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a b s t r a c t 

Supervised learning is constrained by the availability of labeled data, which are especially expensive to 

acquire in the field of digital pathology. Making use of open-source data for pre-training or using domain 

adaptation can be a way to overcome this issue. However, pre-trained networks often fail to generalize 

to new test domains that are not distributed identically due to tissue stainings, types, and textures vari- 

ations. Additionally, current domain adaptation methods mainly rely on fully-labeled source datasets. In 

this work, we propose Self-Rule to Multi-Adapt (SRMA), which takes advantage of self-supervised learn- 

ing to perform domain adaptation, and removes the necessity of fully-labeled source datasets. SRMA can 

effectively transfer the discriminative knowledge obtained from a few labeled source domain’s data to 

a new target domain without requiring additional tissue annotations. Our method harnesses both do- 

mains’ structures by capturing visual similarity with intra-domain and cross-domain self-supervision. 

Moreover, we present a generalized formulation of our approach that allows the framework to learn 

from multiple source domains. We show that our proposed method outperforms baselines for domain 

adaptation of colorectal tissue type classification in single and multi-source settings, and further validate 

our approach on an in-house clinical cohort. The code and trained models are available open-source: 

https://github.com/christianabbet/SRA . 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Colorectal cancer (CRC) is one of the most common cancers 

orldwide, and its understanding through computational pathol- 

gy techniques can significantly improve the chances of effective 

reatment ( Geessink et al., 2019; Smit and Mesker, 2020 ) by refin- 

ng disease prognosis and assisting pathologists in their daily rou- 

ine. The data used in computational pathology most often con- 

ists of Hematoxylin and Eosin (H&E) stained whole slide images 
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WSIs) ( Hegde et al., 2019; Lu et al., 2021 ) and tissue microarrays

TMAs) ( Arvaniti et al., 2018; Nguyen et al., 2021 ). 

Although fully supervised deep learning models have been 

idely used for a variety of tasks, including tissue classifica- 

ion ( Kather et al., 2019 ) and semantic segmentation ( Qaiser et al.,

019; Chan et al., 2019 ), in practice, it is time-consuming and ex- 

ensive to obtain fully-labeled data as it involves expert patholo- 

ists. This hinders the applicability of supervised machine learn- 

ng models to real-world scenarios. Weakly supervised learning is 

 less demanding approach that does not depend on large labeled 

ohorts. Examples of this approach applied to digital pathology in- 

lude WSIs classification ( Tellez et al., 2018; Silva-Rodríguez et al., 

021 ) and Multiple-Instance Learning (MIL) based on diagnostic re- 
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orts ( Campanella et al., 2019 ). However, these methods still need 

n adequate training set to initialize the learning process, limiting 

he gain that can be achieved from using unlabeled samples. 

Self-supervised learning was proposed to address limitations 

inked to labeled data availability. It involves a training scheme 

here “the data creates its own supervision ” ( Pieter et al., 2020 ) 

o learn rich features from structured unlabeled data. Applica- 

ions of this approach in computational pathology include mul- 

iple tasks such as survival analysis ( Abbet et al., 2020 ), WSIs 

lassification ( Li et al., 2021 ), and image retrieval ( Gildenblat and 

laiman, 2019 ). 

Over the years, various large data banks have been made avail- 

ble online containing samples from a variety of organs ( Weinstein 

t al., 2013; Litjens et al., 2018; Veta et al., 2019 ), such as the

olon and rectum ( Kather et al., 2016; Shanah et al., 2016 a; 2016 b;

ather et al., 2019 ). This opens up possibilities for transfer learn- 

ng and domain adaptation. Yet, using these data banks to develop 

omputational pathology-based models for real-world scenarios re- 

ains challenging because of the domain gap, as these images 

ere created under different imaging scenarios. A tissue sample’s 

isual appearance can be heavily affected by the staining proce- 

ure ( Otálora et al., 2019 ), the type of scanner used ( Cheng et al.,

019 ), or other artifacts such as folded tissues ( Komura and 

shikawa, 2018 ). 

To tackle this issue, color normalization techniques ( Macenko 

t al., 2009; Zanjani et al., 2018; Anand et al., 2019 ) have been

idely adopted. Nevertheless, these techniques solely rely on im- 

ge color information, while the morphological structure of the tis- 

ue is not taken into account ( Tam et al., 2016; Zarella et al., 2017 ).

his could lead to unpredictable results in the presence of substan- 

ial staining variations and dark staining due to densely clustered 

umor cells. 

Another field of research that aims to improve the classification 

f heterogeneous WSIs is unsupervised domain adaptation (UDA). 

hese methods work by learning from a rich source domain to- 

ether with the label-free target domain to have a well-performing 

odel on the target domain at inference time. UDA allows models 

o include a large variety of constraints to match relevant morpho- 

ogical features across the source and target domains. 

DANN ( Ganin and Lempitsky, 2015 ), for example, uses gra- 

ient reversal layers to learn domain-invariant features. Self- 

ath ( Koohbanani et al., 2021 ) combines the DANN approach with 

elf-supervised auxiliary tasks. The selected tasks reflect the struc- 

ure of the tissue and are assumed to improve the stability of the 

ramework when working with histopathological images. Such aux- 

liary tasks include hematoxylin channel prediction, Jigsaw puzzle- 

olving, and magnification prediction. Another example is Cycle- 

AN ( Zhu et al., 2017 ), which takes advantage of adversarial learn- 

ng to map images between the source and target domain cycli- 

ally. However, adversarial approaches can fall short because they 

o not consider task-specific decision boundaries and only try to 

istinguish the features as either coming from the source or target 

omain ( Saito et al., 2018a ). 

A further issue is that most UDA methods consider fully-labeled 

ource datasets ( Dou et al., 2019 ) for domain adaptation. However, 

igital pathology mainly relies on unlabeled or partly-labeled data 

s the acquisition of fully labeled cohorts is often unfeasible. In 

ddition, recent approaches tend to treat domain adaptation as a 

losed-set scenario ( Carlucci et al., 2019 ), which assumes that all 

arget samples belong to classes present in the source domain, 

ven though this is often not the case in a real-world scenario. 

To overcome this, OSDA ( Saito et al., 2018b ) proposes an ad- 

ersarial open-set domain adaptation approach, where the fea- 

ure generator has the option to reject mistrusted or unknown 

arget samples as an additional class. In another recent work, 

SDA ( Xu et al., 2019 ) uses self-supervised domain adaptation 
2 
ethods that combine auxiliary tasks, adversarial loss, and batch 

ormalization calibration across the source and target domains. 

Another domain adaptation framework DANCE ( Saito et al., 

020 ) proposes a universal domain adaptation method to address 

rbitrary category shifts based on neighborhood clustering on the 

nlabeled target domain in a self-supervised way. Then, entropy- 

ased optimization is utilized for feature alignment of known cat- 

gories and unknown ones are rejected, based on their entropy. 

he recently proposed method SENTRY ( Prabhu et al., 2021 ) uses 

nsupervised domain adaptation based on selective entropy opti- 

ization, in which the target domain samples are selected based 

n their predictive consistency under a set of randomly augmented 

iews. Then, SENTRY selectively optimizes the model’s entropy on 

hese samples based on their consistency to induce the domain 

lignment. Finally, some approaches take advantage of multiple 

ource datasets to learn features that are discriminant under vary- 

ng modalities. In Matsuura and Harada (2020) , domain-agnostic 

eatures are generated by combining a domain discriminator as 

ell as a hard clustering approach. 

In this work, we propose a label-efficient framework called Self- 

ule to Multi-Adapt (SRMA) for tissue type recognition in histolog- 

cal images and attempt to overcome the issues mentioned above 

y combining self-supervised learning approaches with UDA. We 

resent an entropy-based approach that progressively learns do- 

ain invariant features, thus making our model more robust to 

lass definition inconsistencies as well as the presence of unseen 

issue classes when performing domain adaptation. SRMA is able 

o accurately identify tissue types in H&E stained images, which 

s an important step for many downstream tasks. Our proposed 

ethod achieves this by using few labeled open-source datasets 

nd unlabeled data which are abundant in digital pathology, thus 

educing the annotation workload for pathologists. We show that 

ur method outperforms previous domain adaptation approaches 

n a few-label setting and highlight the potential use for clinical 

pplication in the diagnostics of CRC. 

This study is an extension of the work we presented at 

he Medical Imaging with Deep Learning (MIDL) 2021 confer- 

nce ( Abbet et al., 2021 ). Here, we provide a more in-depth ex- 

lanation and analysis of our proposed entropy-based easy-tohard 

E2H) learning strategy. Additionally, we reformulate the entropy- 

ased cross-domain matching used by the E2H learning strategy 

hich improves the prediction robustness when dealing with com- 

lex tissue structures. Moreover, we also provide the generalization 

f the previously proposed Self-Rule to Adapt (SRA) framework to 

ulti-source domain adaptation by including an additional public 

ataset and performing further experiments to assess the model’s 

erformance. Thus, we name this improved framework Self-Rule to 

ulti-Adapt (SRMA). 

. Methods 

In our unsupervised domain adaptation scenario, we have ac- 

ess to a small set of labeled data sampled from a source domain 

istribution and a set of unlabeled data from a target distribution. 

he goal is to learn a hypothesis function (for example, a classi- 

er) on the source domain that provides a good generalization in 

he target domain. 

To this end, we propose a novel self-supervised cross-domain 

daptation setting called SRMA, which is described in more detail 

elow. We first introduce the architecture in a single-source setting 

nd then present the generalization to the multi-source setting in 

ection 2.4 . Fig. 1 gives an overview of the proposed framework, 

nd Algorithm 1 presents the pseudo-code of our SRMA method in 

he single-source setting. 

To train our framework, we rely on a set of images D = D s ∪ D t 

hat is the aggregation of a set of source images D s and a set
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Fig. 1. Schematic overview of the Self-Rule to Multi-Adapt (SRMA) framework framework for a given input image x sampled from D = D s ∪ D t = 

⋃ K 
k =1 D k s ∪ D t . Each encoder 

receives a different augmented version of the input image, generated by f T . The loss L SRMA = L IND + L CRD is the composition of the in-domain loss L IND and cross-domain 

loss L CRD , which aims at reducing the domain gap between the source and target domains. The queue Q keeps track of previous samples’ embeddings and their set of origin 

(source or target). 

Algorithm 1: Pseudocode for the single-source Self- Rule to 

Multi-Adapt (SRMA) framework. 

Initialize queue Q by sampling from normal 
distribution N (0 , 1) ; Normalize queue entries 
{ q i } ∈ Q; for e = 0 to N epochs − 1 do 

Create D by uniformly sampling from D s and D t ; 
Update easy-to-hard coefficient r using Equation 10 

for batch { x i } B i =1 
in D do 

Get augmented samples ˜ x 

i 
, ̃  x 

+ 
i 

using f T ; Perform 

forward pass z 
i 
= f φ( ̃  x 

i 
) , z + 

i 
= f ψ 

( ̃  x 

+ 
i 
) ; 

Normalize vectors z 
i 
, z + 

i 
; Compute in-domain 

loss L IND using Equation 4; Calculate 
cross-entropy H̄ using Equation 7; Compute 
easy-to-hard R s , R t sets using Equation 11; 
Evaluate cross-domain loss L CRD by replacing D s , 
D t with R s , R t in Equation 9, respectively; 
Compute L SRA = L IND + L CRD ; 
Update f � weights with backpropagation; 
Update f � weights with momentum; 
Update queue Q with z + 

i 
; 

end 

end 
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f target images D t . The model takes as input an RGB image x ∈
 

H×W ×3 sampled from D where H and W denote the height and 

idth of the image, respectively. When sampling from D, there is 

n equal probability to draw a sample from either the source or 

he target domain. After sampling, two sets of random transfor- 

ations are applied to the image x using an image transformer 

f T : R 

H×W ×3 → R 

H×W ×3 . This generates a pair of augmented views 

˜ 
 , ˜ x + ∈ R 

H×W ×3 that are assumed to share similar content as they 

re both different augmentations of the same sampled input image. 

ach image of the pair ˜ x , ˜ x + is then fed to its respective encoder 

f � : R 

H×W ×3 → R 

d and f � : R 

H×W ×3 → R 

d to compute the query

 ∈ R 

d and key z + ∈ R 

d embeddings of the input image. Here, d

epresents the dimension of the embedding space. For notational 

implicity, when sampling an image x , we directly assume its em- 

edding as z, z + ∈ D. 

