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Abstract  

To date the unpredictability of seizures remains a source of suffering for people with epilepsy, 

motivating decades of research into methods to forecast seizures. Originally, only few 

scientists and neurologists ventured into this niche endeavor, which, given the difficulty of the 

task, soon turned into a long and winding road. Over the past decade however, our narrow 

field has seen a major acceleration with trials of chronic EEG devices and the subsequent 

discovery of cyclical patterns in the occurrence of seizures. Now, a burgeoning science of 

seizure timing is emerging, which in turns informs best forecasting strategies for upcoming 

clinical trials. Although the finish line might be in view, many challenges remain to make 

seizure forecasting a reality. This review covers the most recent scientific, technical and 

medical developments, discusses methodology in detail and sets a number of goals for future 

studies.     

  

Keywords: 

·    Seizure forecasting 

·    Seizure cycles 
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·    Multidien 

Key points.  

 The field of seizure forecasting has made four major advances in the last decade that 

together will benefit upcoming clinical trials.  

 1) the recent unraveling of mutlidien cycles of epileptic brain activity enables 

forecasting schemes at days-long horizons 

 2) the generalizability of the ictal-interictal relationship allows for transferring pre-

trained forecasters to unseen participants  

 3) the probabilistic estimation of seizure risk, benefits from identified cyclical variables, 

increasing amounts of data and refined methods 

 4) the recent inclusion of minimally and non-invasive technology help circumvent the 

risks linked to intracranial forecasting systems 
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I)           Introduction 

To date, the unpredictable nature of seizures has dramatic consequences for people with 

epilepsy as seizures can occur in any situation possibly leading to injuries or even death. 

Consequently, deploying strategies to provide people with epilepsy and their families with any 

degree of reliable information about upcoming seizures, would undoubtedly be met with great 

enthusiasm. Different clinical gains are expected for different forecasting strategies. Issuing 

accurate last-minute alerts about imminent seizures could enable the adoption of rapid safety 

measures1. Forecasting the probability of one or more seizures over hours or even days2, akin 

to weather forecasting, would allow patients and families to plan their lives around periods of 

high-risk and develop risk-mitigation strategies3–5. Over the past four decades, seizure 

prediction has been a niche endeavour for a few epileptologists and scientists acquainted with 

non-linear systems and equipped with the necessary mathematical background. Today, with 

the rapid development of wearable or implantable mobile devices, together with access to 

suitable computational power, the idea is gaining ground in the clinical community. 

  

Anticipating upcoming clinical trials, the purpose of this review is to contextualize the current 

state of clinical, scientific and technical knowledge and to clarify what goals these trials should 

strive to achieve. Major reviews have already covered work done before 20173,6–9, which will 

only be briefly discussed here. Recent work has clearly demonstrated the superiority of 

studying continuous data over months, as opposed to data collected over days in the hospital, 

hence studies based on shorter-term data will not be covered.  

  

In the past five years, four bifurcations have been reached on the long and winding road 

towards forecasting seizures. Different groups have focused on different forecasting strategies 

and this has diversified the work for better advances in the field. To highlight novelty and clarify 

concepts, we purposefully contrast alternative approaches when reporting themes discussed 

between October 29 and 30 2021 in Copenhagen, at the Congress on Mobile Devices and 

Seizure Detection in Epilepsy. An appendix covers the more technical aspects of this progress. 
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First, the horizon for forecasting seizures has lengthened from minutes to days since the 

inclusion of cyclical variables2,10,11. Second, methodology for probabilistic forecasting was 

borrowed from the field of meteorology to challenge the initial hope for fully deterministic 

predictions2,12. Third, non- and less-invasive technologies were developed11,13–15 and 

challenge the exclusive use of intracranial devices for the sole purpose of forecasting seizures. 

Fourth, the notion that forecasting algorithms must be individualised is questioned by the 

generalizability of forecasting strategies based on cyclical variables16. These different ways 

have not split far apart though. We conclude this review by explaining why they must reunite 

into one lane to pass the ultimate test: real-life, prospective clinical trials. 

II)         The road traveled in retrospect 

Starting point: Work in the 1980s-1990s 

With theoretical advances in mathematics in the 1980s, including chaos and non-linear 

systems theory, predicting seizures seemed within reach17–19. Researchers applied these tools 

to scalp or intracranial EEG from inpatient epilepsy workups, aiming at understanding the 

chaotic dynamics of the brain switching from one state (normal) to another (seizure)17
. 

First milestone: International Workshop on Seizure Prediction (IWSP) 

The enthusiasm was such that a first international hands-on workshop took place in 2002 in 

Bonn, Germany to try and predict 51 seizures in a dataset taken from 5 patients19.  However, 

none of the participants was able to predict seizures above chance. This set the goal of the 

second and third workshops that took place in Bethesda, USA, and Freiburg, Germany to 

develop consensual methods for comparing system performance across labs20. This is when 

the community realized it was walking on a long and winding road7. A
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A group of epileptologists, neurosurgeons, neuroscientists, computer scientists, engineers, 

physicists, and mathematicians continued to regularly convene at the workshop every other 

year, alternatively in Europe20–22, the USA23,24 or Australia25. But after the two first workshops 

trying to crack the problem as another hackathon, attention shifted to the need for a deeper 

understanding of the mechanisms of ictal transitions, and for identifying states promoting or 

impairing their occurrence. A major concern about earlier work was that seizure forecasting 

may be hampered by the non-stationarity in recordings26,27 from patients brought into the 

hospital for diagnostic work-ups that necessitate the cessation of anti-epileptic drugs28 and 

often sleep deprivation29.  Thus, by the 2010s,  the benefits in attempting seizure prediction in 

ambulatory patients, on stable medication, in their natural environment was evident. The field 

had turned to multivariate measures and machine-learning as the default approach to 

personalizing predictive algorithms on longitudinal datasets, a number of standards were 

established for the statistical testing of algorithm performance7,30, but sufficiently large 

amounts of data were still lacking to prove the point. As a consequence, a keen interest in 

developing a device for ambulatory EEG monitoring arose. A forced detour: commercializing 

devices for monitoring EEG 

To this day, five devices capable of chronically recording ambulatory EEG in epilepsy exist, or 

have existed, from which two are at the commercial stage. All come with advantages and 

drawbacks :  

1) Ten years ago, the Neurovista device was developed as a subclavicular recorder connected 

to subdural leads with a total of 16 electrode contacts, capable of continuously recording and 

storing intracranial EEG.  As the first and, to-date, only prospective trial of seizure prediction, 

the landmark Neurovista trial1 between 2010-2012 incarnated previously-developed concepts 

into a seizure advisory system which successfully collected up to two years of continuous 

intracranial EEG data in 15 participants.  Although above-chance warnings could be issued in 

9 of these participants, a clinical benefit could not be formally established. Nevertheless, the A
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results, first presented at the 6th IWSP in San Diego in November 2013, finally raised hope 

that seizure forecasting is achievable.  

 Once the study concluded, the device was never commercialised due to a lack of investment 

beyond 2013, and data collection stopped in humans (but continued in dogs). The recorded 

data has proven invaluable and has fueled the decade of work12,31–39 that followed the first 

publication1.  

2) The commercially-available RNS® System (NeuroPace, Inc, USA),  received FDA 

approval in 2013 as a therapeutic intracranial cortical neurostimulator with 4, now 8 

electrodes and is implanted to date in more than 3000 American people with epilepsy. Unlike 

Neurovista, the RNS System monitors, but does not store raw continuous intracranial EEG40, 

which sets boundaries to EEG analysis. Nevertheless, the device comes with customizable 

algorithms based on line-length, area-under-the-curve and band-pass filtering that can be 

tuned by the clinicians to capture patient-specific epileptiform patterns and count them on an 

hourly basis (above threshold detections).  As the company actively engages in 

collaborations with academia, longitudinal data collected in more than 200 participants41–43 

over the 12 years (2006-2018) of the clinical trials has yielded invaluable insights into focal 

epilepsy and its treatment by cortical stimulation2,10,44–49 while data continues to accumulate.    

3) The research RC+S device from Medtronic, with a trial limited to  5 human and 15 canine 

patients that is now closed, provided raw EEG data (4 channels) selected from 16 electrode 

contacts and has started to yield results on the recorded data and the effect of stimulation50,51. 

