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Abstract: Background and Objectives: Three-dimensional planning and guided osteotomy utilizing
patient-specific instrumentation (PSI) with the contralateral side used as a reference have been proven
as effective in the treatment of malunions following complex fractures of the distal radius. However,
this approach has not yet been described in relation to fracture reduction of the distal radius. The aim
of this study was to assess the technical and logistical feasibility of computer-assisted surgery in a
clinical setting using PSI for fracture reduction and fixation. Materials and Methods: Five patients with
varied fracture patterns of the distal radius underwent operative treatment with using PSI. The first
applied PSI guide allowed specific and accurate placement of Kirschner wires inside the multiple
fragments, with subsequent concurrent reduction using a second guide. Results: Planning, printing
of the guides, and operations were performed within 5.6 days on average (range of 1–10 days).
All patients could be treated within a reasonable period of time, demonstrating good outcomes,
and were able to return to work after a follow-up of three months. Mean wrist movements (◦)
were 58 (standard deviation (SD) 21) in flexion, 62 (SD 15) in extension, 73 (SD 4) in pronation
and 74 (SD 10) in supination at a minimum follow-up of 6 months. Conclusions: Three-dimensional
planned osteosynthesis using PSI for treatment of distal radius fractures is feasible and facilitates
reduction of multiple fracture fragments. However, higher costs must be taken into consideration for
this treatment.

Keywords: distal radius fracture; 3D planning; patient-specific guide; preoperative planning;
osteosynthesis

1. Introduction

The primary aims in the operative treatment of displaced intra-articular distal radius
fractures are anatomical reduction of the articular surface and restoration of normal align-
ment. Several authors have suggested that a persisting intra-articular step of more than
2 mm may lead to radiocarpal degeneration, wrist stiffness and functional deficits [1–3].
The wrist and forearm function as a unit; therefore, failure to sufficiently restore alignment
at the distal radius can lead to radioulnar dysfunction and decreased range in prona-
tion/supination [4–6]. In the setting of multiple articular fragments, displacement in
multiple directions can be caused by forces resulting from the carpus and the soft tissue at-
tachments of the capsule, carpal ligaments, and brachioradialis. The concurrent control and
reduction of multiple fragments, maintenance of reduction, and subsequent fixation, while
avoiding interference with implant positioning, can be surgically challenging, especially in
poor bone quality or small fragments.
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Although there have been important developments in the surgical technique and
implant function, long-term results still demonstrate high rates of arthrosis [1,7]. The accu-
rate restoration of the articular surface of both radiocarpal and distal radioulnar joints is
paramount in prevention of post-traumatic osteoarthritis [8]. This is especially important
in young patients with distal radius fractures. The use of computer-assisted orthopaedic
surgery (CAOS) in trauma patients has the potential to improve both intraoperative work-
flow and fracture reduction quality, which may prevent postoperative arthritis and improve
functional results. Studies have concluded that virtual preoperative planning and three-
dimensional (3D) printing devices used for shoulder and pelvis operative treatment can
improve surgeon's satisfaction, reduce operative time and radiation exposure, and even
improve patient outcomes [9,10]. In the distal radius anatomical region, several studies
on malunions reported accurate reduction of the intra-articular surface via corrective os-
teotomies guided by 3D-printed patient-specific instruments (PSIs) [11–13]. Utilizing this
technique, it can be easier and faster to perform complex osteotomies, being difficult to
set when using conventional techniques. The process utilizes computed tomography (CT)
scans of the affected and contralateral sides, which are segmented and reconstructed to
create 3D virtual models. The contralateral side can be mirrored and used as a normal
template, the osteotomy can be planned virtually, and the 3D-printed guides can be utilized
intraoperatively. The operative PSIs are designed to follow the anatomical contours of the
bone, and only fit properly in an appropriate position—specific Kirschner (K-) wire paths
can be designed to allow proper positioning around the metal hardware. This approach has
been utilized successfully in some previous studies on the upper extremity [11–13]. How-
ever, no studies exist yet that assess the utility of PSI for treatment of complex distal radius
fractures, where the potential for control and fixation of multiple fragments may improve
the accuracy of reduction and enhance the operative workflow. In the setting of multifrag-
mentary intra-articular fractures, surgeons often use adjuncts, such as arthroscopy and
extended or additional approaches, for visualization. An intraoperative aid that accurately
addresses multiple fragments may negate the need of using such additional invasive aids.

