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Scissor equivalence for torus links

Sebastian Baader

Abstract

We show that the cobordism distance of torus links is determined by the profiles of their signature
functions, up to a constant factor.

1. Introduction

The Thom conjecture asserts that algebraic curves in C2 are genus-minimizing: the intersection
of a smooth algebraic curve defined by a polynomial f ∈ C[x, y] with the closed unit ball
in C2 has minimal genus among all smoothly embedded surfaces with the same boundary
link on the unit sphere. More generally, the transverse intersection of a smooth algebraic
curve with the compact domain enclosed by two spheres of different radii in C2 is a smooth
cobordism of minimal genus between the two boundary links. In general, two algebraic links
are not connected by an algebraic cobordism, as we will shortly see. However, we may still
look for a minimal smooth cobordism between pairs of algebraic links. Let us define the
cobordism distance dχ(K,L) between two oriented links K, L ⊂ S3 as the absolute value of
the maximal Euler characteristic among all smooth cobordisms without closed components in
S3 × [0, 1] connecting the links K and L. In particular, the absolute value of the maximal Euler
characteristic |χ(K)| of an oriented link K coincides with its cobordism distance dχ(K, ∅) to
the empty link. The main goal of this paper is to determine the cobordism distance between
torus links, up to a constant factor.

Theorem 1. There exists a constant A � 1, such that the following inequalities hold for
almost all pairs of torus links T (a, b), T (c, d) :

τ(T (a, b), T (c, d)) � dχ(T (a, b), T (c, d)) � Aτ(T (a, b), T (c, d)).

Here the quantity τ is defined for all pairs of oriented links K and L:

τ(K,L) = max{|χ(K) − χ(L)|, |σω(K) − σω(L)||ω ∈ S1},
where σω denotes the signature function (see Section 3 for a definition). Throughout this paper,
we will often have to exclude a few exceptional torus links, finite in number for each braid index.
It is in this sense that the expression ‘for almost all’ is to be understood. The exceptional torus
links and the constant A are specified in the proof (Section 3). We do not know if there exists
a constant such that the statement is true for all torus links.

The proof of Theorem 1 is based on a construction of effective cobordisms. For this purpose,
we will introduce three special types of smooth cobordisms called scissor cobordisms between
torus links. Two of them, cutting and gluing, enable us to give a coarse estimate for the
cobordism distance, which may be thought of as a relative version of the Thom conjecture. Let
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SCISSOR EQUIVALENCE FOR TORUS LINKS 1069

Figure 1. Smoothing and saddle move.

us define a function f : N4 → N by the equation

dχ(T (a, b), T (c, d)) = |χ(T (a, b)) − χ(T (c, d))| + f(a, b, c, d).

Elementary techniques show that the function f is bounded above by a quadratic expression,
for example, ab + cd. There is even a linear bound.

Theorem 2. The following inequalities hold for all a, b, c, d ∈ N:

0 � f(a, b, c, d) � 2(a + b + c + d).

Surprisingly, the lower bound is sharp for all pairs of torus links of type T (ab, c), T (a, bc), that
is, f(ab, c, a, bc) = 0 (Proposition 1, Section 2). This fact involves the third scissor cobordism
just mentioned, and is the key ingredient in the proof of Theorem 1.

Sections 2 and 3 are devoted to the proofs of Theorems 1 and 2, in the reverse order. In
Section 4, we exhibit two families of pairs of torus links showing that there is essentially
no better linear bound than the one of Theorem 2 for the function f . We conclude with
an interesting application of Theorem 2 concerning the stable 4-genus of knots, defined by
Livingston in [8]. The stable 4-genus defines a semi-norm on the knot concordance group. In
Section 5, we will see that the restriction of this semi-norm to the span of pairs of torus knots
has extremely flat unit balls.

2. Scissor equivalence

Torus links are prototypes of links of isolated singularities. They can be described as
intersections of plane algebraic curves of the form {(z, w) ∈ C2|zp − wq = 0} with the unit
sphere in C2. A slight perturbation of these curves will not affect the corresponding link types,
denoted by T (p, q). Thus torus links bound pieces of smooth algebraic curves in the 4-ball. The
Euler characteristic of these pieces of curves equals −pq + p + q and is known to be maximal
among all smooth oriented surfaces without closed components in the 4-ball bounding the
same link. This is a special case of the Thom conjecture, which was proved by Kronheimer
and Mrowka [6] (see [10] for a recent combinatorial proof). As we mentioned in Section 1,
two algebraic links are not necessarily connected by an algebraic cobordism in S3 × [0, 1]. For
example, the two torus knots T (2, 13) and T (4, 5) have minimal genus 6, thus an algebraic
cobordism connecting these would have genus zero. This is impossible since their signature
invariants are not equal.

