid. However, it does not 
relate the existence of a right order on a free monoid extending a given set of inequalities 
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to the validity of some equation in DLM. The next result establishes such a relationship 
via the introduction of finitely many new variables.

Theorem 3.3. Let s1, t1 . . . , sn, tn ∈ Fm(X). The following are equivalent:

(1) There exists a right order ≤ on Fg(X) satisfying si < ti for 1 ≤ i ≤ n.
(2) There exists a right order ≤ on Fm(X) satisfying si < ti for 1 ≤ i ≤ n.
(3) DLM �|=

∧n
i=1 tiyi ≤

∨n
i=1 siyi for any distinct y1, . . . , yn /∈ X.

Proof. (1)⇒ (2). This follows directly from the fact that if ≤ is a right order on Fg(X), 
then the restriction of ≤ to Fm(X) is a right order on Fm(X).

(2)⇒ (3). Let ≤ be a right order on Fm(X) satisfying si < ti for 1 ≤ i ≤ n, assuming 
without loss of generality that X is finite. By Lemma 2.1(b), there exists a homomor-
phism ψ : T�(X) → Aut(〈Q, ≤〉) and q ∈ Q such that (q)ψsi < (q)ψti for 1 ≤ i ≤ n. 
So Aut(〈Q, ≤〉) �|= e ≤

∨n
i=1 sit

−1
i and clearly LG �|=

∧n
i=1 tit

−1
i ≤

∨n
i=1 sit

−1
i . But then 

for any distinct y1, . . . , yn /∈ X, we have LG �|=
∧n

i=1 tiyi ≤
∨n

i=1 siyi and therefore also 
DLM �|=

∧n
i=1 tiyi ≤

∨n
i=1 siyi.

(3)⇒ (1). Suppose that DLM �|=
∧n

i=1 tiyi ≤
∨n

i=1 siyi for some distinct y1, . . . , yn /∈
X. By Theorem 2.9, also LG �|=

∧n
i=1 tiyi ≤

∨n
i=1 siyi and, by multiplying by the inverse 

of the left side, LG �|= e ≤ (
∨n

i=1 siyi)(
∨n

i=1 y
−1
i t−1

i ). But then, since LG |=
∨n

i=1 sit
−1
i ≤

(
∨n

i=1 siyi)(
∨n

i=1 y
−1
i t−1

i ), it follows that LG �|= e ≤
∨n

i=1 sit
−1
i . Hence, by Theorem 3.1, 

there exists a right order ≤ on Fg(X) satisfying sit
−1
i < e, or equivalently si < ti, for 

1 ≤ i ≤ n. �
For any group G and N ⊆ G, there exists a right order ≤ on G satisfying a < e for 

all a ∈ N if and only if for every finite subset N ′ ⊆ N , there exists a right order ≤′ on 
G satisfying a < e for all a ∈ N ′ (see, e.g., [11, Chapter 5, Lemma 1]). Theorem 3.3
therefore yields the following corollary:

Corollary 3.4. Every right order on the free monoid over a set X extends to a right order 
on the free group over X.

Note also that by left-right duality, every left order on the free monoid over a set X
extends to a left order on the free group over X.

We conclude this section with a brief discussion of the relationship between dis-
tributive �-monoids and right-orderable monoids. It was proved in [9] that a group is 
right-orderable if and only if it is a subgroup of the group reduct of an �-group, and 
claimed in [1] that an analogous theorem holds in the setting of distributive �-monoids. 
Indeed, any monoid M that admits a right order ≤ embeds into the monoid reduct of the 
distributive �-monoid End(〈M, ≤〉) by mapping each a ∈ M to the order-endomorphism 
x �→ xa. However, contrary to the claim made in [1], it is not the case that every sub-
monoid of the monoid reduct of a distributive �-monoid is right-orderable.



140 A. Colacito et al. / Journal of Algebra 601 (2022) 129–148
Proposition 3.5. The monoid reduct of End(〈Ω, ≤〉) is not right-orderable for any chain 
〈Ω, ≤〉 with |Ω| ≥ 3.

