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Abstract We show a sharp relationship between the existence of space filling mappings
with an upper gradient in a Lorentz space and the Poincaré inequality in a general metric
setting. As key examples, we consider these phenomena in Cantor diamond spaces and the
Heisenberg groups.
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1 Introduction

The classical Hahn–Mazurkiewicz Theorem states that a topological space Y is the contin-
uous image of the unit cube [0, 1]n, n ≥ 1, if and only if it is compact, connected, locally
connected, and metrizable. The theory of analysis on metric spaces has allowed for a differen-
tiable version of this result. Sobolev mappings with metric space targets are now ubiquitous
and well understood, and they provide the language for the following modern version of the
Hahn–Mazurkiewicz theorem [8].

Theorem 1.1 (Hajłasz-Tyson) Let Y be a length-compact metric space. If n ≥ 2, then there
is a continuous surjection f : [0, 1]n → Y in the Sobolev class W 1,n([0, 1]n, Y ).
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104 K. Wildrick, T. Zürcher

A metric space Y is said to be length-compact if it is a compact metric space when equipped
with the associated path distance. This additional condition, though not fully necessary, can
be considered as a differentiable version of the connectedness conditions imposed in the
classical Hahn–Mazurkiewicz.

In [28], we gave the following version of Theorem 1.1, which uses the Lorentz scale for
measuring the magnitude of the gradient. This provides a sharper picture of space-filling
phenomena by giving a complementary rigidity result for dimension.

Theorem 1.2 Let Y be a length-compact metric space. If n ≥ 2 and 1 < q ≤ n, then there is
a continuous surjection f : [0, 1]n → Y in the Sobolev-Lorentz class W 1,n,q([0, 1]n; Y ). On
the other hand, if there is a continuous surjection f : [0, 1]n → Y in the class W 1,n,1([0, 1]n;
Y ), then the Hausdorff dimension of Y is at most n.

This paper examines similar issues when the domain is a general metric space rather
than the cube [0, 1]n ; a key example being the Heisenberg group. In this general setting, we
consider a class of Sobolev-Lorentz mappings based on the concept of an upper gradient,
which serves as a generalization of the modulus of the gradient of a Sobolev mapping on a
Euclidean space. An analogue of the first part of the Theorem 1.2 holds in great generality.
The assumption that a space X be upper Q-regular at a point heuristically means that the
space is at least Q-dimensional near that point; precise definitions are given in Sect. 2.

Theorem 1.3 Let (X, d, μ) be a locally compact metric measure space, let Y be any length-
compact metric space, and let 1 < q ≤ Q. Suppose that there is a non-empty set P ⊆ X
that has no isolated points and compact closure, and that X is upper Q-regular at each point
of P. Then there is a continuous surjection f : X → Y that has an upper gradient in the
Lorentz space L Q,q(X).

The mapping f : X → Y produced in Theorem 1.3 has several nice features in addition to
the regularity of an upper gradient. The mapping f itself is integrable in a strong sense, which
we describe in Sect. 3.3 below. Moreover, the local Lipschitz constant of f is finite off a
set of Hausdorff dimension 0. This condition is related to differentiability via Stepanov-type
theorems in a quite general setting [1,4,14].

The condition that a mapping f : X → Y have an upper gradient with some specified
regularity is vacuous if X contains no rectifiable curves. Thus some condition on the plenti-
tude of curves in X is needed to prove a result analogous to the second part of Theorem 1.2.
We employ an appropriate Poincaré inequality.

Theorem 1.4 Let Q ≥ 1, and suppose that (X, d, μ) is a complete and doubling metric
measure space that is Q-regular on small scales and supports a Q-Poincaré inequality. Let
Y be any metric space. If f : X → Y is a continuous surjection with an upper gradient in
the Lorentz space L Q,1(X), then the Hausdorff dimension of Y is at most Q.

We note that the class of length-compact metric spaces includes even infinite-dimensional
spaces such as the Hilbert Cube. Thus, the following statement shows that the Poincaré
inequality condition in Theorem 1.4 cannot be relaxed.

Theorem 1.5 For any ε > 0, there is a compact Ahlfors 2-regular metric space X which sup-
ports a (2 + ε)-Poincaré inequality with the following property: for any 1 ≤ p < 2 + ε, and
any length-compact metric space Y , there is a continuous surjection f : X → Y that is con-
stant off a set of finite measure and has an upper gradient in the space L p(X). In particular,
there is a continuous and integrable surjection f : X → Y with an upper gradient in the
space L2,1(X).

123



Space filling with metric measure spaces 105

The proof of Theorem 1.3 is modelled on the proof of Theorem 1.1 and has two main
components. First, we show that if a metric space X contains a set with no isolated points, and
each point of that set is a zero set for a certain capacity, then there is a continuous surjection
from X to any length-compact space with an upper gradient in a space corresponding to the
capacity. This step is based on a construction in [8], originally due to Kaufman [12], and
we employ an abstract approach. The second part of the proof shows that if a space is upper
Q-regular at some given point, then that point is a zero set for the continuous (Q, q)-Lorentz
capacity. Theorem 1.5 is proven by constructing a space that is 2-regular and supports an
appropriate Poincaré inequality, but contains a set with no isolated points, each point of which
is a zero set for the continuous (2, 1)-Lorentz capacity.

The proof of Theorem 1.4 relies on the following principle, noted by Stein [25] and more
recently explored by Kauhanen, Koskela, and Malý [13]: A mapping f : R

n → R
m with a

weak gradient whose norm is in the Lorentz space Ln,1(Rn) enjoys many of the properties
of mappings in the Sobolev space W 1,1(R), while the weaker condition that the norm of
the weak gradient be in Ln(Rn) does not guarantee this. This principle has been recently
extended to the abstract metric setting [21,22]. The crucial property for this paper is Lusin’s
condition N.

Our results can be extended to provide continuous surjections onto non-compact spaces in
certain circumstances. A modification of Theorem 1.3 yields the following result regarding
the Heisenberg groups H

n . Compare with [8, Corollary 1.5].

Corollary 1.6 For each n ≥ 1, and each 1 < q ≤ 4, there is a continuous surjection
f : H

1 → H
n that is constant off a set of finite measure, has finite local Lipschitz constant

off a set of Hausdorff dimension 0, and has an upper gradient in the space L4,q(H1). On the
other hand, if f : H

1 → H
n is a continuous mapping with an upper gradient in the space

L4,1(H1), then the image of f has Hausdorff dimension at most 4.

Section 2 introduces the metric setting. In Sect. 3, we discuss mappings with an upper gra-
dient satisfying an abstract integrability condition. The properties of such a mapping depend
on the structure of the underlying space. To quantify this, in Sect. 4, we introduce an abstract
notion of the capacity of a point and study it in a variety of concrete cases. Section 5 links
the capacity of a point to space filling phenomena. Finally, Sect. 6 explores the properties of
a mapping from a Q-dimensional space X that has an upper gradient in the space L Q,1(X),
and proves Theorem 1.4.

This paper is part of the second author’s doctoral thesis, which was partly directed by Pekka
Koskela. We wish to thank him for suggesting this topic and for many useful conversations.
We also thank Tapio Rajala for conversations regarding Theorem 6.3.

2 Notation and basic definitions

Given a metric space (X, d), we denote the open ball centered at a point x ∈ X of radius
r > 0 by

BX (x, r) = {y ∈ X : d(x, y) < r},
and the corresponding closed ball by

B X (x, r) = {y ∈ X : d(x, y) ≤ r}.
When there is no danger of confusion, we often write B(x, r) in place of BX (x, r). A similar
convention will be used for all objects that depend implicitly on the ambient space. Given a
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subset A of X and a number ε > 0, we notate the ε-neighborhood of A by

N (A, ε) = {x ∈ X : dist(A, x) < ε}.
Given an open ball B = B(x, r) and a parameter λ > 0, we set λB = B(x, λr).

A metric measure space is a triple (X, d, μ) where (X, d) is a metric space and μ is
a measure on X . For our purposes, a measure is a nonnegative countably subadditive set
function defined on all subsets of a measure space that gives the value 0 to the empty set. We
further assume that measures are Borel inner and outer regular.

The metric measure space (X, d, μ) is doubling if balls have finite and positive measure,
and there is a constant C ≥ 1 such μ(2B) ≤ Cμ(B) for any open ball B in X . It follows
from the definitions that if (X, d, μ) is a doubling metric measure space, then the metric
space (X, d) enjoys the following property, also called doubling: there is a number n ∈ N

such that any ball in X of radius r > 0 can be covered by at most n balls of radius r/2. It is
easy to see that a doubling metric space is complete if and only if it is proper, i.e., closed and
bounded sets are compact.

Doubling metric spaces are precisely those of finite Assouad dimension [9, Chap. 10].
However, this notion of dimension is not uniform; a doubling metric space may have some
parts or scales where the space appears to be of lower dimension than is actually the case.
We will have occasion to be more precise. The metric measure space (X, d, μ) is called
Q-regular at a point a ∈ X if there exists a constant C ≥ 1 and a radius r0 > 0 such that if
0 < r < r0, then

r Q

C
≤ μ(B(a, r)) ≤ Cr Q . (2.1)

If only the first inequality is assumed to hold, then X is called lower Q-regular at a, and if
only the second is assumed to hold, then X is called upper Q-regular at a. If X is Q-regular
at every point a ∈ X , and the constant C and radius r0 may be chosen uniformly, then X
is said to be Q-regular on small scales. We define the terms upper and lower Q-regular
on small scales in a similar way. Finally, we say that X is Ahlfors Q-regular if there is a
constant C ≥ 1 such that (2.1) holds for all points and all radii less than 2 diam X . We will
occasionally only need (2.1) to hold only on some sequence of radii tending to zero rather
than all sufficiently small radii; such generalizations are left to the reader.