As the title indicates, we will use scissor equivalence techniques for rectangles in order to
construct cobordisms between torus links. All these cobordisms will be compositions of simple
1-handles of two types, as shown in Figure 1. We call the corresponding moves smoothing and
saddle move, respectively.
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1070 SEBASTIAN BAADER

Figure 2. Splitting a torus link.

Figure 3. Shortening a torus link.

Every 1-handle contributes −1 to the Euler characteristic of a cobordism. As an application,
we may split a torus link of type (a + b, c) into the disjoint union of two torus links of type
(a, c) and (b, c) by a cobordism of Euler characteristic −c. Figure 2 illustrates this fact for
the case a = 3, b = 4, c = 6, where six crossings have to be smoothed between the third and
the fourth strands. All braids are to be closed in the standard way.

Proof of Theorem 2. The cobordism distance of two links K,L ⊂ S3 without slice
components is bounded below by the difference of their Euler characteristics:†

|χ(K) − χ(L)| � dχ(K,L).

This implies the first inequality of Theorem 2, since the components of torus links are positively
linked, hence non-slice. The second inequality will be proved by induction on a + b + c + d ∈ N.
The starting case a = b = c = d = 1 is trivial. Without loss of generality, we may suppose a � d.
According to the relative sizes of b and c, we will distinguish two cases:

(1) b < c
In this case, the torus link T (a, b) can be obtained from the standard diagram of the torus

link T (c, d) by smoothing an appropriate part of the crossings, as shown in Figure 3 for a = 3,
b = 4, c = 7, d � 3 arbitrary. The number of crossings to be smoothed equals

(c − 1)(d − a) + (a − 1)(c − b) = −ab + cd + a + b − c − d.

This is precisely the lower bound, by the positive solution to the Thom conjecture (χ(T (p, q)) =
−pq + p + q).

(2) b � c
Here we may split off a torus link of type (a, c) from the links T (a, b) and T (c, d) by a

cobordism of Euler characteristic −a respectively −c. The remaining links are torus links of

†This is a consequence of the equality |χ(K)| = dχ(K, ∅) and additivity of the Euler characteristic under
composition of cobordisms. As Brendan Owens pointed out to me, the composition of cobordisms may have
sphere components which would have to be removed and would thereby spoil the triangle inequality. However,
that can happen only in the presence of slice components.
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SCISSOR EQUIVALENCE FOR TORUS LINKS 1071

type (a, b − c) respectively (c, d − a). Using the inductive hypothesis, the cobordism distance
of the links T (a, b − c) and T (c, d − a) is bounded above by

Δχ′ + 2(a + b − c + c + d − a) = Δχ′ + 2b + 2d,

where

Δχ′ = |(a − 1)(b − c − 1) − (c − 1)(d − a − 1)|
= |(a − 1)(b − 1) − (c − 1)(d − 1) + c − a|
� Δχ + a + c.

Altogether, there is a cobordism of Euler characteristic of absolute value at most

Δχ′ + 2b + 2d + a + c � Δχ + 2(a + b + c + d)

between the links T (a, b) and T (c, d).

In view of the Milnor conjecture, it is natural to ask whether the estimates of Theorem 2 hold
for the Gordian distance of torus knots, that is, the minimal number of crossing changes needed
to pass from one torus knot to another [4]. This may be more difficult since the cobordism
distance of two knots provides a lower bound [5], but not an upper bound, for their Gordian
distance. We do not even know whether the correction term corresponding to f in Theorem 2
is a sub-quadratic function for the Gordian distance of torus knots.

The following proposition is a sharpened version of Theorem 2 for special torus links.

Proposition 1. For all a, b, c ∈ N

dχ(T (ab, c), T (a, bc)) = |χ(T (ab, c)) − χ(T (a, bc))| = (b − 1)|c − a|.

As a special case, for all n ∈ N,

dχ(T (2n, n + 1), T (n, 2n + 2)) = 1.

These are possibly the only pairs of torus links whose cobordism distance is one, apart from
the obvious families T (2, n), T (2, n + 1).

