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Abstract In this article we propose a class of so-called two-grid hp-version discontinuous
Galerkin finite element methods for the numerical solution of a second-order quasilinear
elliptic boundary value problem of monotone type. The key idea in this setting is to first
discretise the underlying nonlinear problem on a coarse finite element space V (TH ,P ). The
resulting ‘coarse’ numerical solution is then exploited to provide the necessary data needed
to linearise the underlying discretisation on the finer space V (Th,p); thereby, only a linear
system of equations is solved on the richer space V (Th,p). In this article both the a pri-
ori and a posteriori error analysis of the two-grid hp-version discontinuous Galerkin finite
element method is developed. Moreover, we propose and implement an hp-adaptive two-
grid algorithm, which is capable of designing both the coarse and fine finite element spaces
V (TH ,P ) and V (Th,p), respectively, in an automatic fashion. Numerical experiments are
presented for both two- and three-dimensional problems; in each case, we demonstrate that
the CPU time required to compute the numerical solution to a given accuracy is typically
less when the two-grid approach is exploited, when compared to the standard discontinuous
Galerkin method.
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1 Introduction

Over the past few decades, there has been a considerable renewed interest in discontinuous
Galerkin finite element methods (DGFEMs) for the numerical solution of a wide range of
partial differential equations; for an extensive survey of this area of research, we refer to [7].
This article is devoted to the a priori and a posteriori error analysis of the so-called two-grid
variant of the hp-version interior penalty (IP) DGFEM for the numerical approximation of
strongly monotone second-order quasilinear elliptic partial differential equations. We point
out that two-grid methods were originally introduced by Xu [30–32] in the context of contin-
uous Galerkin finite element methods; here, non-symmetric linear and nonlinear problems
have been treated. For related work, we refer to the articles [3, 5, 6, 11, 19, 26, 29] and the
references cited therein. In particular, we highlight the article by Bi & Ginting [6] which
represents the first attempt to apply two-grid techniques in the DGFEM setting to a class
of scalar second-order quasilinear elliptic PDEs, where the nonlinear diffusion coefficient μ

depends on the analytical solution u, cf. below for further discussion.
The construction of a two-grid method to compute the numerical approximation of a

nonlinear partial differential equation may be summarised as follows. Let X and Y be two
Hilbert spaces. Further, we write N (·; ·, ·) : X × X × Y → R to denote a nonlinear form,
with the convention that N (·; ·, ·) is linear with respect to the arguments to the right of the
semi-colon. We suppose that u is the unique solution to the variational problem: find u in X

such that

N (u;u,v) = 0 ∀v ∈ Y. (1)

Problem (1) can be thought of as the weak formulation of a nonlinear partial differen-
tial equation on X whose unique solution is u ∈ X. In practice (1) cannot be solved in
closed form but needs to be approximated numerically. For the purposes of this paper, we
shall consider general hp-version finite element approximations to (1). In order to construct
a Galerkin approximation to this problem, we consider a sequence of finite-dimensional
spaces {Xh,p}, parameterised by the positive discretisation parameters h and p. Simulta-
neously, consider a sequence of finite-dimensional spaces {Yh,p}. For the purposes of this
paper, Xh,p and Yh,p can be thought of as finite element spaces consisting of piecewise
polynomial functions of degree p on a partition Th, of granularity h, of the computational
domain. The (standard) Galerkin approximation uh,p of u is then sought in Xh,p as the so-
lution of the finite-dimensional problem

Nh,p(uh,p;uh,p, vh,p) = 0 ∀vh,p ∈ Yh,p, (2)

where Nh,p(·; ·, ·) : Xh,p ×Xh,p ×Yh,p → R. The computation of uh,p defined in (2) involves
the numerical solution of a potentially very large number of coupled nonlinear equations,
which can be extremely computationally expensive. The key idea of the two-grid approach
is as follows: given ‘coarser’ finite element spaces XH,P ⊆ Xh,p and YH,P ⊆ Yh,p , first solve
the nonlinear problem: find uH,P ∈ XH,P such that

NH,P (uH,P ;uH,P , vH,P ) = 0 ∀vH,P ∈ YH,P . (3)

Finally, using uH,P as appropriate data, compute the two-grid approximation of (1) by solv-
ing the problem: find u2G ∈ Xh,p such that

Nh,p(uH,P ;u2G,vh,p) = 0 ∀vh,p ∈ Yh,p. (4)

We emphasise that this latter problem is linear.
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In this article we analyse the hp-version of the two-grid IP DGFEM, see [6], for the
numerical solution of the following quasilinear elliptic boundary-value problem:

−∇ · (μ(x, |∇u|)∇u) = f in Ω, (5)

u = 0 on Γ, (6)

where Ω is a bounded polygonal domain in R
2, with boundary Γ and f ∈ L2(Ω). Here, we

assume that the nonlinearity μ satisfies the following conditions:

(A1) μ ∈ C0(Ω̄ × [0,∞)) and
(A2) there exists positive constants mμ and Mμ such that the following monotonicity prop-

erty is satisfied:

mμ(t − s) ≤ μ(x, t)t − μ(x, s)s ≤ Mμ(t − s), t ≥ s ≥ 0,x ∈ Ω̄. (7)

From [18, Lemma 2.1] we note that, as μ satisfies (7), there exists constants C1 and C2,
C1 ≥ C2 > 0, such that for all vectors v,w ∈ R

2 and all x ∈ Ω̄ ,

|μ(x, |v|)v − μ(x, |w|)w| ≤ C1|v − w|, (8)

C2|v − w|2 ≤ (μ(x, |v|)v − μ(x, |w|)w) · (v − w). (9)

By setting s = 0 in (7) we deduce the following bound on μ:

mμ ≤ μ(x, t) ≤ Mμ, t ≥ 0,x ∈ Ω̄. (10)

For ease of notation we shall suppress the dependence of μ on x and write μ(t) instead of
μ(x, t). We note that a number of physical models which arise in continuum mechanics,
such as the Carreau law μ(t) = k∞ + (k0 − k∞)(1 + λt2)(θ−2)/2, with k0 > k∞ > 0 and
θ ∈ (1,2], fulfil the above assumptions.

In contrast to the work undertaken in [6], where μ = μ(u) (semilinear problem), in this
article we consider the quasilinear case when the nonlinear diffusion term may depend on
|∇u|. In addition, in the current paper the DGFEM will be analysed within the more general
setting of hp-version methods. The analysis in [6] relies on a suitable duality argument in
order to optimally bound the resulting L2-terms; it is shown that for convergence, the coarse
and fine mesh sizes H and h, respectively, should satisfy H = O(

√
h), when the polyno-

mial degree is (uniformly) set equal to one. The convergence analysis undertaken in this
article for the two-grid IP DGFEM applied to (5)–(6) indicates that the mesh and polyno-
mial distribution of both the fine and coarse finite element spaces should grow at roughly the
same rate; numerical experiments demonstrating the optimality of these theoretical bounds
are given in [10], cf. Remark 3.2 below. One of the key issues concerning the implementa-
tion of two-grid methods is the automatic construction of the fine and coarse finite element
spaces. With this in mind, we derive a computable a posteriori error bound which includes
both fine and coarse mesh error indicators; these are subsequently exploited within an hp-
refinement algorithm which is capable of automatically designing the coarse and fine finite
element spaces in an efficient manner.

The outline of the rest of this article is as follows. Section 2 introduces the two-grid hp-
version of the IP DGFEM for the numerical approximation of (5)–(6). In Sect. 3 we derive
both a priori and a posteriori bounds on the error, measured in terms of the corresponding
(DGFEM) energy norm, for the proposed numerical scheme. Section 4 is devoted to the
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design of an hp-adaptive algorithm which can construct the coarse and fine hp-finite ele-
ment spaces in an automatic fashion. The performance of the proposed adaptive strategy
is demonstrated in Sect. 5; we refer to [10] for numerical experiments which validate the
sharpness of the a priori error bounds. Finally, in Sect. 6 we summarise the work presented
in this paper and draw some conclusions.