Therefore, this study sought to validate the feasibility of a process of preoperative
virtual reduction involving the design and use of PSI as an intraoperative aid for treatment
of complex distal radius fractures.

The indications for this technique are complex distal radius fractures that do not
necessitate immediate surgical intervention. Contraindications are fractures requiring
emergent treatment, such as contaminated open fractures, or those with nerve or vessel
compromise. Fractures initially treated with an external fixator are ideal for this approach
due to the staged conversion to internal fixation with sufficient time for preoperative
planning. In the light of higher costs and time expenditure, this technique is not indicated
for simple but for complex multifragmentary intra-articular and extra-articular fractures.
This demonstrates the utility and flexibility of the technique for a heterogenous group of
both fracture types and fragment-specific fixations.

2. Materials and Methods

Ethical approval for this feasibility study was granted by the institutional review
board (Kantonale Ethikkommission Zürich, Switzerland, BASEC-Nr. 2019-00369 for clinical
cases) and all included patients were consented for their specific fracture treatment. Five
patients with distal radius fractures underwent CT imaging, preoperative planning and
intraoperative use of PSI during the treatment.

2.1. Included Patients and Fracture Type

The ages of patients, AO/OTA fracture types and implant data are presented in Table 1.
The first case was presented at our clinic after a fall at work four days before. Patient

history included a previous operatively treated intra-articular distal radius fracture two
years before, with subsequent implant removal a year later. After the initial trauma, there
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was incongruency at the scaphoid fossa and the radial inclination was reduced versus the
contralateral side. The fracture was extra-articular.

Table 1. Detailed overview of the five clinical cases.

# Age
Sex

Fracture Type
AO/OTA

Plate
(Manufacturer)

Days from
Review to
Surgery

Back to
Work after
3 Months

Healed at
3 Months Complications

1 50 F 2R3A3.3 Closed 2-collum plate
(Synthes) 1 Yes Yes None

2 52 M 2R3C1.2 Closed 2-collum plate
(Synthes) 10 Yes Yes None

3 30 M 2R3C3.2 Closed Correctus plate
(Intercus) 7 Yes Yes None

4 64 M 2R3A3.2 Open
Grade 1

Correctus plate
(Intercus) 7 Yes Yes None

5 72 F 2R3B1.1 Closed 2-collum plate
(Synthes) 3 Yes Yes None

#—case number.

The second patient fell on an outstretched hand and was presented 10 days later to our
outpatient clinic. Imaging showed a large volar Barton fragment and a depressed fragment
of the central radial styloid.

The third patient arrived at our clinic after falling down the stairs. A CT scan demon-
strated a coronal intra-articular split with displacement of the dorsal articular segment,
dorsal comminution, and a radial styloid fragment.

The fourth patient suffered a grade 1 open distal radius fracture. Closed reduction
and external fixation were performed prior to referral to our hospital, accompanied by
ongoing significant soft tissue swelling. A metaphyseal wedge fragment was present with
significant translation and tilt of the distal fragment.

The fifth case was from a mountain bike accident, with the patient suffering multiple
concomitant hand fractures. The distal radius fracture included a displaced partial articular
radial styloid fragment, also known as a Chauffer fracture.