Its sister device, the commercially-available Percept™ PC deep brain stimulatior (DBS) has 

very limited recording capability in the ambulatory setting, storing one bandpass power epoch 

every 10 minutes (increased sampling rate possible only with firmware changes)52 and is not 

further discussed here.  

4) The commercially-available UNEEGTM device (UNEEG medical A/S, Denmark) that 

received CE-labeling in 2019 for a two-channel unihemispheric sub-scalp (i.e. electrodes and 

device are between scalp and skull) EEG system so-far implanted in 9 subjects with epilepsy A
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represents a less-invasive solution and offers recordings over months that are similar to scalp 

EEG, albeit with a limited number of electrodes.53–56  

5) The research Epiminder device (Minder, Australia), a four electrode, two-channel bi-

hemispheric sub-scalp EEG system, now in trial in 10 patients (aiming at 16) has yielded 

ongoing continuous recordings over months, up to one year15.  

Collectively, this ‘long data’ collected in a clinical ambulatory context in different formats in 

different groups of patients, amounts to years of data, and has enabled the recognition of 

previously uncharacterized interictal and ictal patterns among which the (re)57-discovery of 

cycles in epilepsy is central (see section III)5,10,32–34,44,45. 

 

 

Onboarding friends 

Now with long data available, the development of learning algorithms became the new 

bottleneck. Given the complexity of the task, the community has turned to experts in Artificial 

Intelligence for help. Using rigorous designs, internet-based machine-learning competitions 

(www.kaggle.com) have pushed the performance of individual algorithms, tested on held-out 

data not available to the participants38,39. In these crowd-sourcing efforts, hundreds of 

researchers (654 and 646) attempted to solve the problem with a high number of trials (17,856 

and > 10,000 algorithms entries) on two-year long datasets from two and three humans with 

epilepsy (some additional data from dogs) yielding top AUCs of 0.81 and 0.84, 

respectively38,39. Of course, crowd-sourcing efforts to develop personalized algorithms for a 

few patients cannot be implemented in real-life but the approach is nevertheless informative 

in regard to the amount of engineering effort needed for algorithm optimization to gain 

performance on datasets that were reputedly difficult. Yet, it is difficult to synthesise the many 

EEG input features on which these algorithms typically rely into one coherent explanation4 and 

the AUC should not be the only assessor of performance (see below). A
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Lessons learned so far 

From decades of work, a number of fundamental and practical points were clear: 

● The need for high specificity and sensitivity. In a seizure alarm system, false-alarms 

(low specificity) can be stressful at first, but then decrease confidence in the system, 

lead to alarm habituation and ultimately defy the intended purpose. Related to this 

issue, patients with very frequent seizures (e.g. daily) likely will benefit less from 

seizure forecasting. On the other hand, a system capable of detecting low risk, is likely 

as valuable as an alarm, and may contribute to decreasing stress. However, this is 

only true granted the system has high sensitivity, as false negatives also decrease 

confidence in the system. To achieve reasonable sensitivity-specificity trade-offs, 

forecasting algorithms need to be patient-specific and require a large amount of 

training data. This commands the acquisition of long data within the same patient, and 

personalized algorithms although these imperatives are challenged in this review.  

● TThe need for continuous raw data and better batteries. In a field where much of the 

science remains to be done, raw data is of the essence. Outside of the temporal 

constraints of a prospective trial, retrospective studies on existing raw data likely yield 

more knowledge than immediately launching the next clinical trial. However, obtaining 

raw data immediately relates to the battery problem. Technically, devices that provide 

raw data must be rechargeable because streaming rapidly depletes batteries. Since 

high-performance rechargeable implantable batteries is an unresolved biomedical 

engineering problem, many have adopted battery-less implants, combined with 

rechargeable small external batteries56.  

● Invasiveness is undesirable. The invasiveness of neurotechnologies that do not 

directly provide treatment is difficult to accept from the patient side, calling for 

minimally- or non-invasive solutions.  

These learned lessons were some of the motivation for a number of groups in academia and/or 

industry to bifurcate in slightly different ways. Crucially, scrupulous retrospective studies have A
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enabled the burgeoning of a small scientific revolution for our field and advanced technology  

for seizure forecasting by leaps and bounds. 

III)       An emerging science of seizure timing 

To better reflect the need for a deeper understanding of seizures and abandon the sole focus 

on prediction the IWSP changed names in 2017 to become ICTALS: the International 

Conference on Technology and AnaLysis of Seizures. With this new impetus, the conference 

saw major knowledge advances over the past years, which together constitute the emergence 

of a true science of seizure timing. This knowledge has recently been covered in a major 

review58 and will be here only succinctly summarized. Accounting for their prevalence and 

effect-size on relative seizure risk, a number of endogenous cyclical risk factors (some of 

which are paced by the environment) have now been recognized as critical for seizure timing, 

whereas a number of external and/or sporadic influences have seen their importance 

relativized (Table1).  

Seizure cycles 

Evidence indicates that the momentary likelihood of a seizure is co-modulated by cycles 

operating at various time scales: from the shorter ultradian (<<24 hours)10,47 and circadian 

(~24 hours)10,32,35,44,45,47 cycles to longer multidien (~1 week to ~1 month)10,33,45 and circannual 

(~1 year)45 influences. In any given individual, a combination of cyclical modulations at specific 

timescales and phases may give rise to a unique temporal pattern of seizure occurrence9. 

Shared characteristics at the level of groups of people with epilepsy led to the notion of seizure 

chronotypes45, originally described in a handful of landmark reports at the turn of the 20th 

century57,59–61. Highlighting the importance of these clinical phenomena, modern chronic EEG 

data shows a ~90%, ~60%, and ~10% prevalence of circadian35,45, multidien45, and 

circannual45 seizure cycles, respectively. Although the mechanisms by which seizures occur A
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cyclically at these different timescales are currently unknown, there has been long standing 

interest in the question and chronic EEG studies have recently advanced our understanding.  

 

Sleep and seizures 

Although the modulation of seizures by the sleep–wake cycle and the circadian cycle are often 

conflated in the epilepsy literature, they should be treated as distinct but intertwined 

modulators of epileptic brain activity62,63. Historical reports have documented prevalence of 

20–30% for sleep-related seizures57,59–61. Although long-suspected, an additional role for sleep 

homeostasis (the need for regenerative sleep that grows with the length of wake) in triggering 

seizures has not been fully established yet64. One recent retrospective study on NeuroVista 

data found that 10/12 patients had a slight decrease in seizure risk over 48h when they slept 

more than 11.2 hours, but no heightened seizure risk when the usual sleep time was 

curtailed65. However, the sleep-protective effect was not confirmed in a pseudo-prospective 

study on the same data36.  The issue remains unresolved as these and other studies were not 

designed as experiments to assess the effect of shorter sleep (i.e. experimental sleep 

deprivation)64.  

 

Catamenial epilepsy 

Catamenial epilepsy has been discussed for decades, and progesterone and estrogens have 

been hypothesized to have variable degrees of anti-ictal and pro-ictal effects. However, these 

mechanisms cannot account for observed multidien rhythms in men and children, highlighting 

that catamenial epilepsy is merely a special case of multidien rhythmicity in epilepsy. 

Additionally,  the effect of menses as a temporal cue reported in the literature is lower (~RR 

of 1.2-1.5)66,67 than that of multidien cycles found in women with chronic EEG.  

 

External modulation A
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Environmental factors such as weather changes clearly have weaker predictive value. In a 

pseudo-prospective study, four of eight included subjects had seizure risk weakly influenced 

by temperature (3 subjects) and humidity (2 subjects, see Table 1)36. Another larger study 

reporting only group statistics showed that seizure risk increased slightly with low atmospheric 

pressure and high humidity (Table 1)68.  

Endogenous cycles of ictal-interictal activity 

Highlighting the power of monitoring epileptic discharges, the long-debated interictal-ictal 

relationship can be understood in more general terms of long dynamics in epilepsy by 

examining the relationship between seizure timing and fluctuations in IEA at long time-scales: 

cycle after cycle, seizures tend to occur when IEA raises over days10. This phasic relationship 

(technically phase-clustering of seizures within rising phases of IEA) holds true for cycles 

spanning about a week to a few months and is consistent across studies10,33,45, 

individuals10,33,45, and species51,69, representing a general basis to forecast seizures over 

longer horizons. In a study of > 200 individuals, very few contradicted this rule45. Importantly 

this phase relationship did not depend on the period-length of the underlying cycle, pointing to 

a dynamical process that can accommodate several timescales. 

