ROOTS OF THE AFFINE CREMONA GROUP

ALVARO LIENDO
Mathematisches Institut Universität Basel
Rheinsprung 21
CH-4051 Basel, Switzerland
alvaro.liendo@unibas.ch

Abstract

Let $\mathbf{k}^{[n]}=\mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial algebra in n variables and let $\mathbb{A}^{n}=\operatorname{Spec} \mathbf{k}^{[n]}$. In this note we show that the root vectors of $\operatorname{Aut}^{*}\left(\mathbb{A}^{n}\right)$, the subgroup of volume preserving automorphisms in the affine Cremona group Aut $\left(\mathbb{A}^{n}\right)$, with respect to the diagonal torus are exactly the locally nilpotent derivations $\mathbf{x}^{\boldsymbol{\alpha}}\left(\partial / \partial x_{i}\right)$, where $\mathbf{x}^{\boldsymbol{\alpha}}$ is any monomial not depending on x_{i}. This answers a question posed by Popov.

Introduction

Letting \mathbf{k} be an algebraically closed field of characteristic zero, we let $\mathbf{k}^{[n]}=$ $\mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial algebra in n variables, and $\mathbb{A}^{n}=\operatorname{Spec} \mathbf{k}^{[n]}$ be the affine space. The affine Cremona group $\operatorname{Aut}\left(\mathbb{A}^{n}\right)$ is the group of automorphisms of \mathbb{A}^{n}, or equivalently, the group of \mathbf{k}-automorphisms of $\mathbf{k}^{[n]}$. We define Aut $\left(\mathbb{A}^{n}\right)$ as the subgroup of volume preserving automorphisms, i.e.,

$$
\operatorname{Aut}^{*}\left(\mathbb{A}^{n}\right)=\left\{\gamma \in \operatorname{Aut}\left(\mathbb{A}^{n}\right) \left\lvert\, \operatorname{det}\left(\frac{\partial}{\partial x_{i}} \gamma\left(x_{j}\right)\right)_{i, j}=1\right.\right\} .
$$

The groups $\operatorname{Aut}\left(\mathbb{A}^{n}\right)$ and $\operatorname{Aut}\left(\mathbb{A}^{n}\right)$ are infinite dimensional algebraic groups [Sha66, Kam79].

It follows from [BB66, BB67] that the maximal dimension of an algebraic torus contained in Aut ${ }^{*}\left(\mathbb{A}^{n}\right)$ is $n-1$. Moreover, every algebraic torus of dimension $n-1$ contained in $A u t^{*}\left(\mathbb{A}^{n}\right)$ is conjugated to the diagonal torus

$$
\mathbf{T}=\left\{\gamma=\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \operatorname{Aut}^{*}\left(\mathbb{A}^{n}\right) \mid \gamma_{1} \cdots \gamma_{n}=1\right\}
$$

A k-derivation ∂ on an algebra A is called locally nilpotent (LND for short) if for every $a \in A$ there exists $k \in \mathbb{Z}_{\geq 0}$ such that $\partial^{k}(a)=0$. If $\partial: \mathbf{k}^{[n]} \rightarrow \mathbf{k}^{[n]}$ is an LND on the polynomial algebra, then $\exp (t \partial) \in \operatorname{Aut}\left(\mathbb{A}^{n}\right)$, for all $t \in \mathbf{k}[\operatorname{Fre} 06]$. Hence, ∂ belongs to the Lie algebra $\operatorname{Lie}\left(\operatorname{Aut}{ }^{*}\left(\mathbb{A}^{n}\right)\right)$.

In analogy with the notion of root from the theory of algebraic groups [Spr98], Popov introduced the following definitions; see [$\left.\mathrm{Pop}_{1} 05\right]$, $\left[\mathrm{Pop}_{2} 05\right]$. A nonzero LND

Received October 22, 2010. Accepted January 25, 2011. Published online May 12, 2011.
∂ on $\mathbf{k}^{[n]}$ is called a root vector of $A u t^{*}\left(\mathbb{A}^{n}\right)$ with respect to the diagonal torus \mathbf{T} if there exists a character χ of \mathbf{T} such that

$$
\gamma \circ \partial \circ \gamma^{-1}=\chi(\gamma) \cdot \partial, \quad \text { for all } \quad \gamma \in \mathbf{T} .
$$

The character χ is called the root of $\operatorname{Aut}^{*}\left(\mathbb{A}^{n}\right)$ with respect to \mathbf{T} corresponding to ∂.

