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1. BACKGROUND 

Postbariatric hypoglycaemia (PBH) is an increasingly recognized late complication of bariatric surgery, 

particularly Roux-en-Y gastric bypass (RYGB)1,2. Between 20-80% of RYGB patients may develop the 

condition, which is characterized by postprandial hypoglycaemic episodes with increased severity after 

ingestion of carbohydrates with a high glycaemic impact3. Prevalence estimates range widely, owing to the 

current lack of standardised diagnostic criteria. Although incompletely understood, accelerated nutrient 

absorption alongside with excessive postprandial incretin and insulin exposure are key pathophysiological 

features4.  

In the absence of an approved pharmacotherapy, dietary management is the first-line treatment of PBH5. 

Dietary measures, however, can be very restrictive, insufficiently effective and challenging to implement in 

the long-term. Given these limitations, continuous glucose monitoring (CGM) devices, which provide real-

time (RT) information on current glucose levels and rate of change, have the potential to support PBH 

management6. CGM can be leveraged to develop RT predictive algorithms allowing for preventive or timely 

corrective actions (e.g., carbohydrate intake), which may be particularly useful for the frequently 

encountered PBH patients with hypoglycaemia unawareness and related safety concerns7,8. 

Whilst hypoglycaemia forecasting has been widely studied in type 1 diabetes (T1D)9, the topic remains 

understudied in the PBH population. The first and only contribution in this field was the development of a 

heuristic-based predictive algorithm for a glucose-responsive glucagon delivery system in an experimental 

inpatient session10,11 .  

To address this gap, the purpose of this work was to assess the feasibility of forecasting PBH episodes by 

exploiting three different predictive algorithms using only CGM data.  

2. METHODS 

2.1 Dataset and PBH event definition 

Data were generated by 39 adults with confirmed PBH after RYGB (defined as symptomatic plasma or 

sensor glucose (SG) < 54 mg/dL relieved by glucose administration) wearing the Dexcom G6 (Dexcom Inc., 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



San Diego, CA, USA) CGM sensor for a median of 10 days (IQR 9-30) in daily life conditions. Data were 

obtained from usual care and research settings (NCT04330196, NCT04334161, NCT04332289). Overall, the 

percentage of days using CGM in blinded, unblinded, unknown mode is: 14.5%, 62.7%, and 22.8%, 

respectively. Based on a PBH event definition of sensor glucose < 54 mg/dL for at least 15 min7,12, we 

identified a total of 542 PBH episodes (≈4 every 10 days per subject) with an average duration of 25 min. 

Participants’ details are summarized in Table S1 (see Supplementary Material, Appendix A). Following 

preprocessing for anomalies and noise (for more details see Supplementary Material, Appendix A), the 

dataset was split into a training (31 subjects and 489 PBH events) and a test (8 remaining subjects and 53 

PBH events) set. In addition, given that the CGM monitoring length may significantly vary between 

individuals, to create a test set that is as balanced as possible and to avoid any bias on the results, we 

applied the following criteria to include/exclude a subject in/from the test set: i) the patient has more than 

5 and less than 20 consecutive monitoring days and ii) the patient showed at least 1 PBH episodes over 4 

monitoring days.  

Clinical and demographic information about the training-test partition are detailed in Table S1 

(Supplementary Material, Appendix A).  

2.2 Predictive algorithms  

Based on our previous work on the prediction of hypoglycaemia in T1D13, we considered the following 

three algorithms: an Autoregressive model with recursive parameter estimation (AR1)14, which represents a 

good example of consolidated adaptive method; an Autoregressive Integrated Moving Average (ARIMA) 

model13, which turned out to be the best linear predictor in T1D; and a feed forward Neural Network 

(NN)15, as representative of nonlinear methodologies. These methods, besides being considered as state-of-

art glucose predictive algorithms for T1D, were also shown to be the best performing for short-term 

prediction when CGM data is the only available source of information13.  

Regarding the prediction horizon (PH, i.e., how far ahead the method predicts the event), we considered 

15, 20, 25 and 30 min.  
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For each combination of algorithm and PH, model parameters and/or hyperparameters were estimated in 

the training set. Then, the algorithms were applied to the test set, simulating the acquisition of CGM data in 

RT (see Supplementary Material, Appendix B). Two examples of RT PBH forecasting using the proposed 

algorithms with PH=20 min are visualized in Figure 1.  

