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Abstract
In most countries, major development projects must satisfy an Environmental Impact Assessment (EIA) process that
considers positive and negative aspects to determine if it meets environmental standards and appropriately mitigates or
offsets negative impacts on the values being considered. The benefits of before-after-control-impact monitoring designs have
been widely known for more than 30 years, but most development assessments fail to effectively link pre- and post-
development monitoring in a meaningful way. Fish are a common component of EIA evaluation for both socioeconomic and
scientific reasons. The Ecosystem Services (ES) concept was developed to describe the ecosystem attributes that benefit
humans, and it offers the opportunity to develop a framework for EIA that is centred around the needs of and benefits from
fish. Focusing an environmental monitoring framework on the critical needs of fish could serve to better align risk,
development, and monitoring assessment processes. We define the ES that fish provide in the context of two common ES
frameworks. To allow for linkages between environmental assessment and the ES concept, we describe critical ecosystem
functions from a fish perspective to highlight potential monitoring targets that relate to fish abundance, diversity, health, and
habitat. Finally, we suggest how this framing of a monitoring process can be used to better align aquatic monitoring
programs across pre-development, development, and post-operational monitoring programs.
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Introduction

Prior to commencement of a development project, many
countries require an assessment (often called an Environ-
mental Impact Assessment, or EIA) that evaluates the
potential impacts of the development (United Nations
Environment Programme 2018). The assessment provides
information that decision makers can use to evaluate the
potential impacts of development against the potential
benefits. The EIA is expected to consider both positive and
negative aspects of a project and requires justification of
recommended decisions with public consultation and sci-
entific opinion (Murray et al. 2018). Generally, these
assessments involve predicting impacts from the develop-
ment based on the current conditions (baseline), project
specifications, and available models or analogues. Mon-
itoring is then often required post-development to evaluate
if predictions were correct, potentially leading to mod-
ification/implementation of mitigation if predictions under-
estimated or overlooked effects (e.g., Dubé 2003; Kilgour
et al. 2007). Development projects include human activities
that may have environmental, social, and cultural impacts
such as, but not limited to, activities associated with con-
struction of power production infrastructure, mines, mills,
or transportation infrastructure.

In any watershed, there are many existing monitoring
efforts outside an EIA process, including Environmental
Effects Monitoring, regional status and trends monitoring,
impact assessment of nearby developments, and project pre-
development or baseline monitoring. These other monitoring
efforts and the EIA fall under separate regulatory
processes, often using different approaches and metrics,
resulting in poorly aligned and disjointed evaluation processes
(e.g., Dipper 1998). For example, in Canada, there are specific
mandatory monitoring protocols for some industries once they
are operating (e.g., Environmental Effects Monitoring pro-
grams (Walker et al. 2002)), but there is no expectation for
monitoring these specific indicators to provide a pre-
development baseline, or for making specifical predictions
on potential impacts from development (Kilgour et al. 2007).
Although before-after-control-impact (BACI) study design
was recommended over 30 years ago (Green 1989), the lack
of coordination between assessment processes and between
monitoring programs means that a BACI approach is seldom
incorporated into development assessments (Kilgour et al.
2007; Cronmiller and Noble 2018; Somers et al. 2018). The
absence of linkages between monitoring aspects across the
different stages of development means that post-development

follow-up monitoring programs seldom have an ideal refer-
ence database required to effectively detect post-operational
impacts or verify EIA predictions. It also limits the monitoring
effectiveness for detecting cumulative effects by failing to link
the monitoring phases into other regional monitoring efforts.

In many cases the absence of a consistent approach and
design for environmental monitoring creates decision-
making challenges that have long been a source of frus-
tration (Duinker and Greig 2006; Greig and Duinker
2011, 2014). The design of EIAs needs to consider the
focus of follow-up monitoring programs early in the
assessment process to allow for the collection of appropriate
and adequate pre-development data. The strength of the EIA
process is enhanced when there is consistency in evaluation
approaches and endpoints between the pre-development
(baseline), predictive modeling, and post-operational mon-
itoring using similar, ecologically-relevant metrics to pro-
vide meaningful prediction and evaluation of environmental
impacts (e.g., Curry et al. 2020). Data collected during each
step provides a baseline for comparison and the foundation
for modelling to allow the development of testable predic-
tions about post-development environmental conditions.
Adaptive feedback loops would improve the effectiveness
of development assessments and better integrate the EIA
process into regional environmental monitoring and man-
agement outside of the development approval process.

The question is “how can we adopt an approach that
would better provide opportunities for consistency in
monitoring across the phases of development assessment?”
Typically, EIAs use a stressor-based risk assessment asso-
ciated with predicted environmental changes in chemistry,
physical stressors, and biomarker responses. The EIA pro-
cess commonly focuses on valued ecosystem components
(VECs) that are chosen at the start of the EIA for ecological
significance, social value, or regulatory requirement (Ball
et al. 2013). Using stressor-based indicators of VECs
assumes adequate understanding of chemical and physical
habitat requirements of flora, fauna, and humans, and that
the VECs adequately represent the various components of
the system (Kilgour et al. 2007). Biological VECs are
usually species preferred by society and often do not reflect
the most sensitive or responsive elements of an ecosystem
or aspects that are easily monitored (Kilgour et al. 2007).
Recent EIAs are becoming better at integrating aspects and
considerations relevant for the protection of Indigenous
rights and practices, and that consider Indigenous knowl-
edge and approaches (Keeyask Hydropower Limited Part-
nership 2012).
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Fish are a common component of EIA evaluations (Ball
et al. 2013) because of their relevance for subsistence
(including Indigenous harvest), recreational, and commercial
fisheries, the assumption that protecting the highest aquatic
trophic level will protect the majority of ecosystem levels
(Kilgour et al. 2005), and because the abundance, diversity,
and health status of fish integrate local environmental condi-
tions (Kilgour et al. 2005), as well as the quality of different
habitats used across their life cycle (Schiemer 2000). Pre-
development baseline fish data are often restricted to com-
munity or biodiversity responses that are difficult to interpret
in terms of potential direct effects of the proposed develop-
ment on fish populations (Munkittrick et al. 2019).