Letting $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}^{n}$, we let $\mathbf{x}^{\boldsymbol{\alpha}}$ be the monomial $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$. In this note we apply the results in [Lie10] to prove the following theorem. This answers a question posed by Popov $\left[\mathrm{Pop}_{1} 05\right]$, $\left[\mathrm{Pop}_{2} 05\right]$.

Theorem 1. The root vectors of Aut* $\left(\mathbb{A}^{n}\right)$ with respect to the diagonal torus \mathbf{T} are exactly the LNDs

$$
\partial=\lambda \cdot \mathbf{x}^{\boldsymbol{\alpha}} \cdot \frac{\partial}{\partial x_{i}}
$$

where $\lambda \in \mathbf{k}^{*}, i \in\{1, \ldots, n\}$, and $\boldsymbol{\alpha} \in \mathbb{Z}_{\geq 0}^{n}$ with $\alpha_{i}=0$. The corresponding root is the character

$$
\chi: \mathbf{T} \rightarrow \mathbf{k}^{*}, \quad \gamma=\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{n}\right) \mapsto \gamma_{i}^{-1} \prod_{j=1}^{n} \gamma_{j}^{\alpha_{j}}
$$

Acknowledgments. The author is grateful to Ivan Arzhantsev who pointed out this problem to us, and to Vladimir Popov, Polina Kotenkova and both referees for useful remarks.

Proof of Theorem 1

It is well known that the group $\chi(\mathbf{T})$ of characters of \mathbf{T} forms a lattice whose dual lattice is the group $\lambda(\mathbf{T})$ of one-parameter subgroups of \mathbf{T}. It is customary to consider these lattices in additive notation. In this case we denote $\chi(\mathbf{T})$ by M and $\lambda(\mathbf{T})$ by N. To avoid confusion between the addition in M and that in the algebra of regular functions on \mathbf{T}, the character of \mathbf{T} corresponding to an element $m \in M$ is denoted by χ^{m}. The composition of the canonical isomorphism $\mathbb{Z}^{n} \rightarrow \chi\left(\left(\mathbf{k}^{*}\right)^{n}\right)$ with the restriction map $\chi\left(\left(\mathbf{k}^{*}\right)^{n}\right) \rightarrow \chi(\mathbf{T}),\left.f \mapsto f\right|_{\mathbf{T}}$, induces the isomorphism of lattices $\mathbb{Z}^{n} / \mathbb{1} \cdot \mathbb{Z} \xrightarrow{\sim} M$, where $\mathbb{1}=(1, \ldots, 1) \in \mathbb{Z}^{n}$. We identify them by means of this isomorphism: $M=\mathbb{Z}^{n} / \mathbb{1} \cdot \mathbb{Z}$. Correspondingly, we put $N=\operatorname{ker}(p \mapsto p(\mathbb{1})) \subseteq\left(\mathbb{Z}^{n}\right)^{*}$.

The natural \mathbf{T}-action on \mathbb{A}^{n} gives rise to an M-grading on $\mathbf{k}^{[n]}$ given by

$$
\mathbf{k}^{[n]}=\bigoplus_{m \in M} B_{m}, \quad \text { where } \quad B_{m}=\left\{f \in \mathbf{k}^{[n]} \mid \gamma(f)=\chi^{m}(\gamma) f, \forall \gamma \in \mathbf{T}\right\}
$$

An LND ∂ on $\mathbf{k}^{[n]}$ is called homogeneous if it sends homogeneous elements into homogeneous elements. Let ∂ be a homogeneous LND on $\mathbf{k}^{[n]}$, and let $f \in \mathbf{k}^{[n]} \backslash$ ker ∂ be homogeneous. We define the degree of ∂ as $\operatorname{deg} \partial=\operatorname{deg}(\partial(f))-\operatorname{deg}(f) \in$ M. This definition does not depend on the choice of f; see [Lie10, Sect.1.2].