For Q ≥ 0, we denote the Q-dimensional Hausdorff measure by HQ , and the correspond-
ing premeasures by HQ,ε , where ε > 0.

Let f : X → Y be a mapping between metric spaces. An upper gradient of f is a Borel
function g : X → [0,∞] such that for each rectifiable path γ : [0, 1] → X ,

dY ( f (γ (0)), f (γ (1))) ≤
∫

γ

g ds.

If X contains no rectifiable curves, then the constant function with value 0 is an upper gradient
of any mapping. If f is locally Lipschitz, then the local Lipschitz constant of f , defined by

Lip( f )(x) = lim sup
r→0

sup
y∈B(x,r)

dY ( f (x), f (y))

r
,

is an upper gradient of f [4, Proposition 1.11].
A key idea in theory of analysis on metric spaces is to measure the plentitude of curves

in a given space. Fundamental work has resulted in an analytic condition which guarantees
the presence of “many” rectifiable curves in a metric space [10]. Let p ≥ 1, and let f and
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Space filling with metric measure spaces 107

g be measurable functions on a metric measure space (X, d, μ). The pair ( f, g) satisfies a
p -Poincaré inequality with constant C > 0 and dilation factor σ > 0 if for each ball B in X ,

−
∫

B

| f − fB | dμ ≤ C(diam B)

⎛
⎝ −
∫

σ B

g p dμ

⎞
⎠

1
p

. (2.2)

The space (X, d, μ) supports a p-Poincaré inequality if there is a constant C > 0 and a dila-
tion factor σ > 0 such that for each measurable function f on X and each upper gradient g
of f , the pair ( f, g) satisfies a p-Poincaré inequality with constant C and dilation factor σ .

A deep theorem of Keith and Zhong states that the Poincaré inequality is an open ended
condition [15, Theorem 1.0.1].

Theorem 2.1 (Keith-Zhong) Let p > 1 and let (X, d, μ) be a complete and doubling metric
measure space that supports a p-Poincaré inequality with constant C and dilation factor σ .
Then there exists 1 ≤ q < p such that (X, d, μ) supports a q-Poincaré inequality, with
constant and dilation factor depending only on C, σ , and the doubling constant.

3 Generalized Sobolev classes of mappings between metric spaces

Classical Sobolev functions on Euclidean spaces are defined by two conditions: a Lebesgue
integrability condition on the weak gradient of the mapping, and a Lebesgue integrability
condition on the mapping itself. If the domain of the mapping is a metric space containing
sufficiently many rectifiable curves, then the concept of an upper gradient has proven to be
a suitable generalization of the modulus of the weak gradient [10]. The Newtonian spaces
of Shanmugalingam are Sobolev spaces based on the integrability of upper gradients [24].
This approach has been expanded to include Banach space valued (and hence metric space
valued) mappings [11]. Variants such as Sobolev-Orlicz spaces have also been studied [27].
As we will employ yet another generalization, we will proceed in a rather abstract fashion,
using the language of Banach function spaces.

3.1 Banach function spaces

Let (X, μ) be a totally σ -finite and complete measure space. We denote by M(X) the set of
measurable functions on X , and by M+(X) the set of measurable functions f : X → [0,∞].
Definition 3.1 A Banach function norm on X is a function G : M+(X) → [0,∞] such that
for f, g, f1, f2, . . . ∈ M+, all c ≥ 0, and all measurable subsets E ⊆ X , the following
properties hold:

(A1) G( f ) = 0 ⇐⇒ f = 0 a.e., G(c f ) = cG( f ), and G( f + g) ≤ G( f )+ G(g),
(A2) if g ≤ f a.e., then G(g) ≤ G( f ),
(A3) if fn ↗ f a.e., then G( fn) ↗ G( f ),
(A4) if μ(E) < ∞, then G(χE ) < ∞,

(A5) if μ(E) < ∞, then
∫

E f dμ ≤ CEG( f ), where 0 < CE < ∞ depends only on E
and not on f .

Definition 3.2 A Banach function space is the collection

LG(X) = { f ∈ M(X) : G(| f |) < ∞},
where G is a Banach function norm.
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A Banach function space LG(X) is indeed a Banach space when equipped with the norm
|| f ||G := G(| f |), after the usual identifications [2, Chapter 1.1]. Banach function spaces have
properties often associated with the familiar Lebesgue spaces L p(X), 1 ≤ p ≤ ∞, which
are prototypical examples. Other examples include the Orlicz spaces, and most important to
this paper, the Lorentz spaces.

3.2 Lorentz spaces

We now define and discuss the Lorentz norms, a family of Banach function norms. For a
measurable function f ∈ M+(X), we define the distribution functionω f : [0,∞) → [0,∞]
of f by

ω f (α) = μ({x ∈ X : f (x) > α}).
The non-increasing rearrangement f ∗ : [0,∞) → [0,∞] is given by

f ∗(t) = inf{α ≥ 0 : ω f (α) ≤ t}.
Definition 3.3 Let 1 ≤ q ≤ Q. The Lorentz function norm GQ,q : M+ → [0,∞] is
defined by

GQ,q( f ) =
⎛
⎝

∞∫

0

t−1
(

t1/Q f ∗(t)
)q

dt

⎞
⎠

1/q

. (3.1)

By [2, Theorem 4.4.3], GQ,q is a Banach function norm. We denote the corresponding
Banach function space by L Q,q(X), equipped with the norm

|| f ||L Q,q := GQ,q(| f |).
The following statement gives the basic relationships between the Lorentz spaces
[2, Propositions 2.1.8 and 4.4.2].

Proposition 3.4 For all 1 ≤ r ≤ q ≤ Q, there is a constant c, depending only on r, q,
and Q, such that for all measurable functions f : X → R,

|| f ||L Q,q ≤ c|| f ||L Q,r .

In particular, there is a bounded embedding L Q,r (X) ↪→ L Q,q(X). Moreover, L Q,Q(X) =
L Q(X) and

|| f ||L Q,Q = || f ||Q .

Finally, if p> Q and X has finite total measure, then for every 1 ≤ q ≤ Q, there is a bounded
embedding L p(X) ↪→ L Q,q(X).

Corollary 3.5 If 1 ≤ q ≤ Q, then there is a bounded embedding L Q,q(X) ↪→ L Q(X).

We now discuss a characterization of Lorentz spaces given in [13]. We say that a gauge
is a non-negative non-increasing function φ : (0,∞) → [0,∞). Given 1 ≤ q ≤ Q and a
gauge φ, we define functions T Q,q

φ , F Q,q
φ : [0,∞) → [0,∞) by

T Q,q
φ (s) =

{
sq−1φq/Q(s) s > 0,
0 s = 0,

and F Q,q
φ (s) =

{
sqφ(q−Q)/Q(s) s > 0,
0 s = 0.
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Space filling with metric measure spaces 109

A gauge is (Q,q)-admissible if

∞∫

0

T Q,q
φ (s) ds < ∞.

We denote the set of (Q, q)-admissible gauges by AQ,q .
The following theorem states that the Lorentz spaces are determined by a family of Orlicz

conditions [13, Corollary 2.4].

Theorem 3.6 (Kauhanen-Koskela-Malý) A measurable function f : X → R is in L Q,q(X)
if and only if there isφ ∈ AQ,q such thatφ(| f (x)|)> 0 for almost every x ∈ X with | f (x)|> 0,
and ∫

X

F Q,q
φ (| f (x)|) dμ(x) < ∞.

In addition, there is a constant C depending only on φ, Q, and q such that

|| f ||Q
L Q,q ≤ C

∫

X

F Q,q
φ (| f (x)|) dμ(x). (3.2)

3.3 Integrability conditions for metric space valued mappings

Standing Assumption 3.7 For the remainder of the paper, we denote by X a locally compact
metric measure space and by Y any metric space.

As mentioned above, classical Sobolev functions are themselves required to satisfy inte-
grability conditions. The main purpose of this is to guarantee that a sensible norm may be
defined for such functions, and that the resulting Sobolev space is a Banach space. Typically,
the integrability of metric space valued mappings is defined via isometric embeddings of the
target into a Banach space. Recall that any metric space Y may be isometrically embedded
in the Banach space �∞(Y ) [9, Page 99]. Moreover, if Y is separable, it may even be iso-
metrically embedded in the cannonical space �∞(N). The Bochner integral then provides a
framework for Banach function spaces of Banach space valued mappings. See [11] for an
example of how this works using the Lebesgue scale. However, the fact that there are many
possible isometric embeddings of a given metric space in a Banach space means that the
“function norm” resulting from this process is not canonical. For our purposes, it suffices to
consider an intrinsic notion of local integrability for metric space valued mappings.

Recall that a mapping f : X → Y is said to be Bochner measurable if it is measurable
in the usual sense and essentially separably valued, meaning that there is a set N ⊆ X of
measure 0 such that f (X\N ) is a separable subset of Y .

Definition 3.8 A mapping f : X → Y is in the class L1
loc(X; Y ), i.e., it is said to be locally

integrable, if it is Bochner measurable and there exists a point z ∈ Y such that the function
x �→ dY ( f (x), z) is in the space L1

loc(X).

The following proposition, the elementary proof of which we leave to the reader, shows
that this agrees with the corresponding notion for Banach space valued mappings. Namely,
if V is a Banach space, then f : X → V is said to be locally Bochner integrable if f is
Bochner measurable and || f ||V ∈ L1

loc(X).
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Proposition 3.9 Let f : X → Y be a Bochner measurable mapping. Then f ∈ L1
loc(X; Y )

if and only if for every Banach space V and every isometric embedding ι : Y ↪→ V , the
mapping ι ◦ f is locally Bochner integrable.