2 Two-Grid hp-Version IP DGFEM

In this section we discuss the numerical approximation of the problem (5)–(6) based on
employing both the hp-version of the (standard) IP DGFEM, together with its so-called two-
grid variant. To this end, in the following section we first introduce the necessary notation.

2.1 Meshes, Spaces, and Trace Operators

We consider shape-regular meshes Th that partition Ω ⊂ R
2 into open disjoint triangles

and/or parallelograms κ , such that Ω = ⋃
κ∈Th

κ . By hκ we denote the element diameter
of κ ∈ Th, h = maxκ∈Th

hκ , and nκ signifies the unit outward normal vector to κ . We allow
the meshes Th to be 1-irregular, i.e., each edge of any one element κ ∈ Th contains at most
one hanging node (which, for simplicity, we assume to be the midpoint of the corresponding
edge). Here, we suppose that Th is regularly reducible (cf. [22, Sect. 7.1]), i.e., there exists
a shape-regular conforming (regular) mesh Th̃ (consisting of triangles and parallelograms)
such that the closure of each element in Th is a union of closures of elements of Th̃, and
that there exists a constant C > 0, independent of the element sizes, such that for any two
elements κ ∈ Th and κ̃ ∈ Th̃ with κ̃ ⊆ κ we have hκ/h̃κ̃ ≤ C. Note that these assumptions
imply that the family {Th}h>0 is of bounded local variation, i.e., there exists a constant
ρ1 ≥ 1, independent of the element sizes, such that

ρ−1
1 ≤ hκ/hκ ′ ≤ ρ1, (11)

for any pair of elements κ, κ ′ ∈ Th which share a common edge e = ∂κ ∩ ∂κ ′.
To each κ ∈ Th we assign a polynomial degree pκ ≥ 1 (local approximation order) and

define the degree vector p = {pκ : κ ∈ Th}. We suppose that p is also of bounded local
variation, i.e., there exists a constant ρ2 ≥ 1, independent of the element sizes and p, such
that, for any pair of neighbouring elements κ, κ ′ ∈ Th,

ρ−1
2 ≤ pκ/pκ ′ ≤ ρ2. (12)

With this notation, we introduce the finite element space

V (Th,p) = {v ∈ L2(Ω) : v|κ ∈ Spκ (κ) ∀κ ∈ Th},

where

Spκ (κ) =
{

Ppκ (κ) if κ is a triangle,

Qpκ (κ) if κ is a parallelogram.

Here, given p ≥ 0, Pp(κ) denotes the space of polynomials of degree at most p on κ , while
Qp(κ) is the space of polynomials of degree at most p in each variable on κ .
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We shall now define some suitable edge operators that are required for the definition of
the IP DGFEM. To this end, associated with the mesh Th, we denote by E I

h the set of all
interior edges of the partition Th of Ω , and by E B

h the set of all boundary edges of Th. In
addition, Eh = E B

h ∪ E I
h denotes the set of all edges in the mesh Th.

Let v and q be scalar- and vector-valued functions, respectively, which are smooth inside
each element κ ∈ Th. Given two adjacent elements, κ+, κ− ∈ Th which share a common edge
e ∈ E I

h , i.e., e = ∂κ+ ∩ ∂κ−, we write v± and q± to denote the traces of the functions v and
q , respectively, on the edge e, taken from the interior of κ±, respectively. With this notation,
the averages of v and q at x ∈ e are given by

{{v}} = 1

2
(v+ + v−), {{q}} = 1

2
(q+ + q−),

respectively. Similarly, the jumps of v and q at x ∈ e are given by

[[v]] = v+nκ+ + v−nκ− , [[q]] = q+ · nκ+ + q− · nκ− ,

respectively, where nκ± denotes the unit outward normal vector on ∂κ±, respectively. On a
boundary edge e ∈ E B

h , we set {{v}} = v, {{q}} = q , [[v]] = vn and [[q]] = q ·n, with n denoting
the unit outward normal vector on the boundary Γ .

For an edge e ∈ Eh, we define he to be the length of the edge; moreover, the edge poly-
nomial degree pe is defined by

pe =
{

max(pκ,pκ ′), if e = ∂κ ∩ ∂κ ′ ∈ E I
h ,

pκ, if e = ∂κ ∩ Γ ∈ E B
h .

(13)

Finally, we recall the following inverse trace inequalities.

Lemma 2.1 We note that, for an edge e of an element κ ∈ Th, the following inverse trace
inequalities hold: there exists a positive constant Ctrace, independent of h and p, such that

‖w‖2
L2(e) ≤ Ctrace

p2
κ

he

‖w‖2
L2(κ) and ‖∇w‖2

L2(e) ≤ Ctrace
p2

κ

he

‖∇w‖2
L2(κ)

for all w ∈ V (Th,p).

Proof See [24, Theorem 4.76] for details. �

2.2 Interior Penalty DGFEM Discretisation

In this section we first introduce the so-called standard IP DGFEM for the numerical ap-
proximation of the problem (5)–(6). To this end, given a (fine) mesh Th partition of Ω , to-
gether with a corresponding polynomial degree vector p, the standard IP DGFEM is defined
as follows: find uh,p ∈ V (Th,p) such that

Ah,p(uh,p;uh,p, vh,p) = Fh,p(vh,p) (14)

for all vh,p ∈ V (Th,p), where
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Ah,p(ψ;u,v) =
∑

κ∈Th

∫

κ

μ(|∇ψ |)∇u · ∇v dx +
∑

e∈E
h

∫

e

σh,p[[u]] · [[v]]ds

−
∑

e∈E
h

∫

e

{{μ(|∇hψ |)∇hu}} · [[v]]ds + θ
∑

e∈E
h

∫

e

{{μ(h−1
e |[[ψ]]|)∇hv}} · [[u]]ds,

Fh,p(v) =
∑

κ∈Th

∫

κ

f v dx,

and ∇h is used to denote the broken gradient operator, defined elementwise. Here, θ ∈
[−1,1] and the interior penalty parameter σh,p is defined as follows:

σh,p = γ
p2

e

he

,

where γ > 0 is a constant. We note that, due to the condition on the nonlinearity (7), the
interior penalty stabilisation may be selected independent of μ(·), provided the penalty pa-
rameter is chosen sufficiently large (independent of local element sizes and polynomial de-
grees) such that it is greater than a constant γmin, dependent on mμ and Mμ, cf. Lemma 2.2
and Remark 2.3 below; see, also, [12, 13], for example.

Remark 2.1 The IP DGFEM defined in (14) is identical to the parameterised DGFEMs
considered in [13].

Remark 2.2 In the case of an inhomogeneous boundary condition u = g on Γ , the right-
hand side linear functional Fh,p(·) must be replaced by

Fh,p(v) =
∑

κ∈Th

∫

κ

f v dx +
∑

e∈E B
h

∫

e

σh,pgv ds,

and the fourth term in the nonlinear form Ah,p is replaced by

θ
∑

e∈E I
h

∫

e

{{μ(h−1
e |[[ψ]]|)∇hv}} · [[u]]ds + θ

∑

e∈E B
h

∫

e

μ(h−1
e |[[ψ]]|)∇hv · n(u − g)ds,

cf. [13]

Introducing the energy norm

‖v‖2
h,p = ‖∇hv‖2

L2(Ω) +
∑

e∈E
h

∫

e

σh,p|[[v]]|2 ds,

on the class of spaces H 1(Ω) + V (Th,p), the general form of the nonlinear form
Ah,p(ψ; ·, ·) is coercive, in the sense that the following lemma holds for sufficiently large γ .