Proof. We first prove the claim for the distributive �-monoid End(3) of order-
endomorphisms of the three-element chain 3 = 〈{0, 1, 2}, ≤〉, using the same notation 
for endomorphisms as in Example 2.6. Assume towards a contradiction that End(3)
admits a right order ≤. Note that for any a, b, c ∈ End(3), if ba < ca, then b < c, since 
otherwise c ≤ b would yield ca ≤ ba. Suppose first that 〈0, 0, 2〉 < 〈0, 1, 1〉. Then

〈0, 0, 1〉 = 〈0, 0, 2〉 ◦ 〈0, 1, 1〉 ≤ 〈0, 1, 1〉 ◦ 〈0, 1, 1〉 = 〈0, 1, 1〉

and 〈0, 0, 1〉 ◦ 〈0, 1, 1〉 = 〈0, 0, 1〉 < 〈0, 1, 1〉 = 〈0, 1, 2〉 ◦ 〈0, 1, 1〉. So 〈0, 0, 1〉 < 〈0, 1, 2〉, 
yielding 〈0, 0, 0〉 = 〈0, 0, 1〉 ◦〈0, 0, 1〉 ≤ 〈0, 1, 2〉 ◦〈0, 0, 1〉 = 〈0, 0, 1〉. But 〈0, 0, 2〉 < 〈0, 1, 1〉
also implies 〈0, 0, 1〉 = 〈0, 0, 2〉 ◦ 〈0, 0, 1〉 ≤ 〈0, 1, 1〉 ◦ 〈0, 0, 1〉 = 〈0, 0, 0〉. Hence 〈0, 0, 1〉 =
〈0, 0, 0〉, a contradiction. By replacing < with > in the above argument, 〈0, 0, 2〉 > 〈0, 1, 1〉
implies 〈0, 0, 1〉 = 〈0, 0, 0〉, also a contradiction. So the monoid reduct of End(3) is not 
right-orderable.

Now let 〈Ω, ≤〉 be any chain with |Ω| ≥ 3. Without loss of generality we can assume 
that 3 is a subchain of 〈Ω, ≤〉. We define a map ϕ : End(3) → End(〈Ω, ≤〉) by fixing for 
each q ∈ Ω,

(q)ϕf :=
{

(�q�)f if 0 ≤ q

q if q < 0,

where �q� := max{k ∈ {0, 1, 2} | k ≤ q}. Observe that �·� is order-preserving, so ϕf ∈
End(〈Ω, ≤〉) for every f ∈ End(3). Also ϕ is injective, since ϕf restricted to 3 is f for 
each f ∈ End(3). Let f, g ∈ End(3) and q ∈ Ω. If q < 0, then (q)ϕf◦g = q = (q)(ϕf ◦ϕg). 
Otherwise 0 ≤ q, so (q)ϕf◦g = ((�q�)f)g = (�(�q�)f�)g = (q)(ϕf ◦ ϕg). Hence ϕ is a 
semigroup embedding. Finally, since the monoid reduct of End(3) is not right-orderable, 
it follows that the monoid reduct of End(〈Ω, ≤〉) is not right-orderable. �

Note that, although a group is left-orderable if and only if it is right-orderable, this 
is not the case in general for monoids, even when they are submonoids of groups [15]. 
Nevertheless, a very similar argument to the one given in the proof of Proposition 3.5
shows that also the monoid of endomorphisms of any chain with at least three elements 
cannot be left-orderable.

4. From �-groups to distributive �-monoids

The validity of an equation in the variety of Abelian �-groups is equivalent to the 
validity of the inverse-free equation obtained by multiplying on both sides to remove 
inverses. Although this method fails for LG, we show here that inverses can still be 



A. Colacito et al. / Journal of Algebra 601 (2022) 129–148 141
effectively eliminated from equations, while preserving validity, via the introduction of 
new variables. Hence, by Theorem 2.9, the validity of an equation in LG is equivalent 
to the validity of finitely many effectively constructed inverse-free equations in DLM
(Theorem 4.2).

The following lemma shows how to remove one occurrence of an inverse from an 
equation while preserving validity in LG.