2.2. Preoperative Planning

All patients received a CT scan (slice thickness 1 mm; 120 kV; Philips Brilliance 40 CT,
Philips Healthcare, The Netherlands) of the injured an contralateral forearms from the elbow
past the radiocarpal joint (see Table 2 for CT protocol details). The CT scans of bilateral radii
were segmented using commercial software (Mimics V.20.0, Materialise, Leuven, Belgium)
and reconstructed to form triangular surface models. To perform segmentation, manual
thresholding and region growing were applied. The mirrored contralateral intact side
served as a template. Computer planning was performed by the senior surgeon using
the custom-made software application CASPA (Balgrist CARD AG, Zurich, Switzerland).
The fracture fragments were aligned with the intact contralateral side using an iterative
closest point (ICP) surface registration algorithm. A 3D model of the planned locking plate
for operative fixation was positioned on the bone surface (Figure 1). Cylinders represented
the exact position of the angular-stable locking screws in the plate model. Finally, PSIs
were produced by means of an in-house 3D printer (Formiga P100, EOS GmbH, Krailling,
Germany). The extreme fine-focus diameter enabled a wall thickness of 0.4 mm at a slice
thickness of 100 µm and a printing speed of 24 mm/h in height. The guides were made
from polyamide and sterilized with a conventional steam pressure sterilizer. Cleaning
and sterilization were performed according to the cleaning and sterilization instructions of
MyOsteotomy (Medacta SA, Castel San Pietro, Switzerland). Equivalency to this approved
medical product was demonstrated and the necessary documentation was provided to
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the respective regulatory bodies. Correspondingly, a regulatory approval for use of the
printer was granted for the purpose of the study. General licensing was planned as a
subsequent step, with outsourcing to a MedTech company. The printing material was
PA2200, a commonly used material for patient-specific instruments. It was validated
as class VI (the highest class) by the United States Pharmacopeia (USP). Surgeons and
engineers with expertise in 3D planning of corrective osteotomies performed the planning,
with approximate time effort of 2–3 h. The duration of the printing was dependent on
the number of needed parts and lasted several hours, including the cooling time for the
printer. A printing time of 8–12 h was estimated for a distal radius fracture. The overall
costs were approximately 1500 EUR for planning and design of the PSI, and 600 EUR for
PSI production, including material costs of approximately 200 EUR.

Table 2. CT protocol used for all patients in the current study.

Kv/mAs 120/120 Resolution Ultra-high

Thickness 1.0 (mm) Collimation 20 × 0.625 (mm)

Increment 0.5 (mm) Pitch 0.652

Filter Y-Sharp (YE) Rotation Time 0.5 (s)

Enhancement −1.0 FOV 150 (mm)

Windows/Center 450/2000 (HU) I-Dose 1

Figure 1. Detailed virtual planning of all five clinical cases (see Table 1 for further details of the cases).
The first patient-specific guide facilitates K-wire fixation of separate fragments. Reduction is achieved
either with the help of a patient-specific reduction guide, the plate itself, or both.

Two types of PSI guides were needed to reduce a fracture. The first one was a fragment-
specific fixation guide (Figure 1, Case 1, Image 3). The PSI was designed to closely articulate
the specific articular fragments in displaced position and allow accurate K-wire placement.
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The shape was designed based on the anatomical cortical surface and incorporated the
shape of the fracture line (Figure 2). The guide was designed based on the imaging of
the fractured bone in a displaced position. Although fractures may further dislocate after
initial CT, the PSI shape with its individual facets for each fragment was such that when
applied to the bone with pressure, the fragments could return to their previous relative
positions. The second PSI was a reduction aid (Figure 1, Case 1, Image 4) attached to the
locking plate via K-wire guides in line with the locking holes of the plate. When the K-wires
were accurately placed in each fragment, passing them into the reduction aid resulted in
anatomical alignment of the fracture fragments. The wires could then be replaced with
locking screws. After using the first guide for K-wire placement, the reduction aid could be
applied with a plate (Case 1), alone (Case 2), or alternatively the plate alone could be used
for positioning (Case 3). Both preoperative segmentation of the CT scans of the affected
and contralateral side and preoperative planning were performed within 1–3 days after the
first clinical consultation at our hospital. Urgency was dictated by planned procedure date,
and no procedures were pushed back due to surgical planning.

Figure 2. Photograph of a manufactured patient-specific guide positioned on a fracture fragment of
a distal radius fracture. The guide will only sit closely on the fragment in the appropriate planned
position and allow passing of wires in a predetermined path. Note how the small lip encloses the
fracture line.

2.3. Operative Management

Surgery in all patients proceeded after adequate resolution of the soft tissue swelling
and was performed by senior hand surgeons (A.S. in four cases and L.N. in one case).
The modified Henry approach to the distal forearm was utilized for all patients. Either
2.4 LCP Distal Radius Plate (Synthes, Zuchwil, Switzerland) or Correctus Plate (Intercus,
Aarau, Switzerland) were used according to surgeon preference. Each plate was positioned
with the use of the corresponding PSI and then fixed (Figure 3 and Video S1). Reduction
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was confirmed via intraoperative fluoroscopy (Siemens ARCADIS Varic, Siemens Medical
Solutions AG, Erlangen, Germany).