Lemma 2.2 There exists a positive constant γmin, such that for any γ ≥ γmin, there exists a
coercivity constant Cc = Cc(mμ,Mμ,Ctrace, ρ1, ρ2) > 0, independent of h and p, such that

Ah,p(ψ;v, v) ≥ Cc ‖v‖2
h,p (15)

for all ψ,v ∈ V (Th,p).
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Proof By application of (10), Lemma 2.1 and the arithmetic-geometric mean inequality,
2ab ≤ εa2 + ε−1b2 with ε = δσ−1

h,p and δ > 1, we have that

Ah,p(ψ;v, v) =
∑

κ∈Th

∫

κ

μ(|∇ψ |)|∇v|2 dx +
∑

e∈E
h

∫

e

σh,p|[[v]]|2 ds

−
∑

e∈E
h

∫

e

{{μ(|∇ψ |)∇v}} · [[v]]ds + θ
∑

e∈E
h

∫

e

{{μ(h−1
e |[[ψ]]|)∇v}}[[v]]ds

≥
∑

κ∈Th

∫

κ

μ(|∇ψ |)|∇v|2 dx +
∑

e∈E
h

∫

e

σh,p|[[v]]|2 ds

−
∑

e∈E
h

∫

e

ε

2

(|{{μ(|∇ψ |)∇v}}|2 + θ2|{{μ(h−1
e |[[ψ]]|)∇v}}|2) ds

−
∑

e∈E
h

∫

e

ε−1|[[v]]|2 ds

≥mμ

∑

κ∈Th

‖∇v‖2
L2(κ) + (1 − δ−1)γ

∑

e∈E
h

∫

e

p2
eh

−1
e |[[v]]|2 ds

− M2
μCρδγ

−1
∑

κ∈Th

p−2
κ he ‖∇v‖2

L2(∂κ)

≥ min(mμ − CtraceM
2
μCρδγ

−1, (1 − δ−1)γ )‖v‖2
h,p ,

where Cρ is a positive constant dependent on ρ1 and ρ2 from (11) and (12), respectively.
Thereby, the statement of the lemma immediately follows, provided γ > CtraceM

2
μCρδm

−1
μ ,

with δ sufficiently large. �

Remark 2.3 From the proof of Lemma 2.2, we observe that the requirement on the pa-
rameter γ appearing in the definition of the interior penalty parameter σh,p is that γ >

CtraceM
2
μCρδm

−1
μ , where Cρ is a positive constant dependent on ρ1 and ρ2 from (11) and

(12), respectively. Thereby, a reduction in the magnitude of the constant mμ appearing in
the lower bound (7) leads to a corresponding increase in the minimal value of γ needed to
guarantee coercivity.

2.3 Two-Grid Interior Penalty Discretisation

In this section, we now proceed to introduce the so-called two-grid IP DGFEM approxi-
mation to (5)–(6). To this end, we consider two partitions Th and TH of the computational
domain Ω , of granularity h and H , respectively. Here, we refer to Th and TH as the fine
and coarse mesh partitions of Ω , respectively. In particular, we assume that Th and TH are
nested in the sense that, for any κh ∈ Th there exists an element κH ∈ TH such that κ̄h ⊆ κ̄H .
Moreover, to each mesh Th and TH , we associate a corresponding polynomial degree dis-
tribution p = {pκ : κ ∈ Th} and P = {Pκ : κ ∈ TH }, respectively, with the property that,
given κh ∈ Th and the associated κH ∈ TH , such that κ̄h ⊆ κ̄H , the corresponding polynomial
degrees satisfy the following condition:

pκh
≥ PκH

.
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Given Th, p and TH , P , we may construct the corresponding fine and coarse hp-finite el-
ement spaces V (Th,p) and V (TH ,P ), respectively, which satisfy the following condition:
V (TH ,P ) ⊆ V (Th,p).

With this notation, we now introduce the hp-version of the two-grid algorithm [6, Algo-
rithm 1] for the IP DGFEM discretisation of (5)–(6):

1. (Nonlinear solve) Compute the coarse grid approximation uH,P ∈ V (TH ,P ) such that

AH,P (uH,P ;uH,P , vH,P ) = FH,P (vH,P ) (16)

for all vH,P ∈ V (TH ,P ).
2. (Linear solve) Determine the fine grid solution u2G ∈ V (Th,p) such that

Ah,p(uH,P ;u2G,vh,p) = Fh,p(vh,p) (17)

for all vh,p ∈ V (Th,p).

Existence and uniqueness of the solution uH,P for this formulation is demonstrated in
[12]. The formulation (17) is a interior penalty discretisation of a linear elliptic PDE, where
the coefficient μ(|∇huH,P |) is a known function; thereby, the existence and uniqueness of
the solution u2G to this problem follows immediately, cf., for example, [25, 28].

3 Error Analysis

In this section, we develop the a priori and a posteriori error analysis of the two-grid IP
DGFEM defined by (16)–(17).

3.1 A Priori Error Bound

We first recall the following a priori error bound for the standard IP DGFEM approximation
(14) of the quasilinear problem (5)–(6).

Lemma 3.1 Assuming that u ∈ C1(Ω) and u|κ ∈ Hkκ (κ), kκ ≥ 2, for κ ∈ Th then the solu-
tion uh,p ∈ V (Th,p) of (14) satisfies the error bound

∥
∥u − uh,p

∥
∥2

h,p
≤ C3

∑

κ∈Th

h2sκ−2
κ

p
2kκ−3
κ

‖u‖2
Hkκ (κ)

(18)

with 1 ≤ sk ≤ min{pκ +1, kκ}, pκ ≥ 1, for κ ∈ Th, and C3 is a positive constant independent
of u, h and p, but depends on constants mμ, Mμ, C1 and C2 from the monotonicity properties
of μ(·).

Proof See [13]. �

Remark 3.1 We note that this error bound also clearly holds for the two-grid coarse solution
uH,P defined in (16) with the energy norm ‖·‖h,p replaced by ‖·‖H,P , and similarly the mesh
size and polynomial degrees hκ and pκ replaced by Hκ and Pκ , respectively.

Employing Lemma 3.1, we now deduce the following error bound for the two-grid ap-
proximation defined in (16)–(17).
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Theorem 3.1 Assuming that u ∈ C1(Ω), u|κ ∈ Hkκ (κ), kκ ≥ 2, for κ ∈ Th and u|κ ∈ HKκ (κ),
Kκ ≥ 2, for κ ∈ TH , then the solution u2G ∈ V (Th,p) of (17) satisfies the error bounds

∥
∥uh,p − u2G

∥
∥2

h,p
≤ C4

∑

κ∈TH

H 2Sκ−2
κ

P
2Kκ−3
κ

‖u‖2
HKκ (κ)

, (19)

‖u − u2G‖2
h,p ≤ C3

∑

κ∈Th

h2sκ−2
κ

p
2kκ−3
κ

‖u‖2
Hkκ (κ)

+ C4

∑

κ∈TH

H 2Sκ−2
κ

P
2Kκ−3
κ

‖u‖2
HKκ (κ)

, (20)

with 1 ≤ sk ≤ min{pκ + 1, kκ}, pκ ≥ 1, for κ ∈ Th, 1 ≤ Sk ≤ min{Pκ + 1,Kκ}, Pκ ≥ 1, for
κ ∈ TH , and C3 and C4 are positive constants independent of u, h,H,p and P , but depends
on constants mμ, Mμ, C1 and C2 from the monotonicity properties of μ(·).

Proof By application of the triangle inequality, we get

‖u − u2G‖h,p ≤ ∥
∥u − uh,p

∥
∥

h,p
+ ∥

∥u2G − uh,p

∥
∥

h,p
. (21)

We note that the first term on the right-hand side of (21) may be bounded by employing
Lemma 3.1. Let us now deal with the second term; to this end, from (14) and (17) we have
that

Ah,p(uH,P ;u2G,vh,p) = Ah,p(uh,p;uh,p, vh,p)

for all vh,p in V (Th,p). Let φ = u2G − uh,p ∈ V (Th,p); then from Lemma 2.2, we get

Cc

∥
∥u2G − uh,p

∥
∥2

h,p
≤ Ah,p(uH,P ;u2G − uh,p,φ)

= Ah,p(uH,P ;u2G,φ) − Ah,p(uH,P ;uh,p,φ)

= Ah,p(uh,p;uh,p,φ) − Ah,p(uH,P ;uh,p,φ)

≡ T1 + T2 + T3, (22)

where

T1 =
∑

κ∈Th

∫

κ

(μ(|∇uh,p|) − μ(|∇uH,P |))∇uh,p · ∇φ dx,

T2 = −
∑

e∈E
h

∫

e

{{(μ(|∇uh,p|) − μ(|∇uH,P |))∇uh,p}} · [[φ]]ds,

T3 = θ
∑

e∈E
h

∫

e

{{(μ(h−1
e |[[uh,p]]|) − μ(h−1

e |[[uH,P ]]|))∇φ}} · [[uh,p]]ds.