Lemma 4.1. Let r, s, t, u, v ∈ T�(X) and y /∈ X.

(a) LG |= e ≤ v ∨ st ⇐⇒ LG |= e ≤ v ∨ sy ∨ y−1t.
(b) LG |= u ≤ v ∨ sr−1t ⇐⇒ LG |= ryu ≤ ryv ∨ rysyu ∨ t.

Proof. The left-to-right direction of (a) follows from the validity in LG of the quasiequa-
tion e ≤ xy ∨ z =⇒ e ≤ x ∨ y ∨ z (cf. [5, Lemma 3.3]). For the converse, suppose 
that LG �|= e ≤ v ∨ st. Then Aut(〈Q, ≤〉) �|= e ≤ v ∨ st, by Theorem 2.5. Hence there 
exist a homomorphism ϕ : T�(X) → Aut(〈Q, ≤〉) and q ∈ Q such that (q)ϕv < q and 
(q)ϕst < q. Consider p1, p2 ∈ Q with p1 < q < p2. Since (q)ϕs < (q)ϕt−1 and p1 < p2, 
there exists a partial order-embedding on Q mapping (q)ϕs to p1 and (q)ϕt−1 to p2

that extends to an order-preserving bijection ϕ̂y ∈ Aut(〈Q, ≤〉). Now let also ϕ̂x := ϕx

for each x ∈ X to obtain a homomorphism ϕ̂ : T�(X ∪ {y}) → Aut(〈Q, ≤〉) satisfying 
q > (q)ϕ̂v, q > (q)ϕ̂sy, and q > (q)ϕ̂y−1t. Hence LG �|= e ≤ v ∨ sy ∨ y−1t as required.

For (b), we apply (a) to obtain

LG |= u ≤ v ∨ sr−1t ⇐⇒ LG |= e ≤ vu−1 ∨ sr−1tu−1

⇐⇒ LG |= e ≤ vu−1 ∨ sy ∨ y−1r−1tu−1

⇐⇒ LG |= ryu ≤ ryv ∨ rysyu ∨ t. �
Eliminating variables as described in the proof of Lemma 4.1 yields an inverse-free 

equation that is valid in LG if and only if it is valid in DLM.

Theorem 4.2. Let ε be any �-group equation with variables in a set X. A finite set of 
inverse-free equations Σ with variables in X ∪ Y for some finite set Y can be effectively 
constructed such that ε is valid in all �-groups if and only if the equations in Σ are valid 
in all distributive �-monoids.

Proof. Let ε be any equation with variables in a set X. Since LG |= s ≈ t if and only if 
LG |= e ≤ s−1t ∧ st−1 and every �-group term is equivalent in LG to a meet of joins of 
group terms, we may assume that ε has the form e ≤ u1∧· · ·∧uk for some joins of group 
terms u1, . . . , uk. Suppose now that for each i ∈ {1, . . . , k}, a finite set of inverse-free 
equations Σi with variables in X ∪Yi for some finite set Yi can be effectively constructed 
such that e ≤ ui is valid in all �-groups if and only if the equations in Σi are valid 
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in all distributive �-monoids. Then Σ := Σ1 ∪ · · · ∪ Σk with variables in X ∪ Y , where 
Y := Y1 ∪ · · · ∪ Yk is the finite set of inverse-free equations required by the theorem.

Generalizing slightly for the sake of the proof, it therefore suffices to define an 
algorithm that given as input any t0 ∈ Tm(X) and t1, . . . , tn ∈ Tg(X) constructs 
s0, s1, . . . , sm ∈ Tm(X ∪ Y ) for some finite set Y such that

LG |= t0 ≤ t1 ∨ · · · ∨ tn ⇐⇒ DLM |= s0 ≤ s1 ∨ · · · ∨ sm.

If t0 ≤ t1 ∨ · · · ∨ tn is an inverse-free equation, then the algorithm outputs the same 
equation, which satisfies the equivalence by Theorem 2.9. Otherwise, suppose without 
loss of generality that t1 = ux−1v. By Lemma 4.1, for any y /∈ X,

LG |= t0 ≤ t1 ∨ · · · ∨ tn ⇐⇒ LG |= xyt0 ≤ xyuyt0 ∨ v ∨ xyt2 ∨ · · · ∨ xytn.