Lemma 2. An LND on $\mathbf{k}^{[n]}$ is a root vector of $A u t^{*}\left(\mathbb{A}^{n}\right)$ with respect to the diagonal torus \mathbf{T} if and only if ∂ is homogeneous with respect to the M-grading on $\mathbf{k}^{[n]}$ given by \mathbf{T}. Furthermore, the corresponding root is the character $\chi^{\operatorname{deg} \partial}$.
Proof. Let ∂ be a root vector of $\operatorname{Aut}^{*}\left(\mathbb{A}^{n}\right)$ with root χ^{e}, so that

$$
\partial=\chi^{-e}(\gamma) \cdot \gamma \circ \partial \circ \gamma^{-1}, \quad \forall \gamma \in \mathbf{T} .
$$

We consider a homogeneous element $f \in B_{m^{\prime}}$ and we let $\partial(f)=\sum_{m \in M} g_{m}$, where $g_{m} \in B_{m}$, so that
$\sum_{m \in M} g_{m}=\partial(f)=\chi^{-e}(\gamma) \cdot \gamma \circ \partial \circ \gamma^{-1}(f)=\chi^{-e-m^{\prime}}(\gamma) \sum_{m \in M} \chi^{m}(\gamma) \cdot g_{m}, \quad \forall \gamma \in \mathbf{T}$.
This equality holds if and only if $g_{m}=0$ for all but one $m \in M$, i.e., if ∂ is homogeneous. In this case, $\partial(f)=g_{m}=\chi^{-e-m^{\prime}+m}(\gamma) \cdot \partial(f)$, and so $e=m-m^{\prime}=$ $\operatorname{deg}(\partial(f))-\operatorname{deg}(f)=\operatorname{deg} \partial$.

In [AH06], a combinatorial description of a normal affine M-graded domain A is given in terms of polyhedral divisors, and in [Lie10] a description of the homogeneous LNDs on A is given in terms of these combinatorial data in the case where $\operatorname{tr} . \operatorname{deg} A=\operatorname{rank} M+1$. In the following we apply these results to compute the homogeneous LNDs on the M-graded algebra $\mathbf{k}^{[n]}$. First, we give a short presentation of the combinatorial description in [AH06] in the case where $\operatorname{tr} . \operatorname{deg} A=\operatorname{rank} M+1$. For a more detailed treatment see [Lie10, Sect. 1.1].

The combinatorial description in [AH06] deals with the following data: A pointed polyhedral cone $\sigma \subseteq N_{\mathbb{Q}}:=N \otimes \mathbb{Q}$ dual to the weight cone $\sigma^{\vee} \subseteq M_{\mathbb{Q}}:=$ $M \otimes \mathbb{Q}$ of the M-grading; a smooth curve C; and a divisor $\mathfrak{D}=\sum_{z \in C} \Delta_{z} \cdot z$ on C whose coefficients Δ_{z} are polyhedra in $N_{\mathbb{Q}}$ having tail cone σ. For every $m \in \sigma^{\vee}$ the evaluation of \mathfrak{D} at m is the \mathbb{Q}-divisor given by

$$
\mathfrak{D}(m)=\sum_{z \in C} \min \left\{p(m) \mid p \in \Delta_{z}\right\} \cdot z
$$

Furthermore, in the case where C is projective we ask for the following two conditions:
(i) For every $m \in \sigma^{\vee}, \operatorname{deg} \mathfrak{D}(m) \geq 0$; and
(ii) If $\operatorname{deg} \mathfrak{D}(m)=0$, then m is in the boundary of σ^{\vee} and a multiple of $\mathfrak{D}(m)$ is principal.
We define the M-graded algebra

$$
\begin{equation*}
A[\mathfrak{D}]=\bigoplus_{m \in \sigma^{\vee} \cap M} A_{m} \chi^{m}, \quad \text { where } \quad A_{m}=H^{0}\left(C, \mathcal{O}_{C}(\mathfrak{D}(m))\right) \tag{1}
\end{equation*}
$$

and χ^{m} is the corresponding character of the torus $\operatorname{Spec} \mathbf{k}[M]$ seen as a rational function on Spec A via the embedding $\operatorname{Frac} \mathbf{k}[M] \hookrightarrow \operatorname{Frac} A[\mathfrak{D}]=\operatorname{Frac} \mathbf{k}(C)[M]$.