To bound term T1, we employ the triangle inequality, (8), (10) and Lemma 3.1; thereby, we
deduce that

|T1| ≤
∑

κ∈Th

∫

κ

|μ(|∇uh,p|)∇uh,p − μ(|∇uH,P |)∇uH,P | · |∇φ|dx

+
∑

κ∈Th

∫

κ

|μ(|∇uH,P |)∇ (
uH,P − uh,p

) | · |∇φ|dx
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≤ (
C1 + Mμ

) ∑

κ∈Th

∫

κ

|∇ (
uh,p − uH,P

) | · |∇φ|dx

≤ (
C1+Mμ

)
⎧
⎨

⎩

(
∑

κ∈Th

∥
∥∇(u − uh,p)

∥
∥2

L2(κ)

) 1
2

+
(

∑

κ∈TH

∥
∥∇(u − uH,P )

∥
∥2

L2(κ)

) 1
2

⎫
⎬

⎭
‖∇φ‖L2(κ)

≤ (
C1 + Mμ

)
C3

⎧
⎨

⎩

(
∑

κ∈Th

h2sk−2
κ

p
2kκ−3
κ

‖u‖2
Hkκ (κ)

) 1
2

+
(

∑

κ∈TH

H 2Sk−2
κ

P
2Kκ−3
κ

‖u‖2
HKκ (κ)

) 1
2

⎫
⎬

⎭
‖φ‖h,p .

(23)

Proceeding in an analogous manner for term T2, we get that

|T2| ≤
∑

e∈E
h

∫

e

{{|μ(|∇uh,p|)∇uh,p − μ(|∇uH,P |)∇uH,P |}} · |[[φ]]|ds

+
∑

e∈E
h

∫

e

{{|μ(|∇uH,P |)∇ (
uH,P − uh,p

) |}} · |[[φ]]|ds

≤ (
C1 + Mμ

) ∑

e∈E
h

∫

e

{{|∇ (
uh,p − uH,P

) |}} · |[[φ]]|ds

≤ (
C1 + Mμ

)
⎛

⎝
∑

e∈E
h

∫

e

σh,p|[[φ]]|2 ds

⎞

⎠

1
2

×

⎧
⎪⎨

⎪⎩

⎛

⎝
∑

e∈E
h

σ−1
h,p

∥
∥{{|∇(u − uh,p)|}}∥∥2

L2(e)

⎞

⎠

1
2

+
⎛

⎝
∑

e∈E
h

σ−1
h,p

∥
∥{{|∇(u − uH,P )|}}∥∥2

L2(e)

⎞

⎠

1
2

⎫
⎪⎬

⎪⎭
.

Applying Lemma 2.1, inequalities (11) and (12), and Lemma 3.1 gives

|T2| ≤
(
C1 + Mμ

)
CρCtraceγ

− 1
2 ‖φ‖h,p

×
⎧
⎨

⎩

(
∑

κ∈Th

∥
∥∇(u − uh,p)

∥
∥2

L2(κ)

) 1
2

+
(

∑

κ∈Th

∥
∥∇(u − uH,P )

∥
∥2

L2(κ)

) 1
2

⎫
⎬

⎭

≤ (
C1 + Mμ

)
C3CρCtraceγ

− 1
2 ‖φ‖h,p

×
⎧
⎨

⎩

(
∑

κ∈Th

h2sk−2
κ

p
2kκ−3
κ

‖u‖2
Hkκ (κ)

) 1
2

+
(

∑

κ∈TH

H 2Sk−2
κ

P
2Kκ−3
κ

‖u‖2
HKκ (κ)

) 1
2

⎫
⎬

⎭
, (24)

where the constant Cρ depends on ρ1 and ρ2, from (11) and (12) respectively. We now
consider the term T3:

|T3| ≤
∑

e∈E
h

∫

e

{{|(μ(h−1
e |[[uh,p]]|) − μ(h−1

e |[[uH,P ]]|))∇φ|}} · |[[uh,p]]|ds

≤
∑

e∈E
h

∥
∥μ(h−1

e |[[uh,p]]|) − μ(h−1
e |[[uH,P ]]|)∥∥

L∞(e)
‖{{|∇φ|}}‖L2(e)

∥
∥[[uh,p]]∥∥

L2(e)
.



J Sci Comput (2013) 55:471–497 481

We note that from inequality (10), we have

∥
∥μ(h−1

e |[[uh,p]]|) − μ(h−1
e |[[uH,P ]]|)∥∥

L∞(e)

≤ ∥
∥μ(h−1

e |[[uh,p]]|)∥∥
L∞(e)

+ ∥
∥μ(h−1

e |[[uH,P ]]|)∥∥
L∞(e)

≤ 2Mμ.

Since u ∈ H1
0(Ω), we note that |[[u − uh,p]]| = |[[uh,p]]|; thereby,

|T3| ≤ 2Mμ

⎛

⎝
∑

e∈E
h

σ−1
h,p ‖{{∇φ}}‖2

L2(e)

⎞

⎠

1
2
⎛

⎝
∑

e∈E
h

∫

e

σh,p|[[u − uh,p]]|2 ds

⎞

⎠

1
2

.

Applying Lemma 2.1, (11), (12) and Lemma 3.1 completes the bound for this term:

|T3| ≤ 2MμCρCtraceγ
− 1

2

(
∑

κ∈Th

‖∇φ‖2
L2(κ)

) 1
2 ∥
∥u − uh,p

∥
∥

h,p

≤ 2MμC3CρCtraceγ
− 1

2

(
∑

κ∈Th

h2sk−2
κ

p
2kκ−3
κ

‖u‖2
Hkκ (κ)

) 1
2

‖φ‖h,p . (25)

Inserting (23)–(25) into (22) and dividing both sides by ‖φ‖h,p gives

∥
∥u2G − uh,p

∥
∥

h,p
≤ C

⎧
⎨

⎩

(
∑

κ∈Th

h2sk−2
κ

p
2kκ−3
κ

‖u‖2
Hkκ (κ)

) 1
2

+
(

∑

κ∈TH

H 2Sk−2
κ

P
2Kκ−3
κ

‖u‖2
HKκ (κ)

) 1
2

⎫
⎬

⎭
.

Noting that V (TH ,P ) ⊆ V (Th,p), we deduce that

∥
∥u2G − uh,p

∥
∥

h,p
≤ C4

(
∑

κ∈TH

H 2Sk−2
κ

P
2Kκ−3
κ

‖u‖2
HKκ (κ)

) 1
2

,

which gives (19). Exploiting this inequality to bound the second term on the right-hand side
of (21) and applying Lemma 3.1 to bound the first term, we deduce (20). �

Remark 3.2 We note that due to the dependence of the nonlinear coefficient μ on |∇u|, the
error bound derived in Theorem 3.1 indicates that the mesh and polynomial distribution of
both the fine and coarse finite element spaces V (Th,p) and V (TH ,P ), respectively, should
grow at roughly the same rate, albeit the constants C3 and C4 present in the error bound
being of differing sizes. Numerical experiments demonstrating the optimality of these theo-
retical bounds are given in [10]. We stress that this theoretical result by no means requires
that V (Th,p) and V (TH ,P ) should be of the same dimension, but simply that the mesh-
size and polynomial degree distributions should be enriched at roughly the same rate. This
is analogous to the corresponding results for Schwarz-type preconditioners: to ensure scal-
ability of the preconditioner, in the sense that the number of iterations required to achieve
convergence is uniform, the coarse and fine meshes (in the case of an h-version method)
must be refined at roughly the same rate, cf. [2], for example. As noted in the Introduction,
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one of the key objectives of this article is to develop adaptive algorithms which are capa-
ble of automatically generating V (Th,p) and V (TH ,P ); this topic will be considered in the
forthcoming sections. In particular, by exploiting the adaptive algorithm proposed in Sect. 4,
in Sect. 5 we shall observe that there is indeed quite an off-set between the dimension of the
fine and coarse finite element spaces.