Although integration of better science in EIAs have been
suggested for decades, these recommendations are rarely
practiced (e.g., MacKinnon et al. 2018). There are a wide
variety of approaches to monitoring fish that vary across
jurisdictions. Given the socioeconomic and scientific
importance of fish and their frequent inclusion in EIA and
other aquatic monitoring programs, we will use the example
of fish monitoring and assessment in this paper to demon-
strate how focusing the aquatic assessment requirements on
protecting critical ecosystem attributes to support fish would
provide a broad basis for assessment that could provide
consistency across the phases of monitoring. This would
also integrate and align monitoring associated with the EIA
process with other regional monitoring efforts to provide an
integrated assessment process. The question becomes what
aspects of an environment are critical to be included in such
a broad assessment in order to protect fish.

The ES concept (Ehrlich and Ehrlich 1981) was devel-
oped during the late-1970s to increase public interest in
biodiversity conservation (Gómez-Baggethun et al. 2010)
and later refined to create a link between ecological and
socioeconomic planning by focusing attention on key
aspects and performance measures of benefits that the
ecosystem provides for humans (e.g., Millennium Ecosys-
tem Assessment 2005). We think that interpreting that fra-
mework from the perspective of the key aspects and
performance measures that fish need to thrive would pro-
vide meaningful measures of ecosystem health worthy of
protection that could be used to define and align key per-
formance measures across the assessment and development
process. This paper provides guidance on essential assess-
ment elements during the phases of baseline information
collection, development assessment, and post-operational
monitoring that would improve continuity, build mean-
ingful linkages, and allow the development of monitoring
and management triggers to assist with decision-making.
Furthermore, the approach provides a more holistic view of
potential impacts.

Although this paper focuses on fish and aquatic environ-
ments, the principles presented are applicable to other

environmental components. This paper reviews the ES pro-
vided by fish, interprets key ecosystem functions from a fish
perspective, and finally suggests how the ES concept from a
fish perspective could be incorporated into the design of
monitoring programs to better align monitoring programs
across phases of impact assessment and prediction. Under-
standing the functions of an ecosystem that are critical for fish
will provide the necessary linkages between EIA phases to
provide long-term consistency in monitoring needed to
improve the ability to protect fish. This discussion focuses
largely on freshwater fish components and ecosystem needs,
although there would be parallel aspects in marine systems.

Ecosystem Services Provided by Fish

Ecosystem Services are the benefits that the environment
has for human well-being (Millennium Ecosystem Assess-
ment 2005; Suter and Barron 2016). To assist with the
organization of ES, there are a few methods, but with little
consensus, of categorization (e.g., Boyd and Banzhaf 2007;
Wallace 2007; Costanza 2008; Fisher and Turner 2008;
Haines-Young and Potschin 2009; La Notte et al. 2017).
Here we discuss two common methods for categorizing ES:
Millennium Ecosystem Assessment (MA) and generic
ecological assessment endpoints (GEAEs). Then, we link
them to key ecosystem attributes needed by fish to develop
indicators that would provide consistent interpretation
across the phases of EIAs. We are interpreting the ES
concept consistent with the focus on benefit to human well-
being and with the ecosystem aspect providing that benefit
as the service (Boyd and Banzhaf 2007; Fisher and Turner
2008; La Notte et al. 2017). It is not the intent to discuss ES
provided by fish from an ecosystem accounting perspective,
and as such, issues such as “double counting” (Costanza
2008; Fisher and Turner 2008) have not been considered.

The MA was designed to provide decision-makers with
an approach to linking aspects of ecosystem assets, services
and attributes with human well-being (Millennium Eco-
system Assessment 2005). The MA framework groups the
services in four categories: 1) provisioning (the products
obtained from ecosystems, including genetic resources,
food and fiber, and freshwater, and other similar compo-
nents); 2) regulating (the benefits obtained from the reg-
ulation of ecosystem processes, including aspects such as
the regulation of climate, water, and some human diseases);
3) cultural (the nonmaterial benefits people obtain from
ecosystems through aspects including spiritual enrichment,
cognitive development, reflection, recreation and aesthetic
experience, such as knowledge systems, social relations,
and appeal); and 4) supporting (the ES that are necessary for
the production of all other ES, such as biomass production,
production of atmospheric oxygen, soil formation and
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retention, nutrient cycling, water cycling, provisioning of
habitat, etc.). One of the main benefits touted by the MA
framework is the integration of ES into policy for effective
management towards human well-being. Some credit the
MA for the exponential increase in use of ES in decision-
making (Gómez-Baggethun et al. 2010).

The United States Environmental Protection Agency (US
EPA) developed guidance for GEAEs for environmental
risk assessments that use ES (Suter and Barron 2016). The
ecological services were divided into seven categories of
environmental values (but is not intended to be a definitive
or comprehensive list): 1) Consumptive – commodities
produced specifically by the environment such as food,
timber, and clean water; 2) Informational – natural traits or
models for anthropogenic structures, chemicals, and pro-
cesses such as genetic resources and novel molecules; 3)
Functional/Structural – ecological functions and structures
such as water regulation, pollination, and nutrient cycling;
4) Recreational – recreational opportunities such as angling,
birding, and hiking; 5) Educational – academic and non-
academic educational opportunities such as environmental
education sites and study areas; 6) Option – environmental
preservation for future generations such as delaying a
decision when payoffs of irreversible use is unknown; and
7) Existence – non-use without direct service of the envir-
onment such as spiritual grounds.