Most of the mappings we construct have much stronger integrability properties than just
local integrability. Often, they satisfy the hypotheses of the following statement.

Proposition 3.10 Let f : X → Y be a measurable, essentially bounded, and essentially
separably valued mapping. If f takes the value z ∈ Y except on a set of finite measure, then
for any Banach function norm G, the mapping x �→ dY ( f (x), z) is in the space LG(X). More-
over, if ι : Y ↪→ V is an isometric embedding into a Banach space V , then G(||ι◦ f ||V ) < ∞.

Proof Define dz f : X → [0,∞) by dz f (x) = dY ( f (x), z). We have assumed that there is a
set A ⊆ X of finite measure such that f (x) = z for all x ∈ X\A. By properties (A1), (A2),
and (A4) of the definition of a Banach function norm, we have

G(dz f ) = G(dz f · χA) ≤ G(χA) (ess sup dz f ) < ∞,

as desired. The second statement is shown similarly. ��
3.4 Mappings with an upper gradient in a Banach function space

Due to the difficulty in defining Banach function spaces of mappings with metric space tar-
gets, in this paper we choose not to consider Newtonian “spaces” of metric space valued
mappings, though such objects are sensible. Let G be a Banach function norm. Our simpli-
fied philosophy is to consider a mapping f : X → Y of metric spaces to be a G-Newtonian
mapping if it is locally integrable and has an upper gradient in the space LG(X), though often
the mappings we construct will have stronger integrability properties, as in Proposition 3.10.

The following statement provides the completeness properties that, in the Banach space
valued setting, would come from the completeness of Newtonian spaces. The proof, which
is essentially Fuglede’s lemma, is standard.

Proposition 3.11 Let G be a Banach function norm. Suppose that the sequence of mappings
{ fn : X → Y }n∈N converges pointwise to a mapping f : X → Y , and that the sequence of
functions {gn : X → [0,∞]}n∈N converges in LG(X) to a function g : X → [0,∞]. If for
each n ∈ N, the function gn is an upper gradient of fn, then there is an upper gradient of f
in every LG(X)-neighborhood of g.

Proof There is a subsequence {gnk }k∈N such that for each k ∈ N,

||gnk − g||G ≤ 2−2k .

Let ρk = |gnk − g|, and set

� =
⎧⎨
⎩γ : [0, 1] → X : lim

k→∞

∫

γ

ρk ds �= 0

⎫⎬
⎭ .

If γ : [0, 1] → X is a rectifiable path not in the family �, then

dY ( f (γ (0)), f (γ (1))) = lim
k→∞ dY ( fnk (γ (0)), fnk (γ (1))) ≤ lim

k→∞

∫

γ

gnk ds =
∫

γ

g ds,

and so g satisfies the upper gradient inequality for f on the path γ .
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On the other hand, if γ ∈ �, then for all j ∈ N there is some integer k ≥ j such that∫

γ

ρk ds > 2−k .

Thus, for all j ∈ N, the function

ρ̃ j =
∞∑

k= j

2kρk

satisfies
∫

γ

ρ̃ j ds ≥ 1, and ||ρ̃ j ||G ≤
∞∑

k= j

2−k = 2− j+1.

We claim that for any i ∈ N, the function

g̃i = g +
∞∑
j=i

ρ̃ j

is an upper gradient of f . Since g̃i ≥ g, it suffices to show that g̃i satisfies the upper gradient
inequality on any path γ ∈ �. For such a path, we see that

∫

γ

g̃i ds ≤
∫

γ

g ds +
∞∑
j=i

∫

γ

ρ̃ j ds = ∞,

and so the upper gradient inequality is trivially satisfied. Moreover, by the basic properties
of Banach function spaces [2, Chapter 1.1],

||̃gi − g||G = || lim
l→∞

l∑
j=i

ρ̃ j ||G = lim
l→∞ ||

l∑
j=i

ρ̃ j ||G ≤ lim
l→∞

l∑
j=i

||ρ̃ j ||G ≤ 2−i+2.

As i may be chosen to be arbitrarily large, this shows that g̃i may be chosen to lie in an
arbitrary LG-neighborhood of g. ��

We will also need the following simple pasting lemma for upper gradients. Much more
sophisticated versions are available, as discussed in [27].

Lemma 3.12 Let U1, . . . ,Un be disjoint Borel sets in X, let U0 = X\(∪i Ui ), and let f0, . . . ,

fn : X → Y be mappings with upper gradients g0, . . . , gn : X → [0,∞] respectively. Sup-
pose, for i = 1, . . . , n, the restriction fi |X\Ui is constant with value yi ∈ Y , and the restriction
f0|Ui is constant with value yi . Then the mapping f : X → Y defined by

f (x) =
{

f0(x) x /∈⋃n
i=1 Ui ,

fi (x) x ∈ Ui ,

has an upper gradient defined by g =∑n
i=0 gi .

Proof Let ι : Y → �∞(Y ) be an isometric embedding. Our assumptions imply that for each
x ∈ X ,

ι ◦ f (x) = ι ◦ f0(x)+
n∑

i=1

(ι ◦ fi (x)− ι(yi )).
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For i = 1, . . . , n, the mapping y �→ ι(y) − ι(yi ) is an isometry, and so gi is also an upper
gradient of the mapping x �→ ι ◦ fi (x) − ι(yi ). Thus g is an upper gradient of ι ◦ f , and
hence of f . ��

4 The capacity of a point

The strength of the condition that a given mapping f : X → Y has an upper gradient in the
space LG(X) depends on the underlying structure of the metric space X . To help understand
this phenomena, we introduce a variational-type capacity condition. A much more involved
capacity theory can be developed, as in [27] and [24].

Definition 4.1 A point a ∈ X has zero continuous G-capacity if for all ε > 0, there is a con-
tinuous function η : X → [0,∞) such that

(i) the support supp η is a compact subset of B(a, ε),
(ii) there exists δ > 0 such that η(x) ≥ 1 for all x ∈ B(a, δ),

(iii) there is an upper gradient g of η such that ||g||G < ε.

If in addition, the function η may be chosen to be Lipschitz, we say that a ∈ X has zero
Lipschitz G-capacity.

Remark 4.2 In Definition 4.1 it is equivalent to require that for all ε > 0 and 0 < τ ≤ 1,
there is a function η : X → [0, τ ] satisfying conditions (i), (iii), and the following modified
version of condition (ii):

(ii)’ there exists δ > 0 such that η(x) = τ for all x ∈ B(a, δ).

To see this, choose a function η satisfying the requirements of Definition 4.1, and consider
the continuous function η̃ : X → [0, τ ] defined by

η̃(x) = τ min{η(x), 1}.
Then for all x, y ∈ X ,

|̃η(x)− η̃(y)| ≤ τ |η(x)− η(y)| ≤ |η(x)− η(y)|,
and so g is also an upper gradient of η̃.

The continuous L p-capacity of a point has been studied in a general setting. The following
result can be deduced from the proof of [16, Theorem 3.4].

Theorem 4.3 (Korte) Let (X, d, μ) be a doubling metric measure space and let Q > 1. If
X is upper Q-regular at a point a ∈ X and 1 ≤ p < Q, then the point a has zero continuous
L p-capacity. On the other hand, if X is lower Q-regular at the point a, and X supports a
Q-Poincaré inequality, then for every p > Q, the point a does not have zero continuous
L p-capacity.

4.1 The Lorentz capacity

The Lorentz capacity has been studied in detail in the Euclidean setting [5]. In this section
we establish a version of Theorem 4.3 that employs the Lorentz scale in the borderline case.
Let 1 ≤ q ≤ Q. We say that a point a ∈ X has zero Lipschitz (Q, q)-Lorentz capacity if it
has zero Lipschitz GQ,q -capacity where GQ,q is defined by (3.1).
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Theorem 4.4 Suppose that X is upper Q-regular at a point a ∈ X. Then for all 1 < q ≤ Q,
the point a has zero Lipschitz (Q, q)-Lorentz capacity.

Proof By Proposition 3.4, it suffices to consider the case that 1 < q < Q.
For 0 < s < ∞, define η̃s : [0,∞) → [0,∞) by

η̃s(r) =

⎧⎪⎨
⎪⎩

1 0 ≤ r ≤ e−es+1
,

log log
( 1

r

)− s e−es+1 ≤ r ≤ e−es
,

0 e−es ≤ r < ∞.

For all e−es+1
< r < e−es

, the function η̃s is smooth at r , and we have

(̃ηs)
′(r) = −1

r log
( 1

r

) .
Let a ∈ X , and for 0 < r < R < ∞ denote closed annuli centered at a ∈ X by

Aa(r, R) := {x ∈ X : r ≤ d(a, x) ≤ R}.
Moreover, for 0 < s < ∞, define ηs,a : X → [0,∞) by

ηs,a(x) = η̃s(d(a, x)).

It is not hard to see that η̃s and ηs,a are Lipschitz functions, and that for any x ∈ X , the local
Lipschitz constant of ηs,a at x satisfies

Lip(ηs,a)(x) ≤
⎧⎨
⎩

1

d(a,x) log
(

1
d(a,x)

) x ∈ Aa(e−es+1
, e−es

),

0 otherwise.

Fix ε > 0. Recalling that X is assumed to be locally compact, it is clear that for suffi-
ciently large s> 0, the function ηs,a satisfies conditions (i) and (ii) of Definition 4.1. We now
show that the third condition holds for sufficiently large s> 0. Recall that the local Lipschitz
constant of a Lipschitz function is an upper gradient of that function.