 

Figure 1. Examples of real-time forecasting of postbariatric hypoglycaemia (PBH) events and preventive alert generation using the 3 

model-based  algorithms fed by the past continuous glucose monitoring (CGM) values (blue dotted line, sampling time 5-min). Green 

circles indicate future CGM samples. Top panel: at time 21:15 (actual time), the three algorithms fed by the past CGM values, 
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predict the next four CGM values (ARIMA: red asterisks; AR1: magenta triangles; NN: black squares). Since the last predicted CGM 

values is below 𝑡ℎ𝑃𝐵𝐻 and there are no recent alarms, a preventive PBH alarm (red, black and magenta arrow for ARIMA, NN and 

AR1, respectively) is triggered. Bottom panel: at time 16:07 (actual time), AR1 predicts a value below 𝑡ℎ𝑃𝐵𝐻 and raises a false alarm 

(magenta arrow), whereas ARIMA and NN correctly predict the increase in glucose concentration and do not generate any alert.  

Algorithm performance was evaluated as the ability to predict/detect PBH eventsa (see Supplementary 

Appendix B for details). For each raised PBH alarm, we counted: a true positive (TP) if a PBH event occurred 

in the following 45 min; a false positive (FP) if no PBH events occurred in the following 45 min. A false 

negative (FN) was counted when no alarms were generated despite the occurrence of a PBH event 13. Based 

on TP, FP and FN, the following aggregated metrics were calculated: precision (P), recall (R), F1-score (F1). 

P can be seen as the percentage of the correct alarms over the total number of raised alarms. Recall, also 

known as sensitivity or true positive ratio, is the ratio of correctly predicted hypoglycaemic events over the 

total number of events. F1-score is the harmonic mean of the two previous metrics. Additionally, we 

evaluated the daily number of false alarms (FP/day) raised by the algorithms, and the time gain (TG) 

defined as the temporal distance between a TP alarm and the corresponding PBH event onset, thus 

representing the time window for a preventive intervention.  

Due the short CGM recording period of the test set (median 10 days) and consequently low prevalence of 

PBH events, the value of hypoglycaemic prediction metrics was obtained by considering all hypoglycaemic 

events of different subjects according to a population-based approach. The results are expressed as a single 

value for all the considered metrics except for TG, that is expressed as median [25th – 75th], since it can be 

computed for each TP. 

To contrast our results with the previously published work, we reimplemented and trained the PBH 

Detection System (PBH-DS) algorithm developed by Laguna Sanz et al10, in particular we referred to the 

version denoted as PBH-DS v002 in 10. All the implementations were done in MATLAB (2021a version). 

3. RESULTS  

                                                           
a
 This work does not consider Dexcom Urgent Low Soon (ULS) alerts algorithm and it does not provide any evaluation 

of its performance. 
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Performance metrics of the AR1, ARIMA and NN algorithms for each considered PH as well as of the 

previously published PBH-DS are shown in Table 1 (for details on parameter identification see 

Supplementary Material, Appendix C). The ARIMA configuration with PH=20 min performed best, achieving 

P=79.10%, R=100%, F1=88.33%, FP/day=0.17 and median TG=20 min. In practical terms, provided that CGM 

reflects blood glucose precisely and accurately, this means that PBH episodes can be effectively predicted 

20 min before happening, with no missed events and generating only one false alert every 6 days. 

ARIMA predictors with PH=25 and 30 min, despite achieving a larger TG (i.e. window for intervention), 

resulted in inferior P, R and FP/day. This is illustrated by the F1-score trend, which decreased as the PH 

horizon increased (F1=83.21%, 70.20%, 58.76%) due to the critical decrease of P (P=72.15%, 54.08%, 

41.94%).  

Compared to ARIMA, AR1 was inferior for all PHs, particularly in terms of P (P=36.11%, 35.97%, 42.24%, and 

44.45% for PH=15, 20, 25, and 30 minutes, respectively). Additionally, AR1 provides the largest 

FP/day=1.15, in line with its known susceptibility for unstable predictions14. The NN configuration 

performed similarly to ARIMA but yielded lower TG. 