It follows from $[\mathrm{AH} 06]$ that $A[\mathfrak{D}]$ is a normal affine domain and that every normal affine M-graded domain A with tr. $\operatorname{deg} A=\operatorname{rank} M+1$ is equivariantly
isomorphic to $A[\mathfrak{D}]$ for some polyhedral divisor on a smooth curve; see also [Lie10, Theorem 1.4].

We turn back now to our particular case where we deal with the polynomial algebra $\mathbf{k}^{[n]}$ graded by $M=\mathbb{Z}^{n} / \mathbb{1} \cdot \mathbb{Z}$. Letting $\left\{\mu_{1}, \ldots, \mu_{n}\right\}$ be the canonical basis of \mathbb{Z}^{n} the M-grading on $\mathbf{k}^{[n]}$ is given by $\operatorname{deg} x_{i}=\mu_{i}$, for all $i \in\{1, \ldots, n\}$. Now let $\left\{\nu_{1}, \ldots, \nu_{n}\right\}$ be the dual basis of $\left(\mathbb{Z}^{n}\right)^{*}$, and let $\Delta \subseteq N_{\mathbb{Q}}=\operatorname{ker}(p \mapsto p(\mathbb{1})) \subseteq\left(\mathbb{Q}^{n}\right)^{*}$ be the convex hull of the set $\left\{\nu_{1}-\nu_{n}, \ldots, \nu_{n-1}-\nu_{n}, \overline{0}\right\}$.
Lemma 3. The M-graded algebra $\mathbf{k}^{[n]}$ is equivariantly isomorphic to $A[\mathfrak{D}]$, where \mathfrak{D} is the polyhedral divisor $\mathfrak{D}=\Delta \cdot[0]$ on \mathbb{A}^{1}.
Proof. By [AH06], the M-graded algebra $\mathbf{k}^{[n]}$ is isomorphic to $A[\mathfrak{D}]$ for some polyhedral divisor \mathfrak{D} on a smooth curve C. Since the weight cone σ^{\vee} of $\mathbf{k}^{[n]}$ is $M_{\mathbb{Q}}$, the coefficients of \mathfrak{D} are just bounded polyhedra in N_{Q}.

Since \mathbb{A}^{n} is a toric variety and the torus \mathbf{T} is a subtorus of the big torus, we can apply the method in [AH06, Sect. 11]. In particular, C is a toric curve. Thus $C=\mathbb{A}^{1}$ or $C=\mathbb{P}^{1}$. Furthermore, the graded piece $B_{\overline{0}} \supsetneq \mathbf{k}$ and so C is not projective by (1). Hence $C=\mathbb{A}^{1}$.

The only divisor in \mathbb{A}^{1} invariant by the big torus is $[0]$, so $\mathfrak{D}=\Delta \cdot[0]$ for some bounded polyhedron Δ in N_{Q}. Finally, applying the second equation in [AH06, Sect.11], a routine computation shows that Δ can be chosen as the the convex hull of $\left\{\nu_{1}-\nu_{n}, \ldots, \nu_{n-1}-\nu_{n}, \overline{0}\right\}$.

Remark 4.
(i) The polyhedron $\Delta \subseteq N_{\mathrm{Q}}$ is the standard $(n-1)$-simplex in the basis $\left\{\nu_{1}-\right.$ $\left.\nu_{n}, \ldots, \nu_{n-1}-\nu_{n}\right\}$.
(ii) Letting $\mathbb{A}^{1}=\operatorname{Spec} \mathbf{k}[t]$, it is possible to show by a direct computation that the isomorphism $\mathbf{k}^{[n]} \simeq A[\mathfrak{D}]$ is given by $x_{i}=\chi^{\mu_{i}}$, for all $i \in\{1, \ldots, n-1\}$, and $x_{n}=t \chi^{\mu_{n}}$. This provides a proof of Lemma 3 that avoids the reference to [AH06].