By assumption, we may find C ≥ 1 and r0 > 0 such that if 0 < r < r0, then

μ(B(a, r)) ≤ Cr Q .

Since 1 < q < Q, there is a number α such that

Q − q

q
< α < Q − 1.

Define a gauge

ψ(s) =
{

s−Q logαQ/(q−Q)(e + s) s ≥ 1,
logαQ/(q−Q)(e + 1) s ≤ 1.

An easy calculation shows that the assumption α > (Q − q)/q implies that ψ ∈ AQ,q .
For ease of notation let t = s + 1. It follows from the definitions that

∫

X

F Q,q
ψ ◦ Lip(ηs,a)(x) dμ(x) ≤

∫

Aa(e−et
,e−es

)

logα
(

e + 1
d(a,x) log(d(a,x)−1)

)
(
d(a, x) log(d(a, x)−1)

)Q
dμ(x). (4.1)
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Let k be the unique positive integer satisfying k ≤ et −es < k +1, and for j ∈ {0, . . . , k},
set

A j := Aa(e
−et + j , e−et + j+1).

Since the function r �→ r log(1/r) is increasing for r < e−1, the integrand on the right hand
side of (4.1) is a decreasing function of d(a, x). If s is so large that e−es+1 ≤ r0, then a trivial
estimate and the volume growth assumption show that

∫

A j

F Q,q
ψ ◦ Lip(ηs,a)(x) dμ(x) ≤

logα
(

e + eet − j

et − j

)

(et − j)Q

μ(B(a, e−et + j+1))

(e−et + j )Q

≤ CeQ(et − j)−Q logα
(

e + eet − j

et − j

)

≤ CeQ2α(et − j)α−Q ≤ CeQ2α
et − j∫

et − j−1

uα−Q du.

As no three of the sets {Aa(e−et + j , e−et + j+1)}k
j=0 intersect, we see that

∫

X

F Q,q
ψ ◦ Lip(ηs,a)(x) dμ(x) ≤ CeQ2α+1

k∑
j=0

et − j∫

et − j−1

uα−Q du

≤ CeQ2α+1

es+1∫

es−1

uα−Q du.

Since α < Q −1, the final term above tends to zero as s tends to infinity. That condition (i i i)
holds for sufficiently large s now follows from the characterization of L Q,q(X) provided by
Theorem 3.6. ��

For the negative result, we assume more about the growth of the space than is assumed in
Theorem 4.3. More precise versions of this result can likely be deduced from [21].

Theorem 4.5 Suppose that (X, d, μ) is complete, doubling, supports a Q-Poincaré
inequality, and is Q-regular at small scales. Then no point of X has zero continuous
(Q, 1)-Lorentz capacity.

We defer the proof of this theorem to Sect. 6, in which the properties of mappings with
an upper gradient in the space L Q,1(X) are studied.

4.2 The Cantor diamond sets

Though there are Ahlfors Q-regular metric spaces that contain points of zero continuous
(Q, 1)-Lorentz capacity, Theorem 4.5 shows that such spaces cannot support a Q-Poincaré
inequality. This subsection is devoted to a class of examples that will show that this relation-
ship is sharp.

We first need some notation regarding Cantor sets. For 0 < λ < 1, let Eλ be the middle
interval Cantor set with the following properties. At stage i , there are 2i−1 removed open
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intervals {Ui, j } j∈Ji of length (λ/2)i−1(1−λ), and 2i remaining closed intervals {U k
i }k∈Ki of

length (λ/2)i . Then the Hausdorff dimension of Eλ is log2/λ 2. In this notation, the “standard
middle-third Cantor set” is given by E2/3.

For convenience, we denote the center point of Ui, j by ui, j , and we set

wi = (λ/2)i−1(1 − λ)

2
,

so that Ui, j = (ui, j − wi , ui, j + wi ). Similarly, we write U k
i = [uk

i − vi , uk
i + vi ], where

2vi = (λ/2)i . We may assume that for each positive integer i , the intervals {U k
i }k∈Ki are

ordered so that the right endpoint of U k
i is less than the left endpoint of U k+1

i , and similarly
for the intervals {Ui, j } j∈Ji . Note that the notation established above depends implicitly on
the parameter λ.

We now define the spaces that will be used in our example. For each i ∈ N and j ∈ Ji ,
we define the “diamond” Di, j by

Di, j := {(x, y) ∈ R
2 : |x − ui, j | ≤ wi − |y|}.

The λ-Cantor diamond set is defined by

Xλ =
⎛
⎝ ⋃

i∈N, j∈Ji

Di, j

⎞
⎠ ∪ (Eλ × {0}).

To the best of our knowledge, these spaces were introduced in [17]. See Fig. 1.
Recall that an s-similarity, s > 0, is a mapping φ : X → Y that satisfies, for all x, y ∈ X ,

dY (φ(x), φ(y)) = sdX (x, y).

The Cantor set Eλ is self-similar in the following sense. For each positive integer i and each
k ∈ Ki , there is a (λ/2)i -similarity φk

i : R → R which maps Eλ bijectively onto Eλ ∩ U k
i .

The space Xλ inherits self-similarities from the Cantor set Eλ. Namely, for each i ∈ N and
k ∈ Ki , the map φk

i : R → R extends to a (λ/2)i -similarity �k
i : R

2 → R
2 that maps Xλ

bijectively onto Xλ ∩ (U k
i × [0, 1]). Recall that if A ⊆ R

2 is a Borel set and � : R
2 → R

2

is an s-similarity, then

H2(�(A)) = s2H2(A).

We endow Xλ with the metric inherited from the plane R
2 and the two-dimensional

Hausdorff measure H2. The next two statements give the basic properties of the space Xλ.
We leave the proof of the first to the reader, and the second can be found at [17, Theorem 3.1].

Fig. 1 The Cantor diamond set with λ = 2/3
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Proposition 4.6 The metric measure space Xλ is Ahlfors 2-regular with a constant depend-
ing only on λ.

Theorem 4.7 (Koskela-MacManus) The metric measure space Xλ satisfies a p-Poincaré
inequality for all p> pλ, where

pλ = 2 − log 2

log λ
> 2.

We denote the set of non-endpoints of Xλ by

X̃λ = Xλ\
⎛
⎝ ⋃

i∈N, j∈Ji

Di, j

⎞
⎠ =

⎛
⎝Eλ\

⋃
i∈N, j∈Ji

{ui, j − wi , ui, j + wi }
⎞
⎠× {0}.

Note that the set X̃λ has no isolated points.

Proposition 4.8 Each point of X̃λ has zero Lipschitz L p-capacity for any 1 ≤ p < pλ.

Before we begin the proof, we define piecewise linear approximations to a version of the
Cantor function that is supported on a fixed interval U k0

i0
. Let i ∈ N, and define ck0

i0;i : U k0
i0

→
[0, 1] to be the piecewise linear continuous function given by

ck0
i0;i (x) =

x∫

u
k0
i0

−vi0

ρ
k0
i0;i (t) dt,

where ρk0
i0;i : U k0

i0
→ [0,∞) is given by

ρ
k0
i0;i (t) =

{
2i0

λi0+i t ∈⋃k∈Ki
φ

k0
i0
(U k

i ),

0 otherwise.

The indices i0 and k0 give the location of the support of the function ck0
i0;i , while the index i

determines how closely the function approximates the Cantor function. See Fig. 2.
A simple computation shows that

ck0
i0;i (u

k0
i0

− vi0) = 0 and ck0
i0;i (u

k0
i0

+ vi0) = 1.

Moreover, the absolute continuity of the integral implies that for all t ∈ U k0
i0

,

Lip(ck0
i0;i )(t) = ρ

k0
i0;i (t).

Proof of Proposition 4.8 Let (a, 0) ∈ X̃λ, and let ε > 0. Since a is a “non-endpoint” of Eλ,
we may find i0 ∈ N and kl , kr ∈ Ki0 such that

ukl
i0

+ vi0 < a < ukr
i0

− vi0 and (U kl
i0

∪ U kr
i0
) ⊆ (a − ε, a + ε).

Then δ := dist(a,U kl
i0

∪ U kr
i0
)> 0. The condition that p < pλ implies that λ2−p < 2, and

hence we may find i ∈ N so that

2H2(Xλ)

(
2

λ

)(p−2)i0
(
λ2−p

2

)i

< ε p.
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Fig. 2 Graphs of the functions c2
1;2 and c2

1;3, when λ = 2/3

Define η : Xλ → [0, 1] by

η(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 x ∈ [ukl
i0

+ vi0 , ukr
i0

− vi0 ],
ckl

i0;i (x) x ∈ U kl
i0
,

1 − ckr
i0;i (x) x ∈ U kr

i0
,

0 otherwise.

It follows from the definitions that η has compact support contained in B((a, 0), ε), is
identically one on B((a, 0), δ), and satisfies

Lip η(x, y) =
{

2i0

λi0+i x ∈⋃k∈Ki
(φ

kl
i0
(U k

i ) ∪ φkr
i0
(U k

i )),

0 otherwise.

Note that

H2({(x, y) ∈ Xλ : x ∈
⋃

k∈Ki

(φ
kl
i0
(U k

i )∪φkr
i0
(U k

i ))})=2i+1H2({(x, y)∈ Xλ : x ∈ φkl
i0
(U 1

i )}).

By the self-similarity of Xλ, there is some k′ ∈ Ki0+i such that

{(x, y) ∈ Xλ : x ∈ φkl
i0
(U 1

i )} = �k′
i0+i (Xλ).