Fish provide a number of direct and indirect benefits for
humans that are characterized differently in the MA
description of ES and the US EPA GEAEs. To begin to
align the concepts embedded within ES with potential
assessment indicators in an EIA process, it is necessary to
further subdivide the benefits into both the organizational
level providing the service (community, population, indi-
vidual, etc.) and potential endpoints and indicators. Table 1
aligns the direct benefits and two of the key indirect benefits
with ES categorization that is likely familiar to practitioners
(aligning the MA and GEAE categories). Work completed
by Holmlund & Hammer (1999) significantly influenced the
ES that we have defined, and below we align them within
the four MA ES (provisioning, regulating, cultural, and
supporting services) and seven GEAEs (consumptive,
informational, functional/structural, recreational, educa-
tional, option, and existence). These are discussed by MA
and GEAE categories in Supplemental Material 1 to provide
the context for aligning ES with potential indicators.

Ecosystem Attributes Required for Fish to
Perform their Ecosystem Services

Fish require a variety of services from the ecosystem to
survive. These requirements are reflected in a variety of
ecosystem attributes, or characteristics, that can be aligned

with provisioning, regulating, and supporting services
(Table 2). From a fish’s perspective, the ES are the provi-
sioning services (the products obtained from the environ-
ment) of food and the regulating services (benefits from
ecosystem processes) of space and habitat for growth, sur-
vival, and reproduction. These include adequate environ-
mental conditions for sufficient oxygen, temperature, flow,
water quality, and sediment quantity/quality. The support
services required by fish include access to adequate habitats
and connectivity between habitats. How well the fish per-
forms will depend on the state and variability of these
conditions and resources.

For the purposes of this paper, the ES provided by fish
are provided if the fish and their required ecosystem attri-
butes are protected. There is overlap in the characterization
of provisioning and regulating services from the fish’s
perspective. For example, fish require the provision of
sufficient flow, temperature, and oxygen as basics for sur-
vival, but their performance can be affected by a failure to
regulate these conditions within optimal limits. Within the
context of developing indicators that can be used to protect
key ecosystem attributes, the characterization of the ES
(provisioning or regulating) does not impact the environ-
mental attribute you protect. Examining the ecosystem
attributes, and their relevance for ES, is essential for
defining endpoints that could be used in each phase. Table 2
summarizes the environmental and fish-specific indicators
that are relevant for assessing each ecosystem attribute
affecting each of the ES from a fish’s perspective, which are
discussed in Supplementary Material 2.

Monitoring Design Considerations for
Incorporating Ecosystem Services and
Consistency into Monitoring Programs

A recent review of 339 Environmental Impact Studies
found that only 1% used ES and that new methodologies
are needed to improve the utility of ES indicators (Sousa
et al. 2020). One of the challenges of ES indicators is the
absence of clear mechanisms to integrate the data into
decision-making processes. We have recently developed a
management framework that uses a series of monitoring
triggers developed based on pre-development data, forecast
triggers developed during the modelling and assessment
phases of prediction within an EIA, and management
triggers developed from regional planning approaches that
effectively links monitoring indicators across phases of
monitoring and assessment (Kilgour et al. 2017; Arcis-
zewski et al. 2017; Somers et al. 2018). Developing ES
indicators focused on the key ecosystem attributes for fish
can provide the necessary linkages between phases to
provide long-term consistency in monitoring.

Environmental Management



Baseline (pre-development) information on key eco-
system attributes provides information on the current
environmental conditions and establishes a recent base-
line. Recent baseline data play a couple of key roles in
monitoring, including establishing whether current con-
ditions are already altered from historical states (estab-
lishing the accumulated environmental state; Somers
et al., 2018), establishing a “normal range” to be able to
detect post-development change (Kilgour et al. 2017), and
helping to focus studies to determine the cause of change
(Dubé 2003; Dubé et al. 2013; Kilgour et al. 2007,
Arciszewski et al. 2017).

It is important to link the baseline monitoring design to
both the developmental assessment and post-development
monitoring. Baseline data can be used to inform post-
development assessments, and variability in recent data
can be used to develop predictions about future expected
levels, and feed into models associated with predicting
potential development impacts that form an important part
of the predictive modeling phase of the development of an
EIA. Linking the baseline monitoring design to post-
operational assessment will more effectively inform if
there are effects from the project. For example, the
before-after-control-impact design can eliminate the
potential of concluding that there is an effect from the
Project when it is actually natural variability (Dubé 2003;
Kilgour et al. 2007). In addition, parameters that may be
influenced by the project (i.e., fish species that is in future
exposure area over lifetime, chemical that is discharged)
should be measured.

Having long-term consistency in monitoring provides
the opportunity to understand the environmental drivers
impacting natural variability in the indicators. Establishing
relationships between drivers and responses will inform
models to allow predictions of potential development
effects (Dubé et al. 2013) and potentially improve model
calibration. The predictive modeling ideally provides a
forecast based on anticipated environmental conditions
(i.e., from the Project, climate change, other projects in
area). Being able to make predictions with quantitative
indicators based on ecological drivers allows monitoring
programs to transition from a retrospective to a predictive
focus, with the objective becoming to evaluate how closely
the current accumulated state matches the predicted future
state from modeling. Given that not all models (either
empirical or processed-based) are adequate for extrapola-
tion, model selection and model testing for the anticipated
conditions is a required step (Thirel et al. 2015). The model
predictions of future environmental performance levels
allows the development of “forecast triggers” to be used in
adapting monitoring programs (Somers et al. 2018).