Figure 3. Intraoperative pictures of the first clinical case after a modified Henry approach. (a): K-wires
are inserted with the help of a patient-specific fragment fixation guide to control reduction later. Note
the direction of the K-wires in the distal fracture fragment. (b): The first guide is replaced with a
second reduction guide which is mounted to a two-column plate (Synthes) and placed over the guide
wires. Note how all K-wires are parallel to each other, indicating reduction. (c): The guide is removed,
and the wires are replaced with locking screws. (A detailed virtual planning of the surgical steps is
visualized in Figure 1, Case 1.)

Postoperatively, the range of motion was measured and the grip strength was eval-
uated with a dynamometer (JAMAR; Sammons Preston, Bolingbrook, IL, USA). Clinical
follow-up of all patients was performed after two weeks, six weeks, three months, and
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six months. Two patients were inspected again after one year. Radiographic review was
performed after six weeks and six months. All patients received a volar slab for two weeks
which was replaced with a removable cast for further four weeks.

3. Results
3.1. Patient Characteristics

The patient group consisted of three cases with an intra-articular fracture and two
cases with an extra-articular fracture, comprising three male and two female patients.
The mean age was 57 (range 30–72) years, the mean duration until surgery was 16.8
(range 3–21) days after trauma and 5.6 (range 1–10) days after presentation to our clinic.
One case had an extended time to surgery due to late presentation after injury abroad, with
significant soft tissue swelling.

3.2. Preoperative Planning

The PSI production, including CT analysis and virtual planning, took approximately 8
h to complete, considering one hour effort of the treating surgeon and further commitment
of an in-hospital engineer. The PSI was 3D-printed overnight in all cases, being ready by
the next morning.

3.3. Clinical Results

At the final follow-up all patients demonstrated good functional results, with none of
the patients reporting wrist pain (Table 3). All patients were able to return to work after
three months (Table 2). The radiological review revealed union and maintenance of the
standard alignment parameters on X-ray (radial height, inclination, and volar tilt) at 6–8
weeks. At the final follow-up none of the patients demonstrated degenerative changes, such
as subchondral sclerosis, joint space narrowing or osteophyte formation. No complications
were observed. Implant removal was performed in one patient due to soft tissue irritation.

Table 3. Detailed clinical outcome of the five clinical cases at final follow-up. Values of the healthy
contralateral side are presented in brackets.

# Flexion (◦) Extension (◦) Pronation (◦) Supination (◦) Grip Strength (kg) Last Follow-Up (Months)

1 75 (75) 70 (70) 70 (70) 80 (80) 38 (65) 6

2 75 (75) 70 (70) 70 (70) 80 (80) 38 (65) 6

3 20 (70) 50 (60) 70 (70) 60 (80) 38 (45) 8

4 50 (70) 40 (50) 75 (75) 65 (65) 32 (36) 12

5 70 (70) 80 (80) 80 (80) 85 (85) 34 (34) 12

#—case number.

4. Discussion

The current study demonstrated a feasible end-to-end process within the hospital
facilities—from patient imaging, segmentation and preoperative planning to fixation using
patient-specific intraoperative guides—being useful for a wide range of fracture types
across the spectrum of the AO/OTA classification.

Studies utilizing CAOS have reported excellent results in patient outcomes and ac-
curacy of reduction [3,11,14]. CAOS has been applied to various malunions of the upper
limb in the forearm and extra-articular distal radius, as well as intra-articular malunions
of the distal radius. A more accurate reduction has been reported compared to freehand
techniques [2,15,16]. In the current study we introduced this technique for use in distal
radius fractures and presented five varied clinical cases. Similar to the positioning for intra-
articular malunion correction, the jig had an articulating face to hold each fracture fragment
based on the preoperative CT. Although the fragments were more mobile and prone to
displacement, the multifaceted jig, when pushed at the fracture site, allowed each fragment
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to fall into the planned position for K-wire fixation. This technique was applied to simple
and multifragmentary metaphyseal extra-articular fractures. It also demonstrated utility
for fragment-specific fixation in a partial articular styloid fracture, as well as control and
fixation in complex multifragmentary intra-articular fractures including a volar Barton’s
fragment. The method is thus versatile and applicable to a variety of fracture types.