This implies that

H2({(x, y) ∈ Xλ : x ∈ φkl
i0
(U 1

i )}) =
(
λ

2

)2(i0+i)

H2(Xλ).

As a result, we see that

|| Lip η||p
L p =

(
2i0

λi0+i

)p

2i+1
(
λ

2

)2(i0+i)

H2(Xλ)

= 2H2(Xλ)

(
2

λ

)(p−2)i0
(
λ2−p

2

)i

< ε p.

Recalling that Lip η is an upper gradient of η, this completes the proof. ��
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Combining this result with Proposition 3.4 yields the following statement.

Corollary 4.9 Each point of X̃λ has zero Lipschitz (2, 1)-Lorentz capacity in Xλ.

We may deduce from this and the work of Keith and Zhong that the number pλ given in
Theorem 4.7 is sharp.

Corollary 4.10 The space Xλ does not support a pλ-Poincaré inequality.

Proof Suppose that Xλ does support a pλ-Poincaré inequality. Theorem 2.1 implies that
Xλ-satisfies a p-Poincaré inequality for some 2 < p < pλ. Proposition 4.8 produces a point
with zero Lipschitz L p-capacity, yielding a contradiction by Proposition 4.6 and Theorem 4.3.

��

5 Space filling with generalized Newtonian maps

This section is based on [8, Sect. 3], where the same construction is done in the setting of
Reshetnyak-Sobolev spaces on the unit cube [0, 1]n . The spirit of the construction is due to
Kaufman [12]. We connect the capacity condition of the previous section to the construction
of space filling mappings with controlled upper gradients. This allows us to prove Theo-
rem 1.3 and Corollary 1.6.

5.1 The compact case

Theorem 5.1 Let G be a Banach function norm, and suppose that there is a non-empty
set P ⊆ X that has no isolated points and compact closure, and such that each point of
P has zero continuous G-capacity. Then for any length-compact metric space (Y, dY ), any
point z ∈ Y , and any ε > 0, there is a continuous surjection f : X → Y that takes the value
z outside the ε-neighborhood of P, and has an upper gradient g : X → [0,∞] satisfying
||g||G ≤ ε.

Proof To produce the desired mapping, we construct a uniform Cauchy sequence of contin-
uous mappings from X to Y , such that the mappings cover finer and finer nets in Y . The limit
mapping is seen to be a continuous surjection, and we use Proposition 3.11 to show that it
has an upper gradient in the desired space.

The assumption that Y is length-compact implies that for each non-negative integer n, we
may find a finite set Yn = {yn

i }kn
i=1 with the property that each y ∈ Y can be connected to

a point in Yn by a path of length no greater than 2−n . Then
⋃

n Yn is dense in Y . We may
assume the diameter of Y with respect to the path metric is 1, and hence we may assume that
y0

1 = z.
For each integer n ≥ 1, we may partition Yn into kn−1 sets C(yn−1

i ) so that if yn
j ∈ C(yn−1

i ),

then there is a 1-Lipschitz path γ n
j : [0, 2−(n−1)] → Y satisfying γ n

j (0) = yn−1
i and γ n

j (1) =
yn

j .

Let f0 : X → Y be the constant mapping f0(x) = z for all x ∈ X . Clearly, the constant
function g0(x) = 0 is an upper gradient of f0.

As P is non-empty and has no isolated points, it is infinite, and so we may find a collection
C(x0

1 ) of k1 distinct points {x1
i }k1

i=1 ⊆ P. Choose 0 < ε1 < ε/(21k1) so small that the balls

{B(x1
i , ε1)}k1

i=1 are pairwise disjoint.
By the capacity assumption and Remark 4.2, we may find a number δ1 > 0 and continuous

functions η1
i : X → [0, 1] for i = 1, . . . , k1 satisfying
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(i) supp η1
i is a compact subset of B(x1

i , ε1),
(ii) η1

i (x) = 1 for all x ∈ B(x1
i , δ1),

(iii) there is an upper gradient g1
i of η1

i such that ||g1
i ||G < ε1.

As the collection {B(x1
i , ε1)}k1

i=1 is pairwise disjoint, we may define the mapping f1: X →Y by

f1(x) =
{

f0(x) x /∈⋃k1
i=1 BX (x1

i , ε1),

γ 1
i ◦ η1

i (x) x ∈ BX (x1
i , ε1).

We note that condition (ii) above implies that

f1(BX (x
1
i , δ1)) = {y1

i }, (5.1)

and so the image of f1 contains Y1. To see that f1 is continuous, recall that γ 1
i (0) = y0

1 , and
so if x /∈ B(x1

i , ε1), then

γ 1
i ◦ η1

i (x) = y0
1 = f0(x).

Moreover, Lemma 3.12 shows that g1 := g0 +∑k1
i=1 g1

i is an upper gradient of f1, and

||g1 − g0||G = ||g1||G ≤ k1ε1 < ε2−1.

Since length(γ 1
i ) ≤ 1 for each i = 1, . . . , k1, we see that for all x ∈ X ,

dY ( f1(x), f0(x)) ≤ 1.

We now consider the net Y2 = {y2
i }k2

i=1. Since P is non-empty and has no isolated points,

we may find distinct points {x2
j }k2

j=1 ⊆ P with the following properties. First, there is a

partition of these points into k1 collections, labelled C(x1
i ), so that

x2
j ∈ C(x1

i ) ⇐⇒ y2
j ∈ C(y1

i ). (5.2)

Second, we may find 0 < ε2 < ε/(22k2) so small that the balls {BX (x2
j , ε2)}k2

j=1 are disjoint,

and that if x2
j ∈ C(x1

i ), then

B X (x
2
j , ε2) ⊆ BX (x

1
i , δ1)\{x1

i }. (5.3)

By the capacity assumption and Remark 4.2, we may find δ2 > 0 and continuous functions
η2

j : X → [0, 2−1] for j = 1, . . . , k2 satisfying

(i) supp η2
j is a compact subset of B(x2

j , ε2),

(ii) η2
j (x) = 2−1 for all x ∈ B(x2

j , δ2),

(iii) there is an upper gradient g2
j of η2

j such that ||g2
j ||G < ε2.

Define f2 : X → Y by

f2(x) =
{

f1(x) x /∈⋃k2
j=1 BX (x2

j , ε2),

γ 2
j ◦ η2

j (x) x ∈ BX (x2
j , ε2).

As in the first stage, the mapping f2 is continuous. Moreover, for any j = 1, . . . , k2,

f2(BX (x
2
j , δ2)) = {y2

j },
while (5.3) implies that for any i = 1, . . . , k1,

f2(x
1
i ) = f1(x

1
i ) = y1

i .

123



120 K. Wildrick, T. Zürcher

We may apply Lemma 3.12 again to show that g2 := g1 +∑k2
j=1 g1

j is an upper gradient of
f2, and

||g2 − g1||G ≤ k2ε2 < ε2−2.

Finally, as length(γ 2
j ) ≤ 2−1 for each j = 1, . . . , k2, we see that

dY ( f2(x), f1(x)) ≤ 2−1.

Continuing in this fashion, for each n ∈ N we may find a continuous mapping fn : X → Y ,
an upper gradient gn of fn , and a set {xn

i }kn
i=1 ⊆ P such that

• dY ( fn+1(x), fn(x)) ≤ 2−n for all x ∈ X ,
• for all integers m ≥ n ≥ 1 and i = 1, . . . , kn , it holds that fm(xn

i ) = yn
i ,

• ||gn+1 − gn ||G < ε2−(n+1),

• fn(x) = z for all x /∈⋃k1
i=1 B(x1

i , ε1).

The first point above shows that { fn : X → Y } is a Cauchy sequence of mappings in the su-
premum norm. Since Y is length-compact, it is compact, and hence { fn} converges uniformly
to a continuous function f : X → Y . The second point shows that ∪nYn ⊆ f (P). Since P
has compact closure in X and the set ∪nYn is dense in the compact space Y , it follows that
f (X) = Y .

The third point above implies that {gn} is a Cauchy sequence in the Banach function space
LG(X), and that it converges to a function g : X → [0,∞] satisfying ||g||G < ε. Thus
Proposition 3.11 implies that f has an upper gradient g̃ that also satisfies ||̃g||G < ε. The
fourth point above, along with the details of the construction, shows that f takes the value z
outside the ε-neighborhood of P . ��

With slightly stronger hypotheses, we can produce a continuous surjection with Lipschitz
properties.

Theorem 5.2 If it is additionally assumed in the hypotheses of Theorem 5.1 that each point
of P has zero Lipschitz G-capacity, then the mapping f : X → Y produced by Theorem 5.1
may be chosen so that it also satisfies Lip( f )(x) < ∞ for all x ∈ X\E, where E is a compact
subset of X with Hausdorff dimension 0.

Proof Using the notation established in the proof of Theorem 5.1, for n ∈ N, set

Bn =
kn⋃

i=1

B(xn
i , εn).

The construction shows that for each n ∈ N, the closure of Bn+1 is a subset of Bn . It follows
that E =⋂n∈N

Bn is closed. Since the sequence {εn} tends to 0, the set P ∩ E is dense in E .
Thus E is a subset of the closure of P , and hence compact. By choosing the sequence {εn}
to tend to 0 sufficiently fast, we may assume that E has Hausdorff dimension 0.

Let x ∈ X\E . The nesting of the sets {Bn}n∈N and the fact that E is closed implies that
there is open neighborhood U of x and some n ∈ N such that

U ⊆ (X\Bn)

It follows from the construction that f |U = fn−1|U . With the additional assumption that
each point of P has zero Lipschitz G-capacity, the proof of Theorem 5.1 shows that there is
a constant Ln ≥ 1 such that the mapping fn−1 is Ln-Lipschitz. From this, we may conclude
that Lip f (x) < Ln .
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We now have all the tools needed to prove Theorems 1.3 and 1.5.