 

Additionally, ictal and interictal activity also fluctuate rhythmically at shorter, circadian 

timescale, but with less consistent phase relationship across patients10,32,33,45. Further, 

circadian and multidien cycles of interictal and ictal activity can be detected with 

intracranial10,33 or sub-scalp16,70 EEG, and correlate with heart-rate variability in some 

patients71 opening the way for less invasive methods. Related to these intricate cycles, some 

clinical evidence33,72,73 supports the theoretical prediction74,75 that critical slowing may signal 

approaching ictal transitions (a bifurcation) at timescales longer than the seizures themselves.   

 

Relative importance of time varying risk factors A
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In medicine, effect sizes are often compared as a ratio of risk or odds for belonging to one 

category or another. In the circular domain, effect sizes are best evaluated on the continuum 

of phases, as the phase-locking value. Dichotomizing (thresholding) cycles into one critical 

phase versus low-risk phases  can approximate circular data in terms of relative risk. Across 

different studies using chronic EEG, relative risks linked to nearly-ubiquitous endogenous 

cycles combined into 3-9 fold increases2,10, far above relative risk found for categorical 

variables in other studies, which rarely exceeded 1.5 fold increases (Table 1 for comparison). 

Contrasting the relative effect-size of established time-varying risk factors informs best 

strategies to forecast seizures.   Building on this, pseudo-prospective studies have shown that 

a promising strategy to improve the performance of seizure forecasting at longer horizons is 

to account for slow variables at circadian12 and multidien timescales2,10,33. 

IV)      First bifurcation: forecasting horizon of days versus minutes 

One of the most striking advances in the past five years is the realisation that it is possible to 

forecast seizures over days2, whereas previous attempts had focused on the minutes 

preceding seizures1,12. This advance, which has not yet been tested prospectively, was only 

possible with the discovery of multidien rhythms of epileptic brain activity10,32,33. In pseudo-

prospective studies, forecasting algorithms were able to output above-chance forecasts at a 

24-hour horizon on the unseen test-data in about two-thirds of subjects2. The inclusion of 

circadian and multidien rhythms was also demonstrated to be the best predictor in datasets 

that had been previously exhaustively investigated with machine-learning32,33, illustrating how 

the most advanced algorithms cannot compensate for important features that are missing in 

the input data. Opening the way to less invasive studies, multidien cycles of IEA can be 

detected with sub-scalp EEG15,16. In addition, characterising and modelling seizure cycles 

using patient reported seizure calendars may be sufficient to forecast to some degree 

upcoming seizure risk over the next calendar day11,76. Multidien rhythms may not be 

straightforward to detect with wearable technology, although some data is promising in that A
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sense too71. Including a circadian influence can be approximated by simply characterizing the 

preferential hour of the day for a patient’s seizure occurrence (as opposed to tracking a 

circadian biomarker) and this very simple approach should be included in any probabilistic 

seizure forecasting scheme. Indeed, the past is the best predictor of the future, and repeating 

patterns can be found in almost all patients with epilepsy. While extremely promising for future 

risk-modifying strategies, forecasting cycles of seizures comes with its own technical 

challenges that will need to be addressed to enable the design of clinical trials (see section 

IX). 

V)        Second bifurcation: probabilistic versus deterministic 

forecasting strategies 

A deterministic forecast seeks to provide a categorical answer to the question of whether an 

event will occur or not (‘yes’ or ‘no’ categories). In contrast, probabilistic forecasting strives to 

reproduce the probability of events. When accurate, a deterministic forecasting approach is 

adequate, because it provides spot forecasts for best-informed decisions. While this is most 

often conceivable at very short horizons, perfectly accurate deterministic forecasts do not exist 

for seizures, nor for weather. Deterministic forecasts are indeed as good as a combination of 

the accuracy of the model generating them, the accuracy of the collected data, the 

interpretability of the output, and the time horizon to take action before the realization of the 

forecast. In the 1960s, the acknowledgement that the accuracy of deterministic forecasts 

heavily depended on minute parameter changes or measurement inaccuracies (initial 

conditions) led the field of meteorology to promote a probabilistic approach77. Many other 

forecasting problems greatly benefit from a probabilistic approach, because they are too 

complex to be modeled accurately, or because the very nature of the events’ timing is 

stochastic. For seizure forecasting, a combination of both approaches will be ultimately 

needed in clinical practice (probability and threshold), as a given seizure risk must be A
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translated into a practical decision (e.g. taking a medication above a certain risk), but we here 

purposefully emphasize the nuances between the two approaches for the sake of clarity.  

 

Forecasting probabilities versus categories 

The choice between a deterministic and a probabilistic approach has repercussions on (I) the 

goal to attain, (II) the choice of forecasting algorithm, (III) the information provided to users, 

(IV) the methods to evaluate performance, and (V) the amount of data needed to do so: 

(I)           Two different goals may be sought: (a) always forecast a category but accept 

that this may sometimes (or often) be wrong, or (b) forecast a probability of belonging 

to a category (continuum between 0% and 100%), striving to produce a reliable 

quantification of uncertainty. 

(II)         The types of supervised algorithms that best match these distinct goals are 

different. Deterministic algorithms act as classifiers (e.g. logistic regression) that 

dichotomize values in binary categories by learning how to assign a label to each data 

sample. Probabilistic algorithms act as regressions (e.g. linear regression and its 

generalisation) that predict continuous values, and seek to optimise the conditional 

probability of observing a label given a data sample. Although there are methods to 

convert outputs of deterministic algorithms into probabilistic ones, opting for 

probabilistic algorithms allows for using methods adapted to the probabilistic nature of 

the problem (e.g., likelihood optimization). 

(III)        Deterministic outputs to users require threshold optimization to achieve a given 

goal (e.g. high specificity, low sensitivity), which is not required if users directly access 

forecasted probabilities to make informed decisions based on a certain degree of 

uncertainty. 

(IV)         While benefiting from more observations, deterministic scores can already be 

evaluated on small sample sizes (e.g. 20)78. In contrast, evaluating a probabilistic 

forecast requires orders of magnitude larger sample size, because it is based on A
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comparing probability distributions that include some values which are rarely output by 

the algorithm for low-probability events. The critical lack of longitudinal data originally 

undermined burgeoning interest for a probabilistic approach in epilepsy79, but this 

strategy has now been established with longer datasets2,12. 

(V)        “How often are the forecasts correct?” Correctness is appealing to characterize 

deterministic forecasts but is generally considered inappropriate to evaluate 

probabilistic forecasts.78,80 Probabilistic scoring metrics reward a forecaster for 

reporting risk when an event could have occurred, even in the absence of an observed 

event (absence of realization of the risk). A deterministic forecast on the other hand 

strives for discrimination between event and no-event datapoints; Deterministic scoring 

metrics punish reporting risk when no event took place. Indeed, higher deterministic 

scores reflect that lower and higher forecasted probabilities are associated with the 

non-events and events, respectively, but not how well this forecast captures the 

underlying event probabilities. Importantly, they are blind to the calibration of a forecast 

as they only rely on the relative —rather than absolute— probabilities. For example, 

an algorithm forecasting 0% when no event occurs and 0.1% on each day when an 

event occurs would lead to an area-under-the-curve (AUC, see Table 2) of 1 (perfect 

performance), even if the event occurred every other day on average (i.e. an expected 

probability of 50%). Probabilistic metrics on the other hand can quantify the calibration 

and resolution of the forecast78. The average relationship between forecasted 

probabilities (a priori) and observed probabilities (a posteriori) can be visualized in the 

form of a reliability diagram which allows for the evaluation of resolution and calibration 

(Fig. 1 and mathematical formulas in the appendix) as well as the calculation of the 

Brier skill score. The reference forecast for comparison can be drawn from simply 

shuffling the original individual forecasts2,12, or by issuing a trivial forecast, such as the 

long-term expected event probability81. The best strategy has not been determined 

with certainty in the field of epilepsy.  A
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Rationale for probabilistic seizure forecasting 

One key advantage of a probabilistic framework is that it includes the possibility to issue fully 

committed predictions (i.e. 0% and 100%) at both ends of a continuum of intermediate degrees 

of confidence. Conversely and by design, a deterministic approach severs the connection to 

model outputs by irreversibly thresholding values into two mutually exclusive categories. The 

price to pay for a deterministic approach is to be wrong on some (or many) occasions. The 

price to pay for a probabilistic approach is to never (or rarely) be certain. 

