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Abstract We investigate the Gnedenko system with one repairman who can take
vacations. Our main focus is on the time asymptotic behaviour of the system. Using
C0-semigroup theory for linear operators we first prove the well-posedness of the
system and the existence of a unique positive dynamic solution given an initial value.
Then by analysing the spectral distribution of the system operator and taking into
account the irreducibility of the semigroup generated by the system operator we show
that the dynamic solution converges strongly to the steady state solution. Thus we
obtain asymptotic stability of the dynamic solution.

Keywords Gnedenko system · Well-posedness · Positive C0-semigroup ·
Irreducibility · Asymptotic stability

1 Introduction

Repairable systems are one of the main objects studied in reliability theory. “Re-
pairable” means that if a failure in the system occurs it can be repaired and then the
system works normally again, see [1] for more details. In general the system consists
of some units under the supervision of one or more repairmen. If a unit fails then it
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Fig. 1 State transition
diagram—the upper row refers
to those states where the
repairman is in vacation while
the bottom row refers to states in
which the repairman is available.
The small boxes represent the
working units. The single unit in
the upper row of each box is the
standby unit. If a box is black
then the unit is out of order

is sent to repair. However, the repairman might not be available due to other work
he has to execute. So it is important to study systems where the repairman can take
vacations, see [2].

The Gnedenko system is one of the classical repairable systems in reliability the-
ory. This system is an N -unit series system supported by a warm standby unit and a
single repairman. In [3], Gnedenko first considered the system and obtained the relia-
bility function and some limit theorems for the system. In [4], Subramanian discussed
the system under the assumption that the operating units and the standby unit have
the same constant failure rates as the system is down, and obtained the system avail-
ability. In [5], Cao Jinhua studied the stochastic behavior of this system and obtained
the explicit formula of the system availability and failure frequency using Takfics’
method and a Markov renewal process.

Let us explain the system we investigate in this paper in more detail. The system
consists of N working units in series, one repairman and one standby unit. If one of
the working units fails then it is immediately replaced by the standby unit. The failed
unit is repaired as soon as the repairman is available and then serves as a standby
unit after repair. If another unit fails and the standby unit has not yet been repaired,
then the whole system is down, i.e., all the other N − 1 units stop working as well.
The system will resume work once there are again N functioning units. After having
repaired everything the repairman takes a vacation. If the repairman returns from a
vacation and there are no failed units he remains in the system until a failure occurs.

The N working units are assumed to have the same constant failure rate λ > 0
whereas the failure rate of the standby unit is λ1 > 0. It can happen that the standby
unit fails while the system is working. Thus, for each working unit the probability
that a failure occurs within time t is 1 − e−λt and for the standby unit it is 1 − e−λ1t ,
respectively. The probability that the repair time is less than t is

1 − e− ∫ t
0 μ(x)dx

where μ is an arbitrary positive continuous function. For the exact assumptions on
μ see General Assumption 1.1 below. Finally, the vacation time is exponentially dis-
tributed with parameter θ > 0. The state transition diagram of this model is given in
Fig. 1.

To describe the system by differential equations we introduce functions pij , i =
0,1, j = 0,1,2. The first index i refers to the availability of the repairman while the
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second index j gives information on the number of working units.

i = 0 The repairman is in vacation.
i = 1 The repairman is immediately available.

j = 0 All units including the standby unit are working.
j = 1 One unit is broken.
j = 2 Two units are broken.

We introduce two time parameters t ∈ [0,∞) and x ∈ [0,∞). The parameter t

refers to the total elapsed time whereas x counts the time during which the repairman
is busy. It is reset to 0 after each repair.

Then p0j (t), j = 0,1,2, gives the probability that at time t the repairman is in
vacation and the number of failed units is j . Moreover, p10(t) represents the prob-
ability that all units are working at time t and the repairman is available. Finally,
p1j (t, x)dx, j = 1,2, is the probability that j units have failed and the elapsed repair
time lies in (x, x + dx].

This leads to the following description of the system via partial differential equa-
tions, (see [6]).