Proof of Theorem 1.3 We assume that there is a non-empty set P ⊆ X that has no isolated
points and compact completion, and that X is upper Q-regular at each point of P . By The-
orem 4.4, each point of P has zero Lipschitz (Q, q)-Lorentz capacity. Theorem 5.1 now
completes the proof. ��
Proof of Theorem 1.5 Let ε > 0. By Proposition 4.7, we may find 0 < λ < 1 so small that
the Cantor diamond space Xλ satisfies a (2 + ε)-Poincaré inequality. By Proposition 4.6, the
space Xλ is Ahlfors 2-regular, and it is clearly compact. By Theorem 4.8, each point of the
set X̃λ, which has compact closure and no isolated points, has zero Lipschitz L p-capacity
for any 1 ≤ p < 2 + ε. Theorem 5.1 now completes the proof. ��
5.2 The non-compact case

Theorem 5.3 Suppose that X contains a collection {Pi }i∈N of non-empty subsets such that
for each i ∈ N,

(i) the set Pi has no isolated points and has compact closure,
(ii) each point of Pi has zero continuous G-capacity,

(iii) there is a number ri > 0 so that the resulting collection {N (Pi , ri )}i∈N is pairwise
disjoint.

Moreover, suppose that Y is a metric space that may be written as a countable union of
length-compact subsets with non-empty intersection. Then there is a continuous surjection
F : X → Y with an upper gradient G : X → [0,∞] in LG(X).

Proof Write Y = ⋃
i∈N

Yi , where for each i ∈ N the subset Yi is length-compact, and let
z ∈ ⋂i∈N

Yi . By applying Theorem 5.1 with ε < min{ri , 2−i }, we may find a continuous
surjection fi : X → Yi that takes the value z off of the set N (Pi , ri ), and has an upper
gradient gi : X → [0,∞] satisfying ||gi ||G < 2−i .

For each k ∈ N, define Fk : X → Y by

Fk(x) =
{

fi (x) x ∈ N (Pi , ri ) for some 1 ≤ i ≤ k,
z otherwise.

Then Fk converges pointwise to the continuous surjection F : X → Y defined by

F(x) =
{

fi (x) x ∈ N (Pi , ri ), for some i ∈ N,

z otherwise.

By Lemma 3.12, the function Gk : X → [0,∞] defined by

Gk(x) =
k∑

i=1

gi (x),

is an upper gradient of Fk . As ||gi ||G < 2−i for each i ∈ N, the sequence {Gk}k∈N forms
a Cauchy sequence in the Banach space LG(X). Thus, by Proposition 3.11, F has an upper
gradient G in LG(X). ��
Remark 5.4 If ∑

i∈N

μ (N (Pi , ri )) < ∞,
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then the mapping F constructed above takes the value z off of a set of finite measure. In any
case, it is clear that F is locally integrable in the sense of Definition 3.8.

Remark 5.5 Suppose that in the statement of Theorem 5.3, each point of ∪i Pi has zero
Lipschitz G-capacity, and that the set ∪Pi is closed. By Theorem 5.2, for each mapping
fi : X → Y in the above construction, we may find a compact set Ei ⊆ Pi of Hausdorff
dimension 0 such that Lip( fi )(x) < ∞ for each x ∈ X\Ei . Then the set E = ∪Ei is closed
and has Hausdorff dimension 0. Then the mapping F constructed in the proof of Theorem 5.3
can be chosen so that it has finite local Lipschitz constant except on E , as follows.

The proof of Theorem 5.1 shows that fi takes the value z off the (finitely many) balls
employed at the first stage of the construction of fi , which have radius εi < ri . Adding the
centers of these balls to the set Ei if necessary, it follows that the set N (Ei , 2ri ) contains
these balls. If x ∈ X\E , there is an open neighborhood U of x such that dist(U, E) > 0.
We may assume without loss of generality that the sequence {ri } tends to zero. Hence there
is a finite number N ∈ N such that N (Ei , 2ri ) ∩ U = ∅ for all i ≥ N . Thus, by the above
discussion and the definition of F , we see that

Lip(F)(x) ≤ max
1≤i≤N

Lip( fi )(x) < ∞.

We conclude this section with the proof of Corollary 1.6. For basic information regarding
the Heisenberg groups, see, for example, [3].

Proof of Corollary 1.6 We consider the Heisenberg space H
n, n ≥ 1, to be equipped with

the standard Carnot-Carathéodory metric dHn and (2n + 2)-dimensional Hausdorff mea-
sure. Recall that H

n is an Ahlfors (2n + 2)-regular, complete, and geodesic metric space
that supports a 1-Poincaré inequality. We will verify the hypotheses of Theorem 5.3 and
Remarks 5.4 and 5.5.

We note that the x-axis Ax in H
1 is isometric to R

1. For an integer i ≥ 1, let

Pi ⊆ [i + (1/4), i + (3/4)] ⊆ Ax

be a standard Cantor set of diameter 2−i . Then Pi is compact and has no isolated points. Since
the standard Euclidean metric on R

3 is majorized by the Heisenberg distance dH1 , the col-
lection {NH1(Pi , 1/2)} is pairwise disjoint, and hence ∪Pi is closed. By Theorem 4.4, each
point of H

1 has zero Lipschitz (4, q)-capacity for any q > 1. Moreover, there is a universal
constant c ≥ 1 such that

∞∑
i=1

H4(NH1(Pi , 2−i )) ≤ c
∞∑

i=1

(diamH1 Pi + 2−i )4 < ∞.

The metric dHn is proper and geodesic. Thus the collection {BHn (0, i)} is an exhaustion of
H

n by length-compact sets each containing the origin. We may now apply Theorem 5.3 and
Remarks 5.4 and 5.5 to produce a continuous surjection F : H

1 → H
n that is constant off a set

of finite measure, has finite local Lipschitz constant off a set of Hausdorff dimension 0, and
has an upper gradient in L4,q(H1), as desired. The final statement of Corollary 1.6 follows
directly from Theorem 1.4, which is proven independently in Sect. 6 ��

6 Mappings with an upper gradient in L Q,1(X)

In this section, we describe the properties of a mapping f : X → Y that has an upper gradient
in the Lorentz space L Q,1(X). The results here are mostly based on [20] and [13]. For the
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purposes of this paper, the most important property is Lusin’s condition N. The source of this
property, and several others, is the Rado-Reichelderfer condition.

6.1 The Rado-Reichelderfer condition and its consequences

Definition 6.1 Let� ∈ L1
loc(X) be a non-negative function and σ ≥ 1. A mapping f : X →

Y satisfies the Q-Rado-Reichelderfer condition on small scales with weight � and scaling
factor σ ≥ 1 if there is a radius r0 > 0 such that for any ball B of radius less than r0 with
compact closure in X ,

(diam f (B))Q ≤
∫

σ B

� dμ.

Definition 6.2 Let Q > 0. A mapping f : X → Y satisfies Lusin’s condition NQ if every
set E ⊆ X satisfying μ(E) = 0 also satisfies HQ( f (E)) = 0.

Theorem 6.3 Let Q > 0, and assume that (X, d, μ) is doubling. Then each continuous
mapping f : X → Y that satisfies the Q-Rado-Reichelderfer condition on small scales also
satisfies Lusin’s condition NQ.

Proof Iterating the doubling condition, we may find 0 < β < ∞ and C ≥ 1 such that if
B(y, r) ⊆ B(x, R) are nested balls in X , then

μ(B(x, R))

μ(B(y, r))
≤ C

(
R

r

)β
. (6.1)

Let E ⊆ X be a set satisfyingμ(E)= 0. As X is doubling, it is separable, and our standing
assumptions states that X is locally compact. As a result, the set E has a countable open cover
by sets with compact closure. By the countable sub-additivity of HQ , we may assume that
E itself is contained in an open set U with compact closure.

We assume that X satisfies the Q-Rado-Reichelderfer condition with weight� ∈ L1
loc(X)

and scaling factorσ ≥ 1 on balls of radius smaller than r0 > 0. We will show that HQ( f (E)) =
0 by splitting E in two pieces based on the behavior of the weight �. Let α >β, and let G
denote the set of points x ∈ E such that there is a sequence of positive numbers {ri } tending
to 0 satisfying

∫

B(x,σri )

� dμ ≤ (5σ)α
∫

B(x,ri /5)

� dμ. (6.2)

We first show that HQ( f (G)) = 0. Fix ε > 0. As μ is assumed to be Borel outer regular,
we may find an open set Uε ⊆ U containing E that satisfies μ(Uε) < ε. As U has compact
closure, the mapping f is uniformly continuous on Uε . Hence there is a number 0 < δ < ε

such that if B ⊆ Uε is a ball of radius less than δ, then diam f (B) < ε.
For each point x ∈ G, we may find a ball Bx ⊆ Uε of diameter less than min{δ, r0} such

that (6.2) holds. The separability of X and the standard covering lemma [9, Theorem 1.2] now
imply that there is a countable cover {Bn} of G consisting of such balls with the additional
property that the collection {(1/5)Bn} is disjoint. Then { f (Bn)} is a cover of f (G) by sets
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of diameter less than ε. Hence, applying the Rado-Reichelderfer condition and (6.2),

HQ,ε( f (G)) ≤
∑
n∈N

(diam f (Bn))
Q ≤

∑
n∈N

∫

σ Bn

� dμ

≤ (5σ)α
∑
n∈N

∫

(1/5)Bn

� dμ

≤ (5σ)α
∫

Uε

� dμ.