The equation xyt0 ≤ xyuxt0 ∨ v ∨ xyt2 ∨ · · · ∨ xytn contains fewer inverses than t0 ≤
t1 ∨ · · · ∨ tn, so iterating this procedure produces an inverse-free equation after finitely 
many steps. �

Since the variety DLM has the finite model property (Theorem 2.3), the algorithm 
given in the proof of Theorem 4.2 provides an alternative proof of the decidability of the 
equational theory of �-groups, first established in [8].

5. Totally ordered monoids

In this section, we turn our attention to totally ordered monoids and groups, that is, 
distributive �-monoids and �-groups where the lattice order is total. We show that the 
variety generated by the class OM of totally ordered monoids can be axiomatized relative 
to DLM by a single equation (Proposition 5.4), and that there exist inverse-free equations 
that are valid in the class OG of totally ordered groups but not in OM (Theorem 5.7). 
We also prove that there is an inverse-free equation that is valid in all finite totally 
ordered monoids, but not in the ordered group of the integers (Proposition 5.8), showing 
that the variety of commutative distributive �-monoids and the varieties generated by 
totally ordered monoids and inverse-free reducts of totally ordered groups do not have 
the finite model property (Corollary 5.9). The proofs of these results build on earlier 
work on distributive �-monoids by Merlier [12] and Repnitskĭı [13,14].

We begin by establishing a subdirect representation theorem for distributive �-
monoids. Note first that since every distributive �-monoid M has a distributive lattice 
reduct, prime ideals of its lattice reduct exist. For a prime (lattice) ideal I of a distributive 
�-monoid M and a, b ∈ M , define

I := {〈c, d〉 ∈ M ×M | cad ∈ I} and a ∼I b :⇐⇒ I = I .
a a b
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Proposition 5.1 ([12]). Let M be a distributive �-monoid and let I be a prime lattice 
ideal of M. Then ∼I is an �-monoid congruence and the quotient M/I := M/∼I is a 
distributive �-monoid. Moreover, for any a, b ∈ M ,

[a]∼I
≤ [b]∼I

⇐⇒ I
b ⊆ I

a ,
I

a∨b = I
a ∩ I

b , and I
a∧b = I

a ∪ I
b .

In particular, M/I is totally ordered if and only if 〈{ I
a | a ∈ M}, ⊆〉 is a chain.

Proposition 5.2. Every distributive �-monoid M is a subdirect product of all the distribu-
tive �-monoids of the form M/I, where I is a prime ideal of M.

Proof. Let I be the set of all prime lattice ideals of M. By Proposition 5.1, there exists a 
natural surjective homomorphism νI : M → M/I; a �→ [a]∼I

for each I ∈ I. Combining 
these maps, we obtain a homomorphism

ν : M →
∏
I∈I

M/I; a �→ (νI(a))I∈I .

It remains to show that ν is injective. Let a, b ∈ M with a �= b. By the prime ideal 
separation theorem for distributive lattices, there exists an I ∈ I such that, without loss 
of generality, a ∈ I and b /∈ I, yielding 〈e, e〉 ∈ I

a and 〈e, e〉 /∈ I
b . But then νI(a) �= νI(b)

and ν(a) �= ν(b). So ν is a subdirect embedding. �
The following lemma provides a description of the prime lattice ideals I of a distribu-

tive �-monoid M such that M/I is a totally ordered monoid.

Lemma 5.3. Let M be a distributive �-monoid and let I be a prime lattice ideal of M. 
Then M/I is totally ordered if and only if for all b1, b2, c1, c2, d1, d2 ∈ M ,

c1b1c2 ∈ I and d1b2d2 ∈ I =⇒ c1b2c2 ∈ I or d1b1d2 ∈ I.