Remark 3.3 As noted in Remark 3.2, Theorem 3.1 indicates that the mesh and polynomial
distribution of both the fine and coarse finite element spaces V (Th,p) and V (TH ,P ), re-
spectively, should grow at roughly the same rate. This is in contrast to the h-version a priori
error analysis undertaken in [6] in the case when μ = μ(u). Indeed, in that setting, by using a
suitable duality argument (e.g., in convex domains) in order to optimally bound the resulting
L2-terms, it is shown that for convergence, the coarse and fine mesh sizes H and h, respec-
tively, should satisfy H = O(

√
h), when the polynomial degree is (uniformly) set equal to

one. We point out that an alternative two-grid IP DGFEM to the one proposed in this article,
cf. (16)–(17), may be developed, based on employing an incomplete Newton iteration on
the fine finite element space V (Th,p). More precisely, we define the nonlinear form

(u, v) �→ Nh,p(u, v) := Ah,p(u;u,v), u, v ∈ V (Th,p)

and write N ′
h,p[u](φ, v) to denote the Fréchet derivative of u �→ Nh,p(u, v), for fixed v,

evaluated at u. With this notation, the coarse grid solution uH,P is computed in the same
manner, cf. (16); the resulting (alternative) two grid approximation ũ2G ∈ V (Th,p) is then
defined as follows: find ũ2G ∈ V (Th,p) such that

N ′
h,p[uH,P ](ũ2G,vh,p) = N ′

h,p[uH,P ](uH,P , vh,p) − Ah,p(uH,P , vh,p) + Fh,p(vh,p) (26)

for all vh,p ∈ V (Th,p), cf. [3, 32], for example. Exploiting this alternative two-grid IP
DGFEM, the second term on the right-hand side of (20) (for uniform orders pκ = p ≥
1, Pκ = P ≥ 1 Sκ = S, 1 ≤ S ≤ min(P + 1,K), K ≥ 1, h = maxκ∈Th

hκ , and H =
maxκ∈TH

Hκ , with θ = 0) is replaced by

p7

h2

H 4S−4

P 4K−6
‖u‖4

HK(Ω)
; (27)

see [9] for details. We remark that this bound is rather pessimistic with respect to the poly-
nomial degree, due to the exploitation of inverse inequalities in the analysis. A key disad-
vantage of this alternative two-grid IP DGFEM is that the statement and analysis of this
method requires stricter regularity assumptions on μ. Indeed, the definition of the numerical
scheme in (26) requires μ ∈ C1(Ω̄ × [0,∞)), while the underlying a priori error analysis,
cf. (27), assumes that μ ∈ C2(Ω̄ × [0,∞)); these regularity assumptions may be unrealistic
in applications, cf. [3]. With this in mind, we proceed in the next section to consider the a
posteriori error estimation of the two-grid IP DGFEM (16)–(17).

3.2 A Posteriori Error Bound

In this section, we develop the a posteriori error analysis of the two-grid IP DGFEM defined
by (16)–(17).

Let us denote by Πκ,pκ the L2-projection onto V (Th,p). Then, we state the following
upper bound.
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Theorem 3.2 Let u ∈ H1
0(Ω) be the analytical solution of (5)–(6), uH,P ∈ V (TH ,P ) the

numerical approximation obtained from (16) and u2G ∈ V (Th,p) the numerical approxima-
tion computed from (17); then the following hp-a posteriori error bound holds

‖u − u2G‖h,p ≤ C5

(
∑

κ∈Th

(
η2

κ + ξ 2
κ

) +
∑

κ∈Th

h2
κp

−2
κ ‖f − Πκ,pκ f ‖2

L2(κ)

) 1
2

, (28)

with a constant C5 > 0, which is independent of h, H , p and P . Here, for κ ∈ Th, the local
fine grid error indicators ηκ are defined by

η2
κ = h2

κp
−2
κ

∥
∥Πκ,pκ f + ∇ · {μ(|∇uH,P |)∇u2G}∥∥2

L2(κ)

+ hep
−1
e

∥
∥[[μ(|∇uH,P |)∇u2G]]∥∥2

L2(∂κ\Γ )
+ γ 2h−1

e p3
e ‖[[u2G]]‖2

L2(∂κ) , (29)

and the local two-grid error indicators ξκ are defined, for all κ ∈ Th, as

ξ 2
κ = ∥

∥(μ(|∇uH,P |) − μ(|∇u2G|))∇u2G

∥
∥2

L2(κ)
. (30)

Remark 3.4 We refer to ηκ as the local fine grid error indicators, since they are analogous
to the corresponding error indicators present in the a posteriori error bounds derived for
the standard IP DGFEM applied to both quasilinear problems and the linear Poisson prob-
lem, cf. [14, 16], respectively. On the other hand, the local error indicators ξκ stem from
the exploitation of the two-grid approach. With this in mind, we refer to ξκ as the local
two-grid error indicators; they effectively model the error generated by approximating the
nonlinearity on the fine grid with the coarse grid solution.

Remark 3.5 We note that the third term in the local two-grid error indicator ηκ defined in
(29) is sub-optimal with respect to the polynomial degree. This sub-optimality results from
the fact that due to the possible presence of hanging nodes in Th, a non-conforming inter-
polant is used in the proof to Theorem 3.2. For conforming meshes, a conforming hp-version
interpolant may be employed which removes this sub-optimality; see [16, Remark 3.3] for
details.

Remark 3.6 In the case of an inhomogeneous boundary condition u = g on Γ , the third
term in the local error indicators ηκ is replaced by

γ 2h−1
e p3

e ‖[[u2G]]‖2
L2(∂κ\Γ ) + γ 2h−1

e p3
e ‖u2G − gh‖2

L2(∂κ∩Γ ) ,

where gh is a piecewise approximation to the boundary function g; in this setting additional
data-oscillation terms also arise, see [14] for details.

Remark 3.7 We remark that local lower bounds for the right-hand side of (28), i.e., the
efficiency of the proposed error indicator, can be proved by adding the term

E2 :=
∑

κ∈Th

‖μ(|∇u|)∇u − μ(|∇uH,P |)∇u2G‖2
L2(κ)

to the norm ‖u − u2G‖2
h,p . Then, by applying (8) we have

E2 ≤ 2
∑

κ∈Th

ξ 2
κ + 2

∑

κ∈Th

‖μ(|∇u|)∇u − μ(|∇u2G|)∇u2G‖2
L2(κ)
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≤ 2
∑

κ∈Th

ξ 2
κ + 2C2

1

∑

κ∈Th

‖∇u − ∇u2G‖2
L2(κ)

≤ 2
∑

κ∈Th

ξ 2
κ + 2C2

1‖u − u2G‖2
h,p,

and therefore we obtain (28) with the left-hand side being replaced by (‖u−u2G‖2
h,p +E2)

1
2 ,

and a different constant C̃5. Furthermore, in order to obtain lower bounds on the error, the
fine grid indicators ηκ can be estimated in terms of the local error by proceeding along the
lines of [16]. Finally, in order to bound the two-grid error indicators, we use again (8) to
infer that

ξκ ≤ ∥
∥μ(|∇uH,P |)∇u2G − μ(|∇u|)∇u

∥
∥

L2(κ)
+ ‖μ(|∇u|)∇u − μ(|∇u2G|)∇u2G‖L2(κ)

≤ ∥
∥μ(|∇uH,P |)∇u2G − μ(|∇u|)∇u

∥
∥

L2(κ)
+ C1 ‖∇u − ∇u2G‖L2(κ) .

Remark 3.8 Based on the hp-a posteriori error analysis developed in [33], the error bound
stated in Theorem 3.2 may be generalised to domains Ω ⊂ R

3, assuming that the underlying
mesh Th consists of 1-irregular hexahedral elements.

