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Malaria affects the poorer regions of the world and is of tremendous health and economic
burden for developing countries. Extracellular vesicles (EVs) are small vesicles released by
almost any cells in the human body, including malaria infected red blood cells. Recent
evidence shows that EVs might contribute to the pathogenesis of malaria. In addition, EVs
hold considerable value in biomarker discovery. However, there are still significant gaps in
our understanding of EV biology. So far most of our knowledge about EVs inmalaria comes
from in vitrowork. More field studies are required to gain insight into their contribution to the
disease and pathogenesis under physiological conditions. However, to perform research
on EVs in low-income regions might be challenging due to the lack of appropriate
equipment to isolate EVs. Therefore, there is a need to develop and validate EV
extraction protocols applicable to poorly equipped laboratories. We established and
validated two protocols for EV isolation from cell culture supernatants, rodent and
human plasma. We compared polyethylene glycol (PEG) and salting out (SA) with
sodium acetate for precipitation of EVs. We then characterized the EVs by
Transmission Electron Microscopy (TEM), Western Blot, Size-exclusion
chromatography (SEC), bead-based flow cytometry and protein quantification. Both
protocols resulted in efficient purification of EVs without the need of expensive material
or ultracentrifugation. Furthermore, the procedure is easily scalable to work with large and
small sample volumes. Here, we propose that both of our approaches can be used in
resource limited countries, therefore further helping to close the gap in knowledge of EVs
during malaria.
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INTRODUCTION

Malaria remains one of the greatest life-threatening diseases worldwide. It is caused by several
Plasmodium species of parasites that are introduced into the bloodstream viamosquito bites. Mostly
at risk are populations in tropical and subtropical areas of over 100 countries (WHO, 2020). The
severe disease develops during the blood stage, when the parasite replicates inside red blood cells
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(RBCs). Several factors derived from both the parasites and host
determine the severity and outcome of the disease (Miller et al.,
2002; Schofield and Grau, 2005; Coban et al., 2018). Recently,
extracellular vesicles (EVs) have been described to contribute to
the pathological processes during malaria infection, and in
particular during cerebral malaria and severe anemia (Combes
et al., 2005; Coltel et al., 2006). The earliest reports focused on the
EVs released by endothelial cells, lymphocytes and platelets
(Combes et al., 2004). In fact, endothelial cell derived EVs
were elevated in a population of children infected with P.
falciparum, the highest level was observed at admission in the
group of children suffering from cerebral malaria (Combes et al.,
2004). In addition to the EVs derived from host, more recent
evidence suggests that EVs secreted by Plasmodium infected red
blood cells (iRBCs) might contribute to the development of the
disease as well (Antwi-Baffour et al., 2020). EVs are an
heterogenous collections of vesicles characterized by
differences in sizes and biogenesis pathways (Valadi et al.,
2007; Babatunde et al., 2018; Théry et al., 2018). EVs are
involved in many biological processes, including cellular
differentiation and immune regulation. Despite the differences
between each biogenesis pathway, a shared characteristic of all
EVs released is that their membrane composition reflects their
cellular origin. Since EVs contain molecules derived from their
mother cells, they constitute a promising source of biomarkers
readily available in biofluids.