In [Lie10] the homogeneous LNDs on a normal affine M-graded domain are classified into 2 types: fiber type and horizontal type. In the case where the weight cone is $M_{\mathbb{Q}}$, there are no LNDs of fiber type. Thus, $\mathbf{k}^{[n]}$ admits only homogeneous LNDs of horizontal type. The homogeneous LNDs of horizontal type are described in [Lie10, Theorem 3.28]. In the following, we specialize this result to the particular case of $A[\mathfrak{D}] \simeq \mathbf{k}^{[n]}$.

Let $v_{i}=\nu_{i}-\nu_{n}, i \in\{1, \ldots, n-1\}$ and $v_{n}=\overline{0}$, so that $\left\{v_{1}, \ldots, v_{n}\right\}$ is the set of vertices of Δ. For every $\lambda \in \mathbf{k}^{*}, i \in\{1, \ldots, n\}$, and $e \in M$ we let $\partial_{\lambda, i, e}$: Frac $A[\mathfrak{D}] \rightarrow$ Frac $A[\mathfrak{D}]$ be the derivation given by

$$
\partial_{\lambda, i, e}\left(t^{r} \cdot \chi^{m}\right)=\lambda\left(r+v_{i}(m)\right) \cdot t^{r-v_{i}(e)-1} \cdot \chi^{m+e}, \quad \forall(m, r) \in M \times \mathbb{Z}
$$

Lemma 5 ([Lie10, Theorem 3.28]). If ∂ is a nonzero homogeneous LND of $A[\mathfrak{D}]$ $\simeq \mathbf{k}^{[n]}$, then $\partial=\left.\partial_{\lambda, i, e}\right|_{A[\mathfrak{D}]}$ for some $\lambda \in \mathbf{k}^{*}$, some $i \in\{1, \ldots, n\}$, and some $e \in M$ satisfying $v_{j}(e) \geq v_{i}(e)+1, \forall j \neq i$. Furthermore, e is the degree $\operatorname{deg} \partial$.

Proof of Theorem 1. By Lemma 2 the root vectors of $\mathbf{k}^{[n]}$ correspond to the homogeneous LNDs in the M-graded algebra $\mathbf{k}^{[n]}$. But the homogeneous LNDs on $A[\mathfrak{D}] \simeq \mathbf{k}^{[n]}$ are given in Lemma 5, so we need only to translate the homogeneous

LND $\partial=\left.\partial_{\lambda, i, e}\right|_{A[\mathfrak{D}]}$ in Lemma 5 in terms of the explicit isomorphism given in Remark 4(ii).

Let $e=\left(e_{1}, \ldots, e_{n}\right) \in M$ and $i \in\{1, \ldots, n-1\}$, so that $v_{i}=\nu_{i}-\nu_{n}$. Since $\mathbb{1}$ is in the class of zero in M, we may and will assume $e_{i}=-1$. Then, the condition $v_{j}(e) \geq v_{i}(e)+1$ yields $e_{j} \geq 0, \forall j \neq i$. Furthermore, $\partial\left(x_{k}\right)=\partial\left(\chi^{\mu_{k}}\right)=0$, for all $k \neq i, k \in\{1, \ldots, n-1\}, \partial\left(x_{n}\right)=\partial\left(t \chi^{\mu_{n}}\right)=0$, and

$$
\partial\left(x_{i}\right)=\partial\left(\chi^{\mu_{i}}\right)=\lambda t^{e_{n}} \chi^{e+\mu_{i}}=\lambda \prod_{j \neq i} x_{j}^{e_{j}}=\lambda \mathbf{x}^{\boldsymbol{\alpha}}
$$

where $\alpha_{i}=0$, and $\alpha_{j}=e_{j} \geq 0$, for all $j \neq i$. Hence, $\partial=\lambda \cdot \mathbf{x}^{\boldsymbol{\alpha}} \cdot\left(\partial / \partial x_{i}\right)$, for some $\lambda \in \mathbf{k}^{*}$, some $i \in\{1, \ldots, n-1\}$, and some $\boldsymbol{\alpha} \in \mathbb{Z}_{\geq 0}^{n}$ such that $\alpha_{i}=0$.