Each network’s branch consists of a residual encoder followed 

y two linear layers based on the state-of-the-art (SOTA) architec- 

ure proposed in Chen et al. (2020b) (MoCoV2). We use the key 

mbeddings z + to maintain a queue of negative samples Q = { q l ∈
 

d } |Q| 
l=1 

in a first-in, first-out fashion. When updating the queue 

ith a new negative sample, not only the sampled image’s em- 
3 
edding is stored but also its domain of origin (source or target). 

t allows the architecture to know at anytime the domain of origin 

f each queue sample. 

The queue provides a large number of examples which allevi- 

tes the need for a large batch size ( Chen et al., 2020a ) or the use

f a memory bank ( Kim et al., 2020 ). In addition, it enables the

odel to scale more easily as D grows as the size of the queue 

oes not depend on it. Moreover, f � is updated using a momen- 

um approach, combining its weights with those of f �. This ap- 

roach ensures that f � generates a slowly shifting and, therefore, 

oherent embedding. 

Motivated by Ge et al. (2020) ; Kim et al. (2020) ; 

bbet et al. (2021) , we extend the domain adaptation learn- 

ng procedure to our model definition and task. Hence, we split 

he loss terms into two distinct tasks, namely the in-domain L IND 

nd cross-domain L CRD representation learning. The objective loss 

 SRMA is the summation of both terms, which are described in 

ore detail below. 

 SRMA = L IND + L CRD , (1) 

.1. In-domain loss 

The first objective L IND aims at learning the distribution of each 

he source and the target domain features individually. We want to 

eep the two domains independent as their alignment is optimized 

eparately by the cross-domain loss term. For each embedding vec- 

or z , there is a paired embedding vector z + that is generated from 

he same sampled tissue image and therefore is, by definition, sim- 

lar. As a result, their similarity can be jointly optimized using a 

ontrastive learning approach ( Oord et al., 2018 ). Here, we strongly 

enefit from data augmentation to create discriminant features 

hat match both z and z + , making them more robust to outliers. 

y selecting data augmentations suited to histology ( Tellez et al., 

019; Faryna et al., 2021 ), we can ensure that the learned features 

re consistent with naturally occurring data variations in histology, 

nd therefore guide the model towards histopathologically mean- 

ngful representations. This approach differs from Kim et al. (2020) , 

here a memory bank is used instead of the combination of a 

ueue and data augmentation to keep track of past samples. There- 

ore, the in-domain loss, as expressed in Eqs. (2) –(4) constrains the 

epresentation of the embedding space for each domain separately. 

p 
IND 

(z , z + , Q ) = 

exp (z � z + /τ ) 

exp (z � z + /τ ) + 

∑ 

q l ∈Q 
exp (z � q l /τ ) 

. (2) 

 

IND 
(D, Q ) = 

∑ 

z , z + ∈D 
log 

[
p 

IND 
(z , z + , Q ) 

]
. (3) 
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 IND = 

−1 

|D s | + |D t | [ l IND 
(D s , Q s ) + l 

IND 
(D t , Q t ) ] . (4) 

We denote Q s , Q t ⊂ Q as the sets of indexed samples of the

ueue that were previously drawn from the corresponding do- 

ain D s , D t ⊂ D, and τ ∈ R as the temperature. The temperature 

s typically small ( τ � 1 ), thus sharpening the signal and helping 

he model to make confident predictions. For all images of each 

ataset D s , D t , we want to minimize the distance between z and

 

+ while maximizing the distance to the previously generated neg- 

tive samples from the corresponding sets Q s , Q t . The samples in 

he queue are considered reliable negative candidates as they are 

enerated by f � whose weights are slowly optimized due to its 

omentum update procedure. 

.2. Cross-domain loss 

We can see the cross-domain matching task as the generation 

f features that are discriminative across both sets. In other words, 

wo samples that are visually similar but are drawn from the 

ource D s and target D t domain, respectively, should have a simi- 

ar embedding. On the other hand, when comparing these samples 

o the remaining candidates of the opposite domain, their result- 

ng embeddings should be far apart. Practically, performing cross- 

omain matching using the number of available candidates within 

 batch might deteriorate the quality of the domain matching pro- 

ess due to the limited amount of negative samples. Therefore, 

e use the queue to find negative samples for domain matching. 

ence, we compute the similarity and cross-entropy of each query 

air z , z + drawn from one set (for example D s ) to the stored queue

amples from the other set (for example Q t ): 

p 
CRD 

(z , q , Q ) = 

exp (z � q /τ ) ∑ 

q l ∈Q 
exp (z � q l /τ ) 

, (5) 

(z , z + , Q ) = −
∑ 

q ∈Q 
p 

CRD 
(z , q , Q ) log 

[
p 

CRD 
( z + , q , Q ) 

]
, (6)

¯
 (z , z + , Q ) = 

1 

2 

[
H(z , z + , Q ) + H(z + , z , Q ) 

]
. (7) 

A low cross-entropy H means that the selected query pair z , 

 

+ from one domain matches with a limited number of samples 

rom another domain. The fact that the model matches the query 

ith only a subset of samples of the other domain implies that 

t is confident when building domain-agnostic features to retrieve 

elevant candidates. Moreover, we update our initial definition of H

 Abbet et al., 2021 ), where solely z is used. By taking the average

ross-entropy H̄ , the model is now also penalized when the pre- 

ictions from z , z + of the same image are different. This improves 

he consistency of the domain matching ( Assran et al., 2021 ). As a

esult, the loss L CRD aims to minimize the averaged cross-entropy 

f the similarity distributions, assisting the model in making con- 

dent predictions: 

 

CRD 
(D, Q ) = 

∑ 

z , z + ∈D 
H̄ (z , z + , Q ) , (8) 

 CRD = 

1 

|D s | + |D t | [ l CRD 
(D s , Q t ) + l 

CRD 
(D t , Q s ) ] . (9) 

.3. Easy-to-hard learning 

There are two main pitfalls that can hamper the performance 

f the cross-domain entropy minimization. 

Firstly, at the start of the learning process, the similarity mea- 

ure between samples and the queue is unclear as the model 
4 
eights are initialized randomly, which does not guarantee proper 

eature descriptions. As a result, the optimization of their relative 

ntropy and the loss term L CRD is ambiguous in the first epochs. 

Secondly, being able to find matching samples for all input 

ueries across datasets is a strong assumption. In clinical applica- 

ions, we often rely on open-source datasets with a limited num- 

er of classes to annotate complex tissue databases. More specif- 

cally, challenging tissue types such as complex stroma subtypes 

re often not present in public datasets while being frequent in 

he WSIs encountered in daily diagnostics. This example is illus- 

rated in Fig. 2 . The top row shows the case where for a given tar-

et query z t there are samples with a similar pattern in the source 

ueue, i.e., the distribution of similarities p 
CRD 

has low entropy. 

he second row highlights the opposite scenario where no queue 

lements match the query, generating a quasi-uniform distribution 

f similarities and, therefore, a high entropy. In other words, opti- 

izing Eq. (7) for all samples will result in a performance drop as 

he loss will try to find cross-domain candidates even if there are 

one to be found. 

To tackle both of these issues, we introduce an easy-tohard 

E2H) learning scheme. The model starts with easy to match sam- 

les (low cross-entropy) samples and progressively includes harder 

high cross-entropy) samples as the training progresses. We as- 

ume that the model becomes more robust after each iteration and 

s more likely to properly process harder examples in later stages. 

ormally, we substitute the domains D s , D t in Eq. (9) with the cor-

esponding set of candidates R s , R t defined as: 

 = 

⌊ 

e 

N epochs · s w 

⌋ 

· s h , (10) 

 s = { z s , z + s ∈ D s | H̄ (z s , z 
+ 
s , Q t ) is reverse top- r } , 

 t = { z t , z + t ∈ D t | H̄ (z t , z 
+ 
t , Q s ) is reverse top- r } , (11) 

here the ratio r is gradually increased during training using a 

tep function. We denote s w 

, s h as the width and height of the step,

espectively, N epochs as the total number of epochs, and e the cur- 

ent epoch. The term reverse top-r indicates the ranking of cross- 

ntropy terms in reverse order (low to high values). For exam- 

le, r = 0 . 2 will capture the top 20% of the samples with the low-

st cross-entropy. This definition ensures that as long as r = 0 (i.e. 

 < N epochs · s w 

) we only use the in-domain loss L IND for backprop-

gation, and the cross-domain loss term L CRD is not considered. 

his allows us to first only learn feature representations based on 

he in-domain feature distribution. Moreover, with the tuning of 

he parameter s h we can control the range of r and thus ensure 

hat its value never reaches r = 1 to avoid systematic cross-domain 

atching where no candidates are available. 

.4. Generalization to multiple source scenario 

Our proposed SRMA framework can be generalized to consider 

ultiple datasets in the source domain. This is especially useful 

f the available source datasets overlap in terms of class defini- 

ions, which increases the diversity of the visual appearance in the 

ource data. More formally, we rely on K source datasets denoted 

 

k 
s where

⋃ K 
k =1 D 

k 
s = D s , and D = D s ∪ D t . The same is valid for the 

ource queues Q 

k 
s where 

⋃ K 
k =1 Q 

k 
s = Q s , and Q = Q s ∪ Q t . For both

he in-domain and cross-domain loss we present two multi-source 

cenarios as depicted in Fig. 3 . 

One option is to consider the whole source domain as a single 

omain D s = 

⋃ K 
k =1 D 

k 
s for the in-domain loss: 

 

1:1 
IND = 

−1 

|D s | + |D t | 

[ 

l 
IND 

( 
K ⋃ 

k =1 

D 

k 
s , 

K ⋃ 

k =1 

Q 

k 
s ) + l 

IND 
(D t , Q t ) 

] 

. (12) 
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Fig. 2. Toy example of the cross-domain matching of different target queries to a fixed source queue. The first column shows two example target query images with 

computed embedding z t . The second column depicts the source queue images maintained by the model and their corresponding embeddings { q s } In the third column, the 

distribution of the computed similarities p 
CRD 

between the queries and each queue sample are plotted. Similar and dissimilar patterns with respect to the query are displayed 

in green and red. The top row highlights the case where the model is able to find at least a subset of elements of the queue that match the query (low entropy), as opposed 

to the bottom row where none of the queue samples match the presented query (high entropy). The class labels in this figure have been added for ease of reading and are 

not available during training. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Proposed multi-source scenarios for the in-domain L IND (a) and cross-domain L CRD (b) optimization. With the one-to-one settings ( 1 : 1 ), we treat all source sets D k s 

as a single set D s . In the K-to-one ( K : 1 ) setting, each source domain is considered as an independent set. Note that there are no restrictions regarding the combination of 

the loss terms. For example, the source set can be considered as a single set for the in-domain optimization while being considered as multiple sets for the cross-domain 

matching. 
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Here, we make no distinction between the source sets and con- 

ider a one-to-one features representation importance ( 1 : 1 ) be- 

ween the source and target domain. This definition is equivalent 

o the single source in-domain adaptation. 