In malaria, iRBC derived EVs were shown to mediate the
transfer of DNA between parasites and to promote the
differentiation from the asexual parasites towards gametocytes,
to initiate the transmission stage from the human to the mosquito
host (Mantel et al., 2013; Regev-Rudzki et al., 2013; Sampaio et al.,
2017). Therefore, it seems that the parasites have developed
strategies to synchronize and coordinate their behavior during
infection. In addition, to their role in parasite-parasite
communication, EVs have potent immunoregulatory properties.
For instance, EVs can stimulate monocytes and macrophages to
secrete proinflammatory cytokines and chemokines (Couper et al.,
2010; Sisquella et al., 2017; Mbagwu et al., 2019; Ofir-Birin et al.,
2021). EVs secreted by mast cells worsen the development of
cerebral malaria in the rodent malaria (Huang et al., 2021). EVs
produced during P. vivax infections are taken up by human spleen
fibroblast, in which they induced the expression of ICAM-1 to
potentiate parasite sequestration (Toda et al., 2020). Furthermore
EVs might be involved in drug resistance development against
some antimalaria drugs (Tandoh et al., 2021). Beside their role in
the development of the disease EVs might be used as vaccine to
prevent the development of severe malaria (Martin-Jaular et al.,
2011) and can be used a drug delivery tools against parasitic disease
(Borgheti-Cardoso et al., 2020). It has been reported that during
malaria infection by P. falciparum or P. vivax, the concentration of
EVs increases in the blood of malaria patients (Campos et al., 2010;
Pankoui Mfonkeu et al., 2010; Antwi-Baffour et al., 2020).
Interestingly EVs might be used as biomarkers to detect liver
infections in patients infected with P. vivax (Gualdrón-López et al.,
2018). Although evidence of a prominent role of EVs during
malaria is growing, a complete understanding of their
physiological function and relevance is still lacking. In fact,

most of the knowledge is coming from in vitro experiments,
more in vivo data and field trials are required to fully
understand EVs biology and contribution to the pathogenesis of
malaria. Despite progresses in EV research, it remains a challenge
to purify biologically intact EVs from biofluid samples of limited
volumes (Babatunde et al., 2020).

Differential centrifugation remains the gold standard approach
to enrich and purify EVs (Momen-Heravi et al., 2013). The
separation relies on the differences in the sedimentation speed
between EVs and other particles. The first centrifugation steps are
meant to remove cellular debris and impurities. Finally, EVs are
collected by ultracentrifugation at 100′000 g, followed in some
protocols by density gradient, resulting in enhanced sample purity.
In fact, iso-osmotic gradients such as sucrose allow to separate
vesicles based on their buoyant density, therefore eliminating
proteo-lipid complexes (Théry et al., 2006). Size-exclusion
chromatography allows to separate molecules varying in their
hydrodynamic radius by passing them through a column
containing a porous gel. While small molecules are retained in
the pores, the larger molecules such as EVs migrate faster through
the matrix and are eluted first (Takov et al., 2019). Affinity
immunocapturing is an interesting alternative, it is based on the
presence of known, specific markers on the surface of the EVs.
Therefore, antibodies can be used to target and bind those
receptors. Antibodies can be coupled to magnetic beads to allow
the EV capture by using a magnet. Therefore, affinity
immunocapturing outer perform other methods in terms of
specificity as most contaminants are removed (Nakai et al.,
2016). However, the relatively low expression of the receptor on
the EVs may also reduce the isolation yield.

In addition, several commercial kits are available, however
their high cost limits the usage for large volumes of cell culture
supernatants or large number of clinical samples, particularly in
resource limited regions. Thus, a simple, inexpensive and rapid
EV isolationmethod that can process cell culture media or diverse
biofluids is an essential but unmet need in many research and
clinical settings.

Recently, simpler and cheaper approaches such as
polyethylene glycol (PEG) precipitation and salting out have
been described. Here, we analyzed the suitability of those two
methods to extract RBC derived EVs derived from in vitro and in
vivo samples. We first demonstrate that PEG or salting out based
precipitation can efficiently isolate intact RBC EVs from cell
culture media. We then show that we can purify EVs from mouse
and human plasma. In conclusion, both approaches efficiently
purified EVs. Our platform has a broad application to the
processing of EVs in malaria research.