Based on the potential changes to the receiving
environment, the monitoring plan should be site-specific.Ta
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Monitoring is the primary mechanism for adaptive
management at both project and regional levels. If effects
are measured that were not anticipated, the monitoring
plan should include mechanisms for adjusting manage-
ment strategies and mitigation options (Dubé 2003). The
post-development monitoring should be focused on
monitoring triggers developed from baseline monitoring
and forecast triggers developed during EIA modeling
activities.

After development, a feedback loop between monitoring
and modeling can be used to iteratively improve both
activities.

Developing a decision framework for ES for fish com-
ponents would align monitoring across the development
assessment process by improving the consistency of indi-
cators during:

1. Measurement of the current (baseline) conditions
during pre-development to site-specifically adapt
models for cumulative effects assessment and to
establish triggers to adapt to later monitoring phases
(monitoring triggers);

2. Modeling the potential impacts of the development
based on current conditions and project specifications,
and making projections about the potential future state
(forecast triggers); and

3. Monitoring consistent indicators post-development to
evaluate if predictions were correct and comparing
results against both monitoring and forecast triggers
(and modifying project and models if predictions
underestimated effects; Dubé 2003; Dubé et al. 2013;
Kilgour et al. 2007).

Additional triggers available for focusing the monitoring
program include performance triggers (set by the engineers
to indicate if development is working as designed), com-
pliance triggers (developed from regulatory permits), and
management triggers (developed as limits from land use
plans or environmental quality criteria; Somers et al., 2018).
Exceedance of a management trigger for a stressor indicates
habitat quality for biota may be inadequate but this condi-
tion may not result in biota exceeding their trigger. Biota
exceeding their trigger are more likely to indicate that the
overall protection goal is not being met.

The various triggers serve to adapt the monitoring pro-
gram to increase or decrease intensity of monitoring by
indicating when the program should move to a different tier.
If over time there are no exceedances of triggers, the
monitoring plan may be designed to reduce sampling
locations, sampling frequency, and/or indicators measured.
The plan should also include triggers that would increase
these again if there is a change in indicators (Arciszewski
and Munkittrick 2015; Arciszewski et al. 2017).

Consistency for Aligning Indicators of
Ecosystem Attributes for Ecosystem Services
with Environmental Assessment Strategies

The previous section highlights the need for tight linkages
between the monitoring design, indicator selection, and
consistency in data throughout the baseline assessment,
predictive modeling, and post-development monitoring
phases. The characteristics of ES monitored during baseline
should provide the foundations for both predictive modeling
and post-development monitoring phases. These linkages
will ensure that critical ecosystem functions for fish are
protected. The ecosystem attributes required by fish are
listed in Table 3 along with the measures that can be taken
across the phases of EIA to provide linkages to improve
effectiveness, relevance, and consistency and are discussed
below. The potential effects of the development should be
considered to prioritize the aspects assessed. Using the
ecosystem attributes for guidance can shift qualitative
statements to meaningful quantitative models and triggers to
protect the environment by understanding when there are
relevant, project-related changes.

Measures for Provisioning Services

Food

The quality and quantity of food is an essential ecosystem
attribute and a pre-development baseline ensures the avail-
ability of information for assessing post-development
impacts, and for ensuring that modeling during the EIA
process focuses on critical aspects. This ES can be measured
directly by looking at indicators of food quality and avail-
ability, or at certain fish metrics that demonstrate food quality
and quantity such as growth, reproductive development,
body condition, and tissue burdens of contaminants.

Baseline assessments can focus on direct indicators of
food quality and availability, or on indirect fish indicators of
food. Direct measures of food quantity and quality can
include biomass and taxonomic diversity/composition of
food sources (e.g., algae, invertebrates). Bulk biomass
estimates of algae through measurement of chlorophyll a
remains a useful indicator of food quantity at the primary
producer level because of the simplicity of sample collec-
tion and analysis, and the ease of integration into long-term
monitoring processes to assess primary productivity over
time. Benthic invertebrate sampling is well established as
part of regional and national monitoring strategies (Kilgour
et al. 2007; Buss et al. 2015), and there are guidelines in
place for study design, sample collection, and sample pro-
cessing (Canadian Council of Ministers of the Environment
2011; Environment Canada 2012, 2014) that can support
their inclusion in EIA. Assessment of invertebrate

Environmental Management
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abundance, biomass, and diversity is commonly used as an
indicator of water quality but can also provide information
about secondary production and composition that can be
used in the context of fish needs as measures of food
quantity and quality.

The quality of food is also an aspect to be considered and
negative impacts on food quality have been documented.
Where potential impacts to primary producers are a concern
in the assessment process, the relative proportions of dia-
toms and other groups such as green algae and cyano-
bacteria could be used to indicate possible changes to food
quality, though fatty acid analysis of algal samples would
provide the most accurate measure. For example, eutrophic
conditions can result in negative impacts on food quality by
shifting primary productivity from predominantly diatoms,
which are a high-quality food source for grazers, to an
increased dominance of green algae and cyanobacteria,
which are lower quality and will affect trophic transfer
efficiency across the plant-grazer interface (Goedkoop et al.
2007; Torres-Ruiz et al. 2007). Such a decrease in the
nutritional value of primary producers will have implica-
tions for growth, hormone regulation, and production at
higher trophic levels (Brett and Müller-Navarra 1997).