Alternatively, we can consider each source and the target do- 

ain as independent sets as in Eq. (13) . With this K-to-one ( K : 1 )

cenario, we have K + 1 separate in-domain optimizations: 

 

K:1 
IND = 

−1 

|D s | + |D t | 

[ 

K ∑ 

k =1 

l 
IND 

(D 

k 
s , Q s ) + l 

IND 
(D t , Q t ) 

] 

. (13) 

The same logic applies to the cross-domain matching. We can 

ither consider a one-to-one correspondence between the unified 

ource domain and the target domain as in Eq. (14) , or match each

f the individual source domains to the target as in Eq. (15) . 

 

1:1 
CRD = 

−1 

|D s | + |D t | 

[ 

l 
CRD 

( 
K ⋃ 

k =1 

D 

k 
s , Q t ) + l 

CRD 
(D t , 

K ⋃ 

k =1 

Q 

k 
s ) 

] 

. (14) 

 

K:1 
CRD = 

− 1 
K 

|D s | + |D t | 
K ∑ 

k =1 

[
l 

CRD 
(D 

k 
s , Q t ) + l 

CRD 
(D t , Q 

k 
s ) 

]
. (15) 

The formulation of the E2H learning procedure has to be up- 

ated to comply with multi-source domain definition. For the one- 

o-one setting, sets R s , R t remain unchanged as we make no dis- 

inction between the different source sets. However, for the K-to- 

ne setting, the model seeks to match the target domain to the 

ource domain without taking into consideration that there are 

ultiple available source domains. We replace the domains D 

k 
s , D t 
5 
n Eq. (15) with the corresponding set of candidates R 

k 
s , R t defined 

s: 

 

k 
s = { z s , z + s ∈ D 

k 
s | H̄ (z s , z 

+ 
s , Q t ) is reverse top- r } , 

 t = 

⋃ K 
k =1 { z t , z + t ∈ D t | H̄ (z t , z 

+ 
t , Q 

k 
s ) is reverse top- r } . (16) 

The overall loss L SRMA for the multi-source setting is the com- 

ination of the in-domain loss ( L 

1:1 
IND 

or L 

K:1 
IND 

) and the cross-domain 

oss ( L 

1:1 
CRD 

or L 

K:1 
CRD 

). 

. Datasets 

In this study, we use three publicly available datasets, Kather- 

6 (K16), Kather-19 (K19) and Colorectal Cancer Tissue Phenotyping 

CRC-TP), that contain patches extracted from H&E-stained WSIs of 

ifferent tissue types found in the human gastrointestinal tract. We 

lso use an in-house CRC cohort, which does not have patch-level 

abels, and evaluate our method on three regions of interest (ROIs). 

ore details on the datasets can be found below. 

Figure 4 shows the occurrence and relationship of different tis- 

ue types across all four datasets. The displayed crops of the in- 

ouse WSI datasets are cherry-picked for comparison purposes. 

.1. Kather-16 dataset 

The K16 dataset ( Kather et al., 2016 ) contains 5,0 0 0 patches

 150 × 150 pixels, 74 μm × 74 μm ) from multiple H&E WSIs. All im-

ges are digitized using a scanner magnification of 20x ( 0 . 495 μm

er pixel). There are eight classes of tissue phenotypes, namely 

umor epithelium, simple stroma (homogeneous composition, and 
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Fig. 4. Example images of the different tissue types present in the used datasets and their association. The labeled datasets Kather-16 (K16), Kather-19 (K19), and Colorectal 

Cancer Tissue Phenotyping (CRC-TP) are publicly available. Examples from the in-house dataset are manually picked for comparison but are not labeled. We use the following 

abbreviations: TUM: tumor epithelium, STR: simple stroma, COMP: complex stroma, LYM: lymphocytes, NORM: normal mucosal glands, DEB: debris/necrosis, MUS: muscle, 

MUC: mucus, ADI: adipose tissue, BACK: background. The solid and dashed lines indicate classes correspondences and reported overlaps (also see Section 3.5 ). 
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mooth muscle), complex stroma (stroma containing single tumor 

ells and/or few immune cells), immune cells, debris (including 

ecrosis, erythrocytes, and mucus), normal mucosal glands, adi- 

ose tissue, and background (no tissue). The dataset is balanced 

ith 625 patches per class. 

.2. Kather-19 dataset 

The K19 dataset ( Kather et al., 2019 ) consists of patches depict- 

ng nine different tissue types: cancerous tissue, stroma, normal 

olon mucosa, adipose tissue, lymphocytes, mucus, smooth muscle, 

ebris, and background. Each class is roughly equally represented 

n the dataset. In total, there are 10 0,0 0 0 patches ( 224 × 224 pix-

ls, 112 μm × 112 μm ) in the training set. All images are digitized

sing a scanner at a magnification of 20x ( 0 . 5 μm per pixel). 

.3. Colorectal cancer tissue phenotyping dataset 

The CRC-TP ( Javed et al., 2020 ) dataset contains a total of 

96,0 0 0 patches depicting seven different tissue phenotypes (tu- 

or, inflammatory, stroma, complex stroma, necrotic, benign, and 

mooth muscle). The different phenotypes are roughly equally 

epresented in the dataset. For tumor, complex stroma, stroma, 

nd smooth muscle, there are 35,0 0 0 patches per class, for be- 

ign and inflammatory, there are 21,0 0 0, and for debris, there 

re 14,0 0 0. The patches ( 150 × 150 pixels) are extracted at 20x

esolution from 20 H&E WSIs, each one coming from a different 

atient. For each class, only a subset of the WSIs is used to extract 

he patches. The annotations are made by two expert pathologists. 

ut of the two dataset splits available, we use the training set of 

he patient-level split. 

.4. In-house dataset 

Our cohort is composed of 665 H&E-stained WSIs from our lo- 

al CRC patient cohort at the Institute of Pathology, University of 

ern, Switzerland. The slides originate from 378 unique patients 
6 
iagnosed with adenocarcinoma and are scanned at a resolution 

f 0 . 248 μm per pixel (40x). None of the selected slides originated

rom patients that underwent preoperative treatment. 

From each WSI we uniformly sample 300 ( 448 × 448 pixels, 

11 μm × 111 μm ) regions from the foreground masks to reduce the 

omputational complexity of the proposed approach. This creates a 

ataset with a total of 199,500 unique and unlabeled patches. We 

ssume that these randomly selected samples are a good estima- 

ion of the tissue complexity and heterogeneity of our cohort. 

We also select three ROIs of size 5 × 5 mm ( 	 20 , 0 0 0 × 20 , 0 0 0

ixel), which are annotated by an expert pathologist according to 

he definitions used in the K19 dataset, and use them for evalua- 

ion. The regions are selected such that, overall, they represent all 

issue types, as well as challenging cases such as late cancer stage 

ROI 1), mucinous carcinoma (ROI 2), and torn tissue (ROI 3). 

.5. Discrepancies in class definitions between datasets 

The class definitions are not homogeneous across the datasets 

nd they also do not contain the same number of tissue 

lasses. Following a discussion with expert pathologists, we group 

troma/muscle and debris/mucus as stroma and debris, respec- 

ively, to create a corresponding adaptation between K19 and K16. 

Moreover, the complex stroma class definition between K16 and 

RC-TP is not identical. The CRC-TP complex stroma class contains 

iles from the tumor border region and is more consistent with 

he tumor class in the K16 and K19 dataset. In K16, the complex 

troma is not limited to the tumor border surroundings and is de- 

ned as the desmoplastic reaction area, which is usually composed 

f a mixture of debris, lymphocytes, single tumor cells, and tumor 

ell clusters. 

As a result, the complex stroma class is kept for training but 

xcluded from the evaluation process when performing adaptation 

n K16 and CRC-TP. With this problem definition, we fall into an 

pen-set scenario where the class distribution of the two domains 

oes not rigorously match, as opposed to a closed set adaptation 

cheme. 
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. Results and discussion 

In this section, we present and discuss the experimental results. 

he general experimental setup is described in Section 4.1 . We 

alidate our proposed self-supervised domain adaptation approach 

sing publicly available datasets and compare it to current SOTA 

ethods for UDA in Section 4.2 . Additionally, we assess the perfor- 

ance in a clinically relevant use case by validating our model on 

SI sections from our in-house cohort in Section 4.3 . We perform 

n ablation study in Section 4.4 for the single-source setting as 

ell as additional experiments on the importance of the E2H 

earning procedure in Section 4.5 . These experiments are further 

xtended to a multi-source application in Section 4.6 –4.7 on 

oth publicly available datasets and WSI sections. To help future 

esearch, the implementation and trained models are available 

pen-source 2 

.1. General experimental setup 

In this section, we present the general setup that is used in all 

xperiments. First, the architecture is trained in an unsupervised 

ashion, and in a second step, a linear classifier is trained on top 

s described by Chen et al. (2020a) . 

For the unsupervised learning step, the architecture of the fea- 

ure extractors, f � and f � , are composed of a ResNet18 ( He et al.,

016 ) followed by two fully connected layers (projection head) 

sing rectified linear activation units (ReLUs). The output dimen- 

ion of the multi-layer projection head is d = 128 . We update the

eights of f � as θ� using standard backpropagation and f � as θ�

ith momentum m = 0 . 999 : 

� ← mθ� + (1 − m ) θ�. (17) 

The model is trained from scratch for N epochs = 200 epochs until 

onvergence using the stochastic gradient descent (SGD) optimizer 

 momentum = 0 . 9 , weight decay = 10 −4 ), a learning rate of λ =
 . 03 , and a batch size of B = 128 . The size of the queue is fixed to

Q| = 2 16 = 65 , 536 samples. For the similarity learning we set τ =
 . 2 . We apply random cropping, grayscale transformation, horizon- 

al/vertical flipping, rotation, grid distortion, ISO noise, Gaussian 

oise, and color jittering as data augmentations f T . At each epoch, 

e sample 50,0 0 0 examples with replacement from both the 

ource and target dataset to create D with a total of N = 10 0 , 0 0 0

amples. The ratio r is updated between each epoch, while the sets 

 s , R t for cross-domain matching are computed batch-wise. 

During the second phase, the momentum encoder branch is 

iscarded as it is not used for inference. The classification perfor- 

ance is evaluated using a linear classifier, which is placed on 

op of the frozen feature extractor. The linear classifier directly 

atches the output of the embedding d to the number of classes. 

t is trained for N epochs = 100 epochs until convergence using the 

GD optimizer ( momentum = 0 . 9 , weight decay = 0 ), a batch size

f B = 128 , and a learning rate of λ = 1 . We use only few ran-

omly selected source labels to train this classification layer in or- 

er to simulate the clinical application, where we usually rely on 

 large quantity of unlabeled data and only have access to few la- 

eled samples. More precisely, we use n = 1 , 0 0 0 samples (i.e., 1%)

o train the linear classifier with K19 and n = 500 samples (i.e., 

0% ) when training with K16. While training the linear classifier, 

e multi-run 10 times to obtain statistically relevant results. The 

et of selected source labels varies between these runs, as they are 

andomly sampled for each run. If not specified otherwise, we use 

 w 

= 0 . 25 and s h = 0 . 15 for E2H learning. 

For a fair comparison, we also use a ResNet18 backbone for all 

he presented baselines. 
2 Code available on https://github.com/christianabbet/SRA . 

a

N

m

7

.2. Cross-domain patch classification 

In this task, we use the larger dataset K19 as the source dataset 

nd adapt it to K16. We motivate the selection of K19 as the source 

et by the fact that it is closer to the clinical scenario where we 

ainly rely on a large quantity of unlabeled data and only a few 

abeled ones, by using only 1% of the labels in K19. We evaluate the 

erformance of the model with the patch classification task on the 

16 dataset. The mucin and muscle in K19 are grouped with debris 

nd stroma, respectively, to allow comparison with the K16 class 

efinitions. We use 70% of K16 to train the unsupervised domain 

daptation. The remaining 30% are used to test the performance of 

he linear classifier trained on top of the self-supervised model. 