Proof of Theorem 3.2 The proof of this error bound is based on a generalisation of the
proof of the corresponding a posteriori bound for the standard hp-version IP DGFEM for
second-order quasilinear elliptic PDEs; see [16] for details. Given that the fine mesh partition
Th of Ω may contain hanging nodes, under the assumption that Th is regularly reducible,
i.e., Th may be refined to create a conforming mesh Th̃ as outlined in Sect. 2.1. We de-
note by V (Th̃, p̃) the corresponding DGFEM finite element space with polynomial degree
vector p̃ defined by p̃κ̃ = pκ for any κ̃ ∈ Th̃ with κ̃ ⊆ κ and some κ ∈ Th. We note that
V (Th,p) ⊆ V (Th̃, p̃) and due to the assumptions in Sect. 2.1, the DGFEM norms ‖ · ‖h,p

and ‖ · ‖h̃,p̃ corresponding to the spaces V (Th,p) and V (Th̃, p̃), respectively, are equivalent
on V (Th,p), cf. [16].

An important step in our analysis is the decomposition of the DGFEM space V (Th̃, p̃)

into two orthogonal subspaces, cf. [17]: a conforming part [V (Th̃, p̃)]‖ = V (Th̃, p̃)∩H1
0(Ω),

and a nonconforming part [V (Th̃, p̃)]⊥ defined as the orthogonal complement of [V (Th̃, p̃)]‖
in V (Th̃, p̃) with respect to the DGFEM energy inner product (·, ·)h̃,p̃ (inducing the DGFEM
energy norm ‖ · ‖h̃,p̃), i.e.,

V (Th̃, p̃) = [V (Th̃, p̃)]‖ ⊕‖·‖h̃,p̃
[V (Th̃, p̃)]⊥.

Based on this setting, the DGFEM-solution u2G obtained by (16)–(17) may be split accord-
ingly,

u2G = u
‖
2G + u⊥

2G, (31)

where u
‖
2G ∈ [V (Th̃, p̃)]‖ and u⊥

2G ∈ [V (Th̃, p̃)]⊥. We can define the error in the solution
obtained by (16)–(17) as

Eh,p = u − u2G, (32)

and let

E
‖
h,p = u − u

‖
2G ∈ H1

0(Ω). (33)
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We notice that
∥
∥
∥E

‖
h,p

∥
∥
∥

h,p
≤ CD

∥
∥Eh,p

∥
∥

h,p
, (34)

where the constant CD > 0 is independent of γ , h and p but depends only on the shape
regularity of Th and the constants ρ1 and ρ2 in (11) and (12), respectively; see [16, Corol-
lary 3.6].

Exploiting inequality (9) yields

C2

∥
∥Eh,p

∥
∥2

h,p
= C2

⎛

⎝
∑

κ̃∈Th̃

∫

κ̃

|∇u − ∇u2G|2 dx +
∑

e∈E
h

∫

e

σh,p|[[Eh,p]]|2 ds

⎞

⎠

≤
∑

κ̃∈Th̃

∫

κ̃

{μ(|∇u|)∇u − μ(|∇u2G|)∇u2G} · ∇Eh,p dx

+ C2

∑

e∈E
h

∫

e

σh,p|[[Eh,p]]|2 ds.

Here, we point out that the volume integrals appearing in the above equation are defined
over the conforming mesh Th̃, while the edge integral terms are defined over the skeleton
of the original (fine) mesh Th, cf. [16]. By noticing that Eh,p = E

‖
h,p − u⊥

2G, we split the
right-hand side of this inequality into the following four parts

C2

∥
∥Eh,p

∥
∥2

h,p
≤ |T1| + |T2| + |T3| + |T4|, (35)

where

T1 =
∑

κ̃∈Th̃

∫

κ̃

{
μ(|∇u|)∇u − μ(|∇uH,P |)∇u2G

} · ∇E
‖
h,p dx,

T2 = −
∑

κ̃∈Th̃

∫

κ̃

{μ(|∇u|)∇u − μ(|∇u2G|)∇u2G} · ∇u⊥
2G dx,

T3 = C2

∑

e∈E
h

∫

e

σh,p|[[Eh,p]]|2 ds,

T4 =
∑

κ̃∈Th̃

∫

κ̃

{
μ(|∇uH,P |)∇u2G − μ(|∇u2G|)∇u2G

} · ∇E
‖
h,p dx.

Here, E
‖
h,p ∈ H1

0(Ω) and u⊥
2G ∈ [V (Th,p)]⊥ are defined by (33) and (31), respectively. We

note that T1, T2 and T3 are analogous to the corresponding terms which arise in the a pos-
teriori error analysis of the standard IP DGFEM discretisation of (5)–(6), cf. [8] and [16].
Indeed, from [8] and [16], we recall the following bound:

|T1| + |T2| + |T3| ≤ C

(
∑

κ∈Th

η2
κ

) 1
2 ∥
∥Eh,p

∥
∥

h,p
, (36)
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noting that the constant C depends on the constants mμ, Mμ, C1 and C2 resulting from the
monotonicity of μ, cf. (7). We now consider the term T4:

T4 =
∑

κ̃∈Th̃

∫

κ̃

{
μ(|∇uH,P |)∇u2G − μ(|∇u2G|)∇u2G

} · ∇E
‖
h,p dx

=
∑

κ∈Th

∫

κ

{
μ(|∇uH,P |)∇u2G − μ(|∇u2G|)∇u2G

} · ∇E
‖
h,p dx

≤
∑

κ∈Th

∥
∥(μ(|∇uH,P |) − μ(|∇u2G|))∇u2G

∥
∥

L2(κ)

∥
∥
∥∇E

‖
h,p

∥
∥
∥

L2(κ)

≤
(

∑

κ∈Th

ξ 2
κ

) 1
2 ∥
∥
∥E

‖
h,p

∥
∥
∥

h,p
.

Thereby, applying (34), gives

T4 ≤ CD

(
∑

κ∈Th

ξ 2
κ

) 1
2 ∥
∥Eh,p

∥
∥

h,p
. (37)

Inserting (36) and (37) into (35) gives

C2

∥
∥Eh,p

∥
∥2

h,p
≤ C

(
∑

κ∈Th

η2
κ

) 1
2 ∥
∥Eh,p

∥
∥

h,p
+ CD

(
∑

κ∈Th

ξ 2
κ

) 1
2 ∥
∥Eh,p

∥
∥

h,p
.

Dividing both sides of the above inequality by ‖Eh,p‖h,p , using the Cauchy–Schwarz in-
equality, and applying the triangle inequality in order to replace f by Πκ,pκ f , completes the
proof of Theorem 3.2. �

4 Two-Grid hp-Adaptive Mesh Refinement Algorithm

For the standard IP DGFEM discretisation of the quasilinear problem (5)–(6), the mesh may
be automatically constructed using the hp-adaptive refinement algorithm outlined in [16].
In that setting, the local error indicators are defined in an analogous way to ηκ given in
(29), with uH,P and u2G both replaced by uh,p . In the context of the two-grid IP DGFEM
discretisation defined by (16)–(17), it is necessary to refine both the fine and coarse meshes,
together with their corresponding polynomial degree vectors, in order to decrease the error
between u and u2G with respect to the energy norm ‖ · ‖h,p .

To this end, we first note that, from Theorem 3.2, we have, for each fine element κ ∈ Th,
a local error indicator ηκ and a local two-grid error indicator ξκ . As noted above, the local
error indicator ηκ is similar to the one which arises within the analysis of the standard IP
DGFEM discretisation. With this in mind, ηκ represents the error arising from the linear fine
grid solve defined in (17), while the local two-grid error indicator ξκ represents the error
stemming from the approximation of the nonlinear coefficient μ(|∇uh,p|) on the fine mesh
Th by the same quantity evaluated with respect to the coarse grid solution uH,P , i.e., the error
committed by replacing μ(|∇uh,p|) by μ(|∇uH,P |).
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With this observation, we design the fine finite element space V (Th,p) by employing the
local error indicators (29), while the coarse finite element space V (TH ,P ) is constructed
in such a manner as to control the size of the local two-grid error indicators (30). More
precisely, we wish to design both V (Th,p) and V (TH ,P ) in such a manner that ηκ and ξκ

are of comparable size. To this end, we propose the following algorithm.