Now let $e=\left(e_{1}, \ldots, e_{n}\right) \in M$ and $i=n$, so that $v_{n}=0$. Since $\mathbb{1}$ is in the class of zero in M, we may and will assume $e_{n}=-1$. Then, the condition $v_{j}(e) \geq$ $v_{n}(e)+1$ yields $e_{j} \geq 0, \forall j \in\{1, \ldots, n-1\}$. Furthermore, $\partial\left(x_{k}\right)=\partial\left(\chi^{\mu_{k}}\right)=0$, $k \in\{1, \ldots, n-1\}$, and

$$
\partial\left(x_{n}\right)=\partial\left(t \chi^{\mu_{n}}\right)=\lambda \chi^{e+\mu_{n}}=\lambda \prod_{j \neq n} x_{j}^{e_{j}}=\lambda \mathbf{x}^{\boldsymbol{\alpha}}
$$

where $\alpha_{n}=0$, and $\alpha_{j}=e_{j} \geq 0$, for all $j \in\{1, \ldots, n-1\}$. Hence, $\partial=\lambda \cdot \mathbf{x}^{\boldsymbol{\alpha}}$. $\left(\partial / \partial x_{n}\right)$, for some $\lambda \in \mathbf{k}^{*}$ and some $\boldsymbol{\alpha} \in \mathbb{Z}_{\geq 0}^{n}$ such that $\alpha_{n}=0$.

The last assertion of the theorem follows easily from the fact that the root corresponding to the homogeneous LND ∂ is the character $\chi^{\operatorname{deg} \partial}$.

Finally, we describe the characters that appear as a root of Aut* $\left(\mathbb{A}^{n}\right)$.
Corollary 6. The character $\chi \in \chi(\mathbf{T})$ given by $\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{n}\right) \mapsto \gamma_{1}^{\beta_{1}} \cdots \gamma_{n}^{\beta_{n}}$ is a root of $\operatorname{Aut}^{*}\left(\mathbb{A}^{n}\right)$ with respect to the diagonal torus \mathbf{T} if and only if the minimum of the set $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ is achieved by one and only one of the β_{i}.

Proof. By Theorem 1, the roots of Aut* $\left(\mathbb{A}^{n}\right)$ are the characters $\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{n}\right) \mapsto$ $\gamma_{1}^{\beta_{1}} \cdots \gamma_{n}^{\beta_{n}}$, where $\beta_{i}=-1$ for some $i \in\{1, \ldots, n\}$ and $\beta_{j} \geq 0 \forall j \neq i$. The corollary follows from the fact that $\gamma_{1} \cdots \gamma_{n}=1$.

References

[AH06] K. Altmann, J. Hausen, Polyhedral divisors and algebraic torus actions, Math. Ann. 334 (2006), no. 3, 557-607.
[BB66] A. Białynicki-Birula, Remarks on the action of an algebraic torus on k^{n}, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 177-181.
[BB67] A. Biatynicki-Birula, Remarks on the action of an algebraic torus on k^{n}, II, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 123-125.
[Fre06] G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Encyclopaedia of Mathematical Sciences, Vol. 136, Series Invariant Theory and Algebraic Transformation Groups, Vol. VII, Springer, Berlin, 2006.
[Kam79] T. Kambayashi, Automorphism group of a polynomial ring and algebraic group action on an affine space, J. Algebra 60 (1979), no. 2, 439-451.
[Lie10] A. Liendo, Affine \mathbb{T}-varieties of complexity one and locally nilpotent derivations Transform. Groups 15 (2010), no. 2, 389-425.
[$\left.\mathrm{Pop}_{1} 05\right]$ V. L. Popov, Problems for problem session, arXiv:math.AG/0504517v1 25 Apr 2005.
[$\left.\mathrm{Pop}_{2} 05\right]$ V. L. Popov, Roots of the affine Cremona group, in: Affine Algebraic Geometry, Seville, Spain, June 18-21, 2003, Contemporary Mathematics, Vol. 369, American Mathematical Society, Providence, RI, 2005, pp. 12-13.
[Sha66] I. R. Shafarevich, On some infinite-dimensional groups, Rend. Mat. e Appl. (5) 25 (1966), nos. 1-2, 208-212.
[Spr98] T. A. Springer, Linear Algebraic Groups, 2nd ed., Progress in Mathematics, Vol. 9, Birkhäuser Boston, Boston, MA, 1998.