(R)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dp00(t)

dt
= −(Nλ + λ1 + θ)p00(t) +

∫ ∞

0
μ(x)p11(t, x)dx,

dp01(t)

dt
= −(Nλ + θ)p01(t) + (Nλ + λ1)p00(t),

dp02(t)

dt
= −θp02(t) + Nλp01(t),

dp10(t)

dt
= −(Nλ + λ1)p10(t) + θp00(t),

∂p11(t, x)

∂t
+ ∂p11(t, x)

∂x
= −(Nλ + μ(x)p11(t, x),

∂p12(t, x)

∂t
+ ∂p12(t, x)

∂x
= −μ(x)p12(t, x) + Nλp11(t, x),

with the boundary condition

(BC)

⎧
⎪⎨

⎪⎩

p11(t,0) =
∫ ∞

0
p12(t, x)μ(x)dx + θp01(t) + (Nλ + λ1)p10(t),

p12(t,0) = θp02(t),

and the initial condition

(IC)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p00(0) = 1,

p0i (0) = 0, i = 1,2,

p10(0) = 0,

p1j (0, x) = 0, j = 1,2.
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In [6], the authors analysed the system using the supplementary variables approach
and generalized Markov process method and obtained some reliability expressions
such as the Laplace transform of the reliability, the mean time to the first failure, the
availability and the failure frequency of the system based on the following hypothe-
ses:

Hypothesis 1. The system has a unique positive dynamic solution p(t, x).
Hypothesis 2. The dynamic solution p(t, x) converges to the steady state solution
p(x) as time tends to infinity, where

p(t, x) = (p00(t),p01(t),p02(t),p10(t),p11(t, x),p12(t, x)
)
,

p(x) = (p00,p01,p02,p10,p11(x),p12(x)
)
.

Motivated by this, we prove the existence of a unique positive dynamic solution
of the system and study the asymptotic stability of the dynamic solution. So it turns
out that for the system above these hypotheses are fulfilled.

Our main focus in this paper is on the asymptotic behaviour of the system. We
closely follow the approach from [7] and [8]. We investigate the system using the the-
ory of positive strongly continuous semigroups. It is well-known that semigroup the-
ory provides a useful tool to study queueing and reliability problems, see for example
[9, 10] and [11]. Even though the ideas we use in this paper are not new and we adapt
only the results from [7] and [8], these ideas have—to the best of our knowledge—
not yet been applied to the Gnedenko system and they lead to some new insights in
the description of the asymptotic behaviour of this system.

For background reading on semigroup theory we refer to [12] and [13] or [14] for
a brief introduction. To apply this theory we first transform the system above into an
abstract Cauchy problem in Sect. 2. Then in Sect. 3 we investigate the spectrum of
the operators involved and show in Sect. 4 the well-posedness of the system. Using
the information on the spectrum from Sect. 3 combined with the irreducibility of the
semigroup generated by the system operator we finally obtain our main results on the
asymptotic behaviour. We prove that the dynamic solution converges strongly to the
steady state solution which is the eigenfunction corresponding to eigenvalue 0 of the
system operator. Thus we obtain the asymptotic stability of the dynamic solution of
this system.

Throughout the paper we require the following assumption for the failure rate
function μ(x).

General Assumption 1.1 The function μ : R+ → R+ is measurable and bounded
such that limx→∞ μ(x) exists and

μ∞ = lim
x→∞μ(x) > 0.

2 The problem as an abstract Cauchy problem

To apply semigroup theory we transform in this section the system (R), (BC), (IC)

into an abstract Cauchy problem [12, Def. II.6.1] on the Banach space (X,‖·‖) where
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X = C
4 × (L1[0,∞)

)2

and

‖p‖ =
2∑

i=0

|p0i | + |p10| +
2∑

j=1

‖p1j‖L1[0,∞),

p = (p00,p01,p02,p10,p11(x),p12(x)
)t ∈ X.

The space (X,‖ · ‖) will also be called state space.
In the following we need the functional

ψ : L1[0,∞) → C, f �→ ψ(f ) =
∫ ∞

0
μ(x)f (x)dx.

and the operators

D̃1 : W 1,1[0,∞) → L1[0,∞), f �→ − d

dx
f − (Nλ + μ(x)

)
f,

D̃2 : W 1,1[0,∞) → L1[0,∞), f �→ − d

dx
f − μ(x)f.

In a first step we introduce a maximal operator (Am,D(Am)) describing only (R). It
is given by

Am =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−(Nλ + λ1 + θ) 0 0 0 ψ 0
Nλ + λ1 −(Nλ + θ) 0 0 0 0

0 Nλ −θ 0 0 0
θ 0 0 −(Nλ + λ1) 0 0
0 0 0 0 D̃1 0
0 0 0 0 Nλ D̃2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

D(Am) = C
4 × (W 1,1[0,∞)

)2
.