Fish indicators integrate the critical aspects of food
availability, and changes will be reflected in changes in
fish performance by alterations in growth, reproductive
development, condition, and tissue burdens (Table 3). For
example, high availability of food can be reflected at a
population level by a lower average age, higher growth
rate, higher reproductive output, lower age at maturity,
and/or higher body condition (e.g., Gibbons and Munkit-
trick, 1994; Munkittrick and Dixon, 1989). Since the early
1990s, Canada has had an extensive program for Envir-
onmental Effects Monitoring (Walker et al. 2002), and
well-documented procedures for assessment of an adult
fish survey, including critical effect sizes for interpreting
the relative importance of changes (Munkittrick et al.
2009). Guidance for selecting reference and exposure
sites, species characteristics, measurement endpoints, and
data analysis are available in detailed technical guidance
documents (https://www.canada.ca/en/environment-clima
te-change/services/managing-pollution/environmental-
effects-monitoring.html). Additional advice for sampling
times (Barrett and Munkittrick 2010) and the development
of monitoring triggers from baseline data for these end-
points is available (Kilgour et al. 2017; Arciszewski et al.
2017; Somers et al. 2018).

When sufficient data are available to understand the
environmental factors driving natural variability in the
baseline endpoints, it is possible to develop correlations
between key environmental variables and the measured
endpoints (e.g., Kilgour et al., 2019). For temperate fresh-
water fish, these are commonly related to flow and water

temperature, although other abiotic factors could contribute.
For lower trophic levels that provide a direct measure of
food availability, there may be a stronger relationship with
water chemistry and physical habitat conditions such as
substrate composition (e.g., Lento et al. 2020). These rela-
tionships can be used to provide a bridge between the
scenario modeling in cumulative effects assessments for the
development conducted under the modeling phase and
predicted relevant changes in measurement endpoints. A
monitoring plan would include how these triggers are tiered
and what follow-up monitoring would be needed to detect
post-development impacts.

In an ideal world, post-development monitoring would
have both the monitoring triggers from baseline (Somers
et al. 2018; adjusted if necessary for more recent data as in
Arciszewski and Munkittrick, 2015) and forecast triggers
from the modeling phase that would predict the expected
normal range of any post-development changes. The
monitoring that occurs post-development would monitor
the same endpoints of the same fish species and lower
trophic levels in the same areas as the baseline assessment
(e.g., reference and future exposure). The results post-
development would be compared to the triggers that were
developed in the monitoring plan. Monitoring would likely
occur for multiple years to ensure that any delayed effects
are captured and to confirm effects, if differences are seen.
If changes are seen that are of concern, monitoring can
progress through the tiers of monitoring, to confirmation,
extent and magnitude, and if necessary, investigation of
cause (Somers et al. 2018).

Measures for Provisioning/Regulating Services

Dissolved oxygen

As a critical ecosystem attribute for fish, adequate oxy-
genation maximizes growth and carrying capacities
(densities), but also determines fish tolerances via the
partial pressure difference of fish blood and dissolved
oxygen in the water. For most life stages, fish move away
from areas with low oxygen and there will be a shift in
community to species more tolerant of low oxygen if
conditions persist (Tetreault et al. 2013). For those that
cannot avoid low oxygen conditions, a small difference,
0.5 mg/L to 1 mg/L, can make the difference between
mortality and survival, with lower oxygen level tolerance
for shorter exposure periods (Seager et al. 2000). It is
generally assumed that eggs are the more sensitive life
stage as they depend on a relatively small surface area for
respiration (Elshout et al. 2013).

Uncontaminated streams and rivers are generally well
oxygenated, so oxygen is not normally a limiting factor for
fish in lotic habitats. The current oxygen levels of the water
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body, including variations over space and time, should be
measured before development. Sánchez et al. (2007) found
that measuring the dissolved oxygen deficit was sufficient
as a rapid indicator of watershed pollution in the absence of
a full water quality assessment. Areas that may be suscep-
tible to low oxygen (e.g., stratification, vegetation,
groundwater inputs, or zones with elevated biological
oxygen demand/chemical oxygen demand) and areas that
may serve as refugia should be identified. Future reference
and exposure areas should be sampled.

Predictions of dissolved oxygen in the receiving envir-
onment after project completion and trigger development
are completed during the modeling phase. Oxygen toler-
ances of fish species can be used to develop triggers from
the most sensitive life stage of species present (Elshout et al.
2013). Many jurisdictions already have a water quality
guideline for oxygen (e.g., 5.5 mg/L from Canadian Council
of Ministers of the Environment (1999)). A follow-up
monitoring program with tiers and triggers is developed for
post-development.

After the development is complete, the receiving envir-
onment should be monitored to confirm predicted oxygen
levels. Monitoring oxygen should be similar to what was
completed during baseline over space and time and com-
pared to trigger values. The monitoring program moves to
the next tier if levels are less than developed triggers.

Thermal habitat

Different species have different optimal temperatures
(Golovanov 2006) and can be grouped together into
coldwater, coolwater, or warmwater thermal guilds (e.g.,
Coker et al. 2001). Fish generally move at different times
of the day and/or seasonally to maintain their preferred
temperature. In general, higher water temperatures
increases fish metabolism, resulting in increased growth
rates as well as greater food and oxygen demand (Todd
et al. 2008). Water temperature is an influential ES. Eggs
incubating overwinter may hatch in thermal plumes early,
resulting in underdeveloped larvae with limited food
available (Patrick et al. 2013). Conversely, spring
spawning females overwintering in thermal plumes may
not develop mature eggs (Golovanov 2013). Fish may be
attracted to or avoid warm/cold thermal plumes at different
times of the year. Although fish deaths are often thought to
be mostly from high temperatures, fish kills occur more
frequently from cold temperatures (Beitinger et al. 2000)
and can be caused by human activities when thermal dis-
charges abruptly change in effluent flow or water release
from a dam (Donaldson et al. 2008).