Proof of Proposition 1. Let us assume c > a. The maximal Euler characteristic of the knots
T (ab, c) and T (a, bc) is −abc + ab + c and −abc + a + bc, respectively. The absolute value of the
difference of these numbers is precisely (b − 1)(c − a), which gives the desired lower bound for
the distance dχ(T (ab, c), T (a, bc)). A cobordism of maximal Euler characteristic −(b − 1)(c − a)
can be constructed by smoothing (b − 1)(c − a) properly chosen crossings along (b − 1) vertical
lines of the standard diagram of the knot T (ab, c). This is illustrated in Figure 4 for the two
triples (a, b, c) = (3, 2, 7) and (a, b, c) = (2, 3, 7) on the left and right, respectively.

Remark. It is a curious fact that the difference of the maximal Euler characteristics of the
links T (ab, c) and T (a, bc) coincides with the difference of the sums of their parameters:

|χ(T (ab, c)) − χ(T (a, bc))| = |ab + c − a − bc|.

3. Signatures and the cobordism distance

The classical signature invariant can be generalized to a 1-parameter family of invariants called
Levine–Tristram signatures, via weighted Seifert matrices [7, 11]. Let ω ∈ S1 ⊂ C be a complex
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1072 SEBASTIAN BAADER

Figure 4. T(3,14) and T(2,21).

number of modulus 1 and let M be a Seifert matrix of a link L. Then σω(L) is defined as the
signature of the matrix

(1 − ω)M + (1 − ω)MT .

The Levine–Tristram signatures may be viewed as an integer-valued step function on the unit
circle with discontinuities at the roots of the Alexander polynomial of the link L. In the case of
torus links, there is a formula for these signatures, going back to Brieskorn ([1], see also [2]).

Let p, q ∈ N be natural numbers and ω = exp(2πiθ) be a root of unity with 0 < θ < 1. Then

σω(T (p, q)) =
∑

1�x�q−1
1�y�p−1

εθ(x, y), (1)

where

εθ(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

+1 if 0 < θ +
x

q
+

y

p
< 1 (mod2),

−1 if 1 < θ +
x

q
+

y

p
< 2 (mod2),

0 if θ +
x

q
+

y

p
∈ Z.

In particular, σω(T (p, q)) = 0 if 0 < θ < 1/pq, and the first jump of σω takes place
at θ = 1/pq.

Exactly as for the classical signature (which corresponds to ω = −1), every ω-signature yields
a bound for the cobordism distance of pairs of links L1 and L2 (see [9] for the classical signature;
[11] for ω-signatures):

dχ(L1, L2) � |σω(L1) − σω(L2)|.
In order to be close with respect to the cobordism distance, two torus links must have similar

step functions and 4-genera. Let us recall that the quantity τ is defined for pairs of oriented
links K and L as

τ(K,L) = max{|χ(K) − χ(L)|, |σω(K) − σω(L)||ω ∈ S1}.
We observe that τ(T (a, b), T (c, d)) = 0 implies {a, b} = {c, d}. Indeed, the first jump of the
step function ω �→ σω(T (a, b)) is at θ = 1/ab, which determines the product ab. The Euler
characteristic χ(T (a, b)) = −ab + a + b further determines the sum a + b, in turn the pair {a, b}.
Before proving Theorem 1, let us mention two recursive formulas for the classical signature
invariant of torus links, due to Gordon, Litherland and Murasugi [3].
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SCISSOR EQUIVALENCE FOR TORUS LINKS 1073

(1) σ(T (p, q + 2p)) = σ(T (p, q)) − p2 + 1, if p is odd,

(2) σ(T (p, q + 2p)) = σ(T (p, q)) − p2, if p is even.

The following estimates are easy consequences of these.

Lemma 1.

(i) |σ(T (p, q)) − pq/2 − q/2p| � p, for all p ∈ 2N + 1,
(ii) |σ(T (p, q)) − pq/2| � p, for all p ∈ 2N.

Proof. By the recursive formulas,

lim
n→∞

1
n

σ(T (p, n)) =
p2 − 1

2p
if p is odd,

lim
n→∞

1
n

σ(T (p, n)) =
p

2
if p is even,

in accordance with the lemma’s statement. Moreover, the restriction of the signature invariant
to the braid group Bp with p strands is a quasimorphism of defect p, that is,

|σ(αβ) − σ(α) − σ(β)| � p,

for all braids α, β ∈ Bp. Here, by σ(x) we mean the signature of the closure of the braid x. This
follows from the fact that the signature invariant provides a lower bound for the cobordism
distance of links and that there is an elementary cobordism of Euler characteristic p separating
the two factors of the braid αβ (more details on the defect of this quasimorphism can be found
in [2]). In particular, the map n �→ σ(T (p, n)) is a quasimorphism on Z. The required inequality
now follows from a general feature of quasimorphisms on Z: let ϕ : Z → Z be a quasimorphism
of defect D > 0 with limn→∞(1/n)ϕ(n) = a ∈ R. Then

|ϕ(n) − an| � D

holds for all n ∈ N. Indeed, suppose there exists m ∈ N with |ϕ(m) − am| > D, say ϕ(m) =
am + D + ε, for some ε > 0. Then one easily deduces

ϕ(km) � akm + D + kε,

for all k ∈ N, contradicting the assumption on the limit slope of ϕ.