Opting for a probabilistic approach in epilepsy, like was the case in weather forecasting in the 

1960s can be motivated by several factors: (1) the lack of infallible seizure precursors in the 

pre-ictal period (minutes preceding seizures)9,58, (2) the existence of cycles of epileptic brain 

activity that determine pro-ictal states at certain phases, which constrain the timing of seizures 

in a probabilistic manner over different durations9,58, (3) the possibility to use explicit 

Bayesian12 or generalized linear model frameworks2 that can fit any probability distribution; 

and (4) the potential for probabilistic forecasts to be interpreted by people with epilepsy in 

terms of quantified uncertainty about upcoming seizures with forecasted probabilities rendered 

as a continuum of increasing risk, a “seizure gauge”83–85 (Fig. 1a). 

In summary, from technical nuances that seem subtle at first, it is clear that the choice of the 

methodological strategy has a key impact on the scientific and clinical aspects of seizure 

forecasting. As opposed to black-box machine-learning approaches, an explicit combination 

of time-varying risk factors in probabilistic terms favors the scientific understanding of the 

relative importance of predictors within and across patients. Additionally, by offering a graded 

assessment, probabilistic forecasting circumvents the core issues of specificity and sensitivity 

as well as false positives and negatives, which may raise stress for patients and create 

medico-legal issues, respectively. In our opinion, to move the field forward safely, the goal of 

immediate deterministic forecasts must be extended to include progressively improved 

probabilistic forecasts by increasing their sharpness (higher prevalence of extreme forecasted A
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values, e.g.. close to 1% and 99%) and resolution (actual degree of certainty on the observed 

outcome). For a full technical description on these issues, we refer the reader to the appendix 

of this review.  

VI)      Third bifurcation : invasive versus non-invasive seizure 

forecasting 

 

It is not surprising that many people living with epilepsy would much prefer to have seizure 

forecasts derived from noninvasive signals without requiring an invasive brain implant79. While 

seizure forecasting methods have now been established with invasive EEG devices, 

forecasting with noninvasive and minimally invasive signals has begun to emerge. It has now 

been demonstrated that signals from wearable devices, including heart rate, electrodermal 

activity, actigraphy, and temperature show circadian and multidien cyclical relationships with 

seizure risk, though often these relationships are less significant than those demonstrated with 

interictal discharges and will have to be confirmed with a larger cohort. These signals are 

measurable using wrist-worn research devices (Gregg et al. American Clinical 

Neurophysiology Society Annual Meeting, conference abstract, 2022) or commercially 

available fitness trackers13,71 and represent form factors that many patients find acceptable 

and easy to use86,87. The ability to non-invasively track epileptic rhythms is a key development, 

given the focus on individual-specific multidien cycles to inform the next generation of seizure 

forecasting devices.  

 

Recent research highlights the potential for mobile and wearable seizure forecasting88. Some 

studies have validated methods to track the likelihood of self-reported seizures using mobile 

diaries11,76, and wearable biosensors13. In addition, wearable measurements can be used to 

detect the pre-ictal state of electrographic seizures. For instance, accelerometry, blood volume A
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pulse, electrodermal activity, and temperature were predictive of both focal and generalized 

electrographic seizures in 43% of people (n=69) with a short prediction horizon (on the order 

of minutes)14, although findings were limited to inpatient recordings. Compared to simply using 

time-of-day, Nasseri et al. 202189 showed improvement of forecasting performance (AUC 

range of 0.72–0.92) of electrographic seizures using the same14 wearable signals in a cohort 

of 6 participants with a minimum of 6 months ambulatory recording. Taken together, these 

studies show early promise that wearable signals may be useful to forecast the risk of seizures. 

 

Minimally invasive subcutaneous EEG systems have also very recently demonstrated the 

ability to forecast seizures, using multiple devices. A proof-of-concept case was published 

using the EpiMinder device in two patients with epilepsy15 employing a cyclical critical slowing 

approach, previously demonstrated using the NeuroVista dataset33. The UNEEG SubQ device 

has also demonstrated the ability to measure cycles of brain excitability over long periods 

(Viana et al.,  American Clinical Neurophysiology Society Annual Meeting, 2021), and 

generate long-term seizure forecasts16.  Additionally, short term forecasts may also be 

possible using this device in patients from Denmark and the UK (Viana and Pal Attia, current 

issue). 

 

In the end, it is likely a combination of physiological, environmental and behavioral signals 

measured from implantable, wearable and mobile systems will contribute to seizure forecasts, 

with less invasive approaches potentially useful to screen individuals who would benefit from 

higher precision forecasts using continuous brain recordings90. In the meantime, more work is 

needed to characterize the relationships between seizure risk, brain excitability, autonomic 

regulation, behavior, and other features of body homeostasis to realize the full potential of 

noninvasive multimodal seizure risk forecasting. 
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VII)     Fourth bifurcation : personalized versus generalized 

forecasting 

With the advent of artificial intelligence,  machine- and deep-learning algorithms were applied 

to EEG to try and forecast seizures relying on large amounts of individual training data.. 

However, we previously saw that, at the multidien timescale, a majority of patients have an 

alternance of pro-ictal and low-risk states with smooth transitions over days2. Building on the 

generalizability of the multidien interictal-ictal phasic relationship (see above), a recent study 

proposed algorithms that are transferable across patients to forecast the risk of seizures over 

days16. Indeed, once the multidien phasic relationship is captured by a statistical model, it is 

sufficient to know the past seizure (emission) rate and the recent IEA trends of an individual 

to forecast absolute seizure probabilities over coming days. Simply put, as general principles 

of seizure timing are being discovered, forecasters can learn from cohorts of patients and 

forecast seizure risk for previously unseen patients. Along the same line, others have 

generated generalized forecasts at shorter time horizons using machine learning algorithms 

trained on data from different subjects (Pal Attia and Viana, current issue). Being able to learn 

and generalize across cohorts of patients has a number of practical consequences: 1) Cohort-

based statistical models will undoubtedly be more robust as they are based on more data from 

different patients, thus avoiding overfitting 2) more advanced methods that require such large 

datasets can be used, including deep-learning, and 3) for individual patients who freshly 

engage into trials of seizure forecasting, less preliminary data will be needed before producing 

accurate seizure risk estimates. Cohort-based models also have drawbacks, as by design, 

they lack personalization and tend to capture average effects. 

VIII)   Merging into one lane 
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This review purposefully contrasted approaches for the sake of clarity of the concepts. Overall, 

it is worthy to note that most recent progress has been achieved by methods different from 

complex EEG analysis. Studying counts of seizures11,35 and interictal discharges10,32,33,45 has 

been instrumental in delineating a probabilistic approach to seizure forecasting relying on 

repeating patterns. The addition of sub-scalp EEG and peripheral monitoring may further 

enable less-invasive approaches or complementary measures.  In clinical trials, where 

forecast performance should be optimised for each individual participant, the strengths of 

different approaches should be combined. Given recent advances, future holistic solutions will 

likely be:  

● multi-timescale, using sleep-wake, circadian and multidien cyclical influences that 

coexist at different degrees in most patients to best inform momentary risk estimates. 

● multimodal, combining a range of peripheral, central, and behavioural measurements 

to best capture coexisting dynamics. 

● probabilistic, accounting for mixed time-varying risk factors, but also deterministic 

when a categorical decision must be made (e.g. take an add-on medication or not) or 

for closed-loop paradigms. 

● generalised, learning robust forecasting models from cohorts of patients, but also 

personalised, optimising the final forecast output for each individual. 

 

IX)       The finish line ? 

To date only the Neurovista trial has taken the ultimate test, setting high standards for future 

trials1. With the advances presented here, new trials with less invasive methodology and 

forecasts at extended horizons are within reach. However, a number of problems remain. 

Unsolved problems A
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Additional chronorisk factors. Additional time-varying risk factors have been under-

researched. It is well-known that certain patients have seizures in preferential brain states, 

regardless of the circadian time,  for example, patients with seizures occurring exclusively 

during specific sleep states, either at night or during a nap. Simply tracking brain states and 

using this information as another covariate will help narrow windows of risk. As mentioned 

above, an additional role of sleep homeostasis remains unresolved. Additional chronorisk 

factors may remain to be identified, as uncovering the previously unrecognized importance of 

circadian and multidien cycles has been a humbling lesson for the field. Different time-varying 

risk factors likely incorporate into one latent variable – the momentary seizure risk – which 

may be more directly tested (for example with stimulation) in the future.   