Complex comminuted distal radius fractures or fractures with multiple fragments in
the metaphysis are challenging to reconstruct. The fragments are displaced in different
directions due to their soft tissue attachments and the original traumatic impact and orienta-
tion can be difficult when anatomic bone landmarks (e.g., volar rim of the distal radius) are
displaced. There has been a trend to utilize intraoperative arthroscopic assistance in such
complex intra-articular cases [17–22]. Treating such complex fractures remains challenging
due to limited access to the articular surface. Some surgeons perform extended additional
approaches or arthrotomy for improved visualization. However, an extensive soft tissue
dissection to access the joint may increase the risk of postoperative scarring and stiffness.
Even in cases with full joint visualization, the accurate reduction and concurrent fixation of
multiple mobile fracture fragments remains challenging [23,24].

It is important to accurately restore the radiocarpal joint surface after trauma, as
a disturbance in gliding due to postoperative gaps or steps in the joint surface leads to
osteoarthritis, as demonstrated in several studies [1,25,26]. Furthermore, a fourfold increase
in the joint load was reported after a joint step of 1 mm and an eightfold increase after a
joint step of 2 mm in a biomechanical cadaver study [27]. This is in line with several clinical
reports. A strong correlation between residual joint congruence with a step-off larger than
1.5 mm and the development of arthrosis was reported after a minimum follow-up of five
years [25]. Furthermore, a postoperative step-off of more than 1 mm was demonstrated in
28% of patients treated with the conventional technique with open reduction and internal
fixation [28]. These clinical and biomechanical studies underline the importance of accurate
joint surface restoration. Schweizer et al. presented six patients after correction osteotomy
for distal radius malunions using a similar 3D PSI operation technique. The infrastructure
used (printer, software, technicians) was identical to the infrastructure of the current study.
Although they did not perform on acute fractures, a joint surface congruency restoration
below 1 mm was achieved [3]. However, whether those values may be achieved with
the described technique of the current study needs to be further evaluated. Moreover,
additional research is necessary regarding the clinical outcomes of larger patient collectives
operated on with the presented technique. The use of PSI was demonstrated as useful for
accurate K-wire positioning, allowing for concurrent reduction and control of all fragments.
If accurate articular reduction can be performed consistently in bigger patient cohorts, it
may negate the need for more invasive articular access.

This technique has several limitations. The use of a contralateral CT scan as a template
exposes the patient to further radiation. An alternative in the future may be to use a
statistical shape model representing a population-wide variation in anatomical shapes [25].
Furthermore, the planning, design, and production of the PSI are expensive, and the time
requirement from both a surgeon and an available engineer with software access is not neg-
ligible. An ongoing critique of many examples of computer-assisted orthopaedic surgery is
that the time and cost investment are currently disproportionate to the demonstrated bene-
fits. While this may reflect the current situation, the research in image segmentation and
virtual surgical planning is advancing at a rapid pace. One of the senior authors has already
published methods in automated segmentation and virtual fracture reduction [26–28]. We
believe that in the next decade the advances in image processing and 3D printing will allow
for faster and cheaper application of computer-assisted surgery. Therefore, it is important
to establish potential clinically beneficial methods and pipelines in the present that can be
streamlined in the future.

This technique is not indicated for all distal radius fractures, and simple fractures
can be treated with conventional, more cost-effective techniques. However, for complex
distal radius fractures in young high-demand patients, this technique might result in more
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accurate reduction and better outcomes. The results of our patient group are in line with
several reports in the literature, with a comparable or even slightly better postoperative
range of motion [29–36]. However, we obtained no clinical outcome parameters, had
no control group and established our ratings for radiographic outcomes only as either
healed or not healed. No further radiographic analysis (e.g., CT scans) was obtained.
Therefore, further clinical studies are needed in the future to evaluate the clinical benefit of
the technique. This was a feasibility study, and further cases and specific quantification of
reduction parameters may yield data supporting the benefits of such computer-assisted
trauma surgery.

5. Conclusions

The use of patient-specific instruments in a complex distal radius fracture is feasible
and facilitates intra-articular reduction without excessive soft tissue dissection. It demon-
strates accuracy of reduction, does not delay time to surgery, and results in good patient-
reported and functional outcomes without added complications. This may support the
further use of the technique in complex multifragmentary distal radius fractures. However,
higher costs must be considered for this treatment.
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