It does not yet take into account the boundary conditions (BC). To this purpose we
introduce the boundary space

∂X := C
2,

and then define boundary operators L and � by

L : D(Am) → ∂X,

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

p00
p01
p02
p10

p11(x)

p12(x)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

�→ L

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

p00
p01
p02
p10

p11(x)

p12(x)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

:=
(

p11(0)

p12(0)

)

,
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and

� : X → ∂X,
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

p00
p01
p02
p10

p11(x)

p12(x)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

�→ �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

p00
p01
p02
p10

p11(x)

p12(x)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

:=
(

0 θ 0 Nλ + λ1 0 ψ

0 0 θ 0 0 0

)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

p00
p01
p02
p10

p11(x)

p12(x)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We have that L ∈ L([D(Am)], ∂X) where [D(Am)] denotes the space D(Am) en-
dowed with the graph norm induced by Am and � ∈ L(X, ∂X). Now the system
operator (A,D(A)) on X given by

Ap := Amp, D(A) := {p ∈ D(Am) | Lp = �p
}
.

describes the system completely, i.e. the equations (R), (BC) and (IC) are equivalent
to the abstract Cauchy problem

⎧
⎪⎨

⎪⎩

dp(t)

dt
= Ap(t), t ∈ [0,∞),

p(0) = (1,0,0,0,0,0)t ∈ X.

(ACP)

Note that (A,D(A)) is a closed operator. In fact, if (xn) ⊆ D(A), xn → x ∈ X and
Axn → y ∈ X, then x ∈ D(Am) and Amx = y, since Am is a closed operator. More-
over, by the continuity of the operators L and � we have Lxn → Lx and �xn → �x.
Since Lxn = �xn we conclude that Lx = �x. Hence, x ∈ D(A), Ax = Amx = y and
thus A is closed.

3 Boundary spectrum

In this section we investigate the spectrum σ(A) of A. In particular, the boundary of
σ(A) is of interest to us. We obtain information on the spectrum of A by a charac-
teristic equation (see Characteristic Equation 3.5 below) which relates σ(A) to the
spectrum of an operator on the boundary space ∂X. Clearly, it is in general much eas-
ier to determine the spectrum of an operator in the boundary space than to determine
σ(A) directly. The abstract background can be found in [15]. It has been widely used
since then, see [16, 17] or [7] to mention a few applications.

Before we can give the explicit form of the characteristic equation we have to
introduce the relevant operators. We start from the operator (A0,D(A0)) defined by

D(A0) := {p ∈ D(Am) | Lp = 0
}
,

A0p := Amp.

We give the representation of the resolvent of A0 needed in Section 5 to prove the
irreducibility of the semigroup generated by A.
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Lemma 3.1 For the set S := {γ ∈ C | �γ > −μ∞}\{−θ,−(Nλ+θ),−(Nλ+λ1 +
θ),−(Nλ + λ1)} we have

S ⊆ ρ(A0).

Moreover, if γ ∈ S, then

R(γ,A0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

s1,1 0 0 0 s1,5 0
s2,1 s2,2 0 0 s2,5 0
s3,1 s3,2 s3,3 0 s3,5 0
s4,1 0 0 s4,4 s4,5 0
0 0 0 0 s5,5 0
0 0 0 0 s6,5 s6,6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (1)

where

s1,1 = 1

γ + Nλ + λ1 + θ
,

s1,5 = 1

γ + Nλ + λ1 + θ
ψR(γ, D̃1,0),

s2,1 = Nλ + λ1

(γ + Nλ + θ)(γ + Nλ + λ1 + θ)
,

s2,2 = 1

γ + Nλ + θ
,

s2,5 = (Nλ + λ1)

(γ + Nλ + θ)(γ + Nλ + λ1 + θ)
ψR(γ, D̃1,0),

s3,1 = Nλ(Nλ + λ1)

(γ + θ)(γ + Nλ + θ)(γ + Nλ + λ1 + θ)
,

s3,2 = Nλ

(γ + θ)(γ + Nλ + θ)
,

s3,3 = 1

γ + θ
,

s3,5 = Nλ(Nλ + λ1)

(γ + θ)(γ + Nλ + θ)(γ + Nλ + λ1 + θ)
ψR(γ, D̃1,0),

s4,1 = θ

(γ + Nλ + λ1)(γ + Nλ + λ1 + θ)
,

s4,4 = 1

γ + Nλ + λ1
,

s4,5 = θ

(γ + Nλ + λ1)(γ + Nλ + λ1 + θ)
ψR(γ, D̃1,0),

s5,5 = R(γ, D̃1,0),

s6,5 = NλR(γ, D̃2,0)R(γ, D̃1,0),
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s6,6 = R(γ, D̃2,0).