RESULTS

Overall Strategy to Compare Side By Side
Extraction of EVs
In order to optimize our RBC EV purification protocol, we
compared 2 different approaches based on PEG precipitation
and salting-out with a sodium acetate solution. The Figure 1
illustrates the strategy that we used to compare the efficiency of
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the two methods for enrichment of EVs derived from RBCs. First,
we generated EVs ex vivo by incubating during 4 h freshly isolated
human RBCs with a calcium ionophore (A23187, 5 μM) in HBSS
buffer containing Ca2+ and Mg2+ at a hematocrit of 25%. The
calcium ionophores are known to induce the release of vesicles by
RBCs (Allan et al., 1976; Allan et al., 1980). After removing cells

and cellular debris by differential centrifugation, the EVs were
enriched from the resulting supernatants by using either a PEG
solution or salting-out by sodium acetate buffer. Once the EVs
were purified, we analyzed their purity and integrity by
Transmission Electron Microscopy (TEM), western blot and
Size-exclusion Chromatography.

FIGURE1 | Schematic representation and description of themain steps involved in the 2methodologies used for the isolation of EVs. Created with BioRender.com.

FIGURE 2 | Characterization of red blood cell derived EVs isolated by PEG precipitation. (A) Transmission electron microscopy (TEM) visualization of RBC derived
EVs isolated from A23487 treated RBCs by PEG precipitation and collected by centrifugation at 20′817 g. Representative TEM image shows individual EVs and a few
clumps of varying sizes and intact lipid bilayers. The image on the right is a zoom in of the first panel. The scale bar is 1 μm. (B), (C) Analysis of hypo-osmotic lysed RBCs
by TEM. The cellular debris were pelleted by centrifugation and the pellet was resuspended in PBS for visualization by TEM. The scale bar is 1 μm.

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 8122443

Zoia et al. Rapid Extracellular Vesicle Purification

http://BioRender.com
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


Polyethylene Glycol Treatment Results in
the Enrichment of Cell Culture TEM Imaging
of Healthy Human RBC EVs Extracted By
PEG Precipitation
To demonstrate that PEG can be used to precipitate RBC EVs, we
added PEG solutions to the A23187 induced EVs. First, the cells
were pelleted at 500 g, and debris at 10′000 g the resulting
supernatants were collected and a 50% PEG solution was added
to reach a final concentration of 16% PEG6000. The samples were
mixed thoroughly by inversion and incubated at 4°C overnight. On
the next day, samples were centrifuged for 1 h at 20′817 g. The
resulting pellets were resuspended in PBS and stored at −150°C.

Next, we analyzed our EV preparations by TEM, and found
that PEG very efficiently precipitates and enriches for vesicles
(Figure 2A). The size was relatively homogenous and varied
between 100–300 nm. As expected, the vesicles have a rounded
shape and are surrounded by a membrane. Most of the vesicles
appeared intact and to contain hemoglobin (Figure 2A). As a
comparison, we investigated lysed RBCs by osmotic pressure
using a hypo-osmotic solution of salt. The RBCs lysed and
released hemoglobin into the supernatant. The cellular debris
were pelleted and analyzed by TEM. On the TEM images, RBC
ghosts can be clearly noticed as demonstrated by large patches of
membranes without a lumen. Although small vesicles are
observed as well, most of them were larger in size, and they
are not homogeneous in shape (Figures 2B,C).

TEM Imaging of Healthy Human RBC EVs
Extracted With Salting Out
Next to investigate the potential of enriching EVs with salting
out by sodium acetate. Intact cells and cellular debris were

removed by centrifugation at 500 g and 10′000 g, respectively,
and supernatants were retrieved. The cleared supernatants were
then mixed with 1/10th volume of sodium acetate at a pH -4.5.
The suspension immediately becomes turbid and was left on ice
for 1 h with a final incubation at 37°C for 5 min. The turbid
solution was centrifugated at 5′000 g and we analyzed the pellet
after resuspension in PBS by TEM. The TEM revealed that
salting out can precipitate vesicles as observed in Figure 3A,
however after the spin at the 5′000 g, the pellet still contained a
large number of cellular debris characterized by larger particles
with irregular shapes. Next, to increase the collection of EVs, the
precipitate was spun at 20′817 g and the pellet analyzed by TEM.
As it can be observed on the Figure 3B, we recovered more
vesicles, but the pellet still contained debris.