Proof. Suppose first that M/I is totally ordered and hence, by Proposition 5.1, that 
I
b1

⊆ I
b2

or I
b2

⊆ I
b1

for all b1, b2 ∈ M . Then c1b1c2 ∈ I (i.e., 〈c1, c2〉 ∈ I
b1

) and d1b2d2 ∈ I

(i.e., 〈d1, d2〉 ∈ I
b2

) must entail c1b2c2 ∈ I (i.e., 〈c1, c2〉 ∈ I
b2

) or d1b1d2 ∈ I (i.e., 
〈d1, d2〉 ∈ I

b1
) as required. For the converse, suppose that M/I is not totally ordered. 

By Proposition 5.1, there exist b1, b2 ∈ M such that I
b1

� I
b2

and I
b2

� I
b1

. That is, 
there exist c1, c2, d1, d2 ∈ M such that c1b1c2 ∈ I and d1b2d2 ∈ I, but c1b2c2 /∈ I and 
d1b1d2 /∈ I, as required. �

An �-group or a distributive �-monoid is called representable if it is isomorphic to a 
subdirect product of members of OG or OM, respectively. The following result provides 
a characterization of representable distributive �-monoids in terms of their prime lattice 
ideals, and an equation axiomatizing the variety of these algebras relative to DLM.
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Proposition 5.4. The following are equivalent for any distributive �-monoid M:

(1) M is representable.
(2) M |= (x1 ≤ x2 ∨ z1y1z2) & (x1 ≤ x2 ∨ w1y2w2) =⇒ x1 ≤ x2 ∨ z1y2z2 ∨ w1y1w2.
(3) M |= z1y1z2 ∧ w1y2w2 ≤ z1y2z2 ∨ w1y1w2.
(4) For any prime lattice ideal I of M, the quotient M/I is totally ordered.

Proof. (1)⇒ (2). Since quasiequations are preserved by taking direct products and subal-
gebras, it suffices to prove that (2) holds for the case where M is a totally ordered monoid. 
Let a1, a2, b1, b2, c1, c2, d1, d2 ∈ M satisfy a1 ≤ a2 ∨ c1b1c2 and a1 ≤ a2 ∨ d1b2d2. Since 
M is totally ordered, we can assume without loss of generality that b1 ≤ b2. It follows 
that c1b1c2 ≤ c1b2c2 and therefore a1 ≤ a2 ∨ c1b1c2 ≤ a2 ∨ c1b2c2 ≤ a2 ∨ c1b2c2 ∨ d1b1d2
as required.

(2)⇒ (3). Let s1 := z1y1z2, s2 := w1y2w2, t1 := z1y2z2, and t2 := w1y1w2, and 
suppose that M |= (x1 ≤ x2 ∨ s1) & (x1 ≤ x2 ∨ s2) =⇒ x1 ≤ x2 ∨ t1 ∨ t2. Since 
M |= s1∧s2 ≤ t1∨t2∨s1 and M |= s1∧s2 ≤ t1∨t2∨s2, it follows that M |= s1∧s2 ≤ t1∨t2
as required.

(3)⇒ (4). Assume (3) and suppose that c1b1c2 ∈ I and d1b2d2 ∈ I for some 
b1, b2, c1, c2, d1, d1 ∈ M . Since I is a lattice ideal, c1b1c2 ∨ d1b2d2 ∈ I. By (3) and the 
downwards closure of I, also c1b2c2 ∧ d1b1d2 ∈ I. But then, since I is prime, it must be 
the case that either c1b2c2 ∈ I or d1b1d2 ∈ I. Hence, by Lemma 5.3, the quotient M/I

is totally ordered.
(4)⇒ (1). By (4), M/I is totally-ordered when I is a prime ideal of M, so repre-

sentability follows by Proposition 5.2. �
It follows directly from Propositions 5.2 and 5.4 that the class of representable dis-

tributive �-monoids is the variety generated by the class OM of totally ordered monoids. 
Similarly, it follows from these results that the class of representable �-groups is the va-
riety generated by the class OG of totally ordered groups and is axiomatized relative to 
LG by z1y1z2 ∧ w1y2w2 ≤ z1y2z2 ∨ w1y1w2. (Just observe that if the inverse-free reduct 
of an �-group L is a subdirect product of totally ordered monoids, then each component 
is a homomorphic image of L and hence a totally ordered group.) Hence, an equation is 
valid in these varieties if and only if it is valid in their totally ordered members.