Before development, the current temperature of the
waterbody, including variations over space and time, should
be measured (Table 3). This can include in situ

measurements and/or remote sensing (i.e., aerial or satellite
based; e.g., Dauwalter et al. 2017). Habitats that may serve as
refuges during extreme temperatures should be identified and
their temporal variability quantified (Dugdale et al. 2013).
Future reference (fair thermal conditions) and exposure
(potentially adverse conditions) areas should be sampled.

Predictions in thermal plume or changes to the thermal
profile from the development are made during the modeling
phase. If fish species are known, ideally the optimal growth
curve for the most thermally sensitive species and life stages
would be used in trigger development (McCullough 2010), but
these may not be available for many species. Lethal tolerances
and the biological maximum weekly average temperature are
not recommended for trigger development for coldwater spe-
cies (see Donaldson et al. 2008; McCullough 2010). In
Canada, common compliance triggers for effluents include a
maximum permissible discharge temperature (e.g., 40 °C) and
plume Delta T (difference in temperature, e.g., 10 °C). The
impact of the proposed development to thermal refuges and
access to those areas should also be considered. In addition,
mitigation and alternative creation of refuges can be envisaged
(Kurylyk et al. 2015). The monitoring plan should include the
follow-up monitoring required and tiers the triggers to move
from surveillance to possible solutions. Mitigations, such as
designing cooling discharges to reduce the adverse changes to
the natural thermal regime and biotic interactions or changing
flows slowly (Donaldson et al. 2008) can be included. Com-
bining thermal and environmental flow prescriptions should be
jointly considered (Olden and Naiman 2010).

If the development is adding a point source thermal
plume, monitoring would include a plume delineation
(potentially multiple seasonally and/or annually) to confirm
the predicted area or volume and temperature (mean,
maximum, and temporal variance). Similar temperature
monitoring from baseline over space and time is conducted
and compared to the trigger values developed in the mon-
itoring plan. If the development has caused an unacceptable
change in the thermal habitat (set off a trigger), then the
monitoring program moves to the next tier.

Flow

Flow and its natural variability are critical for fish assem-
blage spatial and temporal structure and function in river
systems (e.g., Wegscheider et al. 2020); in lake systems
analogous measures would be related to depth and waves/
currents in shallow lentic habitats (e.g., Duchesne et al.
2021). Quantified by velocity (m/s), water depth (m), and
discharge (m3/s), variation in flow velocity primarily reflects
local-scale measurements directly associated with indivi-
dual microhabitats while discharge usually represents a
reach- or watershed-scale composite variable. Flow is
strongly modified by long-term (e.g., climate change,
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hydropower development) and short-term (e.g., seasonal
water withdrawal) flow alterations, for example, through
loss of adequate velocity in microhabitats, hydropeaking
operations, or changes to long-term discharge patterns,
including the timing, frequency, and duration of extreme
events (Monk et al. 2011). Changes to velocity and dis-
charge may impact fish condition, for example body shape
changes to reduce energy cost in movement (Beachum et al.
2016). The fish community can also change; for example,
flashiness or frequent flow fluctuations shifts the fish com-
munity to habitat generalists, and reduction in natural flood
peaks can increase non-native and flood-intolerant fish
species (Poff et al. 2010).

The Ecological Limits of Hydrologic Alteration
(ELOHA) framework offers an example of an adaptive
watershed-scale framework that considers the human and
natural ecosystem for sustainable flow management (Poff
et al. 2010). These frameworks can support modeling pre-
dictions on how flow will change in response to the
development and provide guidance on how flow variation
should be quantified, for example moving beyond simple
annual and seasonal averages to capture the full
ecologically-relevant range of the hydrograph (i.e., magni-
tude, duration, timing, frequency and variability of flows).
Within an EIA, habitats that provide the ecohydrological
requirements for present fish species should be identified,
including identifying vulnerable connections between dif-
ferent habitats that are required. Triggers should then be
based on how flow alteration may influence ecological
response. For example, if overbank flow is needed to pro-
vide fish access to floodplain habitat, a trigger may be a
water level in spring that reaches or exceeds bankfull dis-
charge. If the water level is lower, then further investigation
into flood levels and consideration of spring discharge
management is considered (Poff et al. 2010). Models can
then be developed to support the EIA under different flow
scenarios and so velocity, discharge, and bathymetry of the
waterbody should be measured prior to development (Table 3).
Therefore, an adaptive follow-up monitoring plan with tiers
and triggers is needed (Arciszewski et al. 2017; Somers
et al. 2018). Monitoring should include measuring daily and
seasonal flow, similar to baseline. The flow is compared to
the models and triggers developed in the monitoring plan. If
there is an unacceptable change in hydrological state of the
waterbody after development, then the monitoring program
moves to the next tier.

Measures for Regulating Services

Water quality

Water quality is important for many aspects of fish health
and function including osmoregulation, clarity for vision,

and exposure to toxic substances. While water quality is
relatively easy to assess at a single location and time, it can
be a challenge to assess as fish are often moving within a
system and can be exposed to a variety of waters of various
quality over time. Water quality will also vary among
regions, within a watershed, and temporally (i.e., diurnal,
seasons, and years). An effective metric will consider all of
these characteristics beginning with what the fishes require
(e.g., Canadian Council of Ministers of the Environment),
current conditions and trends, and assessing a parameter
that may be altered over time, e.g., during a development
project. Many water quality parameters react or bind with
other components in an aqueous environment, which can
influence toxicity. Therefore, measuring these other influ-
encing factors, such as hardness (calcium and magnesium),
dissolved organic carbon, pH, temperature, alkalinity, and
sulphate (Paquin et al. 2002) are important to consider.