To improve the yield of EV recovery, we collected the
supernatant after the spin at 5′000 g, the resulting supernatant
was then spun down at 20′817 g and the pellet was analyzed by
TEM. Here, the pellet contained vesicles devoid from cellular
debris. The TEM revealed that EVs have a size varying from
100–300 nm. In conclusion a spin at 5′000 g is necessary to
eliminate most of the debris after the salting out (Figure 3C,D).

Salting-Out Efficiently Isolates EVs From In
Vitro Cultures of P. Falciparum-Infected
RBC, P. Yoelii-Infected Mice Plasma and
Healthy Human Plasma
Finally, to demonstrate the usefulness of our methodology with
more complex samples, we used supernatants from P. falciparum
infected RBCs, plasma from P. yoelii infected mice and healthy
human plasma and purify them by salting out. We opted for
salting out, instead of PEG precipitation because the yield is
better. First, we collected supernatants from P. falciparum

FIGURE 3 | Characterization of red blood cell derived EVs isolated by salting out precipitation. (A) Healthy Human RBCs EVs extracted via Salting-out precipitation
and pelleted at 5′000 g. The images were taken at 24′ × 500 magnification by TEM. Scale bar = 1 μm. (B) Healthy Human RBCs EVs extracted via Salting-out
precipitation at 20′817 g, imaging has been taken at × 24500 magnification by TEM. Scale bar = 1 μm. (C) EVs were precipitated by Salting out and debris were pelleted
at 5′000 g, the EVs were then collected by centrifugation at 20′817 g from the resulting supernatant. Scale bar = 1 μm. (D) Scale bar = 500 nm.
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cultures and after elimination of cells and cellular debris by
centrifugation, we precipitated EVs by salting out and
analyzed the pellet by TEM. The TEM revealed that we were
able to purify intact vesicles as it can be observed on Figure 4A.
Next, we infected BALB/C mice with the P. yoelii rodent parasite
strain and collected blood, we then isolated EVs from the plasma
and again our approach was efficient at extracting EVs as
observed on Figure 4B. Finally, we extracted EVs from
healthy human plasma by using salting out and observed as
well the high yield and specific recovery of EVs (Figure 4C).

Size-Exclusion Chromatography Revealed
a Pure Population of EVs
It is possible that we precipitated proteins and protein-complexes
together with our EVs. Therefore, next, we looked at potential
contaminations by using FPLCs. The fractions of 1 ml each were
collected immediately after loading the column and the void volume
is 4 ml. As expected, RBC EVs isolated by PEG or salting out
precipitation from A23187 treated EVs, eluted in the fraction 8–11,
which corresponds to the EVs profile as determined by our standard
curve (Figure 5A). Onlyminor amounts of proteins were detected in
the later fractions suggesting that most of our preparations is
composed of EVs and does not contain free proteins or protein
aggregates that would appear in later fractions. When fractionating
unprocessed plasma, we observed a small peak of proteins in
fractions 8–10, which corresponds to EVs. However, the plasma
is composed mostly of proteins or protein complexes eluting in
fractions 18–30. Our Bovine Serum Albumin was eluted in the
fractions (12–25), as is shown on the standard curve graph. We
performed a sucrose cushion in order to further eliminate protein
contamination from our RBC EVs preparation. However, the
sucrose cushion resulted in a significant decrease of the yield,
without further improving the purity (Figure 5B). To
demonstrate the presence of EVs in fractions 8–11, we performed
a bead-based flow cytometry assay to detect the presence of some
classical EV markers (CD9 and CD5L). We confirmed the presence
of EVs in the fraction 8–11 in unprocessed plasma (Figure 5C) and
P. falciparum conditioned medium (Figure 5D).