We also obtain the following known fact:

Corollary 5.5 ([12, Corollary 2]). Commutative distributive �-monoids are representable.

Proof. By Proposition 5.4, it suffices to note that for any commutative distributive �-
monoid M and b1, b2, c1, c2, d1, d2 ∈ M ,

c1b1c2 ∧ d1b2d2 = c1c2b1 ∧ d1d2b2

≤ (c1c2 ∨ d1d2)b1 ∧ (c1c2 ∨ d1d2)b2
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= (c1c2 ∨ d1d2)(b1 ∧ b2)

= c1c2(b1 ∧ b2) ∨ d1d2(b1 ∧ b2)

≤ c1c2b2 ∨ d1d2b1

= c1b2c2 ∨ d1b1d2. �
It is shown in [13] that there are inverse-free equations that are valid in all totally 

ordered Abelian groups, but not in all totally ordered commutative monoids. We make 
use here of just one of these equations.

Lemma 5.6 ([13, Lemma 7]). The following equation is valid in all totally ordered Abelian 
groups, but not in all totally ordered commutative monoids:

x1x2x3 ∧ x4x5x6 ∧ x7x8x9 ≤ x1x4x7 ∨ x2x5x8 ∨ x3x6x9.

We use this result to show that the same discrepancy holds when comparing the 
equational theories of OM and OG.

Theorem 5.7. There is an inverse-free equation that is valid in all totally ordered groups, 
but not in all totally ordered monoids.

Proof. Consider the inverse-free equation t1 ∧ t2 ≤ s1 ∨ s2, where

t1 := x1x2x3 ∧ x5x4x6 ∧ x9x7x8; s1 := x1x4x7 ∨ x5x2x8 ∨ x9x6x3;

t2 := x1x3x2 ∧ x5x6x4 ∧ x9x8x7; s2 := x1x7x4 ∨ x5x8x2 ∨ x9x3x6.

Clearly t1 ≈ t2 and s1 ≈ s2 are valid in all totally ordered commutative monoids, so 
t1 ∧ t2 ≤ s1 ∨ s2 fails in some totally ordered monoid by Lemma 5.6. It remains to 
show that this equation, or equivalently e ≤ (t−1

1 ∨ t−1
2 )(s1 ∨ s2), is valid in every totally 

ordered group. Recall first that (cf. [5, Lemma 3.3])

LG |= e ≤ xy ∨ z =⇒ e ≤ x ∨ y ∨ z. (1)

Since LG |= e ≤ e ∨ x8x
−1
3 x−1

8 x3, it follows using (1) that

LG |= e ≤ x−1
3 x8x3x

−1
8 ∨ x8x

−1
3 x−1

8 x3. (2)

An application of (1) with (2) as premise yields

LG |= e ≤ x−1
3 x8x

−1
6 x7 ∨ x−1

7 x6x3x
−1
8 ∨ x8x

−1
3 x−1

8 x3, (3)

and then another application of (1) with (3) as premise yields
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LG |= e ≤ x−1
3 x8x

−1
6 x7 ∨ x−1

7 x6x3x
−1
8 ∨ x8x

−1
3 x7x

−1
6 ∨ x6x

−1
7 x−1

8 x3. (4)

For any ordered group L and a, b, c ∈ L, if e ≤ ab ∨ c, then either e ≤ c, or a−1 ≤ b and 
hence e ≤ ba, so e ≤ ba ∨ c. Hence

OG |= e ≤ xy ∨ z =⇒ e ≤ yx ∨ z. (5)

We apply (5) four times with (4) as the first premise to obtain

OG |= e ≤ x7x
−1
3 x8x

−1
6 ∨ x−1

8 x−1
7 x6x3 ∨ x−1

3 x7x
−1
6 x8 ∨ x−1

7 x−1
8 x3x6. (6)

For convenience, let

u1 := x−1
3 x−1

2 x4x7; u2 := x−1
6 x−1

4 x2x8; u3 := x−1
8 x−1

7 x6x3;

u4 := x−1
2 x−1

3 x7x4; u5 := x−1
4 x−1

6 x8x2; u6 := x−1
7 x−1

8 x3x6.