As � is in L1(U ), letting ε tend to zero shows that HQ( f (G)) = 0.
Consider a point x ∈ E\G. This implies that there is a scale rx > 0 such that if 0 < r <

σrx , then ∫

B(x,r)

� dμ ≤ (5σ)−α
∫

B(x,5σr)

� dμ. (6.3)

We may also assume that B(x, σrx ) ⊆ U . Let 0 < r < rx , and find i ∈ N such that

(5σ)iσr < σrx ≤ (5σ)i+1σr. (6.4)

Repeatedly applying (6.3) and using (6.4), we see that

(diam f (B(x, r))Q ≤
∫

B(x,σr)

� dμ ≤ (5σ)−αi
∫

U

� dμ ≤
(

5σr

rx

)α ∫

U

� dμ. (6.5)

By the countable sub-additivity of HQ , it suffices to show that the sets

En = {x ∈ E\G : rx > 1/n}
satisfy HQ( f (En)) = 0 for each n ∈ N. To this end, let n ∈ N and ε > 0. Define δ > 0 as
before. Since E is contained in a compact set, we may find a ball B of radius R > 0 such that
N (En, 1/n) ⊆ B. Let r < min{δ, σ/n}. The doubling condition implies that we may find
a finite maximal r -separated set {x1, . . . , xN } ⊆ En . Then {B(x j , r)}N

j=1 covers En , while

{B(x j , r/2)}N
j=1 is disjoint. By (6.1), for each j = 1, . . . , N ,

1 ≤ C

(
2R

r

)β μ(B(x j , r/2))

μ(B)
.

Hence, by disjointness,

N ≤ C

(
2R

r

)β N∑
j=1

μ(B(x j , r/2))

μ(B)
≤ C

(
2R

r

)β
.

Using this, (6.5), and the assumption that rx > 1/n, we estimate that

HQ,ε( f (En)) ≤
N∑

j=1

(diam f (B(x j , r)))
Q ≤ N (5σnr)α

∫

U

� dμ

≤ C(2R)β (5σn)α rα−β
∫

U

� dμ.
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Letting r tend to zero shows that HQ,ε( f (En)) = 0. Letting ε tend to zero now implies the
desired result. ��

In appropriate circumstances, the Rado-Reichelderfer condition also implies that the
mapping in question has finite Lipschitz constant almost everywhere.

Proposition 6.4 Assume that (X, d, μ) is doubling and Q-regular at small scales. If f : X →
Y satisfies the Q-Rado-Reichelderfer condition on small scales, then Lip f (x)<∞ for
almost every x ∈ X.

Proof Let r0 > 0 be a scale below which both the Q-regularity and Q-Rado-Reichelderfer
conditions hold. Let � ∈ L1

loc(X) and σ ≥ 1 be the weight and scaling factor from the
Q-Rado-Reichelderfer condition, and suppose that x is a Lebesgue point of f . If 0 < r < r0,
then

diam f (B(x, r))

r
≤
⎛
⎜⎝r−Q

∫

B(x,σr)

� dμ

⎞
⎟⎠

1/Q

≤ C

⎛
⎜⎝ −

∫

B(x,σr)

� dμ

⎞
⎟⎠

1/Q

,

where C is a number depending only on σ and the constant from the Q-regularity condi-
tion. The Lebesgue differentiation theorem now implies that Lip f (x)<∞ for almost every
x ∈ X . ��
6.2 The space L Q,1(X) and the Rado-Reichelderfer condition

We now establish the Rado-Reichelderfer condition for mappings with an upper gradient in
an appropriate Lorentz space. In the Euclidean setting, this was done in [13]. In the metric
setting, closely related results have been given in [22] and [21]. Our proof follows the outline
of [13], and hence we occasionally skip a few details. The interested reader can find a full
presentation in [29]. We first consider real-valued mappings.

The following lemma, proven in the Euclidean setting in [18], shows that if a pair ( f, g)
satisfies a 1-Poincaré inequality, then the Riesz potential of g provides a pointwise estimate
on the oscillation of f .

Lemma 6.5 Let Q> 1, and assume that (X, d, μ) is doubling and Ahlfors Q-regular on
small scales. Suppose that f and g are in the space L1

loc(X), and that the pair ( f, g) satisfies
a 1-Poincaré inequality. Then there exists a quantity C ≥ 1, a radius r0 > 0, and a scaling
factor σ > 0, each depending only the constants associated to the assumptions on X and
( f, g), such that

| f (z)− fB | ≤ C
∫

σ B

d(z, y)

μ(B(z, d(z, y)))
g(x) dμ(y). (6.6)

for almost every point z ∈ X and any ball B of radius less than r0 that contains z.

Proof We assume that there is a radius r0 > 0, quantities C, K ≥ 1, and a scaling factor σ ≥ 1
such that if any ball B = B(x, r) in X ,

−
∫

B

| f − fB | dμ ≤ C(diam B)−
∫

σ B

g dμ, (6.7)
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and if 0 < r < r0, then

r Q

K
≤ μ(B) ≤ Kr Q . (6.8)

In this proof only, we let c ≥ 1 denote a quantity, possibly varying at each instance, that
depends only on Q, C, K , and σ .

By Lebesgue’s differentiation theorem [9, Theorem 1.8], almost every point of X is a
Lebesgue point. Let z ∈ X be such a point, and let B = B(x, r) be a ball containing z such
that r < r0/(4σ). For integers k ≥ −1, define Bk = B(z, 2−kr). Since Bk+1 ⊆ Bk for
k ≥ −1, and B ⊆ B−1, the inequalities (6.7) and (6.8) imply that

| f (z)− fB | ≤
( ∞∑

k=−1

| fBk − fBk+1 |
)

+ | fB−1 − fB |

≤ c
∞∑

k=−1

2−kr −
∫

σ Bk

g dμ

≤ c
∞∑

k=−1

∫

σ Bk

(2−kr)1−Q g dμ

≤ c
∞∑

k=−1

∞∑
m=0

∫

σ Bk+m\σ Bk+m+1

(2−kr)1−Q g dμ.

For integers k ≥ −1 and m ≥ 0, a point y ∈ σ Bk+m satisfies
(

d(z, y)

σ2−m

)1−Q

≥ (2−kr)1−Q .

Hence, changing the order of summation and again using (6.8),

| f (z)− fB | ≤ c
∞∑

k=−1

∞∑
m=0

2(1−Q)m
∫

σ Bk+m\σ Bk+m+1

d(z, y)1−Q g dμ(y)

≤ c
∞∑

m=0

2(1−Q)m
∫

σ Bm−1

d(z, y)1−Q g dμ(y)

≤ c
∞∑

m=0

2(1−Q)m
∫

σ B−1

d(z, y)1−Q g dμ(y)

≤ c
∫

σ B−1

d(z, y)

μ(B(z, d(z, y)))
dμ(y)

≤ c
∫

B(x,(2σ+1)r)

d(z, y)

μ(B(z, d(z, y)))
dμ(y),

as desired. ��
Theorem 6.6 Let Q ≥ 1, and assume that X is complete, doubling, Q-regular on small
scales, and supports a Q-Poincaré inequality. Let f : X → R be a locally integrable function
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with an upper gradient g in the Lorentz space L Q,1(X). Then there is a continuous represen-
tative of f that satisfies the Rado-Reichelderfer condition on small scales with weight and
scaling factor depending only on g and the constants associated to the assumptions on X.

Proof Throughout this proof, we refer to the quantities associated with the Poincaré inequal-
ity and the doubling and Q-regularity conditions as the data. We also denote by C a quantity,
possibly varying at each instance, that depends only on the data. We first consider the case
that Q > 1.

By Theorem 2.1, there is ε > 0, depending only on the data, such that X supports a
(Q − ε)-Poincaré inequality. Define a perturbed maximal function of g by

g̃(x) =
⎛
⎜⎝sup

r>0
−
∫

B(x,r)

gQ−ε dμ

⎞
⎟⎠

1/(Q−ε)

. (6.9)

By [7, Theorem 3.2], there is a constant c ≥ 1 depending only on the data such that the
preturbed maximal function

g̃(x) = c

⎛
⎜⎝sup

r>0
−
∫

B(x,r)

gQ−ε dμ

⎞
⎟⎠

1/(Q−ε)

is a Hajłasz upper gradient of f , meaning that for almost every x, y ∈ X ,

| f (x)− f (y)| ≤ d(x, y)(g̃(x)+ g̃(y)).

The standard Hardy-Littlewood maximal function theorem [9, Theorem 2.2] and the
Marcinkiewicz Interpolation Theorem [2, Theorem IV.4.13] imply that

||̃g||L Q,1 ≤ C ||g||L Q,1 < ∞.

It is shown in [6, Sect. 9] that the pair ( f, g̃) satisfies a 1-Poincaré inequality with constant
and scaling factor that depend only on the data. Let N be a set of measure zero such that
each point of X\N is a point of validity of the conclusions of Lemma 6.5. Hence, there is a
radius r0 > 0 and a scaling factor σ > 0, each depending only on the data, such that if B is
a fixed ball of radius less than r0, then we may find a point z ∈ B\N such that

diam f (B\N ) ≤ 3| f (z)− fB | ≤ C
∫

σ B

d(z, x)

μ(B(z, d(z, x)))
g̃(x) dμ(x). (6.10)

A straight-forward generalization of [13, Theorem 3.1] to our setting shows, after possibly
shrinking r0 by a factor depending only on the data, that for any gauge φ,

⎛
⎝
∫

σ B

d(z, x)

μ(B(z, d(z, x)))
g̃(x) dμ(x)

⎞
⎠

Q

≤ C

⎛
⎝

∞∫

0

φ
1
Q (t) dt

⎞
⎠

Q−1∫

σ B

F Q,1
φ (g̃(x)) dx, (6.11)

whenever the right-hand side is finite (see Subsect. 3.2 for the relevant definitions).
Theorem 3.6 states that there is a gauge φ ∈ AQ,1 such that φ(|̃g(x)|) > 0 for almost

every x ∈ X with |̃g(x)| > 0, and such that F Q,1
φ ◦ g̃ ∈ L1(X). The gauge φ depends only

on the data and g̃.
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Define � : X → R by

�(x) = C

⎛
⎝

∞∫

0

φ
1
Q (t) dt

⎞
⎠

Q−1

F Q,1
φ (g(x)).