Algorithm 4.1 The finite element spaces V (Th,p) and V (TH ,P ) are constructed, based on
employing the following algorithm.

1. Initial step: Select initial coarse and fine meshes TH and Th, as well as initial coarse and
fine polynomial degree distributions P and p, respectively, in such a manner that the
resulting coarse and fine hp-finite element spaces V (TH ,P ) and V (Th,p), respectively,
satisfy the condition: V (TH ,P ) ⊆ V (Th,p).

2. Perform hp-mesh refinement of the fine hp-finite element space V (Th,p): more pre-
cisely, using the fine grid error indicators ηκ from (29), apply a fixed fraction strategy
to mark elements with a comparatively large error contribution. Then, if an element is
set for refinement, decide on whether to perform h- or p-refinement based on testing the
smoothness of the fine grid solution u2G; see, e.g., [15] (or [27]) to design V (Th,p).

3. Perform coarse mesh refinement: for a fixed constant steering parameter 0 ≤ λ < ∞, for
each element κ ∈ Th, do:
(a) If λξ 2

κ ≥ η2
κ then mark for refinement the coarse element κH ∈ TH where κ ⊆ κH .

(b) If the element is set for refinement decide on whether to perform h- or p-refinement,
e.g., by again testing the smoothness of the coarse grid solution uH,P ; see, [15,
Sect. 2.4.1] (or [27]).

4. Perform mesh smoothing to ensure:

• For all fine elements κ ∈ Th there exists a coarse mesh element κH ∈ TH such that
κ ⊆ κH ;

• For all κ ∈ Th and κH ∈ TH , where κ ⊆ κH , that Pκ ≤ pκ .

In this article we perform h-refinement on the fine mesh Th and p-derefinement on the
coarse mesh TH where necessary.

Remark 4.1 For the purposes of the numerical experiments in the following section, we start
the two-grid hp-adaptive algorithm with V (TH ,P ) = V (Th,p) in Step 1 above.

Remark 4.2 We note that the algorithm allows the steering parameter λ to be zero. In this
situation no coarse mesh refinement will be performed and hence the algorithm will only
refine the fine mesh.

5 Numerical Experiments

In this section we present a series of numerical experiments in two- and three-dimensional
space to demonstrate the performance of the a posteriori error bound derived in Theorem 3.2
and the hp-adaptive mesh refinement strategy from Algorithm 4.1. We set the interior penalty
parameter constant γ to 10 and the steering parameter λ to 1 for all experiments. The non-
linear equations are solved by employing a damped Newton method [21, Sect. 14.4]. The
solution of the resulting set of linear equations, emanating from either the fine mesh or at
each step of the iterative nonlinear solver, was computed using either the direct MUMPs
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solver, see [1], for two-dimensional problems or an ILU preconditioned GMRES algorithm,
see [23], for the three-dimensional problem. We also calculate the error bound stated in
Theorem 3.2, cf. (28), by setting the constant C5 equal to 1.

For each example, as well as solving using the two-grid method, we compute the standard
IP DGFEM formulation (14) for comparison. In order to determine the improvement in
the computation time from using the two-grid method over the standard IP DGFEM, both
algorithms were timed, on the same computer, using the FORTRAN CPU_time function
[20, Sect. 8.16.2], which times purely the amount of CPU time and is therefore unaffected
by other processes on the computer.

Example 1 In this example we repeat the first numerical experiment from [16, Sect. 4.1].
Therefore, we let Ω be the unit square (0,1)2 ⊂ R

2 and define the nonlinear coefficient as

μ(x, |∇u|) = 2 + 1

1 + |∇u| . (38)

We select the right-hand forcing function f so that the analytical solution to (5)–(6) is given
by

u(x, y) = x(1 − x)y(1 − y)(1 − 2y)e−20(2x−1)2
.

In Fig. 1(a) we present a comparison of the actual error measured in terms of the energy
norm versus the third root of the number of degrees of freedom (of the fine mesh) for both the
standard DGFEM formulation (14), together with the two-grid IP DGFEM (16)–(17). In this
figure we perform both h- and hp-adaptive mesh refinement for both schemes. Here, we can
see that, for the problem at hand, the true error in the two-grid IP DGFEM is only marginally
worse than the corresponding quantity for the standard IP DGFEM, when the same number
of degrees of freedom in the two-grid fine mesh, as in the mesh for the standard IP DGFEM,
are used. From Fig. 1(b), we observe that for both the h- and hp-refinement strategy, the
error bound overestimates the true error by a roughly consistent amount, in the sense that
the effectivity indices are roughly constant; indeed, here, the effectivity indices are around
13. Although the two-grid IP DGFEM gives a slightly worse error than the standard IP
DGFEM, for a fixed number of fine mesh degrees of freedom, we note that the two-grid
algorithm only performs the expensive nonlinear solve on a coarser grid which, hopefully,
possesses far less degrees of freedom than the standard IP DGFEM. Therefore, in Fig. 1(c)
we compare, at each iteration of the automatic two-grid mesh refinement algorithm, the
number of degrees of freedom used in both the coarse and fine finite element spaces. As can
be seen, there are considerable less degrees of freedom on the coarse grid and, therefore,
we would expect the two-grid solver to be computationally less expensive. To this end, the
magnitude of the true error, measured in the DGFEM norm, for both the standard and two-
grid methods, when both h- and hp-adaptive mesh refinement has been employed, compared
to the cumulative CPU time required for the calculation of each numerical solution is shown
in Fig. 2. This figure clearly illustrates the superiority of employing the two-grid variant
of the IP DGFEM for this problem. Indeed, for a given fixed accuracy, the two-grid IP
DGFEM requires around an order of magnitude less CPU time to compute the numerical
approximation to u, compared to the standard IP DGFEM.

In Fig. 3 we show the fine and coarse h- and hp-refinement meshes after 11 mesh re-
finements, where the colour bar indicates the polynomial degree for hp-refinement. For
h-refinement we can see that all the fine grid refinement occurs around the interior and
bases of the exponential ‘hills’ in the analytical solution, as would occur for the standard IP
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Fig. 1 Example 1. (a) Comparison of the error in the DGFEM norm, using both the standard nonlinear
solver (u∗ = uh,p) and the two-grid method (u∗ = u2G), with respect to the number of degrees of freedom;
(b) Effectivity of the h- and hp-refinement using the two-grid method; (c) Comparison of number of degrees
of freedom in the coarse and fine mesh at each iteration of the automatic mesh refinement algorithm

DGFEM. Notice that only a small amount of refinement has taken place in the correspond-
ing elements in the coarse mesh, namely, wherever ξκ is expected to be large. In the fine
mesh of the hp-refinement case the h-refinement occurs mostly around the base of the hills
with p-refinement in the interior of the hills, cf. also the coarse grid.

Example 2 In this example we repeat the second numerical experiment from [16, Sect. 4.2].
Thereby, we let Ω denote the L-shaped domain (−1,1)2 \ [0,1) × (−1,0] ⊂ R

2 and select
the nonlinearity to be

μ(x, |∇u|) = 1 + e−|∇u|2 .

By writing (r, ϕ) to denote the system of polar coordinates, we choose the forcing function
f and an inhomogeneous boundary condition such that the analytical solution to (5)–(6) is

u = r2/3 sin

(
2

3
ϕ

)

.