An application of (1) with (6) as premise yields

OG |= e ≤ x7x
−1
3 x−1

2 x4 ∨ x−1
4 x2x8x

−1
6 ∨ u3 ∨ x−1

3 x7x
−1
6 x8 ∨ u6. (7)

Applying (5) twice with (7) as the first premise, we obtain

OG |= e ≤ u1 ∨ u2 ∨ u3 ∨ x−1
3 x7x

−1
6 x8 ∨ u6. (8)

Another application of (1) with (8) as premise yields

OG |= e ≤ u1 ∨ u2 ∨ u3 ∨ x−1
3 x7x4x

−1
2 ∨ x2x

−1
4 x−1

6 x8 ∨ u6. (9)

Applying (5) twice with (9) as the first premise, we obtain

OG |= e ≤ u1 ∨ u2 ∨ u3 ∨ u4 ∨ u5 ∨ u6. (10)

Observe now that for some joins of group terms u′, u′′,

OG |= t−1
1 s1 ≈ u1 ∨ u2 ∨ u3 ∨ u′ and OG |= t−1

2 s2 ≈ u4 ∨ u5 ∨ u6 ∨ u′′.

Hence, since OG |= (t−1
1 ∨ t−1

2 )(s1 ∨ s2) ≈ t−1
1 s1 ∨ t−1

1 s2 ∨ t−1
2 s1 ∨ t−1

2 s2, by (10),

OG |= e ≤ (t−1
1 ∨ t−1

2 )(s1 ∨ s2). �
In [13], it is proved that the variety generated by the class of inverse-free reducts of 

Abelian �-groups is not finitely based and can be axiomatized relative to DLM by the set 
of inverse-free equations s1∧· · ·∧sn ≤ t1∨· · ·∨tn such that s1, . . . , sn, t1, . . . , tn ∈ Tm(X)
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and s1 · · · sn ≈ t1 · · · tn is valid in all commutative monoids. It is not known, however, 
if the variety generated by the class of inverse-free reducts of totally ordered groups is 
finitely based. Decidability in each case of the equational theories of commutative dis-
tributive �-monoids, totally ordered monoids, and inverse-free reducts of totally ordered 
groups is also open. The following result shows, at least, that unlike DLM, the varieties 
generated by these classes do not have the finite model property.

Proposition 5.8. There is an equation that is valid in every finite totally ordered monoid, 
but not in Z = 〈Z, min, max, +, 0〉.

Proof. Consider the equation xy2 ≤ e ∨ x2y3. Note that Z �|= xy2 ≤ e ∨ x2y3, since 
(−3) + 2 + 2 = 1 > 0 = 0 ∨ ((−3) + (−3) + 2 + 2 + 2). We show that this equation 
holds in every finite totally ordered monoid M. Suppose towards a contradiction that 
ab2 > e ∨ a2b3 for some a, b ∈ M , i.e., ab2 > e and ab2 > a2b3.

Observe first that, inductively, ab2 > a2+nb3+n for each n ∈ N. The base case n = 0
holds by assumption, and for n > 0, assuming ab2 > a2+n−1b3+n−1 yields ab2 > a2b3 =
a(ab2)b ≥ a(a2+n−1b3+n−1)b = a2+nb3+n. Also, inductively, anb2n ≥ ab2 for each n ∈
N>0. The base case n = 1 is clear, and for n > 1, assuming an−1b2n−2 ≥ ab2 yields 
(recalling that ab2 > e),

anb2n = an−1(ab2)b2n−2 ≥ an−1eb2n−2 = an−1b2n−2 ≥ ab2.

Finally, since M is finite and totally ordered, an+1 = an and bn+1 = bn for some n ∈ N. 
But then ab2 > a2+nb3+n = anbn = anb2n ≥ ab2, a contradiction. �
Corollary 5.9. The variety of commutative distributive �-monoids and varieties generated 
by the classes of totally ordered monoids and inverse-free reducts of totally ordered groups 
do not have the finite model property.
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