The proof of Theorem 1 is divided into three cases, depending on the difference of the braid
indices. Without loss of generality, we may assume

2 � a � c, a � b, c � d.

In particular, the braid indices of the torus links T (a, b) and T (c, d) are a and c, respectively.
The first case, c = a, is an easy consequence of the Thom conjecture. The second case, c � a + 2,
is covered by Proposition 1 and estimates based on Lemma 1 and the Thom conjecture. The
remaining case, c = a + 1, needs a special consideration; it is the only instance where the
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1074 SEBASTIAN BAADER

cobordism distance is not determined solely by the classical signature invariant and the Euler
characteristic.

Proof of Theorem 1.
(i) c = a. In this case,

dχ(T (a, b), T (c, d)) = |χ(T (a, b)) − χ(T (c, d))|,
thus the desired inequality is true with A = 1.

(ii) c � a + 2. We may suppose b � d, since otherwise dχ(T (a, b), T (c, d)) = |χ(T (a, b)) −
χ(T (c, d))|. Under the additional hypothesis

d � max{c3, 120c2},
we will show that the cobordism distance is bounded above by a constant multiple
of max{Δχ,Δσ}, where Δχ = |χ(T (a, b)) − χ(T (c, d))|, Δσ = |σ(T (a, b)) − σ(T (c, d))|. The
assumption d � max{c3, 120c2} leaves out finitely many exceptional torus links of braid index c.

Let k, r ∈ N be the unique natural numbers with d = ka + r, 0 � r � a − 1. Our estimate
for dχ = dχ(T (a, b), T (c, d)) is based on the following sequence of cobordisms:

T (c, d) C1−→ T (c, ka) C2−→ T (kc, a) C3−→ T (b, a).

The first cobordism removes a rectangle of r × (c − 1) crossings; its Euler characteristic
is −r(c − 1). By Proposition 1, the second cobordism can be chosen to have Euler char-
acteristic −(k − 1)(c − a). The third cobordism removes or adds a rectangle of crossings,
|χ(T (kc, a)) − χ(T (b, a))| in number. By the triangle inequality, this number is bounded
above by |χ(T (a, b)) − χ(T (c, d))| + |χ(T (c, d)) − χ(T (c, ka))| + |χ(T (c, ka)) − χ(T (kc, a))| =
Δχ + r(c − 1) + (k − 1)(c − a). Summing up, we obtain dχ � Δχ + 2r(c− 1) + 2(k− 1)(c− a),
in turn

dχ � Δχ + 2ac + 2
d

a
(c − a).

By the additional hypothesis d � c3, we are left with

dχ � Δχ + 4
d(c − a)

a
.

It remains to show that d(c − a)/a is bounded above by a constant multiple of max{Δχ,Δσ}.
If Δσ � d(c − a)/80a, then Lemma 1 and the hypotheses b � d and c � a imply

|ab − cd| � 2Δσ +
∣∣∣∣ b

a
− d

c

∣∣∣∣ + 2a + 2c � d(c − a)
40a

+
b

a
+ 4c,

thus

b � cd

a
− b

a2
− d(c − a)

40a2
− 4c

a
,

b � acd

a2 + 1
− d(c − a)

40a2
− 4c

a
.

Here we could have multiplied the last two terms by a2/(a2 + 1), but this does not matter
for us. The fact that b is roughly the same as cd/a allows us to deduce a reasonable estimate
for Δχ:

Δχ � a + b − c − d − |ab − cd|
� a + b − c − d − d(c − a)

40a
− b

a
− 2a − 2c

� (a − 1)
a

b − d − d(c − a)
40a

− 4c.
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SCISSOR EQUIVALENCE FOR TORUS LINKS 1075

The essential term of the last line is ((a − 1)/a)b − d. By the above inequality for b, it is
bounded below by

(a − 1)cd − (a2 + 1)d
a2 + 1

− d(c − a)
40a2

− 4c

a
.