Purified Vesicles Express RBC EV Markers
Next, having shown that the EVs have the expected morphology,
we looked at the expression of EV markers, we used hemoglobin,

CD63, CD5L, TSG101, CD81 and stomatin. Stomatin is an
internal membrane protein enriched in the lipid rafts and EVs.
First, as a positive control, we prepared ghosts from human RBCs
(lysed RBCs) by hypotonic treatment and analyzed protein
content by western blot. As expected, the stomatin protein is
enriched in our ghost preparations (contain membranes), while it
is absent from supernatant (cytosol). Whereas hemoglobin is
present in the supernatant and absent from the ghost
(Figure 6A). Hemoglobin was also detected in RBC EVs and
conditioned medium (Plasmodium falciparum iRBCs)
precipitated by PEG or salting out. Whereas it was absent
from plasma derived EVs, as expected. As expected, stomatin
was enriched in RBC EVs and in conditioned medium, while it
was absent from plasma EVs. The tetraspin proteins (CD81,
CD5L and TSG101) were detected in the plasma EVs. Next, we
looked at EVs purified by PEG and salting out purification.
Stomatin is present in both of our EV preparations. In
addition, we could detect Hemoglobin by Coomassie staining
of the SDS-PAGE gel, a result consistent with intact vesicles,
containing hemoglobin in their lumen (Figure 6A). Next, we
compared the yield of purification by quantifying the protein
content of the EV preparations. In order to compare, we
proceeded to the isolation of EVs by PEG precipitation and
salting out by starting with the same amount of RBC culture.
We found that Salting out is more efficient than PEG in
recovering EVs. We recovered on average 0.7 mg/ml versus
0.4 mg/ml of proteins. Therefore, salting out provided a better
recovery over PEG (Figure 6B). Next to test the role of Calcium in
production of EVs ex vivo by RBCs, we pre-incubated RBCs with
the calcium chelators EDTA or EGTA before stimulating
vesiculation with A23187. The addition of calcium chelators
diminished significantly the amount of EVs recovered by
either PEG precipitation or salting out (Supplementary Figure
S1). Next, the presence of classical EVmarkers was determined by
bead-based flow cytometry on the purified EVs. The presence of
CD9 and CD5L is clearly demonstrated on EVs derived by
plasma, whereas the expression of those markers is lower on
RBC derived EVs and P. falciparum conditioned medium derived
EVs (Figure 6C).

DISCUSSION

To fully uncover the mysteries hidden behind cellular
communication mediated by EVs, efficient protocols for
extraction of the vesicles from cell culture supernatants, mouse
blood, patient plasma have to be developed and standardize. Here
we have compared two different methods to purify RBC derived
EVs produced in vitro. Finally, we applied these methods to
rodent and human plasma samples. In the first method, we used
PEG precipitation (Rider et al., 2016) and in the second, salting
out with sodium acetate (Brownlee et al., 2014). Both methods
resulted in the efficient purification of vesicles of a size between
100–300 nm.

First, we used purified human RBCs and stimulated them with
the calcium ionophore A23187, which leads to the massive release
of vesicles. The vesiculation was dependent on Calcium, since the

FIGURE 4 | Characterization of EVs from biofluids. (A) EVs derived from
in vitro P. falciparum infected RBC cultures reveal vesicular structures of
100–200 nm. Scale bar = 500 nm. (B) EVs isolated from plasma of P. yoelii
infected Balb/c mice. Scale bar = 500 nm. (C) EVs isolated from healthy
human plasma. Scale bar = 500 nm. All the EV preparations were analyzed
by TEM.
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Calcium chelator EDTA or EGTA, inhibited the production
of EVs.

Several approaches have been described to isolate EVs from
different sources including cell culture supernatants or biofluids.
Different studies have compared side by side the purification
methods, there is no conclusion as to which method is more
appropriate. Researchers have to consider yield, purity and cost
(Sáenz-Cuesta et al., 2015).