Note that u is analytic in Ω̄ \ {0}, but ∇u is singular at the origin.
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Fig. 2 Example 1. Cumulative CPU timing of the standard (u∗ = uh,p) and two-grid (u∗ = u2G) solver
compared to the actual error in the DGFEM norm: (a) h-refinement; (b) hp-refinement

Fig. 3 Example 1. (a) Coarse and (b) fine meshes after 11 h-adaptive refinements; (c) Coarse and (d) fine
meshes after 11 hp-adaptive refinements



J Sci Comput (2013) 55:471–497 491

Fig. 4 Example 2. (a) Comparison of the error in the DGFEM norm, using both a standard nonlinear solver
(u∗ = uh,p) and the two-grid method (u∗ = u2G), with respect to the number of degrees of freedom; (b) Ef-
fectivity of the h- and hp-refinement using the two-grid method; (c) Comparison of number of degrees of
freedom in the coarse and fine mesh for each iteration of the automatic two-grid mesh refinement algorithm

In Fig. 4(a), we again present a comparison of the actual error measured in terms of the
energy norm versus the third root of the number of degrees of freedom (of the fine mesh)
for both the standard IP DGFEM formulation (14), together with the two-grid IP DGFEM
(16)–(17), employing both h- and hp-refinement. As in Example 1, for this problem the true
error in the two-grid IP DGFEM is only marginally worse than the corresponding quantity
for the standard IP DGFEM, when the same number of degrees of freedom in the two-grid
fine mesh, as in the mesh for the standard IP DGFEM, are employed. Figure 4(b), shows
the effectivity indices of both the h- and hp-refinement strategies. For all meshes, these are
roughly constant. We can see from Fig. 4(c), which shows the number of degrees of free-
dom on the coarse grid compared to the number of degrees of freedom on the fine mesh
at each iteration of the automatic mesh refinement algorithm, that there are considerable
less degrees of freedom on the coarse grid and, thereby, we would again expect the two-grid
solver to be computationally less expensive. In Fig. 5 we plot the cumulative CPU time taken
by the two schemes, which is compared to the actual error, for both h- and hp-refinement
strategies. Here, we see that for h-refinement, the two-grid IP DGFEM results in an error
that is roughly a constant amount lower than the error in the standard method, for the same
computation time. For hp-refinement, we see that initially the two-grid method is less com-
putationally expensive, however, as refinement proceeds the improvement in computation
time from using the two-grid method decreases.
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Fig. 5 Example 2. Cumulative CPU timing of the standard (u∗ = uh,p) and two-grid (u∗ = u2G) solver
compared to the actual error in the DGFEM norm: (a) h-refinement; (b) hp-refinement

Fig. 6 Example 2. (a) Coarse and (b) fine meshes after 11 h-adaptive refinements; (c) Coarse and (d) fine
meshes after 11 hp-adaptive refinements

In Fig. 6 we show the fine and coarse h- and hp-refinement meshes after 11 mesh re-
finements, where the colour bar indicates the polynomial degree for hp-refinement. For
h-refinement we can see that both the fine and coarse grid refinement is fairly uniform



J Sci Comput (2013) 55:471–497 493

except around the singularity at the origin, where strong refinement appears, with the coarse
grid mesh refinement being less refined. For the hp-refinement case, the h-refinement occurs
mostly around the origin with high p-refinement in the rest of the domain, with the coarse
grid refinement done mostly by p-refinement, with a small amount of h-refinement around
the origin.

Example 3 In this section we let Ω be the Fichera corner (−1,1)3 \ [0,1)3 ⊂ R
3, use the

nonlinearity (38) from the first example and select f and a suitable inhomogeneous bound-
ary conditions such that the analytical solution to (5)–(6) is

u(x, y, z) = (x2 + y2 + z2)q/2,

where q ∈ R. From [4] we note that for q > −1/2 the solution satisfies u ∈ H 1(Ω); in this
case we select q = −1/4 as in [33]. We note that this gives a singularity at the re-entrant
corner (the origin).

In Fig. 7(a), we again present a comparison of the actual error measured in terms of the
energy norm versus the fourth root (see [33]) of the number of degrees of freedom (of the
fine mesh) for both the standard IP DGFEM formulation (14), together with the two-grid

Fig. 7 Example 3. (a) Comparison of the error in the DGFEM norm, using both a standard nonlinear solver
(u∗ = uh,p) and the two-grid method (u∗ = u2G), with respect to the number of degrees of freedom; (b)
Effectivity of the h- and hp-refinement using the two-grid method; (c) Comparison of number of degrees of
freedom in the coarse and fine mesh for each iteration of the automatic two-grid mesh refinement algorithm
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Fig. 8 Example 3. (a) Cumulative CPU timing of standard (u∗ = uh,p) and two-grid (u∗ = u2G) solver
compared to the actual error in the DGFEM norm: (a) h-refinement; (b) hp-refinement

IP DGFEM (16)–(17), employing both h- and hp-refinement. Here, we can see that for this
problem the true error in the two-grid IP DGFEM is almost identical to the corresponding
quantity for the standard IP DGFEM when the same number of degrees of freedom in the
two-grid fine mesh is employed as in the mesh for the standard IP DGFEM. From Fig. 7(b),
we can see that the effectivity indices of the h-refinement strategy are roughly constant,
suggesting that the error bound constantly overestimates the error. For the hp-refinement
strategy, we note that the effectivity index seems to rise slightly as refinement occurs; we
point out that similar behaviour was observed in [33] for the numerical approximation of the
Poisson equation posed in the same Fichera corner domain. From Fig. 7(c), which shows
the number of degrees of freedom on the coarse grid compared to the number of degrees of
freedom on the fine mesh at each iteration of the automatic mesh refinement algorithm, we
can see that the two-grid solver uses significantly less degrees of freedom on the coarse grid
than on the fine mesh; thereby, we would expect the computation time to be considerable
lower than for the standard solver. From the comparison of the cumulative CPU timing
with the actual error in the DGFEM norm, Fig. 8, this expected improvement is indeed
observed for both h- and hp-refinement strategies. In particular, for a given fixed accuracy,
the two-grid IP DGFEM requires around an order of magnitude less CPU time to compute
the numerical approximation to u, compared to the standard IP DGFEM.

Figure 9 shows the fine and coarse meshes after 5 h-refinements. We can see that both the
fine and coarse grid refinement is fairly uniform but concentrated around the singularity at
the origin; we also note that the coarse mesh is less refined than the fine mesh, as we would
expect. The fine and coarse meshes after 6 hp-mesh refinements are shown in Fig. 10. Here,
we see that at the singularity at the origin both the fine and coarse meshes have mostly h-
refinement with p-refinement occurring away from this area. Again we can see that both
the coarse and fine meshes have been refined in a similar manner, with the coarse mesh just
being less refined than the fine mesh.

6 Concluding Remarks

In this article, we have developed the a priori and a posteriori error analysis for a class
of two-grid hp-version IP DGFEMs for the numerical solution of second-order quasilin-
ear elliptic boundary value problems of monotone type. In particular, due to the type of
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Fig. 9 Example 3. Finite element mesh after 5 h-adaptive mesh refinements: (a) Coarse mesh; (b) Fine mesh;
(c) Three-slice of coarse mesh; (d) Three-slice of fine mesh

nonlinearity considered, the a priori error bounds indicate that the dimension of the coarse
and fine finite element spaces V (TH ,P ) and V (Th,p), respectively, should grow at roughly
the same rate, in order to retain optimal convergence of the underlying numerical method;
computational results confirming these theoretical findings have been presented in [10]. On
the basis of the a posteriori error bound, we have designed and implemented a two-grid
hp-adaptive algorithm which is capable of designing both the coarse and fine finite element
spaces V (TH ,P ) and V (Th,p), respectively, in an automatic manner. In particular, our nu-
merical experiments indicate that gains in computational efficiency may be attained when
the two-grid method is exploited in comparison to the standard (single grid) IP DGFEM; es-
pecially, the examples under consideration clearly show that, in spite of the a priori results
suggesting an increase of the degrees of freedom in the fine and coarse finite element spaces
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Fig. 10 Example 3. Finite element mesh after 6 hp-adaptive mesh refinements: (a) Coarse mesh; (b) Fine
mesh; (c) Three-slice of coarse mesh; (d) Three-slice of fine mesh

at the same rate, there is a considerable difference when comparing the adaptive meshes on
the coarse and on the fine scale. Current work is based on extending the present analysis to
non-Newtonian fluid flows in both two- and three-dimensions, as well as to more complex
nonlinear problems.
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