Real-time phase estimation. The causal estimation of the instantaneous phase of a cycle in 

real-time (i.e. without knowledge of future signal fluctuations) represents a major challenge. 

While this may be relatively easy for cycles with well-characterized states (sleep-wake) or with 

a set and externally-paced period-length (e.g. circadian), it is particularly difficult for free-

running quasi-rhythms defined by their non-stationarity leading to changes in period-length 

and phase-shifts (e.g. multidien)91. So far, the issue of causal instantaneous phase estimations 

of multidien rhythms of brain excitability and heart-beat has not been solved in the forecasting 

studies using this feature2,15,33. Solving this issue is necessary to be able to implement seizure 

forecasting on the scale of days.    

Usability. Keeping the user engaged with the forecasts will be another key issue in future trials. 

Once reliable forecasts are achieved, incorporating psychological aspects of individual users 

may reveal another long and winding road for the field. While prior probability estimation at 

daily and hourly timescales are undoubtedly going to improve seizure alarms, whether users 

prefer last-minute alarms, hourly or daily risk estimates is unknown and should be one 

outcome of future trials. Although useful to prepare trials, existing surveys83,85,92 cannot really 

inform the final choice of a forecasting horizon, and this will have to be determined 

prospectively. The human mind varies across individuals in its anticipatory plans, but typically 

a 24-hours advanced notice seems a reasonable horizon, granted risk estimation does not 
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change in the interval. If the forecast is re-issued at a later point, say 2 hours later, it should 

not be radically different from its predecessor. This desirable feature, which we here term 

forecast stability, is not accounted for by the deterministic or probabilistic performance 

assessments presented in this review (they are insensitive to the sequence of issued 

forecasts) and represents another open issue. As an increasing number of risk factors are 

included at finer temporal scales, the sharpness of forecasts will undoubtedly increase (more 

forecasted probabilities at the extremes), but flickering between low and high risk will likely 

remain undesirable for users. Separating daily forecasts into finer hourly forecasts may be 

helpful for some users. Additionally, seizure alarms can be issued at minutes-long horizon in 

real-time. Defining set forecast horizons (here daily, hourly and last-minute alarms) can help 

comparing future results of clinical trials, but also has practical consequences; if 24-hours are 

most helpful to users, then the use of devices only capable of batch-transfers (as opposed to 

continuous data streaming) is possible, lowering the needs of constant connectivity and high-

performance batteries. 

Design. Potential users have expressed a strong interest in using forecasting devices92, but 

even a perfectly performing forecast must be interpreted by users and their care-givers. For 

instance, it must be made clear to the user that on days with 50% seizure probability means 

that seizure will occur one day out of two with the same forecast. It is therefore important for 

investigators to invest in high-quality design, making it as simple as possible to understand 

the information being presented85,92. It is important the systems are cosmetically acceptable, 

and not stigmatizing in themselves. This should have input from experts such as industrial 

designers, user interface and experienced product/service designers. There have already 

been some efforts to explore possible designs beyond the stand-alone Neurovista system of 

3 lights (low, unsure, or high chance of seizure)85 and whether the forecasts should be 

integrated with smart-devices already used by patients.  

Design of upcoming prospective trials 

Trial objectives. It is important as well to recognize that the performance measures and time 

scales in seizure forecasting will necessarily be driven by the particular application of the 
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forecast, requiring a clear use case definition. For example, an approach focused on providing 

a patient with an advisory to guide activities may practically incur a high penalty for incorrectly 

declaring a low-risk state and a low penalty for incorrectly distinguishing high from medium 

risk states. In contrast, a forecast changing neuromodulation settings or prompting a 

supplemental medication may have a low penalty practically for occasional false alarms, but 

a high penalty for missed seizures. Further it may be most appropriate to evaluate some 

applications using a deterministic measure if the forecasting application must result in a 

deterministic action (e.g. taking a medication). 

Patient selection. Seizure forecasting will not work for all patients with epilepsy and given the 

clinical complexity of implementing seizure forecasting, trials should likely focus on the most 

“forecastable” epilepsies at first and broaden to more difficult cases later on. Therefore, studies 

may screen for people who may most benefit from forecast as an inclusion criterion, 

acknowledging an explicit selection bias. 

Generalization to the epilepsies. Most of what has been learnt about forecasting comes from 

the study of focal epilepsies. In particular, the Neurovista cohort was relatively small, and 

focused on patients with temporal foci. While larger studies also had a majority of temporal-

lobe epilepsies, the method worked just as well for a number of extra-temporal focal 

epilepsies2. It is to be seen how well electrographic forecasting technologies work for 

generalized epilepsies, as well as the more complex developmental and epileptic 

encephalopathies. Pediatric patients and their families may benefit from seizure forecasting 

technologies in the future.  

Self-forecasting. one comparator that trials ought to include is the capacity of certain patients 

to achieve seizure self-forecasting based on subjective perception or feeling that a seizure is 

likely or unlikely to occur over future horizons37,38, although self-forecasting in itself represents 

a field of ongoing research. Nevertheless, complex and costly technological developments 

should at least be better than introspection to be of any use. 

Collection of  continuous raw EEG data.  Continuous subscalp EEG data is trickling in, as 

patients are being recruited into trials15,56,93, but is currently limited to only two to three 
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channels. To continue to advance the field at the pace set over the past decade, raw EEG 

data from multiple recording electrodes will be needed. Despite the recent push for sub-scalp 

EEG methods56, intracranial EEG remains valuable: many insights could still be gained from 

multisite high-density intractranial EEG, as critical information resides in the fine 

characterization of functional connectivity, brain states, seizure propagation and so on.  Most 

importantly EEG datasets must be long (years) and nearly continuous, even if from a limited 

number of patients.  In the field of seizure forecasting long rather than big data prevails.  

Covert forecasts. For robust evaluation of the forecasting performance, forecasts need to be 

tested covertly and extensively before opening to patients. Indeed, once forecasts are 

communicated to the participants, behaviour may change, which in turn may change seizure 

risk. The risk that trials become uninterpretable if forecasts are communicated to participants 

too soon is a concern. Covert forecasting may have to go on for a year or more, depending 

on the seizure rate, especially for trials adopting a probabilistic evaluation of forecasting 

performance.  

Performance evaluation. Although the field has increased in its rigor over the decades, 

variations of the definition of chance-level still exist, sometimes defying comparisons between 

studies, an issue reported over the years in our field3,7,30,94.  To be realistic, the performance of 

a forecasting system must be assessed over the entire time the forecast might be used in a clinical 

setting (as opposed to retrospectively selected pre-ictal/interictal periods). Indeed, selection of 

interictal data, that is always biased, may not cover all brain states (e.g. sleep stages)95 and 

overestimates specificity in an unbalanced problem such as seizure forecasting. Chance level 

should be derived empirically from randomized time series used for training and testing models 

that generate chance-level outputs on out-of-sample, unseen test datasets. Informative 

approaches include generating a given amount of artificial seizure-onset times using naïve 

forecasting schemes, such as random7,94,96 or periodic (e.g. circadian) forecasters7,96 for 

deterministic schemes, as well as issuing the long-term expected seizure rate for probabilistic 

schemes81. However, since seizure risk is inhomogenous in time and seizures have 

interdependencies, a favored approach that increases confidence in the result3 consists in 
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randomly shuffling the original inter-seizure intervals to generate surrogate seizure timeseries 

that share essential statistics (mean, variance, distribution) with the original, patient-specific 

data30. Further confusion arises from different definitions of forecasting horizons, the definition 

of what constitutes a seizure, and the exclusion of variably defined clustered seizures, 

historically motivated as a fair concern to not overestimate forecast performance in a 

deterministic framework (if one seizure is known, the second is easier to predict). However, in 

the more recent probabilistic view, this approach is likely contra-productive, as clustered 

seizures indeed confirm the existence of states of heightened likelihood. As seizure 

forecasting may not work for all patients, future studies ought to report the proportion of 

subjects in the included cohort with forecasts showing statistical improvement over chance-

forecasting, and, for those, also quantify complementary attributes of goodness of forecasts. 