Some water quality parameters vary with flow, and some
seasonally, making the development of monitoring triggers
more challenging. Based on the project description and
baseline data, changes to water quality parameters are pre-
dicted in the modeling phase and to develop forecast trig-
gers. If sufficient baseline data exists, monitoring triggers
can be developed based on normal ranges, control charts, or
other methods (Burgman 2005; Arciszewski et al. 2018).
There are toxicity data available for many chemical para-
meters for many fish species and life stages and should be
considered in the development of management triggers.
Many jurisdictions have water quality criteria that are
influenced by toxicity data (e.g., Canadian Council of
Ministers of the Environment). A follow-up monitoring
plan with tiers and triggers for an adaptive program should
be developed.

If the development is adding a point source, monitoring
would include a plume delineation (potentially multiple
seasonally and/or annually) to confirm the predicted size
and concentrations of parameters. Similar water quality
monitoring to what occurred during baseline is conducted
and compared to the trigger values developed. If the
development has caused a parameter to exceed a trigger,
then the monitoring program moves to the next tier.

Sediment

Sediment impacts habitat quality in a variety of ways,
including impacts on water quality, substrate quality, and as
a mechanism of contaminant transport. Suspended sediment
also reduces water clarity, affecting predator-prey effec-
tiveness and other stresses (e.g., Ortega et al. 2020), and
many species prefer specific grain sizes during different life
stages and sudden changes, such as deposition over eggs,
can be harmful to survival. Sediment quality may be a
source of contaminants for fish (Affandi and Ishak 2019).
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Before the development project starts the sediment char-
acteristics that the development would potentially influence,
such as grain size distribution, bedload movement, suspended
solids, and/or sediment quality should be evaluated. There are
multiple sources of sediments in a watershed, some of which
are on the drainage basin, while others are in-stream. The
relative importance of these various sources to river sediment
loads may shift with changes in land use and/or river
hydrology and hydraulics (Liu et al. 2018). Although sedi-
ment may not be directly influenced, changes to water quality
or flow from the project may change sediment quality, dis-
tribution, or movement. Based on species present, habitat that
is chosen largely based on sediment, such as spawning
grounds, should be identified. Changes may occur in sediment
distribution naturally with changes to water flow and load,
and seasonal measurements over multiple years will help to
understand this variability (Zhou et al. 2018). Future reference
and exposure areas should be sampled.

During the modeling phase, the effect of the development
on sediment is predicted. Triggers are developed that can be
based on the normal ranges in quality and quantity, toxicity,
and/or predictions of effects. These triggers are then tiered in a
monitoring program. In Canada, for instance, guidelines and
triggers are specified for different water uses (Canadian
Council of Ministers of the Environment, https://www.ccme.
ca/en/resources/water/index.html). Those relating to the pro-
tection of aquatic life allow for an absolute (or sometimes
relative) exceedance of the regional average. Thus, a regional
analysis is required to implement such recommendations. This
can be achieved through antecedent (pre-project) monitoring,
or by using modeling tools (e.g., Sirabahenda et al. 2017).

Monitoring should measure many of the same aspects
that were measured during baseline to determine if predic-
tions were correct. If the development has caused an
unacceptable change in sediment, then the monitoring
program moves to the next tier.

Measures for Supporting Services

Spawning, nursery, migratory, and overwintering habitat

Most fish have different habitat requirements for repro-
duction, different life stages, and/or seasonally and fish
require access to these habitats at the appropriate time for
survival. Before development the amount and types of
habitat upstream and downstream of the development
should be measured and the use of these habitats by fish
species should be determined. There are various methods
for collecting habitat use data, including biotelemetry (e.g.,
Capra et al. 2017), direct observation, and direct capture of
individuals across different habitat types (Spurgeon et al.
2019; Wegscheider et al. 2020). Quantifying the location,
size, and quality of these crucial habitats, through the means

of field-based surveys or remote sensing techniques (i.e.,
aerial or satellite based multispectral imagery; Hugue et al.
2016; O’Sullivan et al. 2020), represents an important
ingredient for a large-scale environmental assessment.
However, the availability of suitable habitat varies with
flow, which results in spatiotemporal patterns of habitat
availability and utilization (Wolter et al. 2016).

Habitat use data can be collated and expressed using
habitat preference functions using a variety of statistical
methods (Ahmadi-Nedushan et al. 2006), which result in a
habitat suitability index – typically ranging from 0 to 1 – and
can be supplemented with expert knowledge when avail-
ability of habitat use data for several species is limited (Mocq
et al. 2013; Wegscheider et al. 2021). When the critical
habitats in the vicinity of the project area are identified then
the project description can be used to predict how habitat
suitability may change over time and in response to envir-
onmental impacts. Triggers can be developed for habitat
utilization as well as quantity and quality of critical habitat.

Predictions can be validated by monitoring habitat use of
target fish species, assuming that target species would
favour highly suitable habitat over areas predicted to be of
poor quality, and monitoring data compared to triggers
developed for the monitoring program. The monitoring
program moves to the next tier if triggers are set off.

Despite its benefits, there are several limitations of physical
habitat as a diagnostic tool in EIAs. First, habitat availability
does not represent habitat use, which means that the presence
of suitable habitat conditions does not necessarily result in the
presence of the species of interest. Furthermore, especially in
the case of EIAs, the biological response or recovery after an
impact might lag the direct response of abiotic factors, which
could potentially lead to erroneous conclusions.