The resolvent operators of the differential operators D̃j,0 where D̃j,0 = D̃j with do-
main D(D̃j,0) = {u ∈ W 1,1(0,∞) : u(0) = 0}, j = 1,2, are given by

(
R(γ, D̃1,0)p

)
(x) = e−(γ+Nλ)x−∫ x

0 μ(ξ)dξ

∫ x

0
e(γ+Nλ)s+∫ s

0 μ(ξ)dξp(s)ds,

(
R(γ, D̃2,0)p

)
(x) = e−γ x−∫ x

0 μ(ξ)dξ

∫ x

0
eγ s+∫ s

0 μ(ξ)dξp(s)ds, for p ∈ L1[0,∞).

Proof Combining [18, Prop. 2.1] and [19, Thm. 2.4] we see that

ρ(A0) ⊇ S

is satisfied. Moreover, we can use the formula for the inverse of operator matrices
given in [19, Thm. 2.4] to check the representation (1) of the resolvent of A0.

Clearly, knowing the operator matrix in (1), we can directly compute that it repre-
sents the resolvent of A0. �

For future reference we state the following corollary. It will be useful later to locate
the boundary spectrum of A.

Corollary 3.2 The imaginary axis belongs to the resolvent set of A0, i.e.,

iR ⊆ ρ(A0).

In a next step we consider the restriction of the boundary operator L to ker(γ −
Am), γ ∈ C. By a direct computation we obtain the explicit form of the elements in
ker(γ − Am) as follows.

Lemma 3.3 For γ ∈ ρ(A0), we have

p ∈ ker(γ − Am) (2)

⇔ p = (p00,p01,p02,p10,p11(x),p12(x)
)t ∈ D(Am), with

p00 = c1

γ + Nλ + λ1 + θ
×
∫ ∞

0
μ(x)e−(γ+Nλ)x−∫ x

0 μ(ξ)dξ dx, (3)

p01 = c1(Nλ + λ1)

(γ + Nλ + θ)(γ + Nλ + λ1 + θ)

×
∫ ∞

0
μ(x)e−(γ+Nλ)x−∫ x

0 μ(ξ)dξ dx, (4)

p02 = c1Nλ(Nλ + λ1)

(γ + Nλ + θ)(γ + Nλ + λ1 + θ)(γ + θ)

×
∫ ∞

0
μ(x)e−(γ+Nλ)x−∫ x

0 μ(ξ)dξ dx, (5)



A semigroup approach to the Gnedenko system with single vacation 49

p10 = c1θ

(γ + Nλ + λ1)(γ + Nλ + λ1 + θ)

×
∫ ∞

0
μ(x)e−(γ+Nλ)x−∫ x

0 μ(ξ)dξ dx, (6)

p11(x) = c1e
−(γ+Nλ)x−∫ x

0 μ(ξ)dξ , (7)

p12(x) = [c1
(
1 − e−Nλx

)+ c2
]
e−γ x−∫ x

0 μ(ξ)dξ , (8)

where c1, c2 ∈ C.

Using [15, Lemma 1.2], for γ ∈ ρ(A0) the domain D(Am) of the maximal opera-
tor Am decomposes as

D(Am) = D(A0) ⊕ ker(γ − Am). (9)

Moreover, since L is surjective,

L|ker(γ−Am) : ker(γ − Am) → ∂X

is invertible for each γ ∈ ρ(A0), see [15, Lemma 1.2]. We denote its inverse by

Dγ := (L|ker(γ−Am))
−1 : ∂X −→ ker(γ − Am)

and call it “Dirichlet operator”.
We can give the explicit form of Dγ as follows.