The results of our proposed SRMA method are presented in 

able 1 , in comparison with baselines and SOTA algorithms for do- 

ain adaption. As the lower bound, we consider three approaches. 

irstly, we apply direct transfer learning in a supervised fashion us- 

ng the source data (source only). Secondly, we train MoCoV2 using 

he source domain as training data and apply it to the target do- 

ain. As the third baseline, we also use MoCoV2, but the model 

s trained on the source as well as the target domain, merged into 

ne training set. For the upper bound, we use the target domain 

ata to train the model (fully supervised approach). The perfor- 

ances on complex stroma are not reported as the class is not 

resent in K19. Fig. 5 shows the t-SNE projection and alignment 

f the domain adaptation for the transfer learning (source only), 

he top-performing baselines (OSDA, SSDA with jigsaw solving), 

nd our method (SRMA). Complementary results can be found in 

ppendix A and Appendix B . 

When merging the source and target domains, MoCoV2 fails to 

eneralize knowledge between the sets as it learns two distinct 

mbeddings for each domain. The experiment highlights the lim- 

tations of contrastive learning without domain adaptation in the 

resence of domain distribution gaps. When training solely on the 

ource domain, the contrastive approach shows better results and 

eatures representations. 

Stain normalization slightly decreases the performances, com- 

ared to the source only baseline, as it introduces color artifacts 

hat are very challenging for the network classifier. This mainly 

omes from the distribution of target samples, namely K16, that 

re composed of dark stained patches which are difficult to nor- 

alize properly. 

CycleGAN suffers from performance degradation for the lym- 

hocytes predictions. Like color normalization, it tends to create 

aturated images. In addition, the model alters the shape of the 

ymphocytes nuclei, thus fooling the classifier toward either debris 

r tumor classification. 

In our setup, we observe that the use of the gradient reversal 

ayer leads to an unstable loss optimization for both Self-Path and 

ANN, which explains the large performance drops when training. 

eavier data augmentations partially solve this issue. 

OSDA benefits from the open-set definition of the approach and 

chieves very good performance for lymphocytes detections. 

SSDA achieves similar results when using either rotation or jig- 

aw puzzle-solving as an auxiliary task. Due to the rotational in- 

ariance structure of the tissue and selected large magnification for 

illing, rotation and jigsaw puzzle-solving are not optimal auxiliary 

asks for digital pathology. 

Out of the presented baselines, SENTRY achieves top competi- 

ive results on almost all classes. The main limitation appears to 

e the distinction between tumor and normal mucosa. 

Our proposed SRMA method shows an excellent alignment be- 

ween the same class clusters of the source and target distributions 

nd outperforms SOTA approaches in terms of weighted F1 score. 

otably, our approach is even able to match the upper bound 

odel for normal and tumor tissue identification. The embedding 

https://github.com/christianabbet/SRA
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Table 1 

Results of the domain adaptation from K19 (source) to K16 (target). 1% of the source domain labels are used and the target domain labels are unknown. Complex stroma is 

excluded as the class is not present in K19. The mucin and muscle class in K19 are grouped with debris and stroma, respectively, as they overlap in K16. The top results for 

the domain adaptation methods are highlighted in bold. We report the F1 score for each class as well as the overall weighted F1 score averaged over 10 runs. The sets used 

for pretraining and classification are indicated. 

Methods Pretraining Classification TUM COMP STR LYM DEB NORM ADI BACK ALL 

Source only ‡ - K19 74.0 ∗∗ - 77.4 ∗∗ 75.3 ∗∗ 50.5 ∗∗ 66.9 ∗∗ 87.0 ∗∗ 93.1 ∗∗ 75.1 ∗∗

MoCoV2 ( Chen et al., 2020b ) K19 K19 93.5 ∗∗ - 79.3 + 49.7 ∗∗ 68.6 91.6 ∗∗ 96.1 ∗∗ 96.0 ∗∗ 82.2 ∗∗

MoCoV2 ( Chen et al., 2020b ) † K19 + K16 K19 36.8 ∗∗ - 45.4 ∗∗ 27.1 ∗∗ 30.8 ∗∗ 45.2 ∗∗ 43.1 ∗∗ 43.6 ∗∗ 38.9 ∗∗

DANN ( Ganin and Lempitsky, 2015 ) K19 + K16 K19 65.8 ∗∗ - 60.8 ∗∗ 42.3 ∗∗ 47.8 ∗∗ 61.9 ∗∗ 64.1 ∗∗ 62.3 ∗∗ 57.8 ∗∗

Stain norm. ( Macenko et al., 2009 ) K19 + K16 K19 77.8 ∗∗ - 75.9 ∗∗ 68.2 ∗∗ 42.1 ∗∗ 75.1 ∗∗ 77.4 ∗∗ 87.6 ∗∗ 72.2 ∗∗

CylceGAN ( Zhu et al., 2017 ) K19 + K16 K19 70.7 ∗∗ - 71.6 ∗∗ 62.3 ∗∗ 47.6 ∗∗ 75.5 ∗∗ 89.0 ∗∗ 88.2 ∗∗ 72.4 ∗∗

SelfPath ( Koohbanani et al., 2021 ) K19 + K16 K19 71.5 ∗∗ - 68.8 ∗∗ 68.1 ∗∗ 57.6 ∗∗ 77.6 ∗∗ 82.3 ∗∗ 85.5 ∗∗ 73.1 ∗∗

OSDA ( Saito et al., 2018b ) K19 + K16 K19 82.0 ∗∗ - 78.2 ∗ 83.6 ∗ 63.8 ∗∗ 80.3 ∗∗ 90.8 ∗∗ 93.2 ∗ 81.7 ∗∗

SSDA - Rot ( Xu et al., 2019 ) K19 + K16 K19 85.1 ∗∗ - 78.5 ∗∗ 81.3 ∗∗ 68.2 88.7 ∗∗ 93.9 ∗∗ 96.5 ∗∗ 84.7 ∗∗

SSDA - Jigsaw Xu et al. (2019) K19 + K16 K19 90.0 ∗∗ - 81.2 79.5 ∗∗ 64.4 ∗∗ 88.3 ∗∗ 94.2 ∗∗ 95.7 ∗ 84.9 ∗∗

SENTRY ( Prabhu et al., 2021 ) K19 + K16 K19 88.7 ∗∗ - 74.4 ∗∗ 86.0 65.5 ∗ 91.5 ∗∗ 94.1 ∗∗ 97.9 + 85.7 ∗∗

SRA ( Abbet et al., 2021 ) K19 + K16 K19 93.4 ∗∗ - 72.9 ∗∗ 82.7 ∗ 67.9 + 96.5 ∗ 97.0 + 97.2 + 86.9 ∗

SRMA (ours) K19 + K16 K19 97.3 - 79.3 + 80.2 ∗∗ 62.2 ∗∗ 98.7 97.6 98.1 87.7 

Target only § - K16 94.6 ∗∗ - 83.6 ∗∗ 92.6 ∗∗ 88.7 ∗∗ 95.4 ∗∗ 97.8 + 98.5 + 93.0 ∗∗

† Source and target dataset are merged and trained using contrastive learning. ‡ Direct transfer learning: trained on the source domain only, no adaptation (lower bound). § 

Fully supervised: trained knowing the labels of the target domain (upper bound). + p ≥ 0 . 05 ; ∗ p < 0 . 05 ; ∗∗ p < 0 . 001 ; unpaired t -test with respect to the top result. 

Fig. 5. The t-SNE projection of the source (K19) and target (K16) domain embeddings. The top row shows the alignment between the source and target domain, while the 

bottom row highlights the representations of the different classes. We compare our approach (f) to other UDA methods (b-e), and the fully supervised, transfer learning 

baseline (source only) (a). 
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f complex stroma, which only exists in the target domain, is rep- 

esented as a single cluster with no matching candidates, which 

ighlights the model’s ability to reject unmatchable samples from 

omain alignment. 

Furthermore, the cluster representation is more compact com- 

ared to other presented methods, where for example, normal mu- 

osa tends to be aligned with complex stroma and tumor. Our ap- 

roach suffers a drop in performance for stroma detection, which 

an be explained by the presence of lymphocytes in numerous 

troma tissue examples, causing a higher rate of misclassification. 

oreover, the presence of loose tissue that has a similar structure 

s stroma in the debris class is challenging. The overlap is also ob- 

erved in the embedding projection. 

.3. Use case: Cross-domain segmentation of WSIs 

To further validate our approach in a real case scenario, we 

erform domain adaptation using our proposed model from K19 

o our in-house dataset and validate it on WSIs regions of interest 

ROIs). 
8 
The results are presented in Fig. 6 , alongside the original H&E 

OIs, their corresponding ground truth annotations, direct transfer 

earning (source only), as well as comparative results of the top- 

coring SOTA approaches. We use a tile-based approach to pre- 

ict classes on each ROIs and use conditional random fields as 

n Chan et al. (2019) to smooth the prediction map. The num- 

er of available labeled tissue regions is limited to the presented 

OIs. 

For all models, stroma and muscle are poorly differentiated as 

oth have similar visual features without contextual information. 

his phenomenon is even more apparent in the source only setting, 

here muscle tissue is almost systematically interpreted as stroma. 

oreover, due to the lack of domain adaptation, the boundary be- 

ween tumor and normal tissues is not well defined, leading to in- 

orrect predictions of these classes. 

OSDA, on the other hand, fails to adapt and generalize to new 

umor examples while trying to reject mistrusted samples. This 

henomenon is most visible in ROI 3, where the model interprets 

he surroundings of the cancerous region as a mixture of debris, 

troma, and muscle. 



C. Abbet, L. Studer, A. Fischer et al. Medical Image Analysis 79 (2022) 102473 

Fig. 6. Quantitative results of the domain adaptation from K19 to our unlabeled in-house dataset based on three selected regions of interest (ROIs). (a-b) show the original 

ROIs from the WSIs and their ground truth, respectively. We compare the performance of our Self-Rule to Multi-Adapt (SRMA) algorithm algorithm (g) to the lower bound 

and the top-performing SOTA methods (c-f). We report the pixel-wise accuracy, the weighted intersection over union, and the pixel-wise Cohen’s kappa ( κ) score averaged 

over 10 runs. 
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SSDA tends to predict lymphocyte aggregates as debris. This 

an be explained by the model’s sensitivity to staining variations 

s well as both classes’ similarly dotted structure. Moreover, the 

odel struggles to properly embed the representations of mucin. 

he scarcity of mucinous examples in the target domain makes the 

epresentation of this class difficult. 

As in the patch classification task, SENTRY is as the top per- 

orming baseline. However, the model is still limited by its capacity 

o distinguish between tumor and normal mucosa due to the few 

abel setting. Also, the detection of the stroma area appears less 

etailed compared to other approaches such as OSDA or SRMA. 

Our approach outperforms the other SOTA domain adaptation 

ethods in terms of pixel-wise accuracy, weighed intersection over 

nion (IoU) and pixel-wise Cohen’s kappa score κ . Regions with 

ixed tissue types (e.g., lymphocytes + stroma or stroma + isolated 

umor cells) are challenging cases because the samples available 

n the public cohorts mainly contain homogeneous tissue textures 

nd few examples of class mixtures. Subsequently, domain adapta- 

ion methods naturally struggle to align features resulting in a bi- 

sed classification. We observe that thinner or torn stroma regions, 

here the background behind is well visible, are often misclassi- 

ed as adipose tissue by SRMA, which is most likely due to their 

imilar appearance. However, our SRMA model is able to correctly 

istinguish between normal mucosa and tumor, which are tissue 

egions with very relevant information downstream tasks such as 

urvival analysis. 