Re-implementation of the previously published PBH-DS resulted in R=100% with median TG of 25 min and 

P=23.87%. As consequence, the FP/day was 2.11, which is 10 times the number of FP raised by ARIMA for 

PH=20 min (FP/day=0.17). 

Table 1 Postbariatric hypoglycaemia (PBH) prediction metrics for the algorithms under investigation (ARIMA, AR1, NN and PBH-DS) 

according to different prediction horizons (PH) based on a test set containing 53 PBH events. Results of TG are reported as median 

[25
th

-75
th

] percentile. 

Algorithm PH (min) 
Metrics 

P (%) R (%) F1 (%) FP/day TG (min) 

ARIMA 

15 

72.15 98.28 83.21 0.27 15 [15-15] 

AR1 36.11 98.11 52.79 1.15 10 [10-15] 

NN 68.29 96.55 80 0.32 15 [10-15] 
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ARIMA 

20 

79.10 100 88.33 0.17 20 [15-20] 

AR1 35.97 94.34 52.08 1.11 10 [5-10] 

NN 82.26 96.23 88.70 0.14 15 [15-20] 

ARIMA 

25 

54.08 100 70.20 0.56 25 [20-25] 

AR1 42.24 92.45 57.99 0.84 10 [5-10] 

NN 62.32 81.13 70.49 0.32 20 [15-25] 

ARIMA 

30 

41.94 98.11 58.76 0.89 25 [20-30] 

AR1 44.45 90.57 59.63 0.76 10 [5-10] 

NN 54.67 77.36 64.06 0.43 25 [20-30] 

PBH-DS - 23.87 100 38.55 2.11 25 [20-30] 

Abbreviations: P, precision; R, recall; F1, F1-score; FP/day, false positives per day; TG, time gain; ARIMA, Autoregressive Integrated 

Moving Average; AR1, Autoregressive model; NN, Neural Network; PBH-DS, Postbariatric Hypoglycaemia Detection System.  

In addition, we analysed the performance of the predictive algorithms for individuals wearing the CGM 

sensor in blinded and unblinded mode (full results are reported in the supplementary Material, Appendix 

D). In particular, the test set comprises 4 patients with blinded recordings (for a total of 24 hypoglycaemic 

episodes) and 4 patients with unblinded recordings (for a total of 29 hypoglycaemic episodes). The results 

are consistent with those reported for the complete dataset (Table 1): i) the best performing algorithm is 

confirmed to be ARIMA with a PH = 20 min, granting high precision (77.42% and 80.56% for blinded and 

unblinded subsets, respectively), high recall (100% in both cases) and low FP/day (0.17 vs 0.18 for blinded 

and unblinded sets, respectively); ii) AR1 is inferior to ARIMA for all the PHs for both blinded and unblinded 

subsets; and iii) NN performed similarly to ARIMA but it yields to a slightly inferior median TG (15 minutes) 

both in blinded and unblinded subsets. Of note, the number of FP/day is slightly larger in the unblinded 

than in the blinded subset.  

4. CONCLUSIONS  

In this proof-of-concept study, we assessed the feasibility to forecast PBH events in real-time using various 

linear and non-linear black-box predictive algorithms fed by CGM data only. The highest performance was 
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achieved with ARIMA approach using a prediction horizon of 20 min, which was able to effectively predict 

PBH events with a median lead time of 20 min, with no missed events and only one false alert every 6 days. 

The ARIMA approach outperformed the previously published hypoglycaemia prediction algorithm, which 

yielded two false alarms per day when applied on our data10,11. Apart from usability aspects, avoidance of 

false alarms is particularly important for the PBH population as unnecessary corrective ingestion 

carbohydrates can cause rebound hypoglycaemia and predispose to weight regain1. Although comparability 

is limited, the herein achieved performance metrics for hypoglycaemia prediction can even compete with 

those reached in T1D and T2D populations using similar methods13. Thus, our findings are encouraging and 

support the feasibility to forecast PBH episodes by leveraging CGM data in combination with an ARIMA-

based. Of note, compared to models used in 13, the proposed ARIMA model shows an inferior number of 

parameters to describe the glucose dynamics (i.e., the autoregressive model order). Thus, suggesting that 

glucose dynamics are faster in PBH than T1D population. 