Lemma 3.4 For each γ ∈ ρ(A0), the operator Dγ has the form

Dγ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

d1,1 0
d2,1 0
d3,1 0
d4,1 0
d5,1 0
d6,1 d6,2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where

d1,1 = 1

γ + Nλ + λ1 + θ
×
∫ ∞

0
μ(x)e−(γ+Nλ)x−∫ x

0 μ(ξ)dξ dx,

d2,1 = Nλ + λ1

(γ + Nλ + θ)(γ + Nλ + λ1 + θ)
×
∫ ∞

0
μ(x)e−(γ+Nλ)x−∫ x

0 μ(ξ)dξ dx,

d3,1 = Nλ(Nλ + λ1)

(γ + Nλ + θ)(γ + Nλ + λ1 + θ)(γ + θ)

×
∫ ∞

0
μ(x)e−(γ+Nλ)x−∫ x

0 μ(ξ)dξ dx,
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d4,1 = θ

(γ + Nλ + λ1)(γ + Nλ + λ1 + θ)
×
∫ ∞

0
μ(x)e−(γ+Nλ)x−∫ x

0 μ(ξ)dξ dx,

d5,1 = e−(γ+Nλ)x−∫ x
0 μ(ξ)dξ ,

d6,1 = (1 − e−Nλx
)
e−γ x−∫ x

0 μ(ξ)dξ ,

d6,2 = e−γ x−∫ x
0 μ(ξ)dξ .

We are now ready to state the characteristic equation for the spectrum of A. It
relates the spectrum of A to the spectrum of operators in the boundary space C

2. We
omit the proof. It can be found in [17, Prop. 3.3].

Characteristic Equation 3.5 Let γ ∈ ρ(A0). Then

(i)

γ ∈ σp(A) ⇐⇒ 1 ∈ σp(�Dγ ).

(ii) If, in addition, there exists γ0 ∈ C such that 1 /∈ σ(�Dγ0), then

γ ∈ σ(A) ⇐⇒ 1 ∈ σ(�Dγ ).

In our situation the operator �Dγ ,γ ∈ ρ(A0), is a 2 × 2-matrix

�Dγ =
(

a
γ

1,1 a
γ

1,2

a
γ

2,1 0

)

,

where

a
γ

1,1 =
[

(Nλ + λ1)θ

(γ + Nλ + θ)(γ + Nλ + λ1 + θ)
+ (Nλ + λ1)θ

(γ + Nλ + λ1)(γ + Nλ + λ1 + θ)

]

×
∫ ∞

0
μ(x)e−(γ+Nλ)x−∫ x

0 μ(ξ)dξ dx

+
∫ ∞

0
μ(x)
(
1 − e−Nλx

)
e−γ x−∫ x

0 μ(ξ)dξ dx,

a
γ

1,2 =
∫ ∞

0
μ(x)e−γ x−∫ x

0 μ(ξ)dξ dx,

a
γ

2,1 = Nλ(Nλ + λ1)θ

(γ + Nλ + θ)(γ + Nλ + λ1 + θ)(γ + θ)

×
∫ ∞

0
μ(x)e−(γ+Nλ)x−∫ x

0 μ(ξ)dξ dx.

By a straightforward calculation we see that �D0 is column stochastic and thus
1 ∈ σp(�D0). Applying the Characteristic Equation 3.5 (i) immediately yields the
following lemma.
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Lemma 3.6 For the operator (A,D(A)) we have 0 ∈ σp(A).

Again with the help of the Characteristic Equation 3.5 we can even show that 0 is
the only spectral value of A on the imaginary axis.

Lemma 3.7 Under the General Assumption 1.1, the spectrum σ(A) of A satisfies

σ(A) ∩ iR = {0}.

Proof By the Characteristic Equation 3.5 it suffices to show that 1 /∈ σ(�Dir) for all
r ∈ R \ {0}.

Clearly, this is satisfied if the entries of �Dir fulfill

∣
∣air

1,1

∣
∣+ ∣∣air

2,1

∣
∣< 1,

∣
∣air

1,2

∣
∣< 1,

for every r ∈ R\{0}. The same computation as in [7, Lemma 3.7] now shows that this
is indeed true. Note that in this step we make use of the General Assumption 1.1. �

4 Well-posedness of the system

The main goal in this section is to prove the well-posedness of the system in the
sense of [12, Def. II.6.8]. This is equivalent to (A,D(A)) being the generator of
a C0-semigroup, see [12, Thm. II.6.7]. We will prove using Phillips’ theorem [13,
Thm. C-II 1.2] that (A,D(A)) in fact generates a positive contraction C0-semigroup
(T (t))t≥0. To this purpose let us check that (A,D(A)) fulfills the conditions in
Phillips’ theorem, namely that D(A) is dense in X, (A,D(A)) is dispersive and γ −A

is surjective for some γ > 0.
The following lemma in particular shows the surjectivity of γ − A for any γ > 0.