The gold standard method for purification of EVs is
differential centrifugation to eliminate cells and cellular debris
(Mbagwu et al., 2017). The EVs are then pelleted from the cleared
supernatants by ultracentrifugation at 100′000 g or higher speed
(Andrea Hernandez-Castaneda et al., 2018). The separation
principle of this method is based on the sedimentation speed
difference between EVs and other particles. Some protocols add
an additional step to eliminate free proteins and other debris

FIGURE 5 | Only one population of EVs are identified by size-exclusion chromatography. (A) Standard curves containing the elution profiles of EVs purified by
ultracentrifugation, BSA and human serum. Points represent the mean ± s.d. of two independent analyses. (B) Elution profile of purified RBC EVs isolated by PEG or
salting out precipitation as measured by absorbance at 280 nm. The dashed lines represent EVs further purified by sucrose gradient. Points represent the mean ± s.d. of
three experiments. (C)MFI values of CD9 and CD5L in SEC fractions. Total of 30 fractions of 1 ml were collected. (D)MFI values of CD9 and CD5L in SEC fractions
of P. falciparum conditioned medium.
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based on density gradient by using a sucrose cushion or other
density based gradient such as iodixanol (Van Deun et al., 2014).
Despite being widely used ultracentrifugation has several
disadvantages including co-purification of proteins aggregates
and other non-EVs particles. Furthermore, ultracentrifugation
might favor the aggregation of EVs, and therefore a loss of
functionality (Linares et al., 2015). In addition,
ultracentrifugation is time-consuming, expensive and requires
the access to an ultracentrifuge. Another disadvantage is the poor
scalability. In fact, working with large volume of cell culture
supernatants or very small volumes from clinical samples makes
it difficult to work with and might necessitate different type of
ultracentrifuges. Despite those disadvantages, ultracentrifugation
remains the most commonly used approach to purify EVs. Both
PEG and salting out precipitation of EVs are easily scalable for
small volumes such as clinical samples or for rodent experiments.
Here, we were also able to precipitate EVs from large cell culture
volumes up to 200 ml with minimal costs. Furthermore, there is
no special instrumentation required and the time spent to
manipulate the samples is relatively moderate. Both of these
approaches provide an efficient way to isolate, while

preserving the integrity of the vesicles. In fact, as we
demonstrated by western blot, our EVs still contain
hemoglobin, suggesting that they are intact.

Additional methods exist for the isolation of EVs, such as
ultrafiltration (Nordin et al., 2015), fractionation, size-exclusion
chromatography (Böing et al., 2014) and affinity interactions
(Brennan et al., 2020), as well as microfluidic devices and
microchips (Liu et al., 2017) (Shao et al., 2012). All these
methods are time consuming and necessitate a specific
training. Therefore, these approaches might be difficult to
implement in resource limited regions.

Salting out can be performed in a few hours, whereas the PEG
precipitation step is performed overnight. Both approaches can
be done on small culture volume and therefore are valuable for
analyzing patients biofluids that might be limited in quantity.
This approach makes it also easier to work with large numbers of
samples simultaneously. By adding a centrifugation step at
5′000 g to eliminate debris, we were able to improve the
recovery and purity of EVs by salting out without affecting the
yield. Although the mechanism responsible for EV precipitation
is not fully understood, it has been suggested that the acetate-

FIGURE 6 | EVs express specific markers. (A)Western Blot analysis of RBC EVmarkers, stomatin, GAPDH and Hemoglobin. In total, 10 μg of protein were loaded
on a SDS-PAGE gel. (B) A comparison of EV recovery yield between PEG and salting out precipitation as measured by protein content. The mean ± s.d. of four
independent analyses is shown. (C) Representative experiment of purified EVs from RBCs, plasma and conditioned medium. The presence of EV markers (CD9 and
CD5L), was assessed by bead-based flow cytometry assay. The Mean Fluorescence Intensity (MFI) was calculated after measuring 50,000 events (one
representative of three experiments).
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mediated removal of the EV hydration layer that promotes
hydrophobic interactions result in increasing aggregation and
concomitant precipitation.