Figure 7 presents a qualitative visualization of the model’s em- 

edding space. The figure shows the actual visual distribution of 

he target patches, the source domain label arrangement, and the 

verlap of the source and target domain. The patch visualiza- 

ion also shows a smooth transition between class representations 

here for example, neighboring samples of the debris cluster in- 

lude a mixture of tissue and debris. The embedding reveals a large 

rea in the center of the visualization that does not match with 

he source domain. The area mostly includes loose connective tis- 

ue and stroma, which are both under-represented in the training 
m

9 
xamples. Also, mucin is improperly matched to the loose stroma, 

hich explains the misclassification of stromal tissue in the ROI 2. 

he scarcity of mucinous examples in our in-house cohort makes 

t difficult for the model to find good candidates. 

.4. Ablation study of the proposed loss function 

In this section, we present the ablation study of our SRMA ap- 

roach. We denote L IND as the in-domain loss, L CRD as the cross- 

omain loss, and E2H as the easy-to-hard learning scheme. We 

valuate the performance of our model on two tasks. The first one 

s the domain alignment between K19 (source) and K16 (target), 

hich follows the experimental setting described in Section 4.2 . 

he results are presented in Table 2 . The second task is the do- 

ain adaptation of K19 (source) to ROIs from our in-house dataset 

target), as presented in Section 4.3 . Table 3 shows the results of 

hese experiments. The following section jointly discusses the re- 

ults of both tasks. 

We use MoCoV2 ( Chen et al., 2020b ) as a baseline. The model 

s trained following a contrastive learning approach just using the 

ource domain data (K19) as well as with the source and target 

ataset merged. 

We also compare our proposed approach SRMA to our previ- 

us work SRA ( Abbet et al., 2021 ). For the single-source domain 

daptation, the difference between SRA and the proposed exten- 

ion SRMA lies in the reformulation of the cross-entropy match- 

ng. As a result, only the entropy-related terms, namely L CRD and 

2H, are affected. Thus, training SRA and SRMA using only the in- 

omain loss L IND is the same set-up. 

The baseline fails to learn discriminant features that match both 

ets leading to poor performances in both cross-domain adaptation 

asks. This shows that, if not constrained, the model is not able to 

eneralize the knowledge and ends up learning two distinct fea- 

ure spaces, one for the source and one for the target domain. 

Training with using only L IND achieves relatively good perfor- 

ances but fails to generalize knowledge to classes where textures 
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Fig. 7. The t-SNE visualization of the SRMA model trained on K19 and our in-house data. All sub-figures depict the same embedding. (a) Patch-based visualization of the 

embedding. (b) Distribution of the labeled source samples. (c) The relative alignment of the source and target domain samples. 

Table 2 

Ablation study for the proposed Self-Rule to Multi-Adapt (SRMA) approach. We denote L IND as the in-domain loss, L CRD as the 

cross-domain loss, and E2H as easy-to-hard. We train the domain adaptation from Kather-19 (source) to Kather-16 (target). Only 

1% of the source domain labels are used, and no labels for the target domain. We report the F1 and weighted F1 score for the 

individual classes and the overall mean performance (all) (average over 10 runs). 

Methods L IND L CRD E2H TUM STR LYM DEB NORM ADI BACK ALL 

MoCoV2 † - - - 93.5 ∗∗ 79.3 + 49.7 ∗∗ 68.6 91.6 ∗∗ 96.1 ∗∗ 96.0 ∗∗ 82.2 ∗∗

MoCoV2 ‡ - - - 36.8 ∗∗ 45.4 ∗∗ 27.1 ∗∗ 30.8 ∗∗ 45.2 ∗∗ 43.1 ∗∗ 43.6 ∗∗ 38.9 ∗∗

SRA § � - - 88.1 ∗∗ 72.8 ∗∗ 78.0 ∗ 71.8 ∗ 89.9 ∗∗ 93.4 ∗ 86.0 ∗ 82.9 ∗∗

SRA § - � - 14.1 ∗∗ 9.1 ∗∗ 0.2 ∗∗ 10.1 ∗∗ 4.9 ∗∗ 0.0 ∗∗ 61.5 ∗∗ 14.4 ∗∗

SRA § � � - 63.0 ∗∗ 69.9 ∗∗ 85.1 57.7 ∗∗ 98.2 + 97.9 90.0 ∗∗ 80.3 ∗∗

SRA § � � � 93.4 ∗∗ 72.9 ∗∗ 82.7 ∗ 67.9 + 96.5 ∗∗ 97.0 ∗∗ 97.2 ∗ 86.9 ∗

SRMA - � - 35.3 ∗∗ 3.6 ∗∗ 0.0 ∗∗ 2.1 15.6 ∗∗ 64.0 ∗∗ 16.5 ∗∗ 19.8 ∗∗

SRMA � � - 93.3 ∗∗ 77.4 + 80.5 ∗∗ 66.2 + 91.4 ∗∗ 97.8 + 98.3 86.5 ∗

SRMA � � � 97.3 79.3 80.2 ∗∗ 62.2 ∗∗ 98.7 97.6 + 98.1 + 87.7 

† Chen et al. (2020b) trained on K19 only. ‡ Chen et al. (2020b) K19 and K16 merged as a single set. § Abbet et al. (2021) . + 

p ≥ 0 . 05 ; ∗ p < 0 . 05 ; ∗∗ p < 0 . 001 ; unpaired t -test with respect to top result. 
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nd staining strongly vary. In the patch classification task for ex- 

mple, this is apparent for the background and tumor class. For 

he second evaluation task, we can observe the same trend in the 

OI 3 where tumor and normal stroma are mixed. 

Using only L CRD does not help and creates an unstable model. 

s we do not impose domain representation, the model con- 

erges toward incorrect solutions where random sets of samples 

re matched between the source and target datasets. Moreover, it 

an create degenerated solutions where examples from the source 

nd target domain are perfectly matched even though they do 

ot present any visual similarity. The reformulation of the entropy, 

owever, slightly improves the cross domain matching. 

Even the combination of the in-domain and cross-domain loss 

s not sufficient to improve the capability of the model. When per- 
10 
orming a class-wise analysis, we observe that the performance 

n tumor and debris detection drastically dropped without the 

ntropy reformulation. Both classes are forced to match sam- 

les from other classes, thus worsening the representation of the 

mbedding. 

The introduction of the E2H procedure improves the overall 

lassification as well as most of the per-class performance for the 

rst task. In the second task, it improves the performance across 

ll metrics in all three ROIs. The importance of the E2H learning is 

valuated and discussed in more detail in the next section. 

Overall, the updated definition of the entropy improves the 

odel’s performance for both the cross-domain patch classification 

nd WSIs segmentation task. It helps to ensure that both model 

ranches output a similar distribution, thus providing better cross- 
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Table 3 

Ablation study for the proposed Self-Rule to Multi-Adapt (SRMA) approach. We denote L IND as the in-domain loss, L CRD as the cross-domain loss, and E2H as easy-to-hard. 

We train the domain adaptation from Kather-19 (source) to our in-house dataset (target). Only 1% of the source domain labels are used, and no labels for the target domain. 

We report the pixel-wise accuracy, the weighted intersection over union, and the pixel-wise Cohen’s kappa ( κ) score for three manually annotated regions of interest (ROIs) 

(average over 10 runs). 

ROI 1 ROI 2 ROI 3 ROI 1–3 

Methods L IND L CRD E2H Acc. IoU κ Acc. IoU κ Acc. IoU κ Acc. IoU κ

MoCoV2 † - - - 0.628 ∗∗ 0.515 ∗∗ 0.492 ∗∗ 0.518 ∗∗ 0.404 ∗∗ 0.429 ∗∗ 0.450 ∗∗ 0.337 ∗∗ 0.358 ∗∗ 0.532 ∗∗ 0.401 ∗∗ 0.475 ∗∗

MoCoV2 ‡ - - - 0.556 ∗∗ 0.470 ∗∗ 0.417 ∗∗ 0.298 ∗∗ 0.198 ∗∗ 0.220 ∗∗ 0.321 ∗∗ 0.255 ∗∗ 0.240 ∗∗ 0.399 ∗∗ 0.301 ∗∗ 0.319 ∗∗

SRA § � - - 0.754 ∗ 0.655 + 0.646 ∗ 0.679 ∗ 0.551 ∗ 0.594 ∗ 0.498 ∗∗ 0.357 ∗∗ 0.415 ∗∗ 0.644 ∗∗ 0.497 ∗∗ 0.590 ∗∗

SRA § - � - 0.108 ∗∗ 0.022 ∗∗ 0.000 ∗∗ 0.060 ∗∗ 0.004 ∗∗ 0.000 ∗∗ 0.061 ∗∗ 0.006 ∗∗ 0.000 ∗∗ 0.076 ∗∗ 0.008 ∗∗ 0.000 ∗∗

SRA § � � - 0.766 ∗ 0.660 + 0.658 ∗ 0.701 ∗ 0.582 ∗ 0.619 ∗ 0.526 ∗∗ 0.368 ∗ 0.438 ∗∗ 0.664 ∗∗ 0.526 ∗ 0.615 ∗∗

SRA § � � � 0.752 ∗ 0.638 ∗ 0.639 ∗ 0.689 ∗∗ 0.574 ∗∗ 0.607 ∗∗ 0.541 ∗ 0.373 ∗ 0.448 ∗ 0.661 ∗∗ 0.521 ∗∗ 0.611 ∗∗

SRMA - � - 0.593 ∗∗ 0.471 ∗∗ 0.429 ∗∗ 0.096 ∗∗ 0.019 ∗∗ 0.029 ∗∗ 0.261 ∗∗ 0.118 ∗∗ 0.080 ∗∗ 0.322 ∗∗ 0.166 ∗∗ 0.196 ∗∗

SRMA � � - 0.724 ∗∗ 0.634 ∗∗ 0.608 ∗∗ 0.706 + 0.591 + 0.630 + 0.518 ∗∗ 0.319 ∗∗ 0.415 ∗∗ 0.650 ∗∗ 0.484 ∗∗ 0.599 ∗∗

SRMA � � � 0.782 0.668 0.678 0.711 0.593 0.630 0.558 0.388 0.466 0.684 0.535 0.635 

† Chen et al. (2020b) trained on K19 only. ‡ Chen et al. (2020b) K19 and K16 merged as a single set. § Abbet et al. (2021) . + p ≥ 0 . 05 ; ∗ p < 0 . 05 ; ∗∗ p < 0 . 001 ; unpaired 

t -test with respect to top result. 

Fig. 8. Importance of s w and s h parameter tuning for the easy-to-hard learning scheme. (left) Performance of the model on the three regions of interest (ROIs) for each 

parameter pair. (right) Corresponding profiles of the step function r ( Eq. (10) ) as a function of the current epoch. The variable r represents the fraction of the ”trusted”

samples included for cross-domain matching, based the cross-entropy. 
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domain. 
omain candidates. The improvement is most visible for the tumor 

nd stroma predictions. 

.5. Evaluation of the E2H learning scheme 

In this section, we discuss the usefulness and robustness of the 

2H learning. The learning procedure is based on r, and the two 

ontributing variables s w 

and s h : 

 = 

⌊ 

e 
N epochs ·s w 

⌋ 

· s h , (10 revisited 

In Fig. 8 , we show the impact of different combinations of 

hese parameters on the single cross-domain segmentation task 

see Section 4.3 ). We report the pixel-wise accuracy, the weighted 

ntersection over union, and the pixel-wise Cohen’s kappa ( κ) score 

or the presented ROIs. For each parameter pair, we also display 

he profile of the variable r as a function of the of the epoch e . 

Firstly, we observe that the model is more robust when s h is 

ow. The variable is an indicator of the ratio of samples used for 

ross-domain matching. In other words, the architecture benefits 
11 
rom a small s h that allows it to focus on examples with high simi-

arity/confidence while avoiding complex samples without properly 

atching candidates. Secondly, the selection of s w 

is also crucial to 

he stability of the prediction. This quantity measures the number 

f epochs to wait before considering more complex examples in 

he cross-domain matching optimization. For small s w 

values, the 

odel has no time to learn the feature representation properly be- 

ore encountering more difficult samples. This is especially true for 

he first few epochs after initialization, where the architecture is 

ot yet able to optimally embed features. Furthermore, using large 

 w 

weakens the model capability to progressively learn from more 

omplex samples. 