Connectivity

As discussed in previous sections, fish need different
habitats at different life stages as well as access to refugia
during environmental extremes. These areas need to be
connected, by passable waters, for fish to survive (Schiemer
2000; Magoulick and Kobza 2003). In addition, populations
of fish have degrees of connection between them, which
determines the spatial scale for genetic diversity. Barriers to
fish connectivity can have negative consequences for
effective population size (Gouskov et al. 2016). Where
significant barriers will be created or when endangered,
rare, or threatened species are present, more intensive
sampling (i.e., genetic) should be considered. The species
present, their required habitats during different life stages
and seasons, and current status or future status of con-
nectivity needs to be understood for this ES to be adequate.

Prior to development, where populations of present fish
species are and how they interact may be important to
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understanding the full potential impact of the development.
The distribution of species can be assessed with traditional
sampling approaches (nets, electrofishing), but can be labor
intensive. More recently developed approaches have used
genetic barcoding, either through tissue sampling (can occur
starting with a non-lethal fin clip) or Environmental DNA
(eDNA) filtered from water samples. Genetic analysis can take
a one-species-at-a-time approach with species specific probes
and primers in a Quantitation Polymerase Chain Reaction
(qPCR), or a metabarcoding approach with PCR amplification
of the barcode region followed by amplicon Next Generation
Sequencing (Ivanova et al. 2007). The former approach has
the advantage of higher precision and accuracy, but will miss
species not specifically tested (including species unknown to
science). The latter approach is less accurate but does not
require a priori knowledge of species diversity.

Observations through tagging and acoustics, or stable
isotope analysis can provide information on movement of
species of interest and the presence of critical barriers that
could limit connectivity between habitats. Genetic analysis
can provide information of diversity at multiple levels
(individual, population, metapopulation, glacial lineage, and
species levels). Population genetics for each species can be
determined in a variety of ways. Genotyping microsatellites
provides excellent information on a within-catchment scale
(Selkoe and Toonen 2006), but they must be developed for
each species independently. Microsatellites are highly
variable repeated stretches of DNA that provide valuable
information about neutral genetic variability that can be
informative to infer effective population size, inbreeding,
and population connectivity. Restriction-site-associated
DNA tag markers (RAD-seq) can be generated without
species-specific a priori tool development (Miller et al.
2007). They can provide all of the neutral patterns as
microsatellites, and additionally provide information on
adaptation. However lab work and bioinformatics for RAD-
seq is substantial and expensive. Baseline data can be used
to develop monitoring triggers for numbers of fish that do
not have passage and access.

If the project is adding a potential barrier of connectivity
between populations or required habitat, the modeling phase
should predict how it will affect the fish species present. After
development, monitoring could employ some of the baseline
but also additional genetic approaches, depending on the
relative level of impact predicted during the modeling phase.
Traditional fish sampling approaches and/or eDNA with
species-specific primers and probes can be used to monitor
presence/absence distribution changes. With some species,
semi-quantitative abundance estimates may also be possible
(Wood et al. 2021). The population genetic analysis described
for the baseline phase above are not useful for immediate post-
development monitoring, as the patterns reflect demographic
changes occurring on decadal and longer timescales (Jordan

et al. 2013). Instead, the same genetic data can be used with
individual-level analyses as opposed to population-level ana-
lysis. For example, genetic mark-recapture and parentage
analyses can measure migration occurring year-to-year as well
as census population size (Miller et al. 2005). Transcriptomic
analysis (measuring levels of gene expression) of unhealthy
fish could provide information on the physiological cause of
the problem (e.g., metal toxicity, heat shock, etc.). If the dis-
tribution of species is changing, fewer fish are moving between
areas than predicted, or abundance of populations are declin-
ing, the monitoring program would move to the next tier. The
post-development monitoring program would include tiered
triggers to assess the site-specific impacts of the development.

Conclusions

The EIA process would be improved by developing con-
sistency in monitoring approaches conducted prior to, dur-
ing, and following the completion of an EIA. Baseline
monitoring and modelling need to be aligned so that they
support post-development assessment. Interpreting the key
ecosystem attributes required for fish to thrive provides one
example of an approach that can be used to provide con-
sistency in indicators and to develop that foundation for
post-development evaluation. It is critical that post-
development monitoring requirements are considered early
in the development of the EIA. Pre-development monitoring
need to focus on the development of the baseline necessary
for identifying the significance of any changes post-
development and focuses modelling approaches so that
predictions of the magnitude of expected change can be pre-
defined so that EIA predictions can be assessed.

Interpreting the key ecosystem attributes through a lens of
Ecosystem Services that fish require defines measurable
attributes that will form key components of post-development
evaluation. It also defines clear objectives for baseline mon-
itoring (the development of monitoring triggers or thresholds
that will define change) and focuses modelling to define
quantitative predictions (forecasts) of the level of expected
change (or absence of) that provide the foundation for the
post-development assessment process. The post-development
monitoring plan can include mechanisms for adjusting sam-
pling and management by using triggers to move between
stages, or tiers, of the plan. These changes can shift current
EIAs from qualitative statements to meaningful quantitative
models and triggers that will protect the environment by
understanding when there are relevant, project-related chan-
ges. The EIA process needs to provide the information on
which management decisions can be made. Utilizing con-
sistent indicators across the development process and aligning
them with other monitoring conducted within a basin offers
the opportunities to use a before-after design and improve the
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capability of determining if changes seen post-development
are caused by the project and provides a broader regional
perspective and capacity for integration into regional man-
agement approaches.
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