The precipitated EVs can be washed to remove impurities and
are readily “resolubilized” upon resuspension in acetate-free
buffer at neutral pH. PEG has been used for many decades for
the purification of viruses that have similar properties than EVs.

Both PEG precipitation and salting-out provided a robust
highly scalable approach to purify pure EVs from in vitro RBC
induced EVs. Therefore, these methods can be used for
purification of in vitro generated EVs. While we used biofluids
(plasma) derived from murine and human plasma the results.
Although the recovery of EVs was high, the purified samples
contained a significant amount of contaminations.

In conclusion, we have tested two approaches that efficiently
isolate EVs from cell culture supernatants or from plasma. Both
approaches do not require special equipment and therefore can be
applied in resource poor regions. There is an urgent need to
develop.

MATERIALS AND METHODS

We have submitted all relevant data of our experiments to EV-
TRACK knowledgebase (EV-TRACK ID:EV220175).

Cell Culture of Parasites
The P. falciparum strain 3D7 was used for this study. Parasites
were kept in fresh type 0 + human red blood cells, suspended at
4% hematocrit in HEPES-buffered RPMI 1640 containing 10%
(w/v) heat inactivated human serum, 0.5 ml Gentamycin, 2.01 g
sodium bicarbonate and 0.05 g Hypoxanthine at pH 6.74. Prior to
culture, the complete medium was depleted from EVs and debris
by ultracentrifugation at 100′000 g for 1 h. The parasite cultures
were maintained in a controlled environment at 37°C in a gassed
chamber at 5% CO2 and 1% O2.

Size Exclusion Chromatography
Experiments to determine the presence of contaminations in EVs
preparations were performed essentially as described (Mantel
et al., 2016). Briefly, sephacryl S-500 resin (GE Healthcare) was
packed in a chromatography column (0.9 Å~ 30 cm, 19.1 ml bed
volume and void volume of 4 ml). Before injection, the column
was equilibrated with 25 ml of PBS solution at 0.5 ml/min at room
temperature. The columnwas injected with 0.5 ml of purified EVs
and eluted at 4°C for approximately 1 h with PBS solution (pH
7.4) at a flow rate of 0.5 ml/min. A total of 25 fractions of 1 ml
each were collected. Fractions were stored at 4°C before use.
Protein molecular weight standards included BSA (67 kDa; GE
Healthcare), purified EVs by ultracentrifugation and
human serum.

Bead-Based Flow Cytometry
Fractions from SEC and EV-enriched fractions from PEG and
salting-out were analyzed by flow cytometry to identify the
classical EV markers CD5L and CD9. As it has been described
previously (Théry et al., 2006; Gualdrón-López et al., 2018).

Briefly, 400 μl of each fraction was incubated with 1 μl of
aldehyde/sulphate-latex beads (4 μm; 4%, ThermoFisher
Scientific) by incubation for 15 min with agitation. Coupled
beads were then blocked by incubation overnight with 1 ml of
BCB buffer [(PBS 1X/BSA 0.1%/NaN3 0.01% (both from Sigma-
Aldrich)] in a rotation device. Beads were centrifuged down at
2,000 × g for 10 min, the supernatant was discarded. The
pelleted beads were resuspended in 100 μl of BCB buffer. The
bead suspension was incubated with anti-CD5L antibodies
(Abcam: ab45408) at 1/100 or anti-CD9 (Santa Cruz
Biotechnology: ALB6) or IgG isotype control (To check) for
30 min at 4°C protected from light. After washing, samples were
incubated with a rabbit or mouse secondary-antibody
conjugated to Alexa 488 (both Diavona) at 1/500 dilution for
30 min at 4°C, protected from light. After two wash steps, beads
were resuspended in 200 μl of PBS and 50,000 events were
analyzed by flow cytometry using a BD Accuri C6 (BD
Biosciences) instrument. Median Fluorescence Intensity
(MFI) and count data were obtained using FlowJo v. X
Software (TreeStar). As control for specificity, we have
incubated SEC fraction 9 and 10 in the presence of a rabbit/
mouse isotype IgG antibody and secondary-antibody Alexa
(isotype control).