Figure 9 shows an example patch from the training phase and 

ighlights the usefulness of the E2H scheme. When dealing with 

 heterogeneous target data cohort, some tissue types might not 

ave relevant candidates in the other set (open-set scenario). The 

resented example shows an example composed of a vein and 

lood cells. Such a tissue structure is absent from the source 

ohort, and thus does not have matching sample in the target 
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Fig. 9. Importance of the easy-to-hard (E2H) learning scheme for the cross-domain image retrieval. The first column shows the input query image z from our in-house 

cohort (target domain), the second column presents the retrieved samples from K19 that have the highest similarity in the source queue { q i } , and the third column shows 

the density distribution (blue) of similarities across the source queue as well as its cumulative profile (red). We list the retrieved examples with their assigned classes. The 

query class is unknown. The top and bottom rows highlight the result of training without and with E2H learning, respectively. Without E2H, the model tries to optimize 

L CRD at any cost, which creates out-of-distribution samples (seen at the very right). With E2H the model predicts samples with lower confidence, but that are still visually 

similar. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Without the E2H learning, the model is forced to find matching 

andidates for the query z , here normal mucosa (NORM), to min- 

mize the cross-entropy term H̄ . When plotting the similarity dis- 

ribution, the matched samples form an out-of-distribution cluster 

ith a high similarity to the query ( z � q i 	 1) . This phenomenon is

ven more visible with the cumulative function (red) that tends to 

he step function. 

When training with the E2H scheme, we observe a continuous 

ransition in the distribution of samples similarities. Here, the top 

etrieved samples share the same granular structure as the query. 

till, we have to be careful as they do not represent the same type 

f tissue. The retrieved samples are examples of necrosis, whereas 

he query shows red blood cells. The fact that the architecture is 

ess confident (i.e., the similarity is lower for the top retrieved 

amples) is a good indicator of its robustness and ability to pro- 

ess complex queries. 

As a result, the introduction of the E2H process prevents the 

odel from learning degenerated solutions. We also observe this 

ith other open-set tissue classes such as complex stroma and 

oose connective tissue, which are absent in the source domain. 

.6. Multi-source patch classification 

We explore the benefit of using multiple source domains with 

ifferent distributions to perform domain adaptation for the patch 

lassification task. To do so, we select K19 and K16 as the source 

ets and CRC-TP as the target set. To learn the feature representa- 

ions, the model is trained in an unsupervised fashion using both 

ource domains as well as the unlabeled target domain. For the 

valuation, we train a linear classifier on top of the frozen features 

ith few randomly selected labeled samples from the source do- 

ains (10 0 0 samples from K19 (1%), and 50 0 samples from K16

10%)). By using only little labeled data, we aim to reduce the an- 

otation workload for pathologists while still achieving good clas- 

ifications performances. The set of labeled data differs between 

ach run, as they are randomly sampled for each individual run. 

The three datasets K19, K16, and CRC-TP do not have one-to- 

ne classes correspondence. Thus, for the evaluation of the target 

et, we only consider the classes present in all datasets, namely, 

umor (TUM), stroma (STR), lymphocytes (LYM), normal mucosa 

NORM), and debris / necrotic tissue (DEB). Still, during the unsu- 

ervised pre-training we consider all classes, including those who 

o not have matching candidates across the sets, such as back- 

round (BACK) and adipose (ADI). This setup creates an open-set 
12 
cenario for the cross-domain matching and allows the model to 

earn more robust features representations. 

For comparison purposes, we use the same hyper-parameters 

s in the single source domain patch classification setting with 

 w 

= 0 . 25 , s h = 0 . 15 . The probability of drawing a sample x from

he source or the target domain is the same and is given by p( x ∈
 s ) = K p( x ∈ D 

k 
s ) = p( x ∈ D t ) , where K is the number of source

omains. 

The results are presented in Table 4 . We compare the perfor- 

ance of different experimental setups in regards to the used 

atasets and multi-source scenario for our SRMA. We show three 

cenarios where we use either K16, K19, or the combination of 

he two (K16 and K19) to train the classification layer. To evalu- 

te the impact of the multi-source scenario, where we investigate 

ll possibilities for the in-domain ( L 

1:1 
IND 

, L 

K:1 
IND 

) and cross-domain 

 L 

1:1 
CRD 

, L 

K:1 
CRD 

) loss definitions, as introduced in Eqs. (12) –(15) . As

aselines, we consider the single source setting of the presented 

RMA model, our previous SRA work, as well as the DeepAll ap- 

roach that uses aggregation of all the source tissue data into a 

ingle training set ( Dou et al., 2019 ). 

The SRMA and SRA single source baselines both show a better 

erformance for K19 compared to K16. This is most likely due to 

he fact that the variety of example in K16 is limited (only 5,0 0 0

xamples), thus hindering the generalization of feature representa- 

ions in the pretraining stage. Also, SRMA outperforms our previ- 

us SRA work for all classes except one, which is an indicator of 

he robustness of the entropy reformulation. 

For the multi-source adaptation, we show three scenarios 

here we use either K16, K19, or the combination of the two 

K16 and K19) to train the classification layer. When using solely 

16, we can observe that the debris classification tends to have 

ower performances across all models. Debris examples in K16 ap- 

ear highly saturated, which makes the generalization of the class 

 challenging task. Only the proposed SRMA approach is able to 

chieve better performances compared to the single source base- 

ines. Using K19 for the classification of target patches gives overall 

he best performance. Interestingly, using both K19 and K16 leads 

o a drop in performance. This is most likely due to potential dis- 

repancies between the class definitions, which makes it more dif- 

cult for the model to generalize the class representations across 

he different modalities. 

When comparing the in-domain and cross-domain multi-source 

cenarios, we find that using L 

1:1 
IND 

and L 

K:1 
CRD 

achieves the best re- 

ults across the various settings. This suggests that it is better 
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Table 4 

Performance of the Self-Rule to Multi-Adapt (SRMA) framework on the CRC-TP dataset in a multi-source domain setting. We show the results for different combinations of 

K16 and K19 used for the self-supervised pre-training as well as training the classification header. For the source domains K19 and K16, only 1% and 10% of the labeled 

data are used, respectively. We also compare the performance of the 1 : 1 with the K : 1 setting for the loss definitions (see Eqs. (12) –(15) ). We report the F1 score for the 

individual classes and weighted F1 score for the overall mean performance (all) (averaged over 10 runs). Some classes have been merged due to overlapping definitions. 

Pretraining Classification Multi-source 

Methods K19 K16 K19 K16 L IND L CRD TUM STR † LYM NORM DEB † ALL 

Single source: 

SRA ( Abbet et al., 2021 ) - � - � - - 82.2 69.3 62.5 ∗∗ 69.8 47.4 ∗ 69.4 

SRMA - � - � - - 82.0 + 63.5 ∗∗ 66.3 51.9 ∗∗ 50.3 65.2 ∗∗

SRA ( Abbet et al., 2021 ) � - � - - - 91.0 ∗ 84.9 ∗∗ 62.0 ∗∗ 71.7 58.5 + 79.2 ∗∗

SRMA � - � - - - 91.7 86.7 65.4 68.6 ∗∗ 58.9 80.2 

Multi source: 

DeepAll ( Dou et al., 2019 ) � � - � - - 52.4 ∗∗ 64.1 ∗∗ 36.5 ∗∗ 14.2 ∗∗ 13.8 ∗∗ 47.1 ∗∗

SRA ( Abbet et al., 2021 ) � � - � 1 : 1 1 : 1 70.9 ∗∗ 68.5 ∗∗ 45.6 ∗∗ 72.2 ∗∗ 19.1 ∗∗ 62.2 ∗∗

SRMA � � - � 1 : 1 1 : 1 76.6 ∗∗ 69.3 ∗∗ 48.7 ∗∗ 74.5 ∗∗ 18.2 ∗∗ 64.4 ∗∗

SRMA � � - � K : 1 1 : 1 89.4 + 74.9 + 66.8 75.6 43.7 74.4 

SRMA � � - � 1 : 1 K : 1 75.9 ∗∗ 73.3 ∗ 45.9 ∗∗ 73.0 ∗∗ 22.6 ∗∗ 65.8 ∗∗

SRMA � � - � K : 1 K : 1 89.8 75.2 64.5 ∗∗ 74.1 ∗∗ 25.7 ∗∗ 72.5 ∗∗

DeepAll ( Dou et al., 2019 ) � � � - - - 72.4 ∗∗ 88.6 ∗∗ 43.6 ∗∗ 53.2 ∗∗ 71.8 ∗∗ 73.2 ∗∗

SRA ( Abbet et al., 2021 ) � � � - 1 : 1 1 : 1 86.2 ∗∗ 87.6 ∗∗ 66.7 ∗∗ 71.0 ∗∗ 80.5 81.8 ∗∗

SRMA � � � - 1 : 1 1 : 1 92.5 88.4 ∗∗ 68.7 ∗∗ 68.3 ∗∗ 74.2 ∗ 82.9 ∗

SRMA � � � - K : 1 1 : 1 91.5 ∗ 87.6 ∗∗ 70.7 75.0 65.7 ∗∗ 82.7 ∗

SRMA � � � - 1 : 1 K : 1 90.1 ∗∗ 90.1 69.6 + 72.9 ∗∗ 71.6 ∗∗ 83.6 

SRMA � � � - K : 1 K : 1 91.6 + 87.4 ∗∗ 68.7 ∗∗ 73.9 ∗∗ 53.3 ∗∗ 81.2 ∗∗

DeepAll ( Dou et al., 2019 ) � � � � - - 81.4 ∗∗ 85.7 + 50.9 ∗∗ 50.1 ∗∗ 51.5 ∗∗ 72.6 ∗∗

SRA ( Abbet et al., 2021 ) � � � � 1 : 1 1 : 1 85.8 ∗∗ 85.9 72.9 ∗ 72.1 ∗∗ 59.2 80.1 

SRMA � � � � 1 : 1 1 : 1 92.9 82.4 ∗∗ 72.1 ∗ 70.8 ∗∗ 53.7 ∗∗ 79.3 ∗

SRMA � � � � K : 1 1 : 1 92.8 + 81.7 ∗∗ 73.5 74.6 49.8 ∗∗ 79.3 ∗

SRMA � � � � 1 : 1 K : 1 89.6 ∗∗ 84.7 ∗ 72.5 ∗ 74.4 + 52.1 ∗∗ 80.0 + 

SRMA � � � � K : 1 K : 1 92.5 ∗ 80.6 ∗∗ 70.5 ∗∗ 73.9 ∗∗ 39.4 ∗∗ 77.4 ∗∗

† The STR and MUS classes are merged as STR class; DEB and MUC classes as DEB. + p ≥ 0 . 05 ; ∗ p < 0 . 05 ; ∗∗ p < 0 . 001 ; unpaired t -test with respect to top result. 
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o optimize the source domain as a single set for the in-domain 

epresentation. However, when performing cross-domain match- 

ng, considering domain to domain correspondence between each 

ource set and the target domain yields better performances. It en- 

ures that the model looks for relevant candidates in all individual 

ource sets as tissue samples might have a distinct appearance in 

ifferent source domains. 

We also note that L 

K:1 
IND 

is only relevant when only using K16 

o train the classification header. This is due to the fact that the 

ross-domain matching fails to retrieve debris samples correctly 

rom the K16 domain, which tend to be misclassified as lympho- 

ytes because of their similar granular appearance and as well as 

heir hematoxylin-positive aspect. Overall the combination of both 

 

K:1 
IND 

and L 

K:1 
CRD 

degrades the performance slightly. 