Our goal is to bound the term ((a − 1)cd − (a2 + 1)d)/(a2 + 1) by a constant multiple of
d(c − a)/a. This fails precisely if (a − 1)c − (a2 + 1) < 0, that is, if c = a + 1, and in three
more special cases: (a, c) = (2, 4), (3, 5) and (2, 5). In all other cases, we have

(a − 1)cd − (a2 + 1)d
a2 + 1

� d(c − a)
10a

(the worst remaining case is (a, c) = (2, 6), in which equality holds). Altogether, we obtain:

Δχ � d(c − a)
10a

− d(c − a)
40a2

− 4c

a
− d(c − a)

40a
− 4c.

Under the additional hypothesis d � 120c2, the term 4c/a + 4c � 6c is bounded above by
d(c − a)/40a; we are left with an estimate of the desired type:

Δχ � d(c − a)
40a

.

The three exceptional cases (a, c) = (2, 4), (3, 5) and (2, 5) can be treated by a more careful
analysis of the classical signature invariant. Details are not interesting enough to be presented
here.

(iii) c = a + 1. The same construction as in the previous case shows

dχ � Δχ + 4
d(c − a)

a
= Δχ +

4d

a
.

However, the term 4d/a is not bounded above by a constant multiple of max{Δχ,Δσ}. The
reason for that lies in the asymptotic behaviour of the ratio σ/χ for torus links of type (p, n),
where n tends to infinity. These ratios can be determined via the recursive formulas for the
classical signature invariant:

lim
n→∞

σ(T (p, n))
χ(T (p, n))

=
p2 − 1

2p(p − 1)
=

p + 1
2p

if p is odd,

lim
n→∞

σ(T (p, n))
χ(T (p, n))

=
p2

2p(p − 1)
=

p

2(p − 1)
if p is even.

The limits coincide for a = p, c = p + 1, provided p is odd. We will therefore need the whole
spectrum of ω-signature invariants.

Using the sum formula (1), we may analyse the coarse profile of the ω-signature function
σω(T (p, n)), for large numbers n (compare [2]). If θ is small, more precisely if θ < 1/p, the
piecewise constant function θ �→ σexp(2πiθ)(T (p, n)) jumps by −2 at all multiples of 1/pn except
at multiples of p/pn = 1/n, where there are no jumps. This implies

lim
n→∞

1
n

σexp(2πi(1/p))(T (p, n)) = −2(p − 1)
p

.

For 1/p < θ < 2/p, the value θ + x/q + y/p can exceed 2. More precisely, the function θ �→
σexp(2πiθ)(T (p, n)) jumps by 2 at intervals of length 1/n, starting at θ = 1/p + 1/n. This implies

lim
n→∞

1
n

σexp(2πi(2/p))(T (p, n)) = −2
(

p − 1
p

+
p − 3

p

)
.

Continuing in this way, we see that the asymptotic profile of the ω-signature function
σexp(2πiθ)(T (p, n)) between θ = 0 and θ = 1

2 is piecewise affine with consecutive slopes
−2(p − 1)/p,−2(p − 3)/p,−2(p − 5)/p, . . . . At this point, we observe a fundamental difference
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between the profiles for even and odd numbers p: for even p, the slope of the final segment is
−2/p, whereas for odd p, it is zero.

Assuming that a is odd (for notational convenience), we obtain

|σexp(2πi(1/2−1/(a+1)))(T (a, b)) − σexp(πi)(T (a, b))| � a,

|σexp(2πi(1/2−1/(a+1)))(T (a + 1, d)) − σexp(πi)(T (a + 1, d))| � 2d

a + 1
− (a + 1).

As a consequence, there exists an ω (exp(2πi(1
2 − 1/(a + 1))) or exp(πi), to be precise) with

Δσω = σω(T (a, b)) − σω(T (a + 1, d)) � d

a + 1
− (2a + 1).

Under the additional hypothesis d � 8c2, the term 2a + 1 is bounded above by d/4a, thus

Δσω � d

4a
,

which is precisely what we need.

4. Searching for the optimal linear bound

The purpose of this section is to show that the linear bound of Theorem 2,

f(a, b, c, d) � 2(a + b + c + d),

is almost optimal. Evidently we are interested only in bounds that respect all symmetries of
the parameters, that is, bounds that are invariant under exchanging a and b, c and d, as well
as the pairs {a, b} and {c, d}. The only ‘linear’ bounds with these properties are of the form
α(a + b + c + d) or β|a + b − c − d|, for constants α, β ∈ R. Let us first show α � 1

2 , by looking
at a particular family of examples.