Indeed, that a forecast is better than chance does not yet mean that it is of any potential use 

in clinical practice. To facilitate comparison between future studies, we here propose the 

systematic report of a set of pre-defined metrics covering deterministic and probabilistic 

evaluation of forecast performance. For deterministic metrics, the field has favored3 the report 

of the area-under the curve (AUC) of the sensitivity versus time-in-warning over the entire 

dataset (as opposed to selected pre-ictal and interictal clips), as well as the actual sensitivity 

and the time-in-warning for an optimized threshold. For probabilistic metrics, a number of 

studies2,12,15,76 have reported the reliability curve, calibration, resolution and associated Brier 

skill score. These metrics can be calculated for individual1,2,13 or aggregated2,76 data, that is by 

pooling daily forecasts and observations across subjects. While the former is most informative 

from a patient’s standpoint, the latter is strongly influenced by the large differences in expected 

absolute risk across patients (F4 & F5 in Fig. 1) and be misleading. Indeed, an algorithm that 

is merely able to capture the difference in seizure rates across patients in a cohort would lead 

to high scores. However, aggregating data can assess whether the algorithm accommodates 

for a wide range of individual seizure rates and can pool a sufficient number of observations 

to obtain well-defined curves. We recommend reporting individual scores, and report 

aggregate data only when data is insufficient at the individual level to populate the bins of the 
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calibration curve. If some metrics cannot be reliably derived from the data (e.g. lack of large 

test dataset for probabilistic evaluation), this should be discussed as a limitation, because the 

true forecasting performance of a given algorithm cannot be known with a single metric78.  

Patient outcomes. Studies of forecasting systems largely focus on the performance of the 

algorithms. However, in order to show true clinical benefit to people with epilepsy and their 

carers, we must demonstrate that forecasting systems can provide benefit in the management 

of epilepsy, which has not been achieved by any study so far. Tracking outcomes such as 

quality of life, stress levels, depression/anxiety scores, and changes in seizure rates will be 

important in demonstrating benefit to users, regulators, and payors. 

After the trials 

Deployment of neurotechonologies. One essential point learned since the first chronic EEG 

device in a human head, is that developing and commercializing neurotechnologies is a 

complex endeavor. From a novel idea to the first device sold, one should roughly count 10-20 

years and a minimum of 50-100 million dollars. Even when the idea is good, the technology 

performs, and the clinical trials succeed, practical aspects may come in the way of 

commercialization. Many neurologists are not familiar with neurotechnologies and prefer to 

read the EEG visually, a heritage that will remain for years until the majority of them are 

convinced that machines do just as well. For patients and investors alike, invasiveness is 

unattractive, which leads to hesitations to accept such technology, especially those that are 

not lifesaving, unlike implanted defibrillators. Thus, minimal- or non-invasiveness is a way to 

promote and has enabled cardiology to adopt diagnostic and treatment devices at a large 

scale. As a community, raising awareness early on, highlighting how close-monitoring of 

biomarkers has potential to transform epilepsy management (just like in diabetes), while 

openly discussing the upcoming issues as attempted here is probably the way to make such 

deployment more likely. 

Learning from people with epilepsy. Very few people have ever received a forecast of their 

seizures. As the symptoms which a forecast would potentially alleviate are largely subjective 

in nature (that is, the uncertainty of seizure timing), it is essential that those who have exposure 
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to forecasts are able to express their experiences. For instance, in the relatively limited 

NeuroVista cohort, the experience of participants varied dramatically97. Furthermore, there is 

still much to learn about which patient cohorts receive the most benefit from seizure 

forecasting, for example, those with high versus low seizure counts, those with single or 

multiple seizure types, those who have had epilepsy for many years or those with relatively 

new diagnoses. 

Conclusion 

The field of seizure forecasting has made steady progress over the past 20 years but has 

definitely accelerated in the last decade, with a more profound understanding of what the 

important predictive factors for seizures are. The (re-)discovery of cycles in epilepsy and the 

generalizability of the notion of pro-ictal states unlocked a number of aspects in seizure 

forecasting that were previously thought impossible, mainly: 1) the possibility of forecasting 

seizure risk over days as opposed to minutes, and 2) the possibility of forecasting seizure risk 

non-invasively with simple wristbands. With these scientific and engineering leaps forward, 

the time has come to accelerate the resolution of unsolved problems, take the ultimate test of 

prospective trials and learn how seizure forecasting may best help people with epilepsy. While 

the road is still long, the path ahead is clear.  
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Appendix 

  

Methodology for evaluating probabilistic forecasts 

Refining measurement of the value of probabilistic forecasts has a decades-long history in 

meterology77,92. More recently, the field of machine-learning has also adopted similar 

definitions and concepts93. Nomenclature differs somewhat from one community to the other. 

Our own definitions inspired from these fields are given in Table 3, and their geometric 

meaning can be visualized in reliability diagrams (Fig. 1) which evaluates how well the 

forecasted probabilities of an event correspond to their observed probabilities. Excellent online 

sources can be found at: 

·    https://www.cawcr.gov.au/projects/verification 

·    http://checkmyai.com/index.php?get=methods 

Metrics to evaluate probabilistic forecast performance do not rely on classical definitions of 

false/true positives/negatives and the related deterministic scores (e.g., Sensitivity, 

Specificity), as probabilities are not thresholded. Rather, probabilistic scores determine how 

well a group of probabilistic predictions correspond to reality.  

The reliability diagram 

The reliability diagram, also called calibration diagram, compares forecasted, a priori 

probabilities to observed (i.e. empirical), a posteriori probabilities and provides an excellent 

diagnostic tool. These assessments require a large number of trials, as the measure is based 

on a histogram method with multiple observations per bin. For example, consider a given 

forecasted value of 5% probability of an event with a 24-hour horizon. If we assume that such 

a forecast is issued one day out of 10, verifying, with some degree of confidence, that 

observations match this forecast would require observing at least 2 events out of 40 forecasts 

with 5% probability, i.e. it would necessitate ~400 days of observation for daily forecasts. The 
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calculation must be repeated for higher and lower forecasted values associated with more and 

less frequent events, respectively. This leads to a rapid expansion of the number of 

observations required to correctly assess the performance of a model at different forecasted 

values. The reliability diagram, when sufficiently populated, allows for a geometric 

understanding of all characteristics of a good (or bad) forecast, which compose the Brier score 

(below)90. The construction of the reliability curve is in itself the focus of a body of litterature in 

meteorology. For example, to visualise the behavior at extreme probabilities, one strategy is 

to uniformly define 10 bin boundaries at each decile (i.e. 0-10%, 10-20%, etc.). In contrast, to 

better understand the average behavior of the forecast, one can define bin boundaries, such 

that each bin is populated by an equal number of forecasts94. Additionally, to aid visual 

interpretation of a good forecast, it is useful to plot 5-95% bootstrap limits on the expected 

behavior (the diagonal)94.    

The Brier score 

The Brier score98 developed for meteorological forecasts was first proposed for seizure 

forecasting a decade ago79. It measures the magnitude of the probabilistic forecast errors, and 

squares it to put weight on larger errors. The Brier score can be partitioned into three attributes 

for better interpretability90,96. First, a forecast is evaluated accounting for the uncertainty 

intrinsic to the problem, as not all forecasting problems are equally difficult (i.e. some are 

imbalanced). In the case of epilepsy, clinicians and patients typically calculate the proportion 

of days (or hours) with seizures, which represents the expected individual daily seizure rate 

that can be known a priori, before issuing any forecast. This rate may take extreme values 

from <1% (e.g. one seizure per year) to 100% (i.e. one or more seizure per day) representing 

simpler forecasting problems (less uncertainty) because a trivial solution is to forecast 0% 

seizure and 100% seizure every day and be accurate a vast majority of times78. Patients with 

intermediary seizure rates, say 30-50%, meaning one seizure every other day or two pose a 

greater problem, as uncertainty as to which days is greater78. Second, a good probabilistic 

forecast is calibrated (or reliable). A loss of calibration is defined as datapoints deviating from A
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the diagonal and can result in over or under-forecasting bias. Calibration can be adjusted after 

algorithm training, in a subsequent step of “re-calibration,” which can compensate for 

systematic biases. Third, a good probabilistic forecast has resolution, i.e. it is able to predict 

different outcomes, when it takes on different values78. If the outcome is independent of the 

forecast, the forecast has no resolution and is useless. For example, a trivial solution of always 

forecasting the expected daily seizure rate (e.g. 30-50%) will be accurate but brings no 

information. When resolution is absent, discrimination is also absent for each chosen threshold 

(ie AUC = 0.5). Resolution is conditioned on the forecasts: are different outcomes obtained 

given different forecasted values? Conversely, discrimination is conditioned on the 

observations: are different forecasted values obtained given different outcome categories? 