Complementary results on the importance of the dataset ratios 

hen sampling data for the unsupervised pre-training phase are 

vailable in Appendix C . 

.7. Use case: Multi-source segmentation of WSI 

In this section, we present the results for the multi-source do- 

ain adaptation for patch-based segmentation of WSI ROIs. More 

pecifically, we are interested in the detection of desmoplastic 

eactions (complex stroma), which is a prognostic factor in CRC 

 Ueno et al., 2021 ). We use both K19 and CRC-TP as the source

atasets to add complex stroma examples to the source domain. 

ur in-house dataset is used as the target domain. 

To assess the quality of the prediction, we evaluate the mod- 

ls on the same ROIs as in the single-source setting. However, the 

reviously provided annotations do not include complex stroma. 

e overcome this by defining a margin around the tumor tissue 

n the existing annotations, which is considered as the interaction 

rea. Stroma in this region is therefore re-annotated as complex 

troma. The margin is fixed to 500 μm such that it includes the 

lose tumor neighborhood and matches the definition of complex 

troma in the literature ( Berben et al., 2020; Nearchou et al., 2021 ).
13 
As a baseline, we use DeepAll, which aggregates all the source 

issue data into a single training set ( Dou et al., 2019 ). The model

s trained in an unsupervised fashion using a standard contrastive 

oss to optimize the data representation of the features ( Chen et al., 

020b ). In this case, no domain adaption is performed across the 

ets. 

The results are presented in Table 5 and Fig. 10 . In Table 5 , we

ompare the performance of the models with and without com- 

lex stroma detection across all three ROIs. We compare the sin- 

le as well as the multi-source SRMA approaches to the baselines, 

eepAll and our previously published SRA method. We report the 

1-score for complex stroma, the overall weighted F1-score, the 

ixel-wise accuracy, the Dice score, the weighted intersection over 

nion (IoU), and pixel-wise Cohen kappa ( κ). 

Without considering the complex stroma class, the numeri- 

al results show that all the multi-source settings achieve simi- 

ar performances. Including an additional dataset, namely CRC-TP, 

oes not improve nor seriously deteriorate the classification perfor- 

ances on the ROIs. Furthermore, merging the source domains for 

n-domain optimization ( L 

1:1 
IND 

) seems to be the best setup. For the 

ross-domain matching, both L 

1:1 
CRD 

and L 

K:1 
CRD 

achieve similar scores. 

However, the benefit of using the multi-source approach can 

e observed when including complex stroma detection. Here, the 

odels which use CRC-TP as source set achieve better results. The 

etection of complex stroma improves by up to 20 − 25% . By con- 

rast, the cross-domain matching on each subsets L 

K:1 
CRD 

penalizes 

he complex stroma detection. This can be explained by the fact 

hat only CRC-TP contains examples of complex stroma. Therefore, 

mposing complex stroma retrieval in K19 is unfeasible. Another 

hallenge is the relatively significant overlap between the complex 

troma and the tumor class. The model tends to classify the tumor 

order area as complex stroma. 

In Fig. 10 , we display the visual results of the complex stroma 

etection on ROI 1 and 3, where desmoplastic reactions, and thus 

omplex stroma, are present. We show, from left to right, the refer- 

nce images, the original ground truth labels, the extended ground 
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Table 5 

Analysis of the performance of the Self-Rule to Multi-Adapt (SRMA) approach in regards to complex stroma detection. Multiple possible scenarios 

are evaluated in regard to the data included for pre-training, as well as the multi-source setting ( 1 : 1 versus K : 1 , see Eqs. (12) –(15) ), as indicated 

in the table. Only 1% of the labels are used for the classification stage. We report the F1-score for complex stroma, the overall weighed F1-score, 

the pixel-wise accuracy, the dice score, the weighted intersection over union (IoU), and the pixel-wise Cohen kappa ( κ) (averaged over 10 runs). 

Pretraining Multi-source 

Model K19 CRCTP L IND L CRD F1-CSTR † F1-ALL Acc. Dice IoU κ

ROI 1–3 (w/o CSTR) 

DeepAll ( Dou et al., 2019 ) � � - - - 0.622 ∗∗ 0.615 ∗∗ 0.583 ∗∗ 0.483 ∗∗ 0.552 ∗∗

SRA ( Abbet et al., 2021 ) � - - - - 0.648 ∗∗ 0.661 ∗∗ 0.632 ∗∗ 0.521 ∗∗ 0.611 ∗∗

SRMA � - - - - 0.667 + 0.684 + 0.647 ∗∗ 0.536 + 0.636 + 

SRMA � � 1 : 1 1 : 1 - 0.673 0.685 0.669 0.541 0.636 

SRMA � � K : 1 1 : 1 - 0.644 ∗∗ 0.665 ∗∗ 0.637 ∗∗ 0.516 ∗∗ 0.615 ∗∗

SRMA � � 1 : 1 K : 1 - 0.662 + 0.678 + 0.652 ∗ 0.528 ∗ 0.629 + 

SRMA � � K : 1 K : 1 - 0.638 ∗∗ 0.660 ∗∗ 0.632 ∗∗ 0.509 ∗∗ 0.609 ∗∗

ROI 1–3 (w/ CSTR) 

DeepAll ( Dou et al., 2019 ) � � - - 0.001 ∗∗ 0.505 ∗∗ 0.539 ∗∗ 0.496 ∗∗ 0.399 ∗∗ 0.479 ∗∗

SRA ( Abbet et al., 2021 ) � - - - 0.214 ∗∗ 0.600 ∗∗ 0.624 ∗∗ 0.582 ∗∗ 0.490 ∗∗ 0.577 ∗∗

SRMA � - - - 0.263 ∗∗ 0.614 ∗∗ 0.641 ∗∗ 0.595 ∗∗ 0.498 ∗∗ 0.594 ∗∗

SRMA � � 1 : 1 1 : 1 0.479 + 0.647 + 0.659 ∗ 0.631 0.524 + 0.613 ∗∗

SRMA � � K : 1 1 : 1 0.492 0.650 0.669 0.618 ∗∗ 0.524 0.624 

SRMA � � 1 : 1 K : 1 0.464 + 0.640 + 0.651 ∗∗ 0.619 ∗ 0.513 ∗ 0.604 ∗∗

SRMA � � K : 1 K : 1 0.366 ∗∗ 0.623 ∗∗ 0.646 ∗∗ 0.597 ∗∗ 0.500 ∗∗ 0.599 ∗∗

† Performances are only available with extended annotations (w/CSTR). + p ≥ 0 . 05 ; ∗ p < 0 . 05 ; ∗∗ p < 0 . 001 ; unpaired t -test with respect to top 

Fig. 10. Results of the multi-source domain adaptation from K19 and CRC-TP to our in-house dataset. (a-c) show the original regions of interest (ROIs) from the WSIs, their 

original ground truth (without CSTR), and the extended ground truth (with CSTR), respectively. We compare the performance of our SRMA framework (f) to our previous 

work SRA (e) and to the DeepAll baseline (d). For the multi-source optimization, we use the 1 : 1 and K : 1 approach for the in-domain and cross-domain, respectively. We 

report the pixel-wise accuracy, the weighted intersection over union, and the pixel-wise Cohen’s kappa ( κ) score averaged over 10 runs. 
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s

t

ruth labels with complex stroma, the DeepAll baseline, our pre- 

ious SRA work, and as well the results of the presented SRMA 

odel ( L 

1:1 
IND 

and L 

K:1 
CRD 

setting). 

SRMA outperforms the baselines in terms of pixel-wise accu- 

acy, Jaccard index (IoU), and Cohen’s kappa score κ . Notably, the 

etection of the tumor is much more detailed compared to the 

ingle-source approach in both ROIs. Parts of the tissue previously 

onsidered as tumor can now be properly matched, thanks to the 

ntroduction of the complex stroma class. 

Another interesting result in ROI 3 is that all the stromal ar- 

as are now considered as either complex stroma, tumor, or lym- 

hocytes by all models. This highlights how challenging the clas- 

ification of complex stroma is without access to the higher-level 

ontext. Pathologists also find this difficult, as they rely not only 

n the tissue morphology for this assessment but also on the spa- 
14 
ial relations, i.e., the proximity to the tumor area. Here, accord- 

ng to our extended ground truth, the complex stroma only sur- 

ounds the tumor region. However, the tissue tear disconnected 

ome of the tumor surrounding regions, which suggests that the 

omplex stroma area, in reality, spans even further. This correlates 

ith the prediction of both models, which identify the whole re- 

ion as complex stroma. 

Lastly, using the multi-source setting allows the introduction 

f a new class such as complex stroma to the detection task. 

n the presented setting, the source domains do not need one- 

o-one class correspondences for the model to learn meaning- 

ul cross-domain features. Here, CRC-TP does not include mucin, 

ackground, and adipose while K19 does not contain complex 

troma. This is an interesting outcome, as it shows that new data 

hat might even be acquired under different circumstances can be 
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dded with additional tissue classes without interfering with or al- 

ering the performance of the existing classes. 

A visualization of the multi-source domain embedding space as 

ell as the patch-based segmentation of a full WSI image are avail- 

ble in Appendix D –Appendix E . 

. Conclusion and future work 

In this work, we explore the usefulness of self-supervised learn- 

ng and UDA for the identification of histological tissue types. Mo- 

ivated by the difficulty of obtaining expert annotations, we ex- 

lore different UDA models using a variety of label-scarce colorec- 

al cancer histopathology datasets. 

As our main contribution, we present a new label transfer- 

ing approach from partially labeled, public datasets (source do- 

ain) to unlabeled target domains. This is more practical than 

ost previous UDA approaches which are often tailored to fully 

nnotated source domain data or tied to additional network 

ranches dedicated to auxiliary tasks. Instead, we perform pro- 

ressive cross-entropy minimization based on the similarity dis- 

ribution among the unlabeled target and source domain samples, 

ielding discriminative and domain-agnostic features for domain 

daptation. 

Throughout various label transfer tasks, we show that our pro- 

osed Self-Rule to Multi-Adapt (SRMA) method can discover the 

elevant semantic information even in the presence of few labeled 

ource samples, and yields a better generalization on different tar- 

et domain datasets. Moreover, we show that our model definition 

an be generalized to a multi-source setting. As a result, the pro- 

osed model is able to learn rich data representation using multi- 

le source domains. 

In reality, not all tissue types are equally present in a WSI, and 

ome are quite rare. Thus, the extracted patches are imbalanced 

n regards to class labels (categories), which imposes signi ̇oücant 

hallenges for the trained models to generalize well. For exam- 

le, mucin is frequently present in mucinous carcinoma but is 

carcely found in adenocarcinomas. Another example is the com- 

lex stroma class, which can be further divided into three sub- 

ategories (immature, intermediate, or mature), whose occurrences 

re highly variable and which are linked to patients’ prognos- 

ic factor ( Okuyama et al., 2020 ). Possible future work could take 

his class imbalance across WSIs into account and aim to im- 

rove the quality and variety of the provided positive and negative 

xamples. 

In addition, publicly available datasets are so far mostly com- 

osed of curated and thus homogeneous patches in terms of tis- 

ue types. This data, however, do not capture the heterogeneity 

nd complexity of patches extracted from images in the diagnos- 

ic routine. This can lead to erroneous detections, e.g., background 

nd stroma interaction being interpreted as adipose tissue. Thus, 

nding a self-supervised learning approach that can also properly 

mbed mixed patches is a possible future extension of this work. 
Table C.6 

Classification results of the different SOTA self-supervised approaches, as well as the su

tasks. We present the results for different percentages of available training data. The to

Kather-16 

Labels fraction 

Methods 10% 20% 

Supervised ‡ 85.8 ∗∗ 86.5 ∗∗

SimCLR ( Chen et al., 2020a ) 79.6 ∗∗ 78.9 ∗∗

SupContrast ( Khosla et al., 2020 ) 60.8 ∗∗ 73.2 ∗∗

MoCoV2 ( Chen et al., 2020b ) 88.5 90.2 

‡ Model initialized with ImageNet pre-trained weights. + p ≥ 0 . 05 ; ∗ p < 0 . 05 ; ∗∗ p < 0

15 
Furthermore, the SRMA framework is also highly modular and 

an thus be used for similar problems in other image analysis re- 

earch fields. The selected backbone can be replaced, and the used 

ata augmentations adapted to better fit with the task and data at 

and. 