4.1 Limitations of the study 

Despite the promising and encouraging results obtained in this paper we acknowledge various limitations. 

First, model assessment on original non-processed CGM data would have been interesting, but not solid 

because of noise, which could have negatively impacted the identification and training procedure of the 

algorithms. However, it is worth noting that, despite the offline data preprocessing aimed at removing 

noise/anomalies that could have introduced a bias in the evaluation, all predictive algorithms have been 

applied simulating a real-time application.  

Another potential bias in the analysis may be the presence of CGM recordings acquired in unblinded 

modality. In fact, we found that the number of FPs is higher in the unblinded subset. This may be explained 

as follows: low glucose alarms generated by the unblinded CGM sensor and/or the possibility of reading in 

real-time CGM values may have triggered a preventive carbohydrates intake, thereby mitigating against the 

impending PBH episode. Unfortunately, lack of information on either alert settings or preventive 

carbohydrates intakes in the dataset precludes a definitive confirmation. Still, it is important to note that 
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the inclusion of unblinded CGM recordings could have generated an underestimation of the performance 

of our algorithms, as a results of false positives.  

Finally, we acknowledge that the previously a time-lag of about 10-15 minutes16 between interstitial and 

blood glucose concentrations, could reduce the actual time-anticipation of PBH events via CGM sensor data 

to 5-10 minutes. As intravascular sensors are currently not a viable option, further studies are required to 

provide an estimation of the blood-to-interstitial fluid time lag during the rapid dynamics of a PBH episode 

and thus assess the true effectiveness of PBH CGM-based predictive algorithms.  

4.2 Future developments 

Future work will focus on the development of subject-specific algorithms, which allows considering the 

large heterogeneity that characterizes the PBH population. This will only be possible once large CGM 

longitudinal datasets are available. A further and natural extension of this work will be the assessment of 

the improvement in forecasting PBH events by increasing the input data by additional information such as 

meal and physical activity. A more thorough understanding of the correlation/causation between the PBH 

episodes and adverse clinical events will further help to determine practical clinical impact of PBH real-time 

prediction.  

In conclusion, CGM data can be leveraged to forecast PBH and future research and clinical validation trials 

will unravel whether the technology translates into patient benefits.  

5. ACKNOWLEDGEMENTS 

Data Availability Statement 

The data and the code that support the findings of this study are available from the corresponding author 

upon reasonable request. 

Author Contributions 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



F.P, G.C., D.H., A.F. and L.B. designed the analysis, A.T. recruited participants and collected the CGM data, 

A.T. and F.P. reviewed and prepared the data for analysis, F.P., G.C. and A.F. performed the analysis, F.P., 

G.C., A.T., D.H., A.F. and L.B. interpreted the data. F.P. and G.C. wrote the first draft of the manuscript. A.T., 

D.H., A.F. and L.B. critically reviewed the manuscript. L.B. and A.F. are the guarantors of this work and, as 

such, had full access to all the data in the study and take responsibility for the integrity of the data and the 

accuracy of the data analysis. All authors approved the final draft of the manuscript for submission. 

Funding 

Swiss National Science Foundation (PCEGP3_186978), product support from the Dexcom External Research 

Program (OUS-2020-014), “SID-Networking Project 2021” (DVTDSS project). Product support was provided 

by Dexcom. 

Conflict of Interest Statement 

Authors declare no conflict of interest. 

 

References 

1.  Salehi M, Vella A, McLaughlin T, Patti ME. Hypoglycemia after gastric bypass surgery: Current 

concepts and controversies. Journal of Clinical Endocrinology and Metabolism. 

2018;103(8):2815-2826. doi:10.1210/jc.2018-00528 

2.  Kefurt R, Langer FB, Schindler K, Shakeri-Leidenmühler S, Ludvik B, Prager G. Hypoglycemia 

after Roux-En-Y gastric bypass: detection rates of continuous glucose monitoring (CGM) 

versus mixed meal test. Surgery for Obesity and Related Diseases. 2015;11(3):564-569. 

doi:https://doi.org/10.1016/j.soard.2014.11.003 

3.  Capristo E, Panunzi S, de Gaetano A, et al. Incidence of Hypoglycemia after Gastric Bypass vs 

Sleeve Gastrectomy: A Randomized Trial. Journal of Clinical Endocrinology and Metabolism. 