Resolution cannot be adjusted after algorithm training. To develop an intuitive sense for 

resolution, it is useful to clarify the difference between absolute risk (a calibrated probability 

between 0 and 1) and relative risk (a probability difference or ratio). An accurately forecasted 

probability of say 10% on a given day is a low risk in absolute (closer to zero than one) and 

has the probabilistic meaning of seeing one event among 10 days with such accurate 

forecasts, independently of the expectation of the patient for whom it is issued. However, this 

forecast may have drastically different meanings to different individuals. For a patient with a 

long-term expected risk of 2% per day (i.e. one seizure every two months, as established by 

observation over a long period), a daily forecast of 10% would mean a 5x higher risk on that 

day relative to the average risk. For another patient with a long-term expected risk of 20%, a 

daily forecast of 10% would mean a halving of the risk on that day relative to the average. 

Discrimination (AUC) and resolution emphasize the benefits of the forecast for the user in 

terms of time-varying relative risk, because they ignore (AUC) or account (BSS) for the 

expected seizure rate. Discrimination interprets this relative risk as a category, whereas 

resolution offers a graded view on how high or low is the risk, relative to the long-term expected 

probability (i.e. a risk ratio or absolute risk difference). Additionally, a sharp forecast tends to 

issue mostly higher and/or lower probabilities, i.e. it offers greater confidence in the outcome 

and approaches deterministic strategies, provided it is calibrated. 
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The Brier skill score incorporates all of these attributes99 and assesses the improvement in 

performance of the output forecast (its skill) relative to a random reference (for example, the 

random shuffling of the original forecast)81 that has the same average probability. Indeed, as 

the Brier score also depends on uncertainty, the Brier skill score is typically used instead for 

better comparability across forecasts with different uncertainties. Nevertheless, the Brier skill 

score is a composite score, and reporting calibration, sharpness and resolution separately 

(e.g. in the form of the reliability diagram) is useful.  

In this probabilistic context, the AUC represents a complementary metric to the Brier skill 

score, influenced by the problem’s uncertainty as well as by forecast resolution and sharpness 

but not calibration. In seizure forecasting, the imbalanced nature of the problem leads most 

researchers to use the time-in-warning as opposed to specificity for the calculation of the AUC, 

so as to avoid an over-weighting of true negatives3,94. While the Brier score and the AUC are 

influenced by the degree of uncertainty (imbalance), the reliability diagram is not and therefore 

represents an excellent visual tool to assess performance and even point out potential 

problems/biases with the forecasting scheme (Fig. 1). 
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Figure 1. Deterministic and probabilistic performance of five illustrative seizure forecasts. a: 

Visual representation of a seizure gauge conveying low to high daily seizure risk, as compared to the 

expected seizure rate expressed in seizures per day (e, blue dotted line). b: seizure probabilities issued 

over the first 60 days. c: histogram of the 1000 generated daily forecasts in 10 bins of probability deciles 

and corresponding sharpness (S, range 0-0.25). Of note, bins of forecasted probabilities can be equally 

populated or spaced to show the central or extreme tendency, respectively82.  d: Reliability diagrams 

depicting the calibration of each forecasted probability decile to the observed seizure frequency. 

Graphically, calibration loss (CL, range 0-1.0, lower is better) is the average distance to the diagonal 

(perfect calibration line) and resolution (R, range 0-0.25, higher is better) the average distance to the 

horizontal ‘no resolution‘ line, which corresponds to the expected seizure rate. e: Area under the curve 

(AUC) of the proportion of seizures found (sensitivity) versus proportion of time spent (time-in-warning) 

above a given probability threshold (gradient-color). Each of the five daily forecasts were generated 

over 1000 days in an arbitrary, but realistic manner to illustrate how the deterministic and probabilistic 

metrics can be used conjointly to interpret the result. F1 is the best of the five forecasts, because it is 

calibrated and sharp, with most output probabilities either low (close to zero) or high (close to one), 

leading to higher resolution and discrimination (AUC). Although as well calibrated (same CL), F2 is 

slightly less sharp than F1, with values concentrated around the expected seizure rate, which decreases 

resolution and discrimination on the same set of observed seizures. This means that intermediate output 

probabilities (e.g. 0.3) are accurate, but less discriminative than more extreme, accurate output 

probabilities in F1 (e.g. 0.1), which is reflected in almost halving the BSS. F3 is the same forecast as F2 

but applied to another set of observed seizures, where additional seizures (red dots) resulted from 

stochastic noise, representing a case where the forecaster does not capture difficult-to-measure seizure 

triggers. As a result, the forecast is biased, systematically underestimating the event probability, 

resulting in calibration loss. Discrimination is also decreased because the observation is saturated with 

frequent seizures that are not accounted for by the forecast (top right corner in d). Both F4 and F5 have 

excellent calibration but mediocre resolution, forecasting the expected seizure rate ±10%. F4 remains 

nevertheless more useful than F5 as the forecasted relative fluctuations between low (e.g. 0.1) and low-

intermediate probabilities (e.g. 0.3) bears more discrimination than relative fluctuations between 

intermediate-high (e.g. 0.5) and high (e.g. 0.7) probabilities. This example illustrates that the AUC brings 

complementary information to resolution and calibration. Conversely, evaluating either F5 or F4 against 

the observations O4 made for F4 yields the same AUC = 0.62 because the relative fluctuation around 

the expected seizure rate is the same, highlighting that the AUC is blind to calibration. Finally, the joint 

evaluation of F4 and F5 and their corresponding observations in aggregate increases the AUC to 0.77 

and the BSS to 0.2, better than any of the two individual forecasts, simply because F4 and F5 are both 

well calibrated for low and high seizure rates, respectively. This highlights that high scores for aggregated 

forecasts can be misleading and give a false impression of excellent forecasting performance, when in 

fact, they merely reveal the ability to distinguish patients with low and high seizure rates. This figure was 

created using computations available at https://checkmyai.com/.  
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 Risk Factor Data N Prevalence 
if available 

Categoric
al Effect 

size 

Circular 
effect 
size 

Reference 
Sp

o
ra

d
ic

 

Stormy weather 

Admissio
n 

604 Group-level 1.1-1.5 (OR) - Rakers F et al., Epilepsia (2017) 

NV 8 4/8 - - Payne et al., Epilepsia (2021) 

Missed medication Diary 71 Group-level 1.2  Haut SR et al., Neurology (2007) 

Alcohol intake Diary 71 Group-level 1.5  Haut SR et al., Neurology (2007) 

Mood 
Favorabl
e change 
in mood 

Diary 19 9/19 0.8 (OR)  Haut SR et al., Epilepsia (2013) 

Stress - anxiety Diary 71 Group-level 1.1 (OR)  Haut SR et al., Neurology (2007) 

Sleep 
duration 

decrease
d 

Diary 71 Group-level 
 

1.1 (OR)  Haut SR et al., Neurology (2007) 

NV 12 0/12 -  Dell et al., EClinicalMedicine, 2021 

increase
d 

Diary 
 

71 
 

Group-level 
 

0.9 (OR) 
 

 Haut SR et al., Neurology (2007) 
 

NV 8 0/8 -  Payne et al., Epilepsia (2021) 

NV 12 10/12 0.7 (OR)  Dell et al., EClinicalMedicine (2021) 

C
yc

lic
al

 

Circannual NP 194 12% - 0.17 Leguia MG et al., JAMA Neurology (2021) 

Moon Admissio
n 

859 Group-level 1.8-1.9 (OR) - Polychronopoulos P et al., Neurology (2006) 

NV 8 1/8 - - Payne et al., Epilepsia (2021) 

NP 186 0/186 - - Leguia MG et al., JAMA Neurology (2021), 
Epilepsia (2020) 

Days of the week 

ST diary 9849 Group-level 1.08 (max 
IRR) 

 Ferastraoaru, Epilepsia open, 2018 

ST diary 1118 7-21% - - Karoly, Lancet Neurology, 2018 

NV 8 0/8 - - Payne et al., Epilepsia (2021) 

NP 186 5% 1.05 (max 
RR) 

 Leguia et al., JAMA Neurology (2021), 
Epilepsia (2020) 