Lastly, the patch-based segmentation using our method can also 

e applied in a clinical context. Many clinically relevant down- 

tream tasks depend on accurate tissue segmentation, such as 

umor-stroma ratio calculation, disease-free survival prediction, or 

djuvant treatment decision-making. 
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ppendix A. Selection of Self-supervised Model 

To assess which self-supervised model we should use as the 

ackbone for the UDA, we compare the performances of several 

OTA self-supervised methods (SimCLR ( Chen et al., 2020a ), Sup- 

ontrast ( Khosla et al., 2020 ), and MoCoV2 ( Chen et al., 2020b ), as

ell as the performance of the standard supervised learning ap- 

roach when facing different levels of data availability. The results 

re presented in Table C.6 . We report the performance of the sin- 

le domain classification on K16 and K19. The supervised approach 

ses ImageNet pre-trained weights. The self-supervised baselines 

re trained from scratch. After self-supervised training, we freeze 

he weights, add a linear classifier on top, and train it until con- 

ergence. For SupContrast ( Khosla et al., 2020 ) we jointly train the 

epresentation and the classification as described in the original 

aper. 

We find that MoCoV2 ( Chen et al., 2020b ) outperforms the two 

ther SOTA approaches. On K16, the model gains up to 10% in 

erms of the F1-score with respect to the other self-supervised 

aselines. In addition, MoCoV2 gives competitive results with the 

upervised baseline that is initialized with ImageNet weights. It 

hows that MoCoV2 is able to efficiently learn from unlabeled data 

nd create a generalized feature space. This mainly comes from the 

ombination of the momentum encoder and the access to a large 
pervised baseline on the Kather-19 (K19) and Kather-16 (K16) patch classification 

p results are highlighted in bold. We report the weighted F1 score. 

Kather-19 

Labels fraction 

50% 1% 2% 5% 

87.9 ∗∗ 89.2 + 89.9 + 90.5 + 

78.6 ∗∗ 76.9 ∗∗ 79.4 ∗∗ 80.7 ∗∗

80.8 ∗∗ 78.7 ∗∗ 81.6 ∗∗ 85.0 ∗∗

91.1 89.9 90.3 90.6 

 . 001 ; unpaired t -test with respect to the top result. 
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umber of negative samples. Hence, we choose to adapt MoCoV2 

or our proposed UDA method. 

ppendix B. Patch Classification - t-SNE Projection 

In this section, we present the complementary results to the 

nes in Section 4.2 for patch classification. The embeddings of all 

aselines and our proposed approach are displayed in Fig. C.11 us- 

ng t-SNE visualization. We show the alignment between the 

ource (K19) and target (K16) embedding domain, as well as 

lasses-wise. 

With the source only approach, we can observe the lack of 

omain alignment between the feature spaces. Here, the model 

earns two distinct distributions for each set. On the other side, 

ur approach shows a satisfactory alignment of domains compared 

o most baselines. The target complex stroma (K16) is linked to tu- 

or, debris, lymphocytes, and stroma in the source domain (K19). 
ig. C.11. t-SNE projection of the source (Kather-19) and target (Kather-16) domain embe

lasses for all presented models between the source and target domain. The classes of K

tandard supervised approach is depicted in (a). We compare our approach (i) to other

lignment between the source and target domain. 

16 
ppendix C. Multi-source Dataset Sampling Ratio 

When performing multi-source domain adaptation, we assume 

hat the distribution of all the source and target samples are the 

ame. More formally, we have p( x ∈ D s ) = K p( x ∈ D 

k 
s ) = p( x ∈ D t ) .

his section, we analyze the importance of balancing the source 

nd target domains during the pre-training stage. We use K19 and 

16 as source datasets and CRC-TP the target dataset. For K19 and 

16, only 1% and 10% of the source labels are used, respectively. 

The results of the classification performance on the CRC-TP 

ataset are presented in Table C.7 . We indicate the multi-source 

cenario ( 1 : 1 or K : 1 ), the sampling probability for each of the

ataset, and the batch size. 

The cross-domain matching using the K : 1 scenario shows the 

ighest variance and its performances can change up to 2 . 6% . Over-

ll, we can observe that balanced probability between all sets, 

amely 1 each, gives similar results across all multi-source scenar- 
ddings. We show the alignment of the embedding space as well as the individual 

ather-19 are merged and relabeled according to the definitions in Kather-16. The 

 domain adaptation methods (b-j). Our approach (h) qualitatively show the best 
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Table C.7 

Study of the multi-source domain performance of the Self-Rule to Multi-Adapt (SRMA) approach with different sampling ratios. We use K19 and K16 as source 

datasets and CRC-TP as the target dataset. For K19 and K16, only 1% and 10% of the source labels are used, respectively. For the proposed SRMA model we 

compare the introduced multi-source approaches defined in Eqs. (12) –(15) , where 1 : 1 and K : 1 refers to the one-to-one and K-to-one setting, respectively. The 

probability of sampling an example from each set within a batch is indicated. We report the F1 score for the individual classes and weighted F1 score as the 

overall mean performance (all) averaged over 10 runs. 

Multi-source Sampling probability 

Model L IND L CRD K19 K16 CRCTP Batch size TUM STR ‡ LYM NORM DEB ALL 

DeepAll ( Dou et al., 2019 ) - - - - - 128 72.4 ∗∗ 88.6 ∗∗ 43.6 ∗∗ 53.2 ∗∗ 71.8 ∗∗ 73.2 ∗∗

SRA ( Abbet et al., 2021 ) 1 : 1 1 : 1 0.25 0.25 0.50 128 86.2 ∗∗ 87.6 ∗∗ 66.7 ∗∗ 71.0 ∗∗ 80.5 81.8 ∗∗

SRMA 1 : 1 1 : 1 0.25 0.25 0.50 128 92.5 88.4 ∗∗ 68.7 ∗∗ 68.3 ∗∗ 74.2 ∗ 82.9 ∗

SRMA K : 1 1 : 1 0.25 0.25 0.50 128 91.5 ∗ 87.6 ∗∗ 70.7 75.0 65.7 ∗∗ 82.7 ∗

SRMA 1 : 1 K : 1 0.25 0.25 0.50 128 90.1 ∗∗ 90.1 69.6 + 72.9 ∗∗ 71.6 ∗∗ 83.6 

SRMA K : 1 K : 1 0.25 0.25 0.50 128 91.6 87.4 ∗∗ 68.7 ∗∗ 73.9 ∗∗ 53.3 ∗∗ 81.2 ∗∗

SRMA 1 : 1 1 : 1 0.33 0.33 0.33 128 92.9 + 87.8 ∗∗ 68.3 ∗∗ 65.3 ∗∗ 72.0 ∗ 82.0 ∗∗

SRMA K : 1 1 : 1 0.33 0.33 0.33 128 93.1 87.3 ∗∗ 70.5 ∗∗ 78.3 66.9 ∗∗ 83.4 ∗

SRMA 1 : 1 K : 1 0.33 0.33 0.33 128 92.5 ∗ 89.7 71.6 73.0 ∗∗ 66.9 ∗∗ 83.8 

SRMA K : 1 K : 1 0.33 0.33 0.33 128 92.2 ∗ 88.6 ∗∗ 66.1 ∗∗ 74.3 ∗∗ 74.5 83.4 ∗

SRMA 1 : 1 1 : 1 0.40 0.20 0.40 128 90.5 ∗∗ 88.3 ∗∗ 63.8 ∗∗ 71.8 ∗∗ 66.1 ∗∗ 81.5 ∗∗

SRMA K : 1 1 : 1 0.40 0.20 0.40 128 90.8 ∗∗ 89.8 62.0 ∗∗ 74.7 64.1 ∗∗ 82.2 ∗∗

SRMA 1 : 1 K : 1 0.40 0.20 0.40 128 92.0 ∗ 88.6 ∗∗ 69.5 73.7 ∗∗ 64.8 ∗∗ 82.8 ∗∗

SRMA K : 1 K : 1 0.40 0.20 0.40 128 92.7 89.3 ∗∗ 65.8 ∗∗ 74.7 + 75.2 83.8 

‡ The STR and MUS classes are merged as STR class; DEB and MUC classes as DEB. + p ≥ 0 . 05 ; ∗ p < 0 . 05 ; ∗∗ p < 0 . 001 ; unpaired t -test with respect to top 

i

c

t

(

A

p

F

o

os. In addition, when lowering the sampling probability of K16 we 

an see a drop in performances. This suggests that it is important 

o have a balanced sampling strategy even if one of the source sets 

e.i., K16 with 50 0 0 examples) is much smaller. 
ig. D.12. t-SNE visualization of the SRMA model trained on CRC-TP, K19 and the in-hous

f the embedding. (b-c) Distribution of the labeled source samples. (d) Relative alignmen

17 
ppendix D. Multi-source - t-SNE Projection 

Figure D.12 shows the visualization of the embedding for the 

roposed multi-source domain adaptation in Sections 4.7 . It high- 
e dataset. All sub-figures depict the same embedding. (a) Patch-based visualization 

t of the source and target domain samples. 
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Fig. E.13. Segmentation results on a sample WSI from the TCGA cohort achieved by our SRMA model trained using K19 as the source dataset and our in-house set as the 

target dataset. From top to bottom, we show the original image, the classification output, and tumor class probability map. 

18 
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ights the alignment of the feature space between the two source 

ets (K19, CRC-TP) and our in-house dataset. 

We observe that for each source domain, the categories are 

ell clustered. Moreover, we notice that the classes shared by both 

omains (e.i., namely tumor, stroma, debris, lymphocytes, normal 

ucosa, and muscle) fully overlap. In addition, the tissues that 

re domain-specific (e.i., adipose, background, mucin, and complex 

troma) form individual groups. Subsequently, it indicates that our 

pproach was able to properly correlate similar tissue definitions 

cross the source domains while maintaining domain-specific tis- 

ue representation. 

Looking at the source and target projection, we discern a batch 

f tissue (center-top) that does not align with the source domain. 

hen associated with the patches visualization, we can recognize 

iles that include loose stroma, collagen, or blood vessels represen- 

ation. Rightfully, none of the mentioned classes were present in 

he source domain, thus proving the usefulness of the easy-to-hard 

pproach. 

ppendix E. Patch-based segmentation of WSI from the TCGA 

ohort 

In this section we highlight the performance of our frame- 

ork on a publicly available WSI (UUDI: 2d961af6-9f08-4db7- 

2b2-52b2380cd022) from the TCGA colon cohort ( Shanah et al., 

016a; 2016b ). We apply our trained SRMA framework, as de- 

cribed in Section 4.3 , where K19 is used as the source domain 

nd our in-house domain as the target one. We show the origi- 

al image, as well as the classification output and the tumor class 

robability map of our proposed SRMA method. 

The model is able to accurately classify tissue across the whole 

lide. Moreover, the pipeline gives a rather detailed output which 

s a remarkable performance for a patch-based approach that was 

ot specifically designed for segmentation purposes. Moreover, the 

odel is agnostic to artifacts such as the permanent marker spots 

green marks on the bottom left). The tumor prediction map gives 

n overview of the tumor class probability across the WSI. This 

lass is of particular interest, as tumor detection is an important 

tep for many downstream tasks, e.g., detection of the invasive 

ront or the tumor stroma ratio. 
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