Lemma 4.1 Let γ > 0. Then γ ∈ ρ(A).

Proof Let γ ∈ R, γ > 0. Then all the entries of �Dγ are positive and one can show
using only elementary calculations that both column sums are strictly less than 1.
Hence, ‖�Dγ ‖ < 1, and thus 1 /∈ σ(�Dγ ). Using the Characteristic Equation 3.5 we
conclude that γ ∈ ρ(A). �

Lemma 4.2 The operator (A,D(A)) is closed and densely defined.

Proof The closedness of (A,D(A)) has already been observed at the end of Sect. 2.
Moreover, for γ ∈ ρ(A0) ∩ ρ(A), one has γ − A = (γ − A0)(Id − Dγ �), where
Id − Dγ � ∈ L(X) is an isomorphism, see [15, Lemma 1.4]. Since D(A0) is dense
in X, this implies that D(A) = (Id − Dγ �)−1D(A0) is dense as well. �
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If X′ denotes the dual space of X, then

X′ = C
4 × (L∞[0,∞)

)2
.

It is obvious that X′ is a Banach space endowed with the norm

‖q‖ := max
(|q00|, |q01|, |q02|, |q10|,‖q11‖L∞[0,∞),‖q12‖L∞[0,∞)

)
,

where q = (q00, q01, q02, q10, q11(x), q12(x))t ∈ X′.

Lemma 4.3 The operator (A,D(A)) is dispersive.

Proof For p = (p00,p01,p02,p10,p11(x),p12(x))t ∈ D(A), we define

q = (q00, q01, q02, q10, q11(x), q12(x)
)t ∈ X′,

where

q0i = ‖p‖ sgn+(p0i ), i = 0,1,2, q10 = ‖p‖ sgn+(p10),

q1j (x) = ‖p‖ sgn+
(
p1j (x)

)
, j = 1,2

and

sgn+(p0i ) =
{

1 if p0i > 0,

0 if p0i ≤ 0,
i = 0,1,2, sgn+(p10) =

{
1 if p10 > 0,

0 if p10 ≤ 0,

sgn+
(
p1j (x)

)=
{

1 if p1j (x) > 0,

0 if p1j (x) ≤ 0,
j = 1,2.

Moreover, for a real number r we use the notation

[r]+ =
{

r if r > 0,

0 if r ≤ 0.

If we define L1j = {x ∈ [0,∞)|p1j (x) > 0} and M1j = {x ∈ [0,∞)|p1j (x) ≤ 0} for
j = 1,2, then we have

∫ ∞

0

dp1j (x)

dx
sgn+
(
p1j (x)

)
dx

=
∫

L1j

dp1j (x)

dx
sgn+
(
p1j (x)

)
dx +

∫

M1j

dp1j (x)

dx
sgn+
(
p1j (x)

)
dx

=
∫

L1j

dp1j (x)

dx
sgn+
(
p1j (x)

)
dx

=
∫

L1j

dp1j (x)

dx
dx
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=
∫ ∞

0

d[p1j (x)]+
dx

dx

= −[p1j (0)
]+

, j = 1,2, (10)

p00 sgn+(p01) ≤ [p00]+, p00 sgn+(p10) ≤ [p00]+,

p01 sgn+(p02) ≤ [p01]+,
(11)

∫ ∞

0
μ(x)p11(x) sgn+(p00)dx ≤

∫ ∞

0
μ(x)
[
p11(x)

]+
dx, (12)

∫ ∞

0
μ(x)pij (x) sgn+(p1j )dx ≤

∫ ∞

0
μ(x)
[
p1j (x)

]+
dx, j = 1,2, (13)

2∑

j=1

[
p1j (0)

]+ =
[∫ ∞

0
p12(x)μ(x)dx + θp01 + (Nλ + λ1)p10

]+
+ [θp02]+

≤ θ [p01]+ + θ [p02]+ + (Nλ + λ1)[p10]+

+
∫ ∞

0
μ(x)
[
p12(x)

]+
dx. (14)

Using (10), (11), (12), (13), (14) and the boundary conditions on p ∈ D(A) we obtain
that

〈Ap,q〉 =
[

−(Nλ + λ1 + θ)p00 +
∫ ∞

0
μ(x)p11(x)dx

]

‖p‖ sgn+(p00)

+ [−(Nλ + θ)p01 + (Nλ + λ1)p00
]‖p‖ sgn+(p01)

+ [−θp02 + Nλp01]‖p‖ sgn+(p02)