2018;103(6):2136-2146. doi:10.1210/jc.2017-01695 

4.  Goldfine AB, Mun EC, Devine E, et al. Patients with neuroglycopenia after gastric bypass 

surgery have exaggerated incretin and insulin secretory responses to a mixed meal. Journal 

of Clinical Endocrinology and Metabolism. 2007;92(12):4678-4685. doi:10.1210/jc.2007-0918 

5.  Lee D, Dreyfuss JM, Sheehan A, Puleio A, Mulla CM, Patti ME. Glycemic Patterns Are Distinct 

in Post-Bariatric Hypoglycemia after Gastric Bypass (PBH-RYGB). Journal of Clinical 

Endocrinology and Metabolism. 2021;106(8):2291-2303. doi:10.1210/clinem/dgab323 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



6.  Kubota T, Shoda K, Ushigome E, et al. Utility of continuous glucose monitoring following 

gastrectomy. Gastric Cancer. 2020;23(4):699-706. doi:10.1007/s10120-019-01036-5 

7.  Craig CM, McLaughlin TL. Defining clinically important hypoglycemia in patients with 

postbariatric hypoglycemia. Surgery for Obesity and Related Diseases. 2021;17(11):1865-

1872. doi:10.1016/j.soard.2021.06.013 

8.  Lehmann V, Tripyla A, Herzig D, et al. The impact of postbariatric hypoglycaemia on driving 

performance: A randomized, single-blind, two-period, crossover study in a driving simulator. 

Diabetes, Obesity and Metabolism. 2021;23(9):2189-2193. doi:10.1111/dom.14456 

9.  Oviedo S, Vehí J, Calm R, Armengol J. A review of personalized blood glucose prediction 

strategies for T1DM patients. International Journal for Numerical Methods in Biomedical 

Engineering. 2017;33(6):1-21. doi:10.1002/cnm.2833 

10.  Laguna Sanz AJ, Mulla CM, Fowler KM, et al. Design and Clinical Evaluation of a Novel Low-

Glucose Prediction Algorithm with Mini-Dose Stable Glucagon Delivery in Post-Bariatric 

Hypoglycemia. Diabetes Technology and Therapeutics. 2018;20(2):127-139. 

doi:10.1089/dia.2017.0298 

11.  Mulla CM, Zavitsanou S, Sanz AJL, et al. A randomized, placebo-controlled double-blind trial 

of a closed-loop glucagon system for postbariatric hypoglycemia. Journal of Clinical 

Endocrinology and Metabolism. 2020;105(4):E1260-E1271. doi:10.1210/clinem/dgz197 

12.  Heller SR. Glucose concentrations of less than 3.0 mmol/L (54 mg/dL) should be reported in 

clinical trials: A joint position statement of the American diabetes association and the 

European association for the study of diabetes. Diabetes Care. 2017;40(1):155-157. 

doi:10.2337/dc16-2215 

13.  Prendin F, del Favero S, Vettoretti M, Sparacino G, Facchinetti A. Forecasting of Glucose 

Levels and Hypoglycemic Events: Head-to-Head Comparison of Linear and Nonlinear Data-

Driven Algorithms Based on Continuous Glucose Monitoring Data Only. Sensors. 2021;21(5). 

doi:10.3390/s21051647 

14.  Sparacino G, Zanderigo F, Corazza S, Maran A, Facchinetti A, Cobelli C. Glucose concentration 

can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE 

Transactions on biomedical engineering. 2007;54(5):931-937. 

15.  Pérez-Gandìa C, Facchinetti A, Sparacino G, et al. Artificial neural network algorithm for 

online glucose prediction from continuous glucose monitoring. Diabetes Technol Ther. 

2010;12(1):81-88. 

16.  Guillot FH, Jacobs PG, Wilson LM, et al. Accuracy of the dexcom G6 glucose sensor during 

aerobic, resistance, and interval exercise in adults with type 1 diabetes. Biosensors (Basel). 

2020;10(10). doi:10.3390/BIOS10100138 

  

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.


	1