Menstrual Diary  Group-level ∼2 (max RR) - Herzog AG et al., Annals of Neurology (2004) 

Diary 71 Group-level 1.2 - Haut SR et al., Neurology (2007) 

Diary 184 42% - - Herzog, Neurology, 2012 

Diary 100 - - - Herzog A, Epilepsia, 2015 

Multidien NP 14 13/14 7 0.32 Baud M, Nature comm, 2018 A
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NV 15 15 - 0.67 Maturana M, Nature comm 2020 

NP 186 60% ∼7 (RR) 0.34 Leguia MG et al., JAMA Neurology (2021) 

Heart 
rate 

19 10/19  0.37 Karoly, EBioMedicine, 2021 

Circadian 

NP 14 12/14 5 0.32 Baud M, Nature comm, 2018 

ST diary 1118 80-82% - - Karoly, Lancet Neurology, 2018 

ST diary 9849 Group-level 5.5 (IRR) - Ferastraoaru, Epilepsia open, 2018 

NV 15 15 - 0.77 Maturana M, Nature comm 2020 

NP 85 76/85 ∼5 (RR) 0.34 Leguia MG et al., JAMA Neurology (2021) 

Heart 
rate 

19 14/19  0.42 Karoly, EBioMedicine, 2021 

Sleep-wake Night 
EEG 

 - ~50 (RR) 
REMS 

 Ng et al., Epilepsy Res Treat (2013) 

 Self prediction Diary 
Diary 

71 
19 

- 
9/19 

3.7 (OR) 
∼5-9 (OR) 

 Haut SR et al., Neurology (2007) 
Haut, Epilepsia, 2013 

 

Table 1: Time-varying risk factors, prevalence and effect-sizes. For simplicity, 95% confidence 

intervals are not shown, but values that are statistically significant are in bold. Group-level: no 

prevalence reported, effect-size calculated at the group level. Values in italics were recalculated, 

either from the raw data, or from processed values reported in the charts. OR: odds-ratio. RR: relative 

risk or risk ratio. IRR: incidence rate ratio. NV: NeuroVista. NP: NeuroPace. ST diary: SeizureTracker 

diary. Dash: value not available in original paper. 
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University of Freiburg EEG 
database 

https://epilepsy.uni-freiburg.de/freiburg-seizure-prediction- 
project/eeg-database 

SWEC-ETHZ iEEG 
Database 

http://ieeg-swez.ethz.ch/ 

 Temple University 
Hospital 

https://isip.piconepress.com/projects/tuh_eeg/html/downloads.sh
tml 

Epilepsy Ecosystem Epilepsyecosystem.org 

UCSF – UniBE – UniGE 
Dataset 

 https://zenodo.org/record/5094447#.YgEd8vXMLOQ 

Table 2: Currently available intracranial EEG databases and datasets.  
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Terminology Definition Formula 
G

e
n

e
ra

l d
e

fi
n

it
io

n
s Forecast horizon The future period of time for which a forecast is generated.   

Uninformative 
forecasts 

Forecasts that do not help decision-making. Trivial solutions, such as 
perpetually issuing 0% probability for rare events, have good performance 
but are uninformative (unskilled) and can be used as a reference.  

 

Discrimination 

Discrimination measures whether forecasts differ when their corresponding 
observations differ; for example, if forecasts for days that are wet indicate 
more rain than for days that are dry, the forecasts can discriminate wetter 
from drier days. 

 

D
e

te
rm

in
is

ti
c 

m
e

tr
ic

s 

 

Accuracy 
Measure of discrimination or how well a forecast correctly identifies or 
excludes a certain outcome. 

𝑇𝑃 +  𝑇𝑁

𝐴𝑙𝑙
 

Sensitivity (Se) How often the forecast correctly identifies an event.  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity (Sp) How often the forecast avoids misidentification. 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Time in 
warning (Tiw) 

Duration of time a forecast indicates an event is likely.  
𝑇𝑃 + 𝐹𝑃

𝐴𝑙𝑙
 

Area under the 
curve (AUC) 

 

Typically assessed as the tradeoff between sensitivity and specificity (or 
time in warning) by systematically thresholding the algorithm output at all 
forecasted values. 

Se vs. 1-Sp 
or 

Se vs. Tiw 

Relative risk 
The ratio between the probability of an event in a category or state and the 
probability of this event in another category.  

𝑇𝑃  𝑇𝑃 + 𝐹𝑃⁄

𝐹𝑁  𝐹𝑁 + 𝑇𝑁⁄
 

P
ro

b
ab

ili
st

ic
 m

e
tr

ic
s 

 

Observed 
probability 

Frequency of events per unit of time observed in the data, ie their empirical 
probability. 

∑ 𝑜𝑖
𝑛
𝑖=1

𝑛
 

Expected  
probability 

Based on all previous observations, the frequency (probability) of events 
expected over long duration in the future.  𝑙𝑖𝑚𝑛→∞

∑ 𝑜𝑖
𝑛
𝑖=1

𝑛
 

Forecasted 
probability 

Probability of event forecasted for one time interval in the future 𝑓𝑖 

Calibration 
(or reliability) 

Agreement between forecasted probability and observed probability. 
Typically calculated by averaging n forecasts datapoints in m ranked bins (𝑓𝑘  
, e.g. average forecast between 0 and 10%) and calculating the 
corresponding observed event probability, �̅�𝑘. For a calibrated forecast, the 
binned forecasted probability and observed probability match and 
therefore align on a diagonal in a reliability diagram. Graphically, distance 
to the diagonal (Fig. S1). 

1

𝑛
∑ 𝑛𝑘(𝑓�̅� − �̅�𝑘)2

𝑚

𝑘=1

 

Resolution 

Ability of the forecast to separate observed probabilities from the average 
observed probability. Resolution is zero for a flat line intersecting the y-axis 
at the expected probability, this corresponds to alignment of the ROC curve 
with the diagonal. Graphically, separation of the reliability curve from the 
horizontal line of no resolution (Fig. S1).  

1

𝑛
∑ 𝑛𝑘(�̅�𝑘 − �̅�)2

𝑚

𝑘=1

 

Sharpness 

Tendency to forecast probabilities, 𝑓𝑖, near 0 or 1, as opposed to uniformly 
distributed forecasts. Sharpness is an attribute belonging only to the 
forecast and is not influenced by the observations. Graphically, variance of 
the distribution of the forecasts. 

1

𝑛
∑(𝑓𝑖 − 𝑓)̅̅ ̅

𝑛

𝑖=1

 

Uncertainty 

Uncertainty only depends of the frequency of events �̅� and is not influenced 
by the forecast. Uncertainty tends to 0 with very rare (or frequent) 
observations (ie with increased imbalance) and is greatest (=0.25) when an 
event is observed 50% of the time, making forecasts more difficult. 

�̅�(1 − �̅�) 

Skill 

Accuracy of a forecast relative to some reference forecast. The reference 
forecast is generally an unskilled forecast such as random chance, shuffled 
forecasts, or uninformative forecasts. A forecast may be better simply 
because it is easier to make, which is taken into account when calculating 
Skill.  

1 − 
𝑆𝑐𝑜𝑟𝑒

𝑆𝑐𝑜𝑟𝑒𝑟𝑒𝑓
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Bias 
Mismatch between the mean forecast value, 𝑓 ̅, and mean observed 
probability, �̅�. 

𝑓̅ − �̅� 

Brier score (BS) 
Mean squared distance between the forecasted value, 𝑓𝑖 , and the 
observation, 𝑜𝑖 (set to 1 or 0), calculated at each ith timepoint for n 
forecasts. Better Brier scores are lower (ie tend to zero). 

1

𝑛
∑(𝑓𝑖 − 𝑜𝑖)2

𝑛

𝑖=1

 

Brier skill score 
(BSS) 

Improvement of Brier score over a reference forecast. Brier skill scores tend 
to 1 when better, 0 when no improvement over reference, and −∞ when 
worse than reference. 

1 −
𝐵𝑆

𝐵𝑆𝑟𝑒𝑓
 

   

Table 3: Metrics for forecast performance. TP: true positive, TN: true negative, FP: false positive, FN: false negative, All: TP 

+ TN + FP + FN. m, number of bins in the reliability diagram; n, number of data points (observed or forecasted); fi , forecast 

probability for the ith forecast; oi the ith observed probability; and  the average observed probability. 
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