+ [−(Nλ + λ1)p10 + θp00
]‖p‖ sgn+(p10)

+
∫ ∞

0

[

−dp11(x)

dx
− (Nλ + μ(x)

)
p11(x)

]

‖p‖ sgn+
(
p11(x)

)
dx

+
∫ ∞

0

[

−dp12(x)

dx
− μ(x)p12(x) + Nλp11(x)

]

‖p‖ sgn+
(
p12(x)

)
dx

=‖p‖
{[

−(Nλ + λ1 + θ)p00 sgn+(p00) +
∫ ∞

0
μ(x)p11(x) sgn+(p00)dx

]

+ [−(Nλ + θ)p01 sgn+(p01) + (Nλ + λ1)p00 sgn+(p01)
]

+ [−θp02 sgn+(p02) + Nλp01 sgn+(p02)
]

+ [−(Nλ + λ1)p10 sgn+(p10) + θp00 sgn+(p10)
]

+
∫ ∞

0

[

−dp11(x)

dx
sgn+
(
p11(x)

)



54 A. Haji, A. Radl

− (Nλ + μ(x)
)
p11(x) sgn+

(
p11(x)

)
]

dx

+
∫ ∞

0

[

−dp12(x)

dx
sgn+
(
p12(x)

)− μ(x)p12(x) sgn+
(
p12(x)

)

+ Nλp11(x) sgn+
(
p12(x)

)
]

dx

≤‖p‖
{[

−(Nλ + λ1 + θ)[p00]+ +
∫ ∞

0
μ(x)
[
p11(x)

]+
dx

]

+ [−(Nλ + θ)[p01]+ + (Nλ + λ1)[p00]+
]+ [−θ [p02]+ + Nλ[p01]+

]

+ [−(Nλ + λ1)[p10]+ + θ [p00]+
]+
∫ ∞

0

[−(Nλ + μ(x)
)[

p11(x)
]+]

dx

+
∫ ∞

0

[−μ(x)
[
p12(x)

]+ + Nλ
[
p11(x)

]+]
dx +

2∑

j=1

[
p1j (0)

]+
}

=‖p‖
{

−θ [p01]+ − θ [p02]+ − (Nλ + λ1)[p10]+ −
∫ ∞

0
μ(x)
[
p12(x)

]+
dx

+
2∑

j=1

[
p1j (0)

]+
}

≤ 0.

By [13, p. 249] we obtain that (A,D(A)) is a dispersive operator. �

From Lemma 4.1, Lemma 4.2 and Lemma 4.3 we see that all the conditions in
Phillips’ theorem [13, Thm. C-II 1.2] are fulfilled and thus we obtain the following
result.

Theorem 4.4 The operator (A,D(A)) generates a positive contraction C0-semi-
group (T (t))t≥0.

Using [12, Cor. II.6.9] we thus have well-posedness of the underlying problem.

Theorem 4.5 The abstract Cauchy problem (ACP) associated to A is well-posed.

We return now to our original problem (R), (BC) and (IC) and formulate our main
result.

Theorem 4.6 The system (R), (BC) and (IC) has a unique positive solution p(t, x)

which satisfies ‖p(t, ·)‖ = 1, t ∈ [0,∞).

Proof From Theorem 4.4, Theorem 4.5 and [12, Prop. II.6.2] we obtain that the asso-
ciated abstract Cauchy problem (ACP) has a unique positive dynamic solution p(x, t)
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which can be expressed as

p(t, x) = T (t)p(0) = T (t)(1,0,0,0, . . .). (15)

Let P(t) = p(t, x) = (p00(t),p01(t),p02(t),p10(t),p11(t, x),p12(t, x)), then P(t)

satisfies the system of equations:

dp00(t)

dt
= −(Nλ + λ1 + θ)p00(t) +

∫ ∞

0
μ(x)p11(t, x)dx, (16)

dp01(t)

dt
= −(Nλ + θ)p01(t) + (Nλ + λ1)p00(t), (17)

dp02(t)

dt
= −θp02(t) + Nλp01(t), (18)

dp10(t)

dt
= −(Nλ + λ1)p10(t) + θp00(t), (19)

∂p11(t, x)

∂t
= −∂p11(t, x)

∂x
− (Nλ + μ(x)

)
p11(t, x), (20)

∂p12(t, x)

∂t
= −∂p12(t, x)