Fix a natural number n and set a = 2, b = n2 + 1, c = d = n + 1. Then the quantity
|χ(T (a, b)) − χ(T (c, d))| is zero and the expression α(a + b + c + d) is essentially αn2, for
large n. Up to a linear error in n, the values of the classical signature invariant on the links
T (2, n2 + 1) and T (n + 1, n + 1) are −n2, respectively −n2/2. Thus the cobordism distance of
the links T (2, n2 + 1) and T (n + 1, n + 1) is at least n2/2, implying α � 1

2 .
Finding a family of links that excludes all bounds of the form β|a + b − c − d| is somewhat

more subtle.† Fix a natural number n and set a = 6n, b = 12n + 1, c = 6n + 1, d = 12n − 1.
The quantity |χ(T (a, b)) − χ(T (c, d))| is again zero. Furthermore, a + b − c − d = 1, so the
expression β|a + b − c − d| coincides with β, for all n. The signature of the involved torus links
can be computed by using recursive formulas [3]. The outcome is

σ(T (6n, 12n + 1)) = −36n2,

σ(T (6n + 1, 12n − 1)) = −36n2 − 4n.

The difference exceeds every constant β.

5. Stable 4-genus

The smooth 4-genus g4(K) of a knot K ⊂ S3 is the minimal genus among all smooth oriented
surfaces without closed components in the 4-ball with boundary K. Contrary to the classical

†A careful inspection of the proof of Theorem 1 reveals that such a bound exists, provided we exclude finitely
many exceptional torus links per braid index.
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(0,1/15)

(1/14,0)

(1/2,−1/2)

(−1/2,1/2)

Figure 5. Norm ball.

genus, the 4-genus is not additive, but sub-additive, under the connected sum of knots:

g4(K#L) � g4(K) + g4(L),

for all knots K,L ⊂ S3. Livingston [8] introduced the stable 4-genus of a knot K as

gst(K) = lim
n→∞

g4(nK)
n

∈ R.

He further showed that the natural extension of the stable 4-genus to the rationalized
concordance group CQ is a semi-norm. It is instructive to study this semi-norm on small sub-
groups of CQ, for example, sub-groups spanned by pairs of knots. This was done by Livingston
for certain pairs of torus knots. Here, we will explain why the restriction of the stable 4-genus
to the span of pairs of torus knots has flat unit balls.

Let T (a, b) and T (c, d) be two torus knots with positive parameters a, b, c, and d. We interpret
a point (x, y) ∈ Q2 as the element

xT (a, b) + yT (c, d) ∈ CQ.

By the Thom conjecture, the stable 4-genus of a positive torus knot of type (p, q) is
gst(T (p, q)) = 1

2 (p − 1)(q − 1). Thus, the points (1, 0) and (0, 1) have norms 1
2 (a − 1)(b − 1)

and 1
2 (c − 1)(d − 1), respectively. Now let us compute the norm of the points (−1, 1) and

(1,−1). By Theorem 2, there exists a smooth cobordism of genus at most
1
2 |(a − 1)(b − 1) − (c − 1)(d − 1)| + a + b + c + d

between the two knots T (a, b) and T (c, d) (the genus of a cobordism between two knots equals
half the absolute value of its Euler characteristic). This is then an upper bound for the norm of
the points (−1, 1) and (1,−1). Assuming that the difference of the genera of the knots T (a, b)
and T (c, d) is small compared with the quantity a + b + c + d, this implies that the unit ball
with respect to the stable 4-genus is flat, with a long diameter along the line of slope −1.

Example. Let (a, b, c, d) = (5, 8, 4, 11). We have

gst(T (5, 8)) = 1
2 (5 − 1)(8 − 1) = 14,

gst(T (4, 11)) = 1
2 (4 − 1)(11 − 1) = 15.

By Proposition 1, there is a cobordism of Euler characteristic −1 between the knot T (5, 8) and
the link T (4, 10). Further, there is an obvious cobordism of Euler characteristic −3 between
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1078 SCISSOR EQUIVALENCE FOR TORUS LINKS

the link T (4, 10) and the knot T (4, 11). Altogether, there is a cobordism of Euler characteristic
−4, that is, of genus 2, between the knots T (5, 8) and T (4, 11). The expected shape of the
corresponding norm ball is sketched in Figure 5. It could actually be even flatter, if the
cobordism distance between the knots T (5, 8) and T (4, 11) were 2.
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