Salting-Out Procedure
RBC conditioned media was cleared from cells and debris by
centrifugation. 1/10th volume of Na acetate buffer (1.0 M; pH
4.75) was added to the cleared supernatant solution and
incubated at 4°C under rotation. Then the solution was
incubated 5 min at 37°C. The turbid suspension was
centrifuged for 1 h at 5′000 g and the resulting pellet was
washed with a 0.1 M Na acetate buffer solution and the
supernatant was then spun at 20′817 g for 10 min. The
purified EVs were resuspended in PBS and stored at −150°C.

EVs Isolation By Polyethylene Glycol
Precipitation
Vesicle-containing medium from RBC cell culture or plasma
were centrifuged at 500 g for 5 min followed by 2′000 g for
30 min at 4°C to remove cells and cellular debris. After
centrifugation, a 2 × PEG solution was added to an equal
volume of supernatant to reach a16%- PEG concentration.
The samples were mixed thoroughly by inversion and
incubated at 4°C overnight. On the next day, samples were
centrifuged in a tabletop centrifuge at 20′817 g for 1 h at 4°C.
conical tubes were then decanted, and allowed to drain for
5 minutes, tapping occasionally to remove excess PEG. The
resulting pellet was suspended in 50–500 μl of particle-free
PBS (pH 7.4). subsets of samples were then either stored at
-150°C or used straight away for experiments.

Transmission Electron Microscopy
A total of 10 μg of EVs purified by Salting out and PEG were fixed
in 2% PFA/2.5% GA (EM grade) in 0.1 M Cacodylate Na Buffer,
postfixed with an aqueous solution [1% OsO4 and 1.5% K4Fe
(CN)6], and embedded into epon. Ultrathin sections (50 nm)
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were contrasted with lead citrate and uranyl acetate and analyzed
with a CM 100 (Philips).

Western Blotting
Samples were collected and purified as described in each specific
experiment. For SDS–polyacrylamide gel electrophoresis the
pellet was washed three times in PBS and taken up in
reducing SDS sample buffer (Invitrogen, Carlsbad, CA).
Proteins were separated on 4–12% Bis-Tris gels (Invitrogen)
and proteins transferred onto Immun-Blot PVDF membranes
(Biorad), according to standard protocols. Antibodies used are
anti-stomatin (clone M-14; Santa Cruz Biotechnologies), CD63
(clone E-12: Santa Cruz Biotechnology), CD81 (clone 5A6; Santa
Cruz Biotechnology), CD9 (ALB6; Santa Cruz Biotechnology),
TSG101 (4A10; Novus Biologicals) and CD5L (ab45408, Abcam).
Secondary antibodies (IR-Dye-conjugated) were goat anti-rabbit
and goat anti-mouse immunoglobulin (LICOR, Lincoln, NE).
Immunoreactive bands were detected using the Odyssey imaging
system (LICOR).

Red Blood Cells Isolation and Treatment
With Calcium Ionophore
Venous blood, collected in acid-citrate-dextrose, was
obtained from healthy adult volunteers. The RBCs were
washed three times with PBS. And stored at 4°C at a
hematocrit of 50%.

Treatment with calcium ionophore. Ca2+ionophore treatment
was performed at 37°C by addition of A23187 (Sigma-Aldrich) at
a concentration of 5 μM in a HBSS buffer containing Ca2+.
Unless otherwise indicated, incubation time of RBCs with
ionophore was 4 h.
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