∂x
− μ(x)p12(t, x) + Nλp11(t, x), (21)

p11(t,0) =
∫ ∞

0
p12(t, x)μ(x)dx + θp01(t) + (Nλ + λ1)p10(t), (22)

p12(t,0) = θp02(t), (23)

P(0) = (1,0,0,0,0, . . .). (24)

Since
∫ ∞

0

∂p1j (t, x)

∂x
dx = p1j (t,∞) − p1j (t,0) = −p1j (t,0), j = 1,2. (25)

Using (16)–(25) we compute

d‖P(t)‖
dt

=
2∑

i=0

dp0i (t)

dt
+ dp10(t)

dt
+

2∑

j=1

∫ ∞

0

∂p1j (t, x)

∂t
dx

= −(Nλ + λ1 + θ)p00(t) +
∫ ∞

0
μ(x)p11(t, x)dx

− (Nλ + θ)p01(t) + (Nλ + λ1)p00(t)

− θp02(t) + Nλp01(t)

− (Nλ + λ1)p10(t) + θp00(t)

+
∫ ∞

0

[

−∂p11(t, x)

∂x
− (Nλ + μ(x)

)
p11(t, x)

]

dx

+
∫ ∞

0

[

−∂p12(t, x)

∂x
− μ(x)p12(t, x) + Nλp11(t, x)

]

dx



56 A. Haji, A. Radl

= −
∫ ∞

0
p12(t, x)μ(x)dx − θp01(t) − (Nλ + λ1)p10(t)

− θp02(t) +
2∑

j=1

p1j (t,0)

= −
2∑

j=1

p1j (t,0) +
2∑

j=1

p1j (t,0) = 0. (26)

By (15) and (26) we obtain

d‖P(t)‖
dt

= d‖T (t)P (0)‖
dt

= 0.

Therefore,
∥
∥T (t)P (0)

∥
∥= ∥∥P(t)

∥
∥= ∥∥P(0)

∥
∥= 1.

This shows ‖p(t, ·)‖ = 1, ∀t ∈ [0,∞). �

5 Asymptotic stability of the solution

In this section, we will investigate the asymptotic stability of the dynamic solution
of the system. We apply results from the theory of positive operators and semigroups
that can be found in [20] and [13]. We use the same notation as in these books.

We obtain from slightly modifying [15, Lemma 1.4] or from [17, Prop. 3.3] that we
can express the resolvent of A in terms of the resolvent of A0, the Dirichlet operator
Dγ and the boundary operator � in the following way.

Lemma 5.1 Let γ ∈ ρ(A0) ∩ ρ(A). Then

R(γ,A) = R(γ,A0) + Dγ (Id − �Dγ )−1�R(γ,A0).

We have given the explicit form of the operators in Lemma 5.1 in Sect. 3. Note also
that, for γ > 0, (Id −�Dγ )−1 can be written via the Neumann series, since we know
from the proof of Lemma 4.1 that ‖�Dγ ‖ < 1, i.e. (Id − �Dγ )−1 =∑∞

n=0(�Dγ )n.
One can now see as in [7, Lemma 3.9] that R(γ,A) transforms any positive vector
p ∈ X into a strictly positive vector:

p ∈ X, p > 0 =⇒ R(γ,A)p � 0.

By [13, Def. C-III 3.1] this is equivalent to the irreducibility of the semigroup
(T (t))t≥0 generated by A. We thus have the following theorem.

Theorem 5.2 The semigroup (T (t))t≥0 generated by (A,D(A)) is irreducible.

With this at hand one can then show the convergence of the semigroup to a one-
dimensional equilibrium point, see [7, Thm. 3.11].
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Theorem 5.3 The space X can be decomposed into the direct sum

X = X1 ⊕ X2

where X1 = fix(T (t))t≥0 = kerA is one-dimensional and spanned by a strictly pos-
itive eigenvector p̃ ∈ kerA of A. In addition, the restriction (T (t)|X2)t≥0 is strongly
stable.

Corollary 5.4 There exists p′ ∈ X′,p′ � 0, such that for all p ∈ X

lim
t→∞T (t)p = 〈p′,p

〉
p̃,

where kerA = 〈p̃〉, p̃ � 0.

Since the semigroup gives the solutions of the original system, we obtain our final
result.

Corollary 5.5 The dynamic solution of the system (R), (BC) and (IC) converges
strongly to the steady-state solution as time tends to infinity, that is, limt→∞ p(t, ·) =
αp̃, where α > 0 and p̃ as in Corollary 5.4.
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