Then � ∈ L1(X), and it depends only on the data and g̃. Combining (6.10) and (6.11), we
see that

(diam f (B\N ))Q ≤ C
∫

σ B

� dμ.

Since � does not depend on B, it follows that f is uniformly continuous on X\N . Since N
has measure zero, it has empty interior, and hence we may extend f |X\N to a continuous
function f̃ on X . By the continuity of f̃ ,

(diam f̃ (B))Q = (diam f̃ (B\N )
)Q = (diam f (B\N ))Q ≤ C

∫

σ B

� dμ,

as desired.
Now suppose that Q = 1. For any ball B = B(x, r) in X , we may find points y and z in

B such that

diam f (B) ≤ 2| f (x)− f (y)|.
Since X is doubling and supports a 1-Poincaré inequality, it is quasiconvex with constant
depending only on the data. (see e.g., [10] or [16]). Hence there is a path γ : [0, 1] → X such
that γ (0) = x, γ (1) = y, and length γ ≤ Cd(x, y). Hence γ ([0, 1]) ⊆ C B. The definition
of an upper gradient implies that

diam f (B) ≤ 2
∫

γ

g ds.

We claim that ∫

γ

g ds ≤ C
∫

C B

g dμ.

Since L1,1(X) = L1(X), it suffices to show the claim. As in [9, Exercise 8.11], we may
assume without loss of generality thatμ is the one-dimensional Hausdorff measure H1. Prop-
osition 15.1 of [23] implies that we may also assume that γ is injective and parameterized
so that ∫

γ

g ds = C
∫

γ ([0,1])
g dH1.

The claim follows. ��
A similar result for metric space valued mappings now follows easily.

Corollary 6.7 Let Q ≥ 1, and assume that X is complete, doubling, Q-regular on small
scales, and supports a Q-Poincaré inequality. Let Y be a separable metric space, and let
f : X → Y be a continuous mapping with an upper gradient g in the Lorentz space L Q,1(X).
Then f satisfies the Rado-Reichelderfer condition on small scales with a weight� depending
only on g and the constants associated to the assumptions on X.
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Proof Recall that as Y is separable, there is an isometric embedding ι : Y ↪→ �∞. For each
k ∈ N, let Tk : �∞ → R denote the 1-Lipschitz projection defined by

Tk({an}n∈N) = ak .

Then g is again an upper gradient of the continuous real-valued mapping Tk ◦ι◦ f ∈ L1
loc(X).

Hence, by Theorem 6.6, each mapping Tk ◦ι◦ f satisfies the Q-Rado-Reichelderfer condition
with the same weight� and scaling factor σ , which depend only on the data and on g. Thus,
if B is a sufficiently small ball, the definition of the metric on �∞ implies that

(diam f (B))Q = (diam ι ◦ f (B))Q =
(

sup
x,y∈B

sup
k∈N

|Tk ◦ ι ◦ f (x)− Tk ◦ ι ◦ f (y)|
)Q

= sup
k∈N

(
sup

x,y∈B
|Tk ◦ ι ◦ f (x)− Tk ◦ ι ◦ f (y)|

)Q

≤
∫

σ B

� dμ,

yielding the desired result. ��
Theorem 1.4 states that certain mappings do not increase dimension. One step in the proof

is to show that the mappings under consideration satisfy Lusin’s condition N, implying that
no set of measure zero can be mapped onto a set of higher dimension. We also need to show
that large sets cannot be mapped onto a set of higher dimension. This is true even for Sobolev
mappings, as the following well-known statement shows. See also [26, Theorem 1].

Lemma 6.8 Assume that X is doubling and supports a Q-Poincaré inequality, Q ≥ 1.
Suppose that f ∈ L1

loc(X; Y ) is continuous and has an upper gradient in L Q(X). Then there
are subsets E1 ⊇ E2 ⊇ . . . such that μ(Ei ) < 1/ i and f |Ei is Lipschitz for each i ∈ N. In
particular, the set E =⋂i∈N

Ei has measure zero, and the Hausdorff dimension of f (X\E)
is no greater than the Hausdorff dimension of X.

Proof Let ι : Y → �∞(Y ) be an isometric embedding. By Proposition 3.9, the mapping ι◦ f
is locally Bochner integrable, and it has an upper gradient g in L Q(X). By [11, Theorem
4.3], the mapping ι ◦ f satisfies a Q-Poincaré inequality. Applying [7, Theorem 3.2] to each
component of ι ◦ f now shows that f satisfies a pointwise inequality of the form

dY ( f (x), f (y)) = ||ι ◦ f (x)− ι ◦ f (y)||�∞(Y ) � dX (x, y)((M(gQ)(x))1/Q

+(M(gQ)(y))1/Q),

where M denotes the Hardy-Littlewood maximal function. Since M maps L1(X) to
weak-L1(X), the result follows. ��
Proof of Theorem 1.4 We assume that X is complete, doubling, Q-regular on small scales,
and supports a Q-Poincaré inequality, and that f ∈ L1

loc(X; Y ) is a continuous surjection
with an upper gradient in the space L Q,1(X). Since X is doubling, it is separable, and hence
the Q-regularity on small scales and the countable sub-additivity of HQ imply that X has
Hausdorff dimension Q. By Corollary 3.5, the space L Q,1(X) is contained in L Q(X). Thus,
by Lemma 6.8 there is a set E such that the Hausdorff dimension of f (X\E) is no greater
than Q, and μ(E) = 0. On the other hand, Theorem 6.3 and Corollary 6.7 imply that f
satisfies Lusin’s condition NQ , and so HQ( f (E)) = 0 as well. Since f is a surjection, we
see that Y has Hausdorff dimension no greater that Q. ��
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Remark 6.9 Theorem 1.5 shows that the conclusion of Theorem 1.4 does not hold for the
Cantor diamond space Xλ, introduced in Subsect. 4.2. However, recent work of Marola
and Ziemer allows us to make the following statement [19, Corollary 6.2]. Let m ≥ 3. If
f : Xλ → R

m is a continuous mapping with an upper gradient in the space L p(Xλ) for some
p > pλ, then f satisfies Lusin’s condition N2. Thus, by Lemma 6.8, we may conclude that
f is not a surjection.

Finally, we prove Theorem 4.5, giving conditions under which a point does not have zero
Lorentz (Q, 1)-capacity. We employ a Sobolev-Lorentz embedding theorem that is valid in
great generality [21, Theorem 2.1].

Proof of Theorem 4.5 The case that Q = 1 is handled by an argument similar to the one given
in the same case of Theorem 6.6, and we leave it to the reader. Hence we let Q > 1, and assume
that (X, d, μ) is complete, doubling, Q-regular at small scales, and supports a Q-Poincaré
inequality. It follows that X is proper and quasiconvex, and hence bi-Lipschitz equivalent to
a geodesic space [10], [16]. As the conclusion of the theorem is invariant under bi-Lipschitz
mappings, we may assume that X is geodesic. Hence the proof of [21, Proposition 1.4] shows
that the hypotheses of [21, Theorem 2.1] are met under our assumptions. As before, we let C
be a number, possibly varying at each instance, that depends only on the constants associated
to our assumptions.

Towards a contradiction, suppose that a point a ∈ X has zero continuous (Q, 1)-Lorentz
capacity. Let r0 be the scale below which the Q-regularity condition holds, and let 0 < r < r0

and ε > 0. By assumption, we may find a continuous map η : X → [0, 1] that is compactly
supported in B(a, r), takes the value 1 on a neighborhood of a, and has an upper gradient g
satisfying ||g||L Q,1 < ε. As in the proof of Theorem 6.6, there is a Hajłasz upper gradient g̃
of η such that ||̃g||L Q,1 < Cε. The Sobolev-Lorentz Embedding Theorem [21, Theorem 2.1]
now shows that for almost every x, y ∈ B(a, r),

|η(x)− η(y)| ≤ C ||̃g||L Q,1 ≤ Cε.

Choosing ε < 1/C now yields a contradiction. ��
Remark 6.10 Given Theorems 4.5 and 1.4, it is natural to ask what can be said about a map-
ping f : X → Y with an upper gradient in some Banach function space LG(X), given that
each point of X does not have zero continuous G-capacity. Is there a bound on how much
such mappings can increase dimension, in terms of G?

Remark 6.11 If (X, d) is a separable space, all of the results of this section, including
Theorems 1.4 and 4.5, make conclusions only involving small scales. However, as is standard
in the literature, we often assume the doubling condition and a Poincaré inequality, which
control behavior at large scales as well. This inconsistency can be resolved by assuming
separability and small scale versions of the doubling condition and the Poincaré inequality.
However, one must verify that the tools used in the proofs (such as the Lebesgue differ-
entiation theorem, the existence of a homogeneous measure on a doubling space, and the
self-improvement of the Poincaré inequality) have appropriate small scale analogues. This
is very likely to be true, though detailed proofs are beyond the